原核生物基因组和真核生物基因组比较区别

原核生物基因组和真核生物基因组比较区别
原核生物基因组和真核生物基因组比较区别

原核生物基因组和真核生物基因组的区别:

1、真核生物基因组指一个物种的单倍体染色体组(1n)所含有的一整套基因。还包括叶绿体、线粒体的基因组。

原核生物一般只有一个环状的DNA分子,其上所含有的基因为一个基因组。

2、原核生物的染色体分子量较小,基因组含有大量单一顺序

(unique-sequences),DNA仅有少量的重复顺序和基因。

真核生物基因组存在大量的非编码序列。包括:

.内含子和外显子、.基因家族和假基因、重复DNA序列。真核生物的基因组的重复顺序不但大量,而且存在复杂谱系。

3、原核生物的细胞中除了主染色体以外,还含有各种质粒和转座因子。质粒常为双链环状DNA,可独立复制,有的既可以游离于细胞质中,也可以整合到染色体上。转座因子一般都是整合在基因组中。

真核生物除了核染色体以外,还存在细胞器DNA,如线粒体和叶绿体的DNA,为双链环状,可自主复制。有的真核细胞中也存在质粒,如酵母和植物。

4、原核生物的DNA位于细胞的中央,称为类核(nucleoid)。

真核生物有细胞核,DNA序列压缩为染色体存在于细胞核中。

5、真核基因组都是由DNA序列组成,原核基因组还有可能由RNA组成,如RNA病毒。

原核生物和真核生物区别(从细胞结构、基因组结构和遗传过程分析)主要差别

由真核细胞构成的生物。包括原生生物界、真菌界、植物界和动物界。真核细胞与原核细胞的主要区别是:

【从细胞结构】

1.真核细胞具有由染色体、核仁、核液、双层核膜等构成的细胞核;原核细胞无核膜、核仁,故无真正的细胞核,仅有由核酸集中组成的拟核

2.真核细胞有内质网、高尔基体、溶酶体、液泡等细胞器,原核细胞没有。

真核细胞有发达的微管系统,其鞭毛(纤毛)、中心粒、纺锤体等都与微管有关,原核生物则否。

3.真核细胞有由肌动、肌球蛋白等构成的微纤维系统,后者与胞质环流、吞噬作用等密切相关;而原核生物却没有这种系统,因而也没有胞质环流和吞噬作用。

真核细胞的核糖体为80S型,原核生物的为70S型,两者在化学组成和形态结构上都有明显的区别。

4.原核细胞功能上与线粒体相当的结构是质膜和由质膜内褶形成的结构,但后者既没有自己特有的基因组,也没有自己特有的合成系统。真核生物的植物含有叶绿体,它们亦为双层膜所包裹,也有自己特有的基因组和合成系统。与光合磷

酸化相关的电子传递系统位于由叶绿体的内膜内褶形成的片层上。原核生物中的蓝细菌和光合细菌,虽然也具有进行光合作用的膜结构,称之为类囊体,散布于细胞质中,未被双层膜包裹,不形成叶绿体。

【从基因组结构】

1.真核生物中除某些低等类群(如甲藻等)的细胞以外,染色体上都有5种或4种组蛋白与DNA结合,形成核小体;而在原核生物则无。

2.真核生物中除某些低等类群(如甲藻等)的细胞以外,染色体上都有5种或4种组蛋白与DNA结合,形成核小体;而在原核生物则无。

3.真核细胞含有的线粒体,为双层被膜所包裹,有自己特有的基因组、核酸合成系统与蛋白质合成系统,其内膜上有与氧化磷酸化相关的电子传递链

【从遗传过程】

1.真核细胞的转录在细胞核中进行,蛋白质的合成在细胞质中进行,而原核细胞的转录与蛋白质的合成交联在一起进行。

2.真核细胞的有丝分裂是原核细胞所没有的。

3.真核细胞在细胞周期中有专门的DNA复制期(S期);原核细胞则没有,其DNA复制常是连续进行的。

最原始的真核生物的直接祖先很可能是一种异常巨大的原核生物,体内具有由质膜内褶而成的象内质网那样的内膜系统和原始的微纤维系统,能够作变形运动和吞噬。以后内膜系统的一部分包围了染色质,于是就形成了最原始的细胞核。

内膜系统的其他部分则分别发展为高尔基体、溶酶体等细胞器。按照美国学者L.马古利斯等重新提出的“内共生说”(见细胞起源),线粒体起源于胞内共生的能进行氧化磷酸化的真细菌,而叶绿体则起源于胞内共生的能进行光合作用的蓝细菌。

原核生物和真核生物

区别原核生物和真核生物:

由原核细胞构成原核生物,如:

蓝藻,细菌和放线菌;由真核细胞构成真核生物,如:

真菌,植物和动物.原核细胞与真核细胞的主要区别是有无成形的细胞核,也可以说是有无核膜,因为有核膜就有成形的细胞核.显微镜下能观测到有无核膜。

原核生物:

原核生物是由原核细胞组成的生物,包括蓝细菌、细菌、古细菌、放线菌、立克次氏体、螺旋体、支原体和衣原体等。原核生物具有以下的特点:

①核质与细胞质之间无核膜因而无成形的细胞核;②遗传物质是一条不与组蛋白结合的环状双螺旋脱氧核糖核酸(DNA)丝,不构成染色体(有的原核生物在其主基因组外还有更小的能进出细胞的质粒DNA);③以简单二分裂方式繁殖,无有丝分裂或减数分裂;④没有性行为,有的种类有时有通过接合、转化或转导,将部分基因组从一个细胞传递到另一个细胞的准性行为(见细菌接合);⑤没有由肌球、肌动蛋白构成的微纤维系统,故细胞质不能流动,也没有形成伪足、吞噬作用等现象;⑥鞭毛并非由微管构成,更无“9+2”的结构,仅由几条螺旋或平行的蛋白质丝构成;⑦细胞质内仅有核糖体而没有线粒体、高尔基器、内质网、溶酶体、液泡和质体(植物)、中心粒(低等植物和动物)等细胞器;⑧细胞内的单位膜系统除蓝细菌另有类囊体外一般都由细胞膜内褶而成,其中有氧化磷酸化的电子传递链(蓝细菌在类囊体内进行光合作用,其他光合细菌在细胞膜内褶的膜系统上进行光合作用;化能营养细菌则在细胞膜系统上进行能量代谢);⑨在蛋白质合成过程中起重要作用的核糖体散在于细胞质内,核糖体的沉降系数为70S;⑩大部分原核生物有成分和结构独特的细胞壁等等。总之原核生物的细胞结构要比真核生物的细胞结构简单得多。

原核生物的基因组一般都是由单拷贝序列组成的。相对于原核生物,真核生物基因组显得比较复杂,除了单拷贝序列外,还包括其他简单重复序列、中度和高度重复序列等等,这些不同的序列在真核生物中起着不同的作用,各自担当不同的角色。

真核细胞与原核细胞的主要区别是:

①真核细胞具有由染色体、核仁、核液、双层核膜等构成的细胞核;原核细胞无核膜、核仁,故无真正的细胞核,仅有由核酸集中组成的拟核。

②真核细胞的转录在细胞核中进行,蛋白质的合成在细胞质中进行,而原核细胞的转录与蛋白质的合成交联在一起进行。

③真核细胞有内质网、高尔基体、溶酶体、液泡等细胞器,原核细胞没有。

④真核生物中除某些低等类群(如甲藻等)的细胞以外,染色体上都有5种或4种组蛋白与DNA结合,形成核小体;而在原核生物则无。

⑤真核细胞在细胞周期中有专门的DNA复制期(S期);原核细胞则没有,其DNA复制常是连续进行的。

⑥真核细胞的有丝分裂是原核细胞所没有的。

⑦真核细胞有发达的微管系统,其鞭毛(纤毛)、中心粒、纺锤体等都与微管有关,原核生物则否。

⑧真核细胞有由肌动、肌球蛋白等构成的微纤维系统,后者与胞质环流、吞噬作用等密切相关;而原核生物却没有这种系统,因而也没有胞质环流和吞噬作用。

⑨真核细胞的核糖体为80S型,原核生物的为70S型,两者在化学组成和形态结构上都有明显的区别。

⑩真核细胞含有的线粒体,为双层被膜所包裹,有自己特有的基因组、核

酸合成系统与蛋白质合成系统,其内膜上有与氧化磷酸化相关的电子传递链。

原核生物基因组和真核生物基因组比较区别

原核生物基因组和真核生物基因组的区别: 1、真核生物基因组指一个物种的单倍体染色体组(1n)所含有的一整套基因。还包括叶绿体、线粒体的基因组。 原核生物一般只有一个环状的DNA分子,其上所含有的基因为一个基因组。 2、原核生物的染色体分子量较小,基因组含有大量单一顺序 (unique-sequences),DNA仅有少量的重复顺序和基因。 真核生物基因组存在大量的非编码序列。包括: .内含子和外显子、.基因家族和假基因、重复DNA序列。真核生物的基因组的重复顺序不但大量,而且存在复杂谱系。 3、原核生物的细胞中除了主染色体以外,还含有各种质粒和转座因子。质粒常为双链环状DNA,可独立复制,有的既可以游离于细胞质中,也可以整合到染色体上。转座因子一般都是整合在基因组中。 真核生物除了核染色体以外,还存在细胞器DNA,如线粒体和叶绿体的DNA,为双链环状,可自主复制。有的真核细胞中也存在质粒,如酵母和植物。 4、原核生物的DNA位于细胞的中央,称为类核(nucleoid)。 真核生物有细胞核,DNA序列压缩为染色体存在于细胞核中。 5、真核基因组都是由DNA序列组成,原核基因组还有可能由RNA组成,如RNA病毒。 原核生物和真核生物区别(从细胞结构、基因组结构和遗传过程分析)主要差别 由真核细胞构成的生物。包括原生生物界、真菌界、植物界和动物界。真核细胞与原核细胞的主要区别是:

【从细胞结构】 1.真核细胞具有由染色体、核仁、核液、双层核膜等构成的细胞核;原核细胞无核膜、核仁,故无真正的细胞核,仅有由核酸集中组成的拟核 2.真核细胞有内质网、高尔基体、溶酶体、液泡等细胞器,原核细胞没有。 真核细胞有发达的微管系统,其鞭毛(纤毛)、中心粒、纺锤体等都与微管有关,原核生物则否。 3.真核细胞有由肌动、肌球蛋白等构成的微纤维系统,后者与胞质环流、吞噬作用等密切相关;而原核生物却没有这种系统,因而也没有胞质环流和吞噬作用。 真核细胞的核糖体为80S型,原核生物的为70S型,两者在化学组成和形态结构上都有明显的区别。 4.原核细胞功能上与线粒体相当的结构是质膜和由质膜内褶形成的结构,但后者既没有自己特有的基因组,也没有自己特有的合成系统。真核生物的植物含有叶绿体,它们亦为双层膜所包裹,也有自己特有的基因组和合成系统。与光合磷 酸化相关的电子传递系统位于由叶绿体的内膜内褶形成的片层上。原核生物中的蓝细菌和光合细菌,虽然也具有进行光合作用的膜结构,称之为类囊体,散布于细胞质中,未被双层膜包裹,不形成叶绿体。 【从基因组结构】 1.真核生物中除某些低等类群(如甲藻等)的细胞以外,染色体上都有5种或4种组蛋白与DNA结合,形成核小体;而在原核生物则无。 2.真核生物中除某些低等类群(如甲藻等)的细胞以外,染色体上都有5种或4种组蛋白与DNA结合,形成核小体;而在原核生物则无。 3.真核细胞含有的线粒体,为双层被膜所包裹,有自己特有的基因组、核酸合成系统与蛋白质合成系统,其内膜上有与氧化磷酸化相关的电子传递链

原核生物和真核生物的主要区别

原核生物和真核生物的主要区别 人教版高一必修一生物 一、协作学习任务设计 1、展示原核生物和真核生物的图片或者视频 生物体可以分为非细胞结构和细胞结构。科学家又根据细胞内有无以核膜为界限的细胞核,将细胞分为两类,原核细胞和真核细胞。 提出问题:原核生物和真核生物的主要区别在哪? 二、教师进行指导,并提供资源 (一)回顾并总结原核生物、真核生物在细胞结构上的特点以及主要类群 (二)原核细胞和真核细胞的结构特点进行比较 (三)在认识和比较的基础上,探讨原核细胞和真核细胞之间的相关性及其发展史。 学习资源 1、教材 2、生物进化史课本 三、开展协作学习 学生之间进行分组,组内进行收集资料,讨论、总结。 四、开展学习活动 五、小组内部进行分工,可以按照老师的指导进行收集资料、进行总结。 原核生物的结构特点: 1、细胞大小:支原体是原核生物中最小的生物体。 2、细胞壁:肽聚糖(糖类与蛋白质结合而成的化合物),不含纤维素。 3、细胞膜:与真核细胞的相似。 4、细胞质:只有核糖体,无其他复杂的细胞器。 5、拟核:有丝状DNA分子,分布于细胞质的一定区域,没有核膜。 原核生物的主要类群: 蓝藻,含有(藻蓝素)和(叶绿素),可进行光合作用。 细菌,(球菌、杆菌、螺旋菌、和乳酸菌) 放线菌,(链霉菌) 支原体,衣原体,立克次氏体 真核生物的结构特点: 1.生物膜结构:以生物膜为基础而形成的膜性结构和细胞器 2.细胞骨架结构:包括细胞质骨架和核骨架 3.细胞质溶胶:为均质半透明液体,是代谢反应进行的场所 4:细胞核:遗传信息储存、表达的部位 真核生物的主要类群: 动物 植物 真菌(青霉菌,酵母菌,蘑菇)

原核生物和真核生物的比较

原核生物和真核生物基因组的比较(我好想比较过了,是不是?) 原核生物和真核生物DNA复制的特点: 原核:一般只有一个复制起点,即一个复制子,复制子较长,复制起始点oriC含有3个13bp 的串联重复保守序列,复制起始之后在OriC上形式两个复制叉沿着整个基因组双向等速移动,并且形成θ形中间产物,两个复制叉在距离起点180°处汇合,在快速生长时,一个复制起点上可以形成多个复制叉,可以连续开始新的DNA复制; 真核:有多处复制起点,复制子相对较小,复制叉的移动速度较慢,由于有多个复制起点,所以后随链是以半不连续的方式复制的,在染色体全部完成复制之前,各个起始点上的DNA 的复制不能再开始。 原核生物和真核生物DNA转录的特点: 相同点:都是以DNA双链中的反义链为模板,在RNA聚合酶催化下,以4种核糖核苷酸为原料,根据碱基互补配对原则,各核苷酸间以磷酸二酯键相连,不需要引物的参与,按5’- 3’方向合成 不同点:真核生物RNA聚合酶必须借助辅助蛋白才能与启动子结合;原核生物中一种RNA 聚合酶几乎负责所有mRNA、rRNA、tRNA的合成,真核生物有3类RNA聚合酶:I负责rRNA 合成,II负责hnRNA(前体mRNA)合成,III负责tRNA合成;原核生物基因启动区范围较小,而真核生物的启动区范围较大。 真核生物和原核生物mRNA的特征比较(这个也总结过了吧) 真核生物和原核生物在基因结构、转录和翻译方面的总体差异: (1)真核细胞中,一条mRNA链只能翻译出一条多肽链,原核生物则以多基因操纵子形式存在; (2)真核细胞DNA与组蛋白和大量非组蛋白结合,只有一小部分DNA是裸露的; (3)高等真核细胞DNA中很大一部分不转录,存在很多重复序列,而且基因内部还存在不被翻译的内含子; (4)真核生物能够有序根据生长发育阶段的需要进行DNA片段重排,还能根据需要改变基因的拷贝数,原核生物中则非常少见; (5)原核生物转录的调节区很小,而真核生物基因转录的调节区则大得多; (6)真核生物RNA在细胞核中合成,需要通过核膜进入细胞质才能被翻译,原核生物中不存在这样严格的空间间隔; (7)真核生物的基因只用经过复杂的成熟和剪接过程才能被顺利翻译为蛋白质。 原核生物和真核生物细胞的比较: 相同点:都有细胞膜,都含有核糖体合成蛋白,都含有细胞质基质作为生理生化反应的场所,都以DNA作为遗传物质,都遵循碱基互补配对原则以半保留复制方式进行DNA复制; 不同点:(1)真核细胞有核膜包被的细胞核,原核细胞只有核区、没有核膜包被的细胞核;(2)真核细胞含有以高尔基体、内质网为代表的细胞内膜系统,原核细胞则没有;(3)真核细胞DNA与组蛋白及非组蛋白结合为染色质,原核细胞DNA则是裸露的DNA分子;(4)原核生物DNA一般边转录边翻译,而真核生物mRNA则需要先转录然后转运至细胞质基质中再进行翻译

原核生物基因组和真核生物基因组比较区别

、真核生物基因组指一个物种地单倍体染色体组()所含有地一整套基因.还包括叶绿体、线粒体地基因组. 原核生物一般只有一个环状地分子,其上所含有地基因为一个基因组. 、原核生物地染色体分子量较小,基因组含有大量单一顺序(),仅有少量地重复顺序和基因.个人收集整理勿做商业用途 真核生物基因组存在大量地非编码序列.包括:.内含子和外显子、.基因家族和假基因、重复序列.真核生物地基因组地重复顺序不但大量,而且存在复杂谱系.个人收集整理勿做商业用途 、原核生物地细胞中除了主染色体以外,还含有各种质粒和转座因子.质粒常为双链环状,可独立复制,有地既可以游离于细胞质中,也可以整合到染色体上.转座因子一般都是整合在基因组中.个人收集整理勿做商业用途 真核生物除了核染色体以外,还存在细胞器,如线粒体和叶绿体地,为双链环状,可自主复制.有地真核细胞中也存在质粒,如酵母和植物.个人收集整理勿做商业用途 、原核生物地位于细胞地中央,称为类核(). 真核生物有细胞核,序列压缩为染色体存在于细胞核中. 、真核基因组都是由序列组成,原核基因组还有可能由组成,如病毒. 原核生物和真核生物区别(从细胞结构、基因组结构和遗传过程分析)主要差别 由真核细胞构成地生物.包括原生生物界、真菌界、植物界和动物界.真核细胞与原核细胞地主要区别是: 【从细胞结构】 .真核细胞具有由染色体、核仁、核液、双层核膜等构成地细胞核;原核细胞无核膜、核仁,故无真正地细胞核,仅有由核酸集中组成地拟核个人收集整理勿做商业用途 .真核细胞有内质网、高尔基体、溶酶体、液泡等细胞器,原核细胞没有. 真核细胞有发达地微管系统,其鞭毛(纤毛)、中心粒、纺锤体等都与微管有关,原核生物则否. .真核细胞有由肌动、肌球蛋白等构成地微纤维系统,后者与胞质环流、吞噬作用等密切相关;而原核生物却没有这种系统,因而也没有胞质环流和吞噬作用.个人收集整理勿做商业用途 真核细胞地核糖体为型,原核生物地为型,两者在化学组成和形态结构上都有明显地区别. .原核细胞功能上与线粒体相当地结构是质膜和由质膜内褶形成地结构,但后者既没有自己特有地基因组,也没有自己特有地合成系统真核生物地植物含有叶绿体,它们亦为双层膜所包裹,也有自己特有地基因组和合成系统.与光合磷酸化相关地电子传递系统位于由叶绿体地内膜内褶形成地片层上.原核生物中地蓝细菌和光合细菌,虽然也具有进行光合作用地膜结构,称之为类囊体,散布于细胞质中,未被双层膜包裹,不形成叶绿体.个人收集整理勿做商业用途 【从基因组结构】 .真核生物中除某些低等类群(如甲藻等)地细胞以外,染色体上都有种或种组蛋白与结合,形成核小体;而在原核生物则无.个人收集整理勿做商业用途 .真核生物中除某些低等类群(如甲藻等)地细胞以外,染色体上都有种或种组蛋白与结合,形成核小体;而在原核生物则无.个人收集整理勿做商业用途 .真核细胞含有地线粒体,为双层被膜所包裹,有自己特有地基因组、核酸合成系统与蛋白质合成系统,其内膜上有与氧化磷酸化相关地电子传递链个人收集整理勿做商业用途 【从遗传过程】 .真核细胞地转录在细胞核中进行,蛋白质地合成在细胞质中进行,而原核细胞地转录与蛋

原核生物与真核生物复制的区别

原核生物与真核生物复 制的区别 集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

(二)D N A 的复制的必要条件 1、摸板:母链DNA 解链成单链后的两条链均可作为摸板。 2、原料:4种脱氧核苷三磷酸。 3、需要一小段RNA 作为引物,提供3'-OH 末段。 4、需要ATP 和无机离子。 5、需要多种酶和蛋白因子:如引物酶、DNA 聚合酶、拓扑酶、SSB 蛋白等。 以上必要条件中,原核生物和真核生物在DNA 的复制所需要引物、酶和蛋白因子等存在差别。其中DNA 聚合酶种类存在较大的差别。DNA 聚合酶是指以DNA 为摸板,在RNA 引物3'-OH 末段沿5'→3'方向按照碱基互补的原理催化合成DNA 链的酶,也称为依赖DNA 的DNA 聚合酶。原核生物和真核生物DNA 聚合酶的区别主要见下表1 表1 原核生物和真核生物DNA 聚合酶的区别 原核生物三种 DNA 聚合酶都有 5'→3'聚合活性和3'→5'外切酶活性,不同的是DNA-polⅠ还有5'→3'外切酶活性,即外切酶活性有双方向。真核生物五种DNA 聚合酶都有5'→3'外切酶活性,DNA-polα,DNA-polβ无3'→5'外切酶活性,DNA-polβ无5'→3'聚合活性。 原核生物DNA 聚合酶 真核生物DNA 聚合酶 DNA-polⅠ复制过程中的校读,填补缺口,修复。 DNA-polⅡDNA 损伤的应急修复。 DNA-polⅢ延长新链核苷酸的聚合。 DNA-polα起始引发,引物酶活性。 DNA-polβ低保真复制。 DNA-polγ催化线粒体DNA 的复制。 DNA-polδ延长子链的主要酶,解螺旋 酶活性。 DNA-polε填补引物空隙,切除修复,重组。 (三)DNA 复制的过程 原核生物和真核生物DNA 的过程大致可分为:起始+延长+终止三个阶段。 1、起始阶段表2 (1)解链/旋,解链/旋酶催化。 (2)起始点识别。 (3)原核生物形成复制叉。(真核生物形成多个复制单位) (4)引物酶催化引物合成。引发体与引物酶结合到DNA 链上,在引物酶的作用下合成一小段引物。 表2原核生物和真核生物DNA 复制的起始阶段的特点比较 原核生物 真核生物 复制起始点 起始点识别 引物 起始点长度 复制单位 参与的酶和蛋白因子 一个OriC DnaA 长、多 长 一个双向复制 DnaA 识别复制起始点 DnaB 解螺旋酶活性 DnaC 运载和协助DnaB DnaG 引物酶活性 多个 可能有“蛋白质-DNA 复合物 参与” 短、少 短 多个双向复制 DNA-polα起始引发,引物酶 活性 DNA-polδ解螺旋酶活性

原核生物和真核生物基因组的对比(英文版)

Prokaryotic Genome Usually prokaryotic organisms have relatively small genomes consisting of one or more DNA molecule. In some prokaryotes, the cells may contain one or more copies of accessory DNA molecules known as ‘plasmids’. The genome and plasmids are often circular in prokaryotes, but there can be exceptions too. Usually plasmids contain some non-essential information in their cells. The genome and plasmids are found in the cytoplasm of the prokaryotic cells. Eukaryotic Genome Eukaryotic genome contains larger and linear DNA molecules packaged with histone proteins into chromosomes. These chromosomes are gathered inside a nucleus enclosed in a nuclear envelope. Apart from that, circular DNA molecules can be found in the mitochondria and chloroplast. These DNA molecules are also considered as a part of prokaryotic genome. Prokaryotic vs Eukaryotic Genome ? Prokaryotic genome contains only one chromosome, but eukaryotic genome contains multiple chromosomes. Due to this difference, a large part of eukaryotic genome is present inside a nucleus which is the largest organelle in a live cell. There is no such organelle found in prokaryotes so that their genome can be found in the cytoplasm. ? Generally prokaryotic DNA has a circular structure, but there are exc eptions. DNA linear strands are present in the eukaryotic cells. ? Unlike the prokaryotic genome, the eukaryotic genome is more complex with longer genes. ? Prokaryotic genome has up to 90% coding sequences while the coding sequence in eukaryotic genome is often around 3%.

原核生物和真核生物的比较

原核生物和真核生物的比较 比较项目原核细胞真核细胞细胞大小一般较小一般较大 细胞核无核膜、核仁和染色体,有大型环状DNA (拟核)有成形的细胞核,有核膜、核仁和染色体 细胞壁主要成份为肽聚糖植物细胞:纤维素和果胶 真菌细胞:几丁质细胞器只有核糖体有各种细胞器 细胞分裂二分裂主要为有丝分裂 实例细菌、放线菌、蓝藻、支原体、衣原体动物、植物、真菌、原生生物PS:原核生物和真核生物的本质区别是:有无核膜包被的细胞核。 能力提升: (1)没有细胞核的都是原核生物?(高等植物成熟的筛管细胞和哺乳动物成熟的红细胞没有细胞核)(2)原核生物:蓝(色)细线支(毛)衣 (3)细菌:带有“杆”、“球”、“螺旋”、“弧”等字 (4)病毒是没有细胞结构的生物,不是原核生物,也不是真核生物。 (5)蓝藻属原核生物,无叶绿体,有光合片层,也能进行光合作用。

基础训练 1、(2013广东卷)下图为四种不同细胞的比较结果,正确的是() 选项细胞细胞壁光合作用染色质 A 蓝藻细胞有有有 B 洋葱根尖细胞有无有 C 兔成熟红细胞无无有 D 蛙受精卵无无有 2、细胞是生物体的基本结构和功能单位,而自然界中生物种类繁多,就所学生物知识回答以 (1)下列生物中,与引起“发热伴血小板综合征”的“新型布尼亚病毒”有明显区别的是____________,属于原核生物的是__________。 ①大肠杆菌②酵母菌③霉菌④HIV病毒⑤蓝藻⑥SARS病毒 (2)研究人员对分别取自3种不同生物的部分细胞(甲、乙、丙)进行分析、观察和实验,获得的结果如下表(表中“√”表示“有”,“×”表示“无”)。 核膜光合作用(能否)核糖体细胞壁 甲√√√√ 乙√×√× 丙×√√√ 甲、乙、丙3 甲__________,乙__________,丙__________。 A、菠菜 B C、蘑菇 D

病毒、真核和原核生物的基因组结构特点

病毒、真核和原核生物的基因组结构特点 病毒基因组结构特点: 1.病毒基因组所含核酸类型不同 2.不同病毒基因组大小相差较大 3.病毒基因组可以是连续的也可以是不连续的 4.病毒基因组的编码序列大 5.基因可以是连续的也可以是间断的 6.病毒基因组都是单倍体和单拷贝 7.基因重叠 8.病毒基因组功能单位或转录单位 9.病毒基因组含有不规则结构基因 (1)几个结构基因的编码区无间隔 (2)结构基因本身没有翻译起始序列 (3) mRNA没有 5’端的帽结构 原核生物基因组结构特点: 1.细菌等原核生物的基因组是一条双链闭环的DNA分子 2.具有操纵子结构 3.原核基因组中只有1个复制起点 4.结构基因无重叠现象 5.基因序列是连续的,无内含子,因此转录后不需要剪切 6.编码区在基因组中所占的比例远远大于真核基因组,但又远远小于病毒基 因组。非编码区主要是一些调控序列

7.基因组中重复序列很少 8.具有编码同工酶的基因 9.细菌基因组中存在着可移动的DNA序列,包括插入序列和转座子 10.在DNA分子中具有多种功能的识别区域,如复制起始区、复制终止区、转 录启动区和终止区等。这些区域往往具有特殊的序列,并且含有反向重复序列 真核生物基因组结构特点: 1)真核基因组远远大于原核生物的基因组。 2)真核基因具有许多复制起点,每个复制子大小不一。每一种真核生物都有一定的染色体数目,除了配子为单倍体外,体细胞一般为双倍体, 即含两份同源的基因组。 3)真核基因都出一个结构基因与相关的调控区组成,转录产物的单顺反子,即一分子mRNA只能翻译成一种蛋白质。 4)真核生物基因组中含有大量重复顺序。 5)真核生物基因组内非编码的顺序(NCS)占90%以上。编码序列占5%。 6)真核基因产断列基因,即编码序列被非编码序列分隔开来,基因与基因内非编码序列为间隔DNA,基因内非编码序列为内含子,被内含子隔 开的编码序列则为外显子。 7)真核生物基因组功能相关的基因构成各种基因家族,它们可串联在一起,亦可相距很远,但即使串联在一起成族的基因也是分别转录的。 8)真核生物基因组中也存在一些可移动的遗传因素,这些DNA顺序并无明显生物学功能,似科为自己的目的而级织,故有自私DNA之称,其移 动多被RNA介导,也有被DNA介导的。

真核生物转录特点

真核生物RNA的转录与原核生物RNA的转录过程在总体上基本相同,但是,其过程要复杂得多,主要有以下几点不同(图3-27)。 ⒈真核生物RNA的转录是在细胞核内进行的,而蛋白质的合成则是在细胞质内进行的。所以,RNA转录后首先必须从核内运输到细胞质内,才能指导蛋白质的合成。 ⒉真核生物一个mRNA分子一般只含有一个基因,原核生物的一个mRNA分子通常含有多个基因,而除少数较低等真核生物外,一个mRNA分子一般只含有一个基因,编码一条多态链。 ⒊真核生物RNA聚合酶较多在原核生物中只有一种RNA聚合酶,催化所有RNA的合成,而在真核生物中则有RNA聚合酶Ⅰ、RNA聚合酶Ⅱ和RNA聚合酶Ⅲ三种不同酶,分别催化不同种类型RNA的合成。三种RNA聚合酶都是由10个以上亚基组成的复合酶。RNA聚合酶Ⅰ存在于细胞核内,催化合成除5SrRNA 以外的所有rRNA的合成;RNA聚合酶Ⅱ催化合成mRNA前体,即不均一核RNA(hnRNA)的合成;RNA 聚合酶Ⅲ催化tRNA和小核RNA的合成。 ⒋真核生物RNA聚合酶不能独立转录RNA 。原核生物中RNA聚合酶可以直接起始转录合成RNA ,真核生物则不能。在真核生物中,三种RNA聚合酶都必须在蛋白质转录因子的协助下才能进行RNA的转录。另外,RNA聚合酶对转录启动子的识别,也比原核生物更加复杂,如对RNA聚合酶Ⅱ来说,至少有三个DNA的保守序列与其转录的起始有关,第一个称为TATA框(TATA box),具有共有序列TATAAAA,其位置在转录起始点的上游约为25个核苷酸处,它的作用可能与原核生物中的-10共有序列相似,与转录起始位置的确定有关。第二个共有序列称为CCAAT框(CCAAT box),具有共有序列GGAACCTCT,位于转录起始位置上游约为50-500个核苷酸处。如果该序列缺失会极大地降低生物的活体转录水平。第三个区域一般称为增强子(enhancer),其位置可以在转录起始位置的上游,也可以在下游或者在基因之内。它虽不直接与转录复合体结合,但可以显著提高转录效率。

原核生物的基因结构特点

原核生物的基因结构特点 ①为一条环状双链DNA;②只有一个复制起点;③具有操纵子结构;④绝大部分为单拷贝; ⑤可表达基因约50%,大于真核生物小于病毒;⑥基因一般是连续的,无内含子;⑦重复序列很少。 PCR技术的主要用途 1.目的基因的克隆 2.基因的体外突变 3.DNA的微量分析 4.mRNA含量分析 5.基因突变分析 探针的种类 1. DNA探针主要优点:①这类探针多克隆在质粒载体中,可以无限繁殖,取之不尽,制备方法简便。②DNA探针不易降解(相对RNA而言),一般能有效抑制DNase活性。③DNA 探针的标记方法较成熟,有多种方法可供选择,如缺口平移法,随机引物法,PCR标记法等。 2. cDNA探针主要用途:1.从已构建的cDNA文库中筛查和分离目的基因。2.cDNA探针不含有内含子序列,因此适用于基因表达检测。 3. RNA探针:具有DNA探针所不能比拟的高杂交效率,但RNA探针也存在易于降解和标记方法复杂等缺点。 4. 寡核苷酸探针主要优点:(1)杂交时间短。(2)可用于点突变的检测。(3)价格低 八.巨噬细胞在固有性免疫和适应性免疫中的桥梁作用。 巨噬细胞在固有免疫中的作用主要是在感染的早期起到吞噬、杀伤病原体的作用。如果无法彻底清除抗原则会启动适应性免疫应答,作为抗原提呈细胞来加工、提呈抗原,分泌细胞因子。在适应性免疫方面巨噬细胞通过分泌多种细胞因子可以增强杀伤靶细胞能力,如活化巨噬细胞增强其吞噬杀伤作用,可以借助ADCC效应杀伤靶细胞。还可以进行免疫调节如1.激活的巨噬细胞高表达B7和MHC II类分子从而具有更强的提呈抗原和激活CD4+T细胞的能力分泌IL-12使Th0向Th1分化进一步扩大Th1的细胞应答能力,2.IL-1和IFN-r可以促进T细胞和B细胞活化,3.TNF-a可以促进CTL活化增殖和分化,4.IL-10可以抑制巨噬细胞和NK细胞活化,抑制巨噬细胞抗原提呈作用

原核生物与真核生物DNA复制过程及异同点

1底物成分:亲代DNA分子为模板,四种脱氧三磷酸核苷(dNTP)为底物,多种酶及蛋白质:DNA拓扑异构酶、DNA解链酶、单链结合蛋白、引物酶、 DNA聚合酶、RNA酶以及DNA连接酶等; 2过程:分为起始、延伸、终止三个过程; 3聚合方向:5'→3'; 4化学键: 3',5'磷酸二酯键; 5遵从碱基互补配对规律; 6一般为双向复制、半保留复制、半不连续复制。 原核生物与真核生物DNA复制不同的特点: 1真核生物为线性DNA,具有多个复制起始位点,形成多个复制叉,DNA 聚合酶的移动速度较原核生物慢。原核生物为一般为环形DNA,具有单一复制起始位点。 2真核生物DNA复制只发生在细胞周期的S期,一次复制开始后在完成前不再进行复制,原核生物多重复制同时进行。 3真核生物复制子大小不一且并不同步。 4原核生物有9-mer和13-mer的重复序列构成的复制起始位点,而真核生物的复制起始位点无固定形式。 5真核生物有五种DNA聚合酶,需要Mg+。主要复制酶为DNA聚合酶δ(ε),引物由DNA聚合酶α合成。原核生物只有三种,主要复制酶为DNA聚合酶III。 6真核生物末端靠端粒酶补齐,而原核生物以多联体的形式补齐。 7真核生物冈崎片段间的RNA引物由核酸外切酶MF1去除,而原核生

物冈崎片段由DNA聚合酶I去除。 8真核生物DNA聚合酶γ负责线粒体DNA合成。 9真核生物DNA聚合酶δ的高前进能力来自于RF-C蛋白与PCNA蛋白的互相作用。原核生物DNA聚合酶III的前进能力来自与γ复合体(夹钳装载机)与β亚基二聚体(β夹钳)的相互作用。 10原核生物的聚合酶没有5→3外切酶活性,需要一种FEN1的蛋白切除5端引物,原核生物DNA聚合酶工具有5→3外切酶活性。 11原核的DNA Pol─Ⅱ复制时形成二聚体复合物,而真核生物的聚合酶保持分离状态。 原核生物与真核生物基因信息传递过程中的差异

真核生物染色体基因组的结构和功能

真核生物染色体基因组的结构和功能 ?真核生物基因组特点 ?高度重复序列 o反向重复序列 o卫星DNA o较复杂的重复单位组成的重复顺序 o高度重复序列的功能 ?中度重复顺序 o Alu家族 o KpnⅠ家族 o Hinf家族 o rRNA基因 o多聚dT-dG家族 o组蛋白基因 ?单拷贝顺序(低度重复顺序) ?多基因家族与假基因 ?自私DNA(selfish DNA) 真核生物的基因组一般比较庞大,例如人的单倍体基因组由3×106 bp硷基组成,按1000个碱基编码一种蛋白质计,理论上可有300万个基因。但实际上,人细胞中所含基因总数大概会超过10万个。这就说明在人细胞基因组中有许多DNA序列并不转录成mRNA用于指导蛋白质的合成。DNA的复性动力学研究发现这些非编码区往往都是一些大量的重复序列,这些重复序列或集中成簇,或分散在基因之间。在基因内部也有许多能转录但不翻译的间隔序列(内含子)。因此,在人细胞的整个基因组当中只有很少一部份(约占2-3%)的DNA 序列用以编码蛋白质。 真核生物基因组有以下特点。 1.真核生物基因组DNA与蛋白质结合形成染色体,储存于细胞核内,除配子细胞外,体细胞内的基因的基因组是双份的(即双倍体,diploid),即有两份同源的基因组。 2.真核细胞基因转录产物为单顺反子。一个结构基因经过转录和翻译生成一个mRNA 分子和一条多肽链。 3.存在重复序列,重复次数可达百万次以上。

4.基因组中不编码的区域多于编码区域。 5.大部分基因含有内含子,因此,基因是不连续的。 6.基因组远远大于原核生物的基因组,具有许多复制起点,而每个复制子的长度较小。高度重复序列: 高度重复序列在基因组中重复频率高,可达百万(106)以上,因此复性速度很快。在基因组中所占比例随种属而异,约占10-60%,在人基因组中约占20%。高度重复顺序又按其结构特点分为三种。 (1)倒位(反向)重复序列 这种重复顺序复性速度极快,即使在极稀的DNA浓度下,也 能很快复性,因此又称零时复性部分,约占人基因组的5%。反向 重复序列由两个相同顺序的互补拷贝在同一DNA链上反向排列而 成。变性后再复性时,同一条链内的互补的拷贝可以形成链内碱基 配对,形成发夹式或“+”字形结构。倒位重复(即两个互补拷贝) 间可有一到几个核苷酸的间隔,也可以没有间隔。没有间隔的又称 回文(palimdr-ome),这种结构约占所有倒位重复的三分之一。若以两个互补拷贝组成的倒位重复为一个单位,则倒位重复的单位约长300bp或略少。两个单位之间有一平均1.6kb 的片段相隔,两对倒位重复单位之间的平均距离约12kb,亦即它们多数散布非群集于基因组中。 (2)卫星DNA 卫星DNA(satelliteDNA)是另一类高度重复序列,这类重复顺序的重复单位一般由 2-10bp组成,成串排列。由于这类序列的碱基组成不同于其他部份,可用等密度梯度离心法将其与主体DNA分开,因而称为卫星DNA或随体DNA。在人细胞组中卫星DNA约占5-6%。按照它们的浮力密度不同,人的卫星DNA可分为Ⅰ、Ⅱ、Ⅲ、Ⅳ四种。果蝇的卫星DNA顺序已经搞清楚,可分为三类,这三类卫星DNA都是由7bp组成的高度重复顺序:卫星Ⅰ为5'ACAACT3',卫星Ⅱ为5'ACAAATT3'。而蟹的卫星DNA为只有AT两个碱基的重复顺序组成。 (3)较复杂的重复单位组成的重复顺序 这种重复顺序为灵长类所独有。用限制性内切酶HindⅢ消化非洲绿猴DNA,可以得到重复单位为172bp的高度重复顺序,这种顺序大部份由交替变化的嘌呤和嘧啶组成。有人把这类称为α卫星DNA。而人的α卫星DNA更为复杂,含有多顺序家族。 (4)高度重复顺序的功能 a.参与复制水平的调节反向序列常存在于DNA复制起点区的附近。另外,许多反向重复序列是一些蛋白质(包括酶)和DNA的结合位点。

基因组的特点

基因组的特点 真核生物基因组的特点: 1.基因组较大。真核生物的基因组由多条线形的染色体构成,每条染色体有一个线形的DNA分子,每个DNA分子有多个复制起点; 2.不存在操纵子结构。真核生物的同一个基因簇的基因,不会像原核生物的操纵子结构那样,转录到同一个mRNA上; 3.存在大量的重复序列。真核生物的基因组里存在大量重复序列,通过其重复程度可将其分成高度重复序列、中度重复序列、低度重复序列和单一序列; 4.有断裂基因。大多数真核生物为蛋白质编码的基因都含有“居间序列”,即不为多肽编码,其转录产物在mRNA前体的加工过程中被切除的成分; 5.真核生物基因转录产物为单顺反子; 6.功能相关基因构成各种基因家族。 原核生物基因组的特点: 1.基因组较小,通常只有一个环形或线形的DNA分子; 2.通常只有一个DNA复制起点; 3.非编码区主要是调控序列; 4.存在可移动的DNA序列; 5.基因密度非常高,基因组中编码区大于非编码区; 6.结构基因没有内含子,多为单拷贝,结构基因无重叠现象; 7.重复序列很少,重复片段为转座子; 8.有编码同工酶的等基因; 9.基因组的大部分序列是用来编码蛋白质的,基因之间的间隔序列很短;

10.功能相关的序列常串连在一起,由共同的调控元件调控,并转录成同一mRNA分子,可指导多种蛋白质的合成,这种结构称操纵子。 病毒基因组的特点: 1.不同病毒基因组大小相差较大; 2.不同病毒基因组可以是不同结构的核酸; 3.除逆转录病毒外,通常为单倍体基因组; 4.有的病毒基因组是连续的,有的病毒基因组分节段; 5.有的基因有内含子; 6.病毒基因组大部分为编码序列; 7.基因重叠,即同一段DNA片段能够编码两种或两种以上的蛋白质分子,这种现象在其他生物细胞中仅见于线粒体和质粒DNA。

原核细胞与真核细胞相比最主要特点

. 原核细胞与真核细胞相比最主要特点:没有核膜包围的典型细胞核。 2. 细胞分裂间期最主要变化:DNA的复制和有关蛋白质的合成。 3. 构成蛋白质的氨基酸的主要特点是:(a-氨基酸)都至少含一个氨基和一个羧基,并且都有一氨基酸和一个羧基连在同一碳原子上。 4. 核酸的主要功能:一切生物的遗传物质,对生物的遗传、变异及蛋白质的生物合成有重要意义。 5. 细胞膜的主要成分是蛋白质分子和磷脂分子。 6. 选择透过性膜主要特点是水分子可自由通过,被选择吸收的小分子、离子可以通过,而其他小分子、离子、大分子却不能通过。 7. 线粒体功能:细胞进行有氧呼吸的主要场所。 8. 叶绿体色素的功能:吸收、传递和转化光能。 9. 细胞核的主要功能:遗传物质的储存和复制场所,是细胞遗传性和代谢活动的控制中心。 10. 新陈代谢主要场所:细胞质基质。 11. 细胞有丝分裂的意义:使亲代和子代细胞之间保持遗传性状的稳定性。 12. A TP的功能:生物体生命活动所需能量的直接来源。 13. 与分泌蛋白形成有关的细胞器:核糖体、内质网、高尔基体、线粒体。 14. 能产生ATP的细胞器(结构):线粒体、叶绿体、(细胞质基质(结构))。能产生水的细胞器(结构):线粒体、叶绿体、核糖体、(细胞核(结构))。能碱基互补配对的细胞器(结构):线粒体、叶绿体、核糖体、(细胞核(结构))。 15. 渗透作用必备的条件是:一是半透膜;二是半透膜两侧要有浓度差。 16. 内环境稳态的生理意义:机体进行正常生命活动的必要条件。 17. 呼吸作用的意义是:(1)提供生命活动所需能量;(2)为体内其他化合物的合成提供原料。 18. 减数分裂和受精作用的意义是:对维持生物体前后代体细胞染色体数目的恒定性,对生物的遗传和变异有重要意义。 19. DNA是主要遗传物质的理由是:绝大多数生物的遗传物质是DNA,仅少数病毒遗传物质是RNA。 20. DNA规则双螺旋结构的主要特点是:(1)DNA分子是由两条反向平行的脱氧核苷酸长链盘旋成的双螺旋结构。(2)DNA分子中的脱氧核糖和磷酸交替连接,排列在外侧,构成基本骨架;碱基排列在内侧。(3)DNA分子两条链上的碱基通过氢键连接成碱基对,遵循碱基互补配对原则。 21. DNA结构的特点是:稳定性——DNA两单链有氢键等作用力;多样性——DNA碱基对的排列顺序千变万化;特异性——特定的DNA分子有特定的碱基排列顺序。 22. 遗传信息:DNA(基因)的脱氧核苷酸排列顺序。遗传密码或密码子:mRNA上决定一个氨基酸的三个相邻的碱基。 23. DNA复制的意义:使遗传信息从亲代传给子代,从而保持了遗传信息的连续性。DNA 复制的特点:半保留复制,边解旋边复制。 24. 基因是指控制生物性状的遗传物质的基本单位,是有遗传效应的DNA片段。 25. 基因的表达是指基因使遗传信息以一定的方式反映到蛋白质的分子结构上,从而使后代表现出与亲代相同的性状。包括转录和翻译两阶段。 26. 遗传信息的传递过程:中心法则。 27. 基因自由组合定律的实质:位于非同源染色体上的非等位基因的分离或组合是互不干扰的。在进行减数分裂形成配子的过程中,同源染色体上的等位基因彼此分离,同时,非

原核生物与真核生物的区别(完成)

原核生物与真核生物的比较 原核生物 真核生物 大小 较小(1μm ~10μm) 较大(10μm ~100μm) 细胞壁成分 肽聚糖 纤维素、果胶 细胞器 只有核糖体 有多种细胞器 细胞核 (主要区别) 没有以核膜为界限的细胞核,只是把遗传物质储存、复制的场所称作拟核。 有成形的、真正的细胞核,有核膜、核仁。 遗传物质 拟核:大型环状DNA 质粒:小型环状DNA (无染色体) DNA (细胞核、线粒体、叶绿体) 增值方式 二分裂 有丝分裂;无丝分裂;减数分裂 是否遵循遗传规律 否 是(核基因) 可遗传变异来源 基因突变 基因突变; 基因重组; 染色体变异; 转录翻译 同一地点、同时进行; 先转录,后翻译; 呼吸类型 有氧呼吸或无氧呼吸(无线粒体时) 有线粒体时:有氧呼吸 无线粒体时:只进行无氧呼吸 共有结构或物质 细胞膜、核糖体、DNA 实例 细菌、放线菌、支原体、蓝藻、衣原体 动物、植物、真菌 重点记忆 乳酸菌:细菌——原核生物 噬菌体:病毒——无细胞结构 大肠杆菌:细菌——原核生物 蓝藻:原核生物——include 蓝球藻、念珠藻、颤藻、发菜 绿藻:真核生物 注1: ???? ???? 单细胞生物:单独完成生命活动(草履虫)具细胞结构生物生命活动离不开细胞多细胞生物:依赖于各种分化细胞的密切合作(人) 非细胞结构生物——病毒:依赖活细胞进行生命活动(HIV ) 注2:细胞学说: 科学家 贡献 不足 虎克 用显微镜观察发现并命名了细胞 观察到的是死细胞 列文虎克 用显微镜观察到了活细胞 未上升到理论 施莱登 提出细胞是构成植物体的基本单位 未与动物界联系 施旺 提出一切动植物都是由细胞构成的 未搞清细胞来源的过程 魏尔肖 总结出细胞通过分裂产生新细胞 未考虑非细胞结构生命的繁殖

原核生物基因组的特点

一、原核生物基因组结构的特征: 1、原核生物的染色体是由一个核酸分子(DNA或RNA)组成的,DNA(RNA)呈环状或线性,而且它的染色体分子量较小。 2、功能相关的基因大多以操纵子形式出现。如大肠杆菌的乳糖操纵子等。操纵子是细菌的基因表达和调控的一个完整单位,包括结构基因、调控基因和被调控基因产物所识别的DNA 调控原件(启动子等)。 3、蛋白质基因通常以单拷贝的形式存在。一般而言,为蛋白编码的核苷酸顺序是连续的,中间不被非编码顺序所打断。 4、基因组较小,只含有一个染色体,呈环状,只有一个复制起点,一个基因组就是一个复制子。 6、重复序列和不编码序列很少。越简单的生物,其基因数目越接近用DNA 分子量所估计的基因数。如MS 2 和λ噬菌体,它们每一个基因的平均碱基对数目大约是1300 。如果扣除基因中的不编码功能区,如附着点attP ,复制起点、黏着末端、启动区、操纵基因等,几乎就没有不编码的序列了。这点与真核生物明显不同,据估算,真核生物不编码序列可占基因组的90 %以上。这些不编码序列,其中大部分是重复序列。在原核生物中只有嗜盐细菌、甲烷细菌和一些嗜热细菌、有柄细菌的基因组中有较多的重复序列,在一般细菌中只有rRNA 基因等少数基因有较大的重复。 9、功能密切相关的基因常高度集中,越简单的生物,集中程度越高。例如,除已知的操纵子外,λ噬菌体7 个头部基因和11 个尾部基因都各自相互邻接。头部和尾部基因又相邻接,又如,有关DNA 复制基因O 、P ;整合和切离基因int ,xis ;重组基因red α、red β;调控基因N 、c Ⅰ、c Ⅱ、c Ⅲ、cro 也集中在一个区域,而且和有关的结构基因又相邻近。 10 DNA绝大部分用于编码蛋白质,结构基因多为单拷贝 11、结构基因中无重叠现象(一段DNA序列编码几种蛋白质多肽链) 12、基因组中存在可移动的DNA序列,如转座子和质粒等 二、原核生物基因组功能的特点: 1、染色体不与组蛋白结合。 2、不同生活习性下原核生物基因组大小与GC含量的关系 基因组GC含量( G与C 所占的百分比) 是基因组组成的标志性指标。有两种观点来解释不同生物之间GC含量的差异: 中性说和选择说。中性说主要强调不同生物之间GC含量的差异是由碱基的随机突变和漂移造成, 而选择说则认为GC 含量的差异是环境及生物的生活习性等因素综合作用的结果。 原核生物基因组大小与GC含量的总体相关性 实验证明,当所分析的原核生物基因组大小大部分都在1~6Mb范围内, 而GC 含量则一般在20%~ 75%之间,回归分析显示, 基因组大小与GC 含量总体上存在着具统计学意义的正相关.寄生生活习性对维持或增强基因组大小与基因组GC 含量的相关性有较大的作用。 3、原核生物中有些基因不是从第一个ATG 起始的(如大肠杆菌和枯草杆菌基因)原因: 首先,原核生物( 包括病毒) 的mRNA 可以是多顺反子, 即可以有几个基因同时被转录成一个mRNA, 共同使用一个启动调控区; 真核生物的mRNA 都是单顺反子, 一个mRNA 只携带一个基因. 真核生物的核糖体从mRNA 的5’末端向3’端滑动时, 把所碰到的第一个AUG 作为蛋白质合成的起始. 而原核生物的核糖体从mRNA 的5’末端向3’端滑动时, 碰到第一个AU G 能

真核生物基因组DNA的提取和含量测定

实验报告 课程名称: 生物化学实验 实验名称: 真核生物基因组DNA 的提取和含量测定 指导老师: 同组学生: 廖杰 成绩:__________________ 真核生物基因组DNA 的提取和含量测定 【实验原理】 制备具有生物活性的大分子核酸,必需采取温和的制备条件,避免过酸、过碱 的反应环境和剧烈的搅拌,防止核酸酶的作用,并要求在低温下进行操作 。 一、 真核生物基因组DNA 的提取 本实验选用小鼠肝脏细胞作为实验材料,采用匀浆法破碎组织细胞。 DNP 在0.14mol/L NaCl 中不溶解,而RNP 可溶解。 用无菌水溶解沉淀,加入蛋白酶消化液(含有蛋白酶K 和SDS )。 1温和方法的破碎细胞而不产生机械剪切以致破坏DNA 的完整性, 2可以变性Dnase , 3还可以去除部分的蛋白。 4使核蛋白体从DNA 上解离。 然后加RNase 以去除RNA ,再用苯酚:氯仿抽提法反复抽提提取DNA 苯酚:氯仿抽提法: 酚、氯仿是有机溶剂,能有效地使蛋白质变性。纯酚在与水混合时处于下层。然而有机相和水相会难于分开。 专业: 药学 姓名: 阿卜杜合力力 学号: 3100105256 日期: 2012.5.10 地点: 生化实验室 装 订 线

若使用酚:氯仿混合物抽提,由于氯仿的比重较大(1.47),可在很大程度上解决这个问题,促进两相的分离。 异戊醇则可减少操作过程中产生的气泡。 变性蛋白一般集中在两相之间的界面层,而脂类则有效地分配在有机相中,核酸则被留于上层水相。 该法其具有操作条件比较温和,能迅速使蛋白质变性并同时抑制核酸酶的活性,可得到具有生物活性的高聚合度的核酸等优点。 但其操作步骤较为繁琐,去除蛋白质需要反复进行多次。 砷盐、氟化物、柠檬酸、EDTA等可抑制DNase的活性;皂土等可抑制RNase 的活性。 收集上清液后用乙醇沉淀DNA,最后用TE缓冲液溶解DNA,并用紫外吸收法测定DNA的含量及纯度。 二、紫外吸收法测定基因组DNA的含量及纯度 1.紫外分光光度法测定核酸含量: 由于DNA在260nm处有最大的吸收峰,因此,可以用260nm波长进行分光测定DNA浓度,吸光度A值为1相当于大约50μg /ml双链DNA。 2.紫外分光光度法测定DNA纯度: 由于DNA在260nm处有最大的吸收峰,而蛋白质在280nm处有最大的吸收峰,DNA纯品的算A260/ A280为1.8(1.7~1.9),故根据算A260/ A280的值可以估计DNA的纯度。 若比值较高说明含有RNA,比值较低说明有残余蛋白质存在。

相关文档
最新文档