离散数学期末测试卷I及答案

离散数学期末测试卷I及答案
离散数学期末测试卷I及答案

离散数学期末测试卷I及答案

第一部分、考试形式和时间

答题时限:120 分钟考试形式:闭卷笔试

第二部分、考试题型和得分构成

一、选择题:对每一道小题,从其4个备选答案中选择最适合的一项,每小题2分,共10

道小题,20分。

二、填空题:每空1分,共5道小题,10个空白处待填,10分。

三、判断题:每一道小题均以陈述语句描述,对的打√,错的打х。每小题1分,共10

道小题,10分。

四、综合题:每小题10分,共6道小题,60分。

第三部分、考试复习范围

一、选择题

1.含n个元素的集合A的幂集的元素个数为多少?

答案:2n个。

2.数理逻辑的创始人是谁?

答案:莱布里茨。

3.设(R,+,?)是环,它有哪些特性?

答案:1.(R,+)是阿贝尔群。2.(R,?)是半群。3.?对+可分配。 4.排中律满足哪些性质?

答案:A ∧ 不成立。(不应同时否认一个命题(A )及其否定(非A ))

x (F (x )∨F (x ))对任何个体x 而言,x 有性质F 或没有性质F 。

5.什么是真命题?命题“如果雪是黑的,则1+1=0”是真命题吗?

答案:真值为真的命题为真命题。命题“如果雪是黑的,则1+1=0”是真命题!

解析:p:雪是黑的;q:1+1=0;如果雪是黑的,则1+1=0:p →q 。由于p 为假,所以无论的真值如何,“p →q ”的真值都为真。 6. 下列哪个等价公式有错?

A .P Q Q P →?→;

B .P Q P Q →??∨;

C .P Q Q P →??∨; 答案:A

7. 设G 为4阶有向图,度数列为(3,4,2,3),若它的入度列为(1,2,2,1),

则出度列为哪项?

A .(1,2,1,2);

B .(2,2,0,2);

C .(2,1,1,2). 答案:B

解析:有向图中:度数=出度数+入度数。 8. 设{}{},3,4,S a φ=,则表示空元素属于S 怎样写? 答案:?∈S

9. 什么是前束范式?下面哪个是前束范式?

A

A .(,)()()(,,)Q x z x y R x y z →?? ;

B .()()(,)x y Q x y ??.

答案:前束范式:如果量词均在全式的开头,它们的作用域延伸到整个公式的末端,则该公式叫做前束范式。B 。

解析:如果量词均在全式的开头,它们的作用域延伸到整个公式的末端,则该公式叫做前束范式,显然B 选项满足定义。

9. 无向图G 中有16条边,且每个结点的度数均为2,则结点数是多少? 答案:16

解析:由于每个结点的度数为2,所以可以排除G 中存在孤立点(度数为0)和悬挂点(度数为1)。由此可知,G 中的任何一个结点皆是使用一度与上一个结点相连再使用另一度与下一个结点相连,从而每条边与两个结点关联(上一个结点与下一个结点),但是每个结点又与两条边相连,故结点数为:16×2÷2=16个。 10. 含n 个命题变元的命题公式的不同的真值指派有几种? 答案:2n 种

11. 集合论的创始人是? 答案:G.Cantor(康托尔) 13.以下推理错误的是?

A .,P P Q Q ?∨?;

B .,P P Q Q ∧??;

C .,Q P Q P ?→?? 答案:B

14.设G 为4阶有向图,度数列为(4,4,2,2),若它的入度列为(2,2,1,1), 则出度列为哪项?C

A .(2,1,1,2);

B .(1,2,1,2);

C .(2,2,1,1) 15.图论中的握手定理的内容是什么?

答案:握手定理:在任何(n,m)图G=(V,M)中,其所有结点度数之和等于边数m 的两倍,即:∑deg(v)=2m。

16.下面哪一种图不一定是树?

n-条边;

A.有n个结点1

B.无圈连通图;

C.每对结点间有唯一的一条路的图

D.无圈但增加一条边,就得到一个且仅有一个圈.

答案:A

17.对于任意素数p和正整数n,存在多少个元素的有限域?

答案: P n

18.下面所示的偏序集中,哪个是格?

答案:B

【解析】要想对偏序格进行正确地判断,前提是一定要吃透概念和定义:设(L,≤)是偏序集,若L中的任意两个元素组成的子集均存在上确界及下确界,则称(L,≤)为偏序格。另外,加设?≠S?L。

上确界:子集S的最小上界:lub(S)或sup(S)

下确界:子集S的最大下界:glb(S)或inf(S)

注意:1.只有一条线上的两个元素可以比较大小。未在一条线上的两个元素没有偏序关系(无法比较大小)2.若对于S

x≤,则a为S的上界,反之,为下界。

a均有a

?,

x

L∈

?

A选项中{a,b}的下界元素有c和0,但是由于c和0无偏序关系而无法比较大小,导致{a,b}没有下确界。C选项{a,b}没有上确界。D选项{a,b}没有上、下确界,{c,d}没有上、下确界。

B选项中({a,c}上确界:a,下确界:c;{a,b}上确界:1,下确界:c;{d,e}上确界:c,下确界:0;.....)任意两个元素组成的子集都存在上确界和下确界,故B选项是偏序格!

19.设)(x S 表示x 是学生。)(x T 表示x 是老师,),(y x A 表示x 钦佩y 。则命题“所有学

生都钦佩某些老师”符号化为后的表达式是什么? 答案:)),()()((x y x A y T x S y →∧??

20.谓词公式()(()(,))()()

x P x yR x y Q x S x ?∨?→∨中量词(y ?)辖域是

答案:R(x,y)

21.图论的创始人是谁? 答案:瑞士数学家L.Euler(欧拉)

22.两个图同构是指其中一个图近经过哪些变换可以变为另一个图? 答案:1.挪动点的位置;

2.伸缩边的长短。 2

3. 什么是孤立点和悬挂点?

答案:孤立点:在任意图G(V,E)中,度数为0的结点。

悬挂点:在任意图G(V,E)中,度数为1的结点。

24.域和环相比增加了哪些要求?

答案:域:设(F,+,?)是环,若(F-{0},?)是阿贝尔群,则称(F,+,?)是域。 25.阿贝尔群具有哪些特点?比普通群增加了什么?

答案:阿贝尔群:设(G,?)是群,若其运算?是可交换的,则称(G,?)为阿贝尔群。 二、填空题

1.鸽笼原理是指什么?

答:n+1只或更多的鸽子飞进n 个笼子时,一定有一个笼子里面至少有2只鸽子。 2.哪位挪威数学家和法国数学家先后为群的研究做出了杰出的贡献?

答案:挪威数学家Niels Henrik Abel (尼尔斯·亨利克·阿贝尔)和法国数学家évariste Galois(埃瓦里斯特?伽罗瓦)为群的研究做出了杰出的贡献。

3.单独一个节点v构成的序列v到v的长度为多少的路?叫做什么?

答案:单独一个节点v构成的序列v到v的长度为0的路叫做平凡路

4.命题公式(p→q)→r的析取范式与合取范式各为什么?

答案:析取范式:r

r

(r

p∨

?

q

p∨

q

?

∧)

(

(合取范式:)

)

5.集合A, B的对称差A⊕B可以表示为什么?

答案:)

A?

-

?

B

A

)

(B

(

6.半群(S, *)满足哪些特性?

答案:S是非空集合,*是S上满足结合律的二元封闭运算。

7.在谓词逻辑中,命题“所有有理数是实数”符号化为什么?命题“有些实数是有理数”符号化为什么?

答案:设Q(x):x是有理数,R(x):x是实数。

则命题“所有有理数是实数”符号化为:))

x

Q→

?

R

(x x

)

(

(

命题“有些实数是有理数”符号化为:))

Q

x∧

x

?

)

(

R

(

(x

8.布尔代数的定义是怎样的?

答案:元素个数≥2的有补分配格称作布尔代数。

9.设R?A?A, 则R在A是反自反的充要条件是什么?

答案:I

R=?

A I

10.什么情况下称 f 是A到B的双射?

答案:f既是A到B的单射,也是A到B的满射时称f是A到B的双射。

11.补元的定义是怎样的?

答案:==A A U A A I Y ,?.则称A 是A 的补元。 12.什么是分配格?

答案:若格),(≤L 的乘法运算“?”对格的加法运算“+”相互可分配,则称),(≤L 是分配

格。

13.设(R,+,?)是环,怎样成为交换环、含幺环、无零因子环? 答案:环的定义:(R,+,?)是含有两个二元运算的代数结构,若:

(1) (R,+)是阿贝尔群。 (2) (R,?)是半群。 (3) ?对+可分配。

则称(R,+,?)是环。另外:

R 中的乘法运算可交换,则称(R,+,?)是交换环。 R 中的乘法运算有幺元,则称(R,+,?)是含幺环。

14.命题公式中的对偶式分别是怎样定义的?

答案:将至多含有3个逻辑联结词(否定联结词,析取联结词,合取联结词)的命题公式A 中的析取联结词换成合取联结词,将1换成0,将0换成1,合取联结词换成析取联结词后所得到的命题公式A*称为命题公式A 的对偶式。 15.一个集合的上/下确界是怎样定义的?

答案:在偏序集(A,≤),?≠S ?A,S 的最小上界称为上确界sup(S),S 的最大下界称为下确界inf(S). 三、判断题

1. (A , f 1, f 2,…, f k )=(B , g 1, g 2,…, g k ) 表示这两个代数结构是同构的。 答:错。 (A , f 1, f 2,…, f k )?(B , g 1, g 2,…, g k )才表示这两个代数结构是同构的。

2.关系图G R 中的每一对不同点之间的边都是成对出现的,则称R 是对称的。 答:正确。

3.若(S, *)是有限半群,则一定存在幺元e,并构成独异点(S, *,e)。

答:错误。代数结构(S,*)中,若S 为有限集合,*是S 上满足结合律的二元封闭运算, 则称(S,*)为有限半群。例如:S={0,2,4},*8是模8乘法运算。则(S,*8)是有限半群, 但不存在幺元。

4.有向图G=(V, E)中的?u, v ∈V, u 和v 相互可达,则称G 为强连通图。 答:正确。

5.在关系图G R 中,对任意的x,y,z ∈A,只要x 到y 有边且y 到z 有边,就一定有x 到z 有边,则R 是传递的。 答:正确。

6.设,G *是一个群,a G ∈,则11()a --=0。

答:错误。设G 是非0实数集,*是其上的数的乘法运算,显然(G,*)是群。则任意属于 G

的元素x,其逆元X -1 = x 1

,从而(X -1)-1=X 。

7.设

,A ≤

是一个偏序集,如果A 中任意两个元素都有上确界和下确界,则称

,A ≤

一个格。

答:正确。也称(A,≤)为偏序格。

8.命题公式P Q →的逆反式是Q P ?→?。

答:正确。左边=P Q P Q Q P Q P ?→?=?∨=∨?=→=右边

9.图 是弱连通图。

答:正确。该图为强连通图且属于弱连通图。

10.A 上的关系R 是等价的意味着R 必须具有自反性、对称性和传递性。

答:正确。

11.若关系R的M R中主对角线元素全为1,则R是反自反的。

答:错误。若关系R的MR中主对角线元素全为1,表示R是自反的。

12.设R,S是集合A上的传递关系,则R?S一定是传递的。

答:错误。不一定:取A={a,b,c,d},令R={(a,b),(b,c),(a,c)},S={(b,c),(c,a),(b,a)},易知R,S 是A上的传递关系。然而,RοS={(a,c),(a,a),(b,a)},其中(b,a)∈RοS,(a,c)∈RοS,但是

(b,c)?RοS,因此RοS不传递。

13.对命题变元p和q,则命题公式p∧(p→?q)是中性的。

答:正确。

14.图是强连通图。

答:错误。应为弱连通图。

15.(R, +, ?)是环的主要特性之一是?对+可分配。

答:正确。

16.整数集合Z上的整除关系“|”是对称的。

答:错误。1|2,但是2不整除1,故整数集合Z上的整除关系“|”是反对称的。

17.实数集合R是的小于等于关系“≤”不是对称的。

答:正确。

18.任意非永假命题公式都存在多个的主析取范式。

答:错误。任意非永假(非永真)命题公式都存在唯一的主析取范式(主合取范式)。19.设A和B是两个命题公式,则A = B的充要条件是A?B为永真式。

答:正确。

20.

答:正确。

).

(

)

(B

A

B

A

B

A?

-

?

=

6⊕ 0 1 2 3 4 5

0 0 1 2 3 4 5 1 1 2 3 4 5 0 2 2 3 4 5 0 1 3 3 4 5 0 1 2

四、综合题:

1.设代数系统V=<N 8,8⊕>是群。 (1)写出运算表; (2)求每个元素的逆元 ;

(3)求元素2的阶及含2的各阶元素的子集A 使<A,8⊕>构成<N 6,8⊕>的子群。 解:(1)

(2) 0-1=0 1-1=5 2-1=4 3-1=3 (3) 元素4的阶为3, A={0,2,4}

2. 设集合A={1,2,3,5,6,10,15,30},“︱”是整除关系,代数系统 V=<A,︱>是布尔格。

(1)画出偏序集V=<A,︱>的哈斯图; (2)求出每个元素的补元;

(3)求A 的四元子集B,使<B,︱>是<A,︱>的子格; (4)求A 的四元子集C,使<C,︱>是格,但不是<A,︱>的子格。

解:哈斯图…………………………. .(2分)

1与30互补;…………………(1分)

2 与15互补;………………(1分)

3 与10互补;…………………(1分)

5 与6互补;…………………(1分)

B={1,2,3,6} (不唯一) ………………………………………(2分)

C={1,2,3,30} (不唯一)………………….…………………(2分)

3. 某电路中有一只灯泡和三个开关A, B, C。已知当且仅当在下述4种情况之一灯亮:(1)C的搬键向上,A和B的搬键向下;

(2)A的搬键向上,B和C的搬键向下;

(3)B和C的搬键向上,A的搬键向下;

(4)A和B的搬键向上,C的搬键向下.

令F表示灯亮,p, q, r分别表示A, B, C的搬键向上,求F=F(p, q, r)的逻辑表达式以及F的主合取范式。

解:)

?

?

=

?

F?

?

?

(

)

q

)

(

p

(

)

p

(r

r

r

q

q

p

q

p

r

=001∨m011m

m

∨110

∨100m

∧111

∧101M

M

∧010M

=000M

?

?

?

?

=(主合取范式)

p?

?

)

(

)

(r

(

)

)

(

q

p

q

p

r

r

p

r

q

q

4. 设集合A={a, b, c, d},A上的关系R={<a, b >,<b, a >,<b, c >,<c,d >},

用集合表示法求R 的自反闭包、对称闭包、传递闭包。 解:r(R)={<a, b >,<b, a >,<b, c >,<c,d >,,,,} S(R)={<a, b >,<b, a >,<b, c >,<c,d >,,}

t(R)={<a, b >,<b, a >,<b, c >,<c,d >,,,,,}

6.>*<,G 是一个群,而G a ∈,若f 是从G 到G 的映射,使得对每一个G x ∈,都有:

1)(-**=a x a x f 。试证明:f 是一个从G 到G 上的自同构。

证:首先证明f 是单射。

111212121

12,,()(),,.

x x G f x f x a x a a x a a a x x f f ---?∈=**=**=对若则有,该式两边同时左乘及右乘得,故为入射

其次证明f 是满射。

对1,,(),y G x a y a G y f x f -?∈=**∈=都存在使得因此是满射.

综合以上两点,知f 是双射。

1111212121212,,,()()()()(),.

x x G f x x a x x a a x a a x a f x f x f G G ---?∈*=***=*****=*最后对都有从而是到的自同构

6. 对于以下谓词公式的解释。

个体域D={1, 2}, 个体常量:a/1, b/2, 函词f :f (1)/2, f (2)/1, 谓词P :P(1,1)/1, P(1, 2)/1, P(2, 1)/0, P(2, 2)/0 分别求下列谓词公式在上述解释下的真值。 (1)P(f (a), a)∧P(f (b), b) (2)?y ?x P(y, x).

解:(1)P(f (a), a)∧P(f (b), b)

=P(f (1), 1)∧P(f (2), 2) =P(2, 1)∧P(1, 2) =0∧1=0 (2)?y ?x P(y, x). =?y (P(y, 1).∧P(y, 2)

=(P(1, 1).∧P(1, 2))∨(P(2, 1).∧P(2, 2)) =(1∧1)∨(0∧0)=1

7. 证明:(1)3-正则图的阶必为偶数;

(2)有n 个人,每个人恰有3个朋友,则n 为偶数。

证:(1)设G 是3-正则(n, m )图,根据握手定理,有 3*n=2*m. 由于2|2m,因此2|n,即n 为偶数。

(2)将n 个人看做n 个节点,当两个人是朋友时,则在相应的两个节点之间连一条无

向边,于是得到一个无向图G 。 根据已知条件,G 是一个3-正则图,由(1)知,n 偶数。

7.用推理规则论证下述问题:,,A B C B C S A →?∨?∧???

证: 1 (A P 附加前提) 2 A B P →

3 1,2B T I

4 C B P ?∨?

5 3,4C T I ?

6 C S P ∧?

7 6C T I 8 5,7C C T I ∧? 由8得出了矛盾,根据归谬法说明原推理正确。 第二种方式: 证:(1)S C ?∧

P

(2)C T (1)I (3)B C ?∨? P (4)B ? T (2)(3)I (5)B A → P (6)A ? T (4)(5)I

离散数学期末试题

离散数学考试试题(A 卷及答案) 一、(10分)求(P ↓Q )→(P ∧?(Q ∨?R ))的主析取范式 解:(P ↓Q )→(P ∧?(Q ∨?R ))??(?( P ∨Q ))∨(P ∧?Q ∧R )) ?(P ∨Q )∨(P ∧?Q ∧R )) ?(P ∨Q ∨P )∧(P ∨Q ∨?Q )∧(P ∨Q ∨R ) ?(P ∨Q )∧(P ∨Q ∨R ) ?(P ∨Q ∨(R ∧?R ))∧(P ∨Q ∨R ) ?(P ∨Q ∨R )∧(P ∨Q ∨?R )∧(P ∨Q ∨R ) ?0M ∧1M ?2m ∨3m ∨4m ∨5m ∨6m ∨7m 二、(10分)在某次研讨会的休息时间,3名与会者根据王教授的口音分别作出下述判断: 甲说:王教授不是苏州人,是上海人。 乙说:王教授不是上海人,是苏州人。 丙说:王教授既不是上海人,也不是杭州人。 王教授听后说:你们3人中有一个全说对了,有一人全说错了,还有一个人对错各一半。试判断王教授是哪里人? 解 设设P :王教授是苏州人;Q :王教授是上海人;R :王教授是杭州人。则根据题意应有: 甲:?P ∧Q 乙:?Q ∧P 丙:?Q ∧?R 王教授只可能是其中一个城市的人或者3个城市都不是。所以,丙至少说对了一半。因此,可得甲或乙必有一人全错了。又因为,若甲全错了,则有?Q ∧P ,因此,乙全对。同理,乙全错则甲全对。所以丙必是一对一错。故王教授的话符号化为: ((?P ∧Q )∧((Q ∧?R )∨(?Q ∧R )))∨((?Q ∧P )∧(?Q ∧R )) ?(?P ∧Q ∧Q ∧?R )∨(?P ∧Q ∧?Q ∧R )∨(?Q ∧P ∧?Q ∧R ) ?(?P ∧Q ∧?R )∨(P ∧?Q ∧R ) ??P ∧Q ∧?R ?T 因此,王教授是上海人。 三、(10分)证明tsr (R )是包含R 的且具有自反性、对称性和传递性的最小关系。 证明 设R 是非空集合A 上的二元关系,则tsr (R )是包含R 的且具有自反性、对称性和传递性的关系。 若'R 是包含R 的且具有自反性、对称性和传递性的任意关系,则由闭包的定义知r (R )?' R 。则sr (R )?s ('R )='R ,进而有tsr (R )?t ('R )='R 。

离散数学期末试题及答案

326《离散数学》期末考试题(B ) 一、填空题(每小题3分,共15分) 1.设,,},,{{b a b a A =?},则-A ? = ( ),-A {?} = ( ),)(A P 中的元素个数=|)(|A P ( ). 2.设集合A 中有3个元素,则A 上的二元关系有( )个,其中有( )个是A 到A 的函数. 3.谓词公式))()(())()((y P y Q y x Q x P x ?∧?∧→?中量词x ?的辖域为( ), 量词y ?的辖域为( ). 4.设}24,12,8,6,4,3,2,1{24=D ,对于其上的整除关系“|”,元素( )不存在补元. 5.当n ( )时,n 阶完全无向图n K 是平面图,当当n 为( )时,n K 是欧拉图. 二.1. 若n B m A ==||,||,则=?||B A ( ),A 到B 的2元关系共有( )个,A 上的2元关系共有( )个. 2. 设A = {1, 2, 3}, f = {(1,1), (2,1), (3, 1)}, g = {(1, 1), (2, 3), (3, 2)}和h = {(1, 3), (2, 1), (3, 1)},则( )是单射,( )是满射,( )是双射. 3. 下列5个命题公式中,是永真式的有( )(选择正确答案的番号). (1)q q p p →→∧)(; (2))(q p p ∨→; (3))(q p p ∧→; (4)q q p p →∨∧?)(; (5)q q p →→)(. 4. 设D 24是24的所有正因数组成的集合,“|”是其上的整除关系,则3的补元( ),4的补元( ),6的补元( ). 5. 设G 是(7, 15)简单平面图,则G 一定是( )图,且其每个面恰由( )条边围成,G 的面数为( ).

最新离散数学期末考试试卷(A卷)

最新离散数学期末考试试卷(A卷) 一、判断题:(每题2分,共10分) (1) (1) (2)对任意的命题公式,若,则 (0) (3)设是集合上的等价关系,是由诱导的上的等价关系,则. (1) (4)任意一个命题公式都与某一个只含合取和析取两种联结词的命题公式等价. (0) (5)设是上的关系,分别表示的对称和传递闭包,则 (0) 二、填空题:(每题2分,共10分) (1) 空集的幂集的幂集为(). (2) 写出的对偶式(). (3)设是我校本科生全体构成的集合,两位同学等价当且仅当他们在 同一个班,则等价类的个数为(),同学小王所在 的等价类为(). (4)设是上的关系,则满足下列性质的哪几条:自反的,对称的,传递的,反自反的,反对称的. () (5)写出命题公式的两种等价公式( ). 三、用命题公式符号化下列命题(1)(2)(3),用谓词公式符号化下列命题(4)(5)(6).(12分) (1)(1)仅当今晚有时间,我去看电影. (2)(2)假如上午不下雨,我去看电影,否则就在家里读书. (3)你能通你能通过考试,除非你不复习. (4)(4)并非发光的都是金子. (5)(5)有些男同志,既是教练员,又是国家选手. (6)(6)有一个数比任何数都大. 四、设,给定上的两个关系和分别是 (1)(1)写出和的关系矩阵.(2)求及(12分) 五、求的主析取范式和主合取范式.(10分) 六、设是到的关系,是到的关系,证明:(8分) 七、设是一个等价关系,设对某一个,有

,证明: 也是一个等价关系.(10分) 八、(10分)用命题推理理论来论证 下述推证是否有效? 甲、乙、丙、丁四人参加比赛,如果甲获胜,则乙失败;如果丙获胜,则乙也获 胜,如果甲不获胜,则丁不失败.所以,如果丙获胜,则丁不失败. 九、(10分) 用谓词推理理论来论证下述推证. 任何人如果他喜欢步行,他就不喜欢乘汽车,每一个人或喜欢乘汽车,或喜欢骑 自行车(可能这两种都喜欢).有的人不爱骑自行车,因而有的人不爱步行 (论 域是人). 十、(8分) 利用命题公式求解下列问题. 甲、乙、丙、丁四人参加考试后,有人问他们,谁的成绩最好, 甲说:“不是我,”乙说:“是丁,”丙说:“是乙,” 丁说:“不是我.” 四人的回答只有一人符合实际,问若只有一人成绩最 好,是谁? 离散数学期末考试试卷答案(A 卷) 一、判断题:(每题2分,共10分) (1)}}{{}{x x x -∈ ( ∨) (2) 对任意的命题公式C B A ,,, 若 C B C A ∧?∧, 则B A ? ( ? ) (3)设R 是集合A 上的等价关系, L 是由R A 诱导的A 上的等价关系,则 L R =. ( ∨ ) (4) 任意一个命题公式都与某一个只含合取和析取两种联结词的命题公式等价. ( ? ) (5)设R 是A 上的关系,)(),(R t R s 分别表示R 的对称和传递闭包,则 )()(R st R ts ? ( ? ) 二、填空题:(每题2分,共10分) (1) 空集的幂集的幂集为 ( }},{{φφ). (2) 写出)()(R P Q P →∧∨的对偶式( )()(R P Q P ∧?∨∧ ). (3)设A 是我校本科生全体构成的集合,两位同学等价当且仅当他们在 同一个班,则等价类的个数为(我校本科生的班级数 ),同学小王所在 的等价类为(小王所在的班的集合). (4)设},,,{},,,{><><==3121321R A 是A 上的关系,则R 满足下列性质的哪 几条:自反的,对称的,传递的,反自反的,反对称的. ( 传递的,反自反的,反对称的 ) (5)写出命题公式Q P ?的两种等价公式 ( )()()()(P Q Q P P Q Q P ∨?∧∨?→∧→). 三、用命题公式符号化下列命题(1)(2)(3),用谓词公式符号化下列命题 (4)(5)(6).(12分) (3)(1)仅当今晚有时间,我去看电影.

离散数学期末试卷A卷及答案

《离散数学》试卷(A 卷) 一、 选择题(共5 小题,每题 3 分,共15 分) 1、设A={1,2,3},B={2,3,4,5},C={2,3},则C B A ⊕?)(为(C )。 A 、{1,2} B 、{2,3} C 、{1,4,5} D 、{1,2,3} 2、下列语句中哪个是真命题 ( A ) A 、如果1+2=3,则4+5=9; B 、1+2=3当且仅当4+5≠9。 C 、如果1+2=3,则4+5≠9; D 、1+2=3仅当4+5≠9。 3、个体域为整数集合时,下列公式( C )不是命题。 A 、)*(y y x y x =?? B 、)4*(=??y x y x C 、)*(x y x x =? D 、)2*(=??y x y x 4、全域关系A E 不具有下列哪个性质( B )。 A 、自反性 B 、反自反性 C 、对称性 D 、传递性 5、函数612)(,:+-=→x x f R R f 是( D )。 A 、单射函数 B 、满射函数 C 、既不单射也不满射 D 、双射函数 二、填充题(共 5 小题,每题 3 分,共15 分) 1、设|A|=4,|P(B)|=32,|P(A ?B)|=128,则|A ?B|=??2???.

2、公式)(Q P Q ?∨∧的主合取范式为 。 3、对于公式))()((x Q x P x ∨?,其中)(x P :x=1, )(x Q :x=2,当论域为{0,1,2}时,其真值为???1???。 4、设A ={1,2,3,4},则A 上共有???15????个等价关系。 5、设A ={a ,b ,c },B={1,2},则|B A |= 8 。 三、判断题(对的填T ,错的填F ,共 10 小题,每题 1 分,共计10 分) 1、“这个语句是真的”是真命题。 ( F ) 2、“张刚和小强是同桌。”是复合命题。 ( F ) 3、))(()(r q q p p ∧?∧→?∨是矛盾式。 ( T ) 4、)(T S R T R S R ??????。 ( F ) 5、恒等关系具有自反性,对称性,反对称性,传递性。 ( T ) 6、若f 、g 分别是单射,则g f ?是单射。 ( T ) 7、若g f ?是满射,则g 是满射。 ( F ) 8、若A B ?,则)()(A P B P ?。 ( T ) 9、若R 具有自反性,则1-R 也具有自反性。 ( T ) 10、B A ∈并且B A ?不可以同时成立。 (F ) 四、计算题(共 3 小题,每题 10 分,共30 分) 1、调查260个大学生,获得如下数据:64人选修数学课程,94人选修计算机课程,58人选修商贸课程,28人同时选修数学课程和商贸课程,26人同时选修数学课程和计算机课程,22人同时选修计算机课程和商贸课程,14人同时选修三门课程。问 (1)三门课程都不选的学生有多少? (2)只选修计算机课程的学生有多少?

离散数学期末试题及答案完整版

离散数学期末试题及答 案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

326《离散数学》期末考试题(B ) 一、填空题(每小题3分,共15分) 1.设,,},,{{b a b a A =?},则-A ? = ( ),-A {?} = ( ), )(A P 中的元素个数=|)(|A P ( ). 2.设集合A 中有3个元素,则A 上的二元关系有( )个,其中有( )个是A 到A 的函数. 3.谓词公式))()(())()((y P y Q y x Q x P x ?∧?∧→?中量词x ?的辖域为( ), 量词y ?的辖域为( ). 4.设}24,12,8,6,4,3,2,1{24=D ,对于其上的整除关系“|”,元素( )不存在补元. 5.当n ( )时,n 阶完全无向图n K 是平面图,当当n 为( )时,n K 是欧拉图. 二.1. 若n B m A ==||,||,则=?||B A ( ),A 到B 的2元关系共有( )个,A 上的2元关系共有( )个. 2. 设A = {1, 2, 3}, f = {(1,1), (2,1), (3, 1)}, g = {(1, 1), (2, 3), (3, 2)}和h = {(1, 3), (2, 1), (3, 1)},则( )是单射,( )是满射,( )是双射. 3. 下列5个命题公式中,是永真式的有( )(选择正确答案的番号). (1)q q p p →→∧)(; (2))(q p p ∨→; (3))(q p p ∧→; (4)q q p p →∨∧?)(; (5)q q p →→)(. 4. 设D 24是24的所有正因数组成的集合,“|”是其上的整除关系,则3的补元( ),4的补元( ),6的补元( ).

安徽大学期末试卷离散数学上卷及参考答案.doc

安徽大学20 09 — 20 10 学年第 1 学期 《离散数学(上)》考试试卷(A 卷) (时间120分钟) 院/系 专业 姓名 学号 题 号 一 二 三 四 五 总分 得 分 一、单选题(每小题2分,共20分) 1. 设A={a,b,c},A 上二元关系R={〈a,a 〉,〈b,b 〉,〈a,c 〉},则关系R 的对称闭包S(R)是( ) A.R ∪I A B.R C.R ∪{〈c,a 〉} D.R ∩I A 2. 设X={a,b,c},I x 是X 上恒等关系,要使I x ∪{〈a,b 〉,〈b,c 〉,〈c,a 〉,〈b,a 〉}∪R 为X 上的等 价关系,R 应取( ) A. {〈c,a 〉,〈a,c 〉} B.{〈c,b 〉,〈b,a 〉} C. {〈c,a 〉,〈b,a 〉} D.{〈a,c 〉,〈c,b 〉} 3. 下列式子正确的是( ) A. ?∈? B.??? C.{?}?? D.{?}∈? 4. 设解释R 如下:论域D 为实数集,a=0, f(x,y)=x-y, A(x,y):x

离散数学期末考试试题及答案

离散数学试题(B卷答案1) 一、证明题(10分) 1)(P∧(Q∧R))∨(Q∧R)∨(P∧R)R 证明: 左端(P∧Q∧R)∨((Q∨P)∧R) ((P∧Q)∧R))∨((Q∨P)∧R) ((P∨Q)∧R)∨((Q∨P)∧R) ((P∨Q)∨(Q∨P))∧R ((P∨Q)∨(P∨Q))∧R T∧R(置换)R 2) x (A(x)B(x))xA(x)xB(x) 证明:x(A(x)B(x))x(A(x)∨B(x)) x A(x)∨xB(x) xA(x)∨xB(x) xA(x)xB(x) 二、求命题公式(P∨(Q∧R))(P∧Q∧R)的主析取范式和主合取范式(10分)。 证明:(P∨(Q∧R))(P∧Q∧R)(P∨(Q∧R))∨(P∧Q∧R)) (P∧(Q∨R))∨(P∧Q∧R) (P∧Q)∨(P∧R))∨(P∧Q∧R) (P∧Q∧R)∨(P∧Q∧R)∨(P∧Q∧R))∨(P∧Q∧R))∨(P∧Q∧R) m0∨m1∨m2∨m7 M3∨M4∨M5∨M6 三、推理证明题(10分) 1)C∨D,(C∨D)E, E(A∧B),(A∧B)(R∨S)R∨S证明:(1) (C∨D) E ?P (2) E(A∧B) ??P (3) (C∨D)(A∧B) T(1)(2),I (4) (A∧B)(R∨S)??P (5) (C∨D)(R∨S) ? T(3)(4),I (6) C∨D P (7) R∨S T(5),I 2) x(P(x)Q(y)∧R(x)),xP(x)Q(y)∧x(P(x)∧R(x)) 证明(1)xP(x) P

(2)P(a) T(1),ES (3)x(P(x)Q(y)∧R(x)) P (4)P(a)Q(y)∧R(a) T(3),US (5)Q(y)∧R(a) T(2)(4),I (6)Q(y) T(5),I (7)R(a) T(5),I (8)P(a)∧R(a) T(2)(7),I (9)x(P(x)∧R(x)) T(8),EG (10)Q(y)∧x(P(x)∧R(x)) T(6)(9),I 四、某班有25名学生,其中14人会打篮球,12人会打排球,6人会打篮球和排球,5人会打篮球和网球,还有2人会打这三种球。而6个会打网球的人都会打另外一种球,求不会打这三种球的人数(10分)。 解:A,B,C分别表示会打排球、网球和篮球的学生集合。则|A|=12,|B|=6,|C|=14,|A∩C|=6,|B∩C|=5,|A∩B∩C|=2。 先求|A∩B|。 ∵6=|(A∪C)∩B|=|(A∩B)∪(B∩C)|=|(A∩B)|+|(B∩C)|-|A∩B∩C|=|(A∩B)|+5-2,∴|(A∩B)|=3。 于是|A∪B∪C|=12+6+14-6-5-3+2=20。不会打这三种球的人数25-20=5。五、已知A、B、C是三个集合,证明A-(B∪C)=(A-B)∩(A-C)(10分)。 证明:∵x A-(B∪C) x A∧x(B∪C) xA∧(xB∧x C) (x A∧x B)∧(x A∧xC) x(A-B)∧x(A-C) x(A-B)∩(A-C) ∴A-(B∪C)=(A-B)∩(A-C) 六、已知R、S是N上的关系,其定义如下:R={| x,yN∧y=x2} R*S={| x,y N∧y=x2+1} S*R={<x,y>| x,yN∧y=(x+1)2},R{1,2}={<1,1>,<2,4>},S[{1,2}]={1,4}。 七、设R={<a,b>,,<c,a>},求r(R)、s(R)和t(R) (15分)。 解:r(R)={,,,<b,b>,

离散数学期末测验试题(有几套带答案1)

离散数学期末测验试题(有几套带答案1)

————————————————————————————————作者: ————————————————————————————————日期: ?

离散数学试题(A卷及答案) 一、证明题(10分) 1)(?P∧(?Q∧R))∨(Q∧R)∨(P∧R)?R 证明:左端?(?P∧?Q∧R)∨((Q∨P)∧R)?((?P∧?Q)∧R))∨((Q∨P)∧R) ?(?(P∨Q)∧R)∨((Q∨P)∧R)?(?(P∨Q)∨(Q∨P))∧R ?(?(P∨Q)∨(P∨Q))∧R?T∧R(置换)?R 2)?x(A(x)→B(x))??xA(x)→?xB(x) 证明:?x(A(x)→B(x))??x(?A(x)∨B(x))??x?A(x)∨?xB(x)???xA(x)∨?xB(x)??xA(x)→?xB(x) 二、求命题公式(P∨(Q∧R))→(P∧Q∧R)的主析取范式和主合取范式(10分) 证明:(P∨(Q∧R))→(P∧Q∧R)??(P∨(Q∧R))∨(P∧Q∧R)) ?(?P∧(?Q∨?R))∨(P∧Q∧R) ?(?P∧?Q)∨(?P∧?R))∨(P∧Q∧R) ?(?P∧?Q∧R)∨(?P∧?Q∧?R)∨(?P∧Q∧?R))∨(?P∧?Q∧?R))∨(P∧Q∧R) ?m0∨m1∨m2∨m7 ?M3∨M4∨M5∨M6 三、推理证明题(10分) 1)C∨D, (C∨D)→?E, ?E→(A∧?B), (A∧?B)→(R ∨S)?R∨S 证明:(1) (C∨D)→?E (2) ?E→(A∧?B) ?? (3)(C∨D)→(A∧?B) (4) (A∧?B)→(R∨S) ?? (5) (C∨D)→(R∨S) ? (6) C∨D?? (7) R∨S 2) ?x(P(x)→Q(y)∧R(x)),?xP(x)?Q(y)∧?x(P(x)∧R(x)) 证明(1)?xP(x) (2)P(a) (3)?x(P(x)→Q(y)∧R(x)) (4)P(a)→Q(y)∧R(a) (5)Q(y)∧R(a) (6)Q(y) (7)R(a) (8)P(a) (9)P(a)∧R(a) (10)?x(P(x)∧R(x)) (11)Q(y)∧?x(P(x)∧R(x)) 五、已知A、B、C是三个集合,证明A-(B∪C)=(A-B)∩(A-C) (15分) 证明∵x∈A-(B∪C)?x∈A∧x?(B∪C)?x∈A∧(x?B∧x?C)?(x∈A∧x?B)∧(x∈A∧x?C)?x∈(A-B)∧x∈(A-C)?x∈(A-B)∩(A-C)∴A-(B∪C)=(A-B)∩(A-C) 六、已知R、S是N上的关系,其定义如下:R={<x,y>| x,y∈N∧y=x2},S={| x,y∈N∧y=x2},R*S={|x,y∈N∧y=x2+1},S*R={| x,y∈N∧y=(x+1)2}, 七、若f:A→B和g:B→C是双射,则(gf)-1=f-1g-1(10分)。 证明:因为f、g是双射,所以gf:A→C是双射,所以gf有逆函数(gf)-1:C→A。同理可推f-1g-1:C→A是双射。 因为∈f-1g-1?存在z(∈g-1∧∈f∧<z,x>∈g)?∈gf?<x,y>∈(gf)-1,所以(gf)-1=f-1g-1。 R{1,2}={<1,1>,<2,4>},S[{1,2}]={1,4}。

离散数学期末考试试题及答案

离散数学试题(B卷答案1) 一、证明题(10分) 1)(?P∧(?Q∧R))∨(Q∧R)∨(P∧R)?R 证明: 左端?(?P∧?Q∧R)∨((Q∨P)∧R) ?((?P∧?Q)∧R))∨((Q∨P)∧R) ?(?(P∨Q)∧R)∨((Q∨P)∧R) ?(?(P∨Q)∨(Q∨P))∧R ?(?(P∨Q)∨(P∨Q))∧R ?T∧R(置换)?R 2) ?x (A(x)→B(x))??xA(x)→?xB(x) 证明:?x(A(x)→B(x))??x(?A(x)∨B(x)) ??x?A(x)∨?xB(x) ???xA(x)∨?xB(x) ??xA(x)→?xB(x) 二、求命题公式(P∨(Q∧R))→(P∧Q∧R)的主析取范式和主合取范式(10分)。 证明:(P∨(Q∧R))→(P∧Q∧R)??(P∨(Q∧R))∨(P∧Q∧R)) ?(?P∧(?Q∨?R))∨(P∧Q∧R) ?(?P∧?Q)∨(?P∧?R))∨(P∧Q∧R) ?(?P∧?Q∧R)∨(?P∧?Q∧?R)∨(?P∧Q∧?R))∨(?P∧?Q∧?R))∨(P∧Q∧R) ?m0∨m1∨m2∨m7 ?M3∨M4∨M5∨M6 三、推理证明题(10分) 1)C∨D, (C∨D)→?E,?E→(A∧?B), (A∧?B)→(R∨S)?R∨S 证明:(1) (C∨D)→?E P (2) ?E→(A∧?B) P (3) (C∨D)→(A∧?B) T(1)(2),I (4) (A∧?B)→(R∨S) P (5) (C∨D)→(R∨S) T(3)(4), I (6) C∨D P (7) R∨S T(5),I 2) ?x(P(x)→Q(y)∧R(x)),?xP(x)?Q(y)∧?x(P(x)∧R(x)) 证明(1)?xP(x) P

离散数学期末试卷及答案

一.判断题(共10小题,每题1分,共10分) 在各题末尾的括号内画 表示正确,画 表示错误: 1.设p、q为任意命题公式,则(p∧q)∨p ? p ( ) 2.?x(F(y)→G(x)) ? F(y)→?xG(x)。( ) 3.初级回路一定是简单回路。( ) 4.自然映射是双射。( ) 5.对于给定的集合及其上的二元运算,可逆元素的逆元是唯一的。( ) 6.群的运算是可交换的。( ) 7.自然数集关于数的加法和乘法构成环。( ) 8.若无向连通图G中有桥,则G的点连通度和边连通度皆为1。( ) 9.设A={a,b,c},则A上的关系R={,}是传递的。( ) 10.设A、B、C为任意集合,则A?(B?C)=(A?B)?C。( ) 二、填空题(共10题,每题3分,共30分) 11.设p:天气热。q:他去游泳。则命题“只有天气热,他才去游泳”可符号 化为。 12.设M(x):x是人。S(x):x到过月球。则命题“有人到过月球”可符号 化为。 13.p?q的主合取范式是。 14.完全二部图K r,s(r < s)的边连通度等于。 15.设A={a,b},,则A上共有个不同的偏序关系。 16.模6加群中,4是阶元。 17.设A={1,2,3,4,5}上的关系R={<1,3>,<1,5>,<2,5>,<3,3>,<4,5>},则R的传递闭包t(R) = 。. 18.已知有向图D的度数列为(2,3,2,3),出度列为(1,2,1,1),则有向图D的入度

列为。 19.n阶无向简单连通图G的生成树有条边。 20.7阶圈的点色数是。 三、运算题(共5小题,每小题8分,共40分) 21.求?xF(x)→?yG(x,y)的前束范式。 22.已知无向图G有11条边,2度和3度顶点各两个,其余为4度顶点,求G 的顶点数。 23.设A={a,b,c,d,e,f},R=I A?{,},则R是A上的等价关系。求等价类[a]R、[c]R及商集A/R。 24.求图示带权图中的最小生成树,并计算最小生成树的权。 25.设R*为正实数集,代数系统< R*,+>、< R*,·>、< R*,/>中的运算依次为普通加法、乘法和除法运算。试确定这三个代数系统是否为群?是群者,求其单位元及每个元素的逆元。 四、证明题(共3小题,共20分) 26 (8分)在自然推理系统P中构造下述推理的证明: 前题:p→(q∨r),?s→?q,p∧?s 结论:r 27 (6分)设是群,H={a| a∈G∧?g∈G,a*g=g*a},则是G的子群 28.(6分)设G是n(≥3)阶m条边、r个面的极大平面图,则r=2n-4。

最新离散数学期末考试试题配答案

精品文档院术师范学广东技模拟试题 科目:离散数学 120 分钟考试时间: 考试形式:闭卷 姓名:学号:系别、班级: 2分,共10分)一.填空题(每小题__________。?x?y?P(x)∨Q(y) 1. 谓词公式的前束范式是 __)xxQ(?xP(x)????????____,,2. 设全集A?_{4,5}B =__则A∩ {2}__,,?E?1,2,3,4,55,A?21,,32,B_____ __ {1,3,4,5}??BA????b,c}} __________,则3. 设__ , b?,c,b,a,A?Ba???B(A)?)(_____Φ_______。???)(AB()?4. 在代数系统(N,+)中,其单位元是0,仅有_1___ 有逆元。 ne条边,则G有___e+2-n____个面。5.如果连通平面图G有个顶点,二.选择题(每小题2分,共10分) P?(Q?R)等价的公式是(1. 与命题公式) (A)(B)(C)(D)R?P?Q)()?R)R?(QPP?(Q?R?Q)(P??????b?b,?a,aA??a,b,cR?,不具备关系( 2. 设集合上的二元关系,A)性质 (A)(A)传递性(B)反对称性(C)对称性(D)自反性 G??V,E?中,结点总度数与边数的关系是3. 在图( ) ??E?Edeg(v)deg(v)?2deg(v)?Evdeg()?2E(A)(C)(B) (D) iiiiVv?Vv?4. 设D是有n个结点的有向完全图,则图D的边数为( ) n(n?1)n(n?1)n(n?1)/2n(n?1)/2(A)(B)(D)(C) 5. 无向图G是欧拉图,当且仅当( ) (A)G的所有结点的度数都是偶数(B)G的所有结点的度数都是奇数 精品文档. 精品文档 (C)G连通且所有结点的度数都是偶数(D) G连通且G的所有结点度数都是奇数。 三.计算题(共43分) p?q?r的主合取范式与主析取范式。(1. 求命题公式6分) 解:主合取方式:p∧q∨r?(p∨q∨r)∧(p∨?q∨r)∧(?p∨q∨r)= ∏0.2.4 主析取范式:p∧q∨r?(p∧q∧r) ∨(p∧q∧?r)∨(?p∧q∧r) ∨(?p∧?q∧r) ∨(p∧?q∧r)=∑1.3.5.6.7 1000????0111?????Md,A?a,b,c,的上的二元关集2. 设合系R关系矩阵为求 ??R0000????1000??)tR(),(RsRr()(),(),(rRsRtR),的关系图。R的关系矩阵,并画出分)10(,

大学《离散数学》期末考试试卷及答案-(1)

安徽大学2006-2007学年第1学期 《离散数学》期末考试试卷(A卷) (时间120分钟) 开课院(系、部)姓名学号. 一、选择题(每小题2分,共20分)1.下列语句中,哪个是真命题()A、 4 2= + x; B、我们要努力学习; C、如果ab为奇数,那么a是奇数,或b是偶数; D、如果时间流逝不止,你就可以长生不老。 2.下列命题公式中,永真式的是() A、P Q P→ →) (; B、P P Q∧ → ?) (; C、Q P P? ? ∧) (; D、) (Q P P∨ →。3.在谓词逻辑中,令) (x F表示x是火车;) (y G表示y是汽车;) , (y x L表示x比y快。 命题“并不是所有的火车比所有的汽车快”的符号表示中哪些是正确的()

I.)),()()((y x L y G x F y x →∧??? II.)),()()((y x L y G x F y x ?∧∧?? III. )),()()((y x L y G x F y x ?→∧?? A 、仅I ; B 、仅III ; C 、I 和II ; D 、都不对。 4.下列结论正确的是:( ) A 、若C A B A =,则 C B =; B 、若B A B A ?,则B A =; C 、若C A B A =,则C B =; D 、若B A ?且D C ?,则D B C A ?。 5.设φ=1A ,}{2φ=A ,})({3φρ=A ,)(4φρ=A ,以下命题为假的是( ) A 、42A A ∈; B 、31A A ?; C 、24A A ?; D 、34A A ∈。 6.设R 是集合},,,{d c b a A =上的二元关系, },,,,,,,,,,,{><><><><><><=b d d b a c c a a d d a R 。下列哪些命题为真( ) I.R R ?是对称的 II. R R ?是自反的 III. R R ?不是传递的 A 、仅I ; B 、仅II ; C 、I 和II ; D 、全真。

离散数学期末试卷(A)

离散数学期末试卷(A) XXXX大学XX学院2007 ~2008学年第一学期《离散数学》期末试卷年级专业题号得分适用年级专业:2006级软件工程专业试卷说明:闭卷考试,考试时间120分钟一、单项选择题1.下列语句中只有不是命题。C A.今年元旦会下雪。B.1+1=10。C.嫦娥一号太棒了!D.嫦娥奔月的神话已成为现实。2.p?q 的主合取范式是。 B A.(p?q)?(p??q)B.(p??q)?(?p?q) C.(p?q)?(?p??q)D.(p?q)?(?p?q) 3.与p? q等值的命题公式是。D A.?p?q B.p??q C.p??q D.?p?q 4.在一阶逻辑中使用的量词只有个。B A.1B.2 C.3D.4 5.??xA(x)?。C A.??xA(x) B.?x?A(x) C.?x?A(x)

D.?xA(x) 6.若|A|=4,则|P(A)|=。 C A.4B.8C.16 D.64 7.设A、B、C为任意集合,集合的对称差运算不具有的性质是。 D A.A?B = B?A B.(A?B)?C = B?(A?C) 班级学号一二三姓名____________ 四总分C.A?A = ?D.A?A = A 8.二元关系是。B A.两个集合的笛卡儿积B.序偶的集合C.映射的集合D.以上都不是9.下面关于函数的叙述中正确的是。D A.函数一定是满射B.函数一定是单射C.函数不是满射就单射D.函数是特殊的关系10.半群中的二元运算一定满足=。B A.交换律B.结合律C.分配律D.幂等律11.环中有个二元运算。 B A.一B.二C.三D.四12.群与独异点的区别是。 C A.满足交换律B.满足结

《离散数学》期末考试试题

《离散数学》期末考试试题 一、 填空题(每空2分,合计20分) 1. 设个体域为{2,3,6}D =-, ():3F x x ≤,():0G x x >。则在此解释下公式 ()(()())x F x G x ?∧的真值为______。 2. 设:p 我是大学生,:q 我喜欢数学。命题“我是喜欢数学的大学生”为可符合化 为 。 3. 设{1,2,3,4}A =,{2,4,6}B =,则A B -=________,A B ⊕=________。 4. 合式公式()Q P P ?→∧是永______式。 5. 给定集合{1,2,3,4,5}A =,在集合A 上定义两种关系: {1,3,3,4,2,2}R =<><><>, {4,2,3,1,2,3}S =<><><>, 则_______________S R =ο,_______________R S =ο。 6. 设e 是群G 上的幺元,若a G ∈且2a e =,则1a -=____ , 2a -=__________。 7. 公式))(()(S Q P Q P ?∧?∨∧∨?的对偶公式为 。 8. 设{2,3,6,12}A =, p 是A 上的整除关系,则偏序集,A <>p 的最大元是________,极小元是_ _。 9. 一棵有6个叶结点的完全二叉树,有_____个内点;而若一棵树有2个结点度数为2,一 个结点度数为3,3个结点度数为4,其余是叶结点,则该树有_____个叶结点。 10. 设图,G V E =<>, 1234{v ,v ,v ,v }V =,若G 的邻接矩阵????????????=0001001111011010A ,则1()deg v -=________, 4()deg v +=____________。 二、选择题(每题2分,合计20分) 1.下列各式中哪个不成立( )。 A 、)()())()((x xQ x xP x Q x P x ?∨??∨? ; B 、)()())()((x xQ x xP x Q x P x ?∨??∨?; C 、)()())()((x xQ x xP x Q x P x ?∧??∧?; D 、Q x xP Q x P x ∧??∧?)())((。

离散数学期末试卷

1 / 6 北京工业大学经管学院期末试卷 《离散数学》(A ) 学号 姓名: 成绩 一、单项选择题(每题2分,共18分) 1.令P :今天下雪了,Q :路滑,则命题“虽然今天下雪了,但是路不. 滑”可符号化为( D ) A .P→Q B .P ∨Q C .P ∧Q D .P ∧Q p→q ,蕴涵式,表示假设、条件、“如果,就”。 “→”与此题无关 2. 关于命题变元P 和Q 的极大项M 1表示( C )。 书P1520,此题换作p 、q 更容易理解 A.┐P ∧Q B.┐P ∨Q p ∨┐q 01 1 M 1 ∨┐Q ∧┐Q 3.设R (x ):x 是实数;S ():x 小于y 。用谓词表达下述命题:不存在最小的实数。其中错误的表达式是:( D ) 4.在论域{}中与公式(x ?)A (x )等价的不含存在量词的公式是( B ) A.)b (A )a (A ∧ B. )b (A )a (A ∨ C. )b (A )a (A → D. )a (A )b (A → 5.下列命题公式为重言式的是( C ) A .Q→(P ∧Q ) B .P→(P ∧Q ) C .(P ∧Q )→P D .( P ∨Q )→Q 牢记→真假条件,作为选择题可直接代入0、1,使选项出现1→0,排除。熟练的可直接看出C 不存在1→0的情况 6. 设{1,2,3},{},下列二元关系R 为A 到B 的函数的是( A ) A. {<1>,<2>,<3>} B. {<1>,<2>} C. {<1>,<1>,<2>,<3>} D. {<1>,<2>,<3>,<1>}

2 / 6 7.偏序关系具有性质( D ) 背 A.自反、对称、传递 B.自反、反对称 C.反自反、对称、传递 D.自反、反对称、传递 8.设R 为实数集合,映射:,R R σ→2 ()21,x x x σ=-+-则σ 是( D ). (A) 单射而非满射 (B) 满射而非单射 (C) 双射 (D) 既不是单射也不是满射. 书P96.设函数f :A→B (1)若,则f 是满射的【即值域为B 的全集,在本题中为R ,该二次函数有最高点,不满足】 (2)若对于任何的x 12∈A , x 1≠x 2,都有f(x 1)≠f(x 2),则称f 是单射的【即真正一一对应,甚至不存在一个y 对应多个x 。显然,本题为二次函数,不满足】 (3)若f 既是满射的,又是单射的,则称f 是双射的【本题中两个都不满足,既不是单射也不是满射】 二、填空题(每空2分,共22分) 1.设Q 为有理数集,笛卡尔集×Q ,*是S 上的二元运算,?,∈S, *=<, >, 则*运算的幺元是<1,0>。?∈S, 若a≠0, 则的逆元是<1>。书P123定义 2.在个体域D 中,公式)x (xG ?的真值为假当且仅当某个G(x)的真值为假,公式)x (xG ?的真值为假,当且仅当所有G(x)的真值都为假。 3.给定个体域为整数域,若F (x ):表示x 是偶数,G (x ):表示x 是奇数;那么,)x (G )x ()x (F )x (?∧?是一个 永真式 ;而))x (G )x (F )(x (∧?是一个 永假式 。 4.设{}{}===)R (r ,c ,b ,b ,a R A ,c ,b ,a A 则上的二元关系  {<>,<>,<>,<>,<>,<>} ; s(R)= {<>,<>,<>,<>} 。 书P89、P85. 自反闭包:r(R) = R U R 0 ={<>,<>} U {<>,<>,<>,<>} ={<>,<>,<>,<>,<>,<>} 对称闭包:s(R) = R U R -1 = {<>,<>} U {<>,<>} = {<>,<>,<>,<>} 传递闭包:t(R) = 2 3U…… 5. 设{1,2,3}{},则从X 到Y 的不同的函数共有8个.

离散数学期末考试试题(有几套带答案)

离散数学试题(A卷及答案) 一、证明题(10分) 1)(?P∧(?Q∧R))∨(Q∧R)∨(P∧R)?R 证明: 左端?(?P∧?Q∧R)∨((Q∨P)∧R)?((?P∧?Q)∧R))∨((Q∨P)∧R) ?(?(P∨Q)∧R)∨((Q∨P)∧R)?(?(P∨Q)∨(Q∨P))∧R ?(?(P∨Q)∨(P∨Q))∧R?T∧R(置换)?R 2)?x(A(x)→B(x))??xA(x)→?xB(x) 证明:?x(A(x)→B(x))??x(?A(x)∨B(x))??x?A(x)∨?xB(x)???xA(x)∨?xB(x)??xA(x)→?xB(x) 二、求命题公式(P∨(Q∧R))→(P∧Q∧R)的主析取范式和主合取范式(10分) 证明:(P∨(Q∧R))→(P∧Q∧R)??(P∨(Q∧R))∨(P∧Q∧R)) ?(?P∧(?Q∨?R))∨(P∧Q∧R) ?(?P∧?Q)∨(?P∧?R))∨(P∧Q∧R) ?(?P∧?Q∧R)∨(?P∧?Q∧?R)∨(?P∧Q∧?R))∨(?P∧?Q∧?R))∨(P∧Q∧R) ?m0∨m1∨m2∨m7 ?M3∨M4∨M5∨M6 三、推理证明题(10分) 1)C∨D, (C∨D)→?E, ?E→(A ∧?B), (A∧?B)→(R∨S)?R∨S 证明:(1) (C∨D)→?E (2) ?E→(A∧?B) (3) (C∨D)→(A∧?B) (4) (A∧?B)→(R∨S) (5) (C∨D)→(R∨S) (6) C∨D

(7) R∨S 2) ?x(P(x)→Q(y)∧R(x)),?xP(x)?Q(y)∧?x(P(x)∧R(x)) 证明(1)?xP(x) (2)P(a) (3)?x(P(x)→Q(y)∧R(x)) (4)P(a)→Q(y)∧R(a) (5)Q(y)∧R(a) (6)Q(y) (7)R(a) (8)P(a) (9)P(a)∧R(a) (10)?x(P(x)∧R(x)) (11)Q(y)∧?x(P(x)∧R(x)) 四、设m是一个取定的正整数,证明:在任取m+1个整数中,至少有两个整数,它们的差是m的整数倍 证明设 1 a,2a,…,1+m a为任取的m+1个整数,用m去除它们所得余数 只能是0,1,…,m-1,由抽屉原理可知, 1 a,2a,…,1+m a这m+1个整 数中至少存在两个数 s a和t a,它们被m除所得余数相同,因此s a和t a的差是m的整数倍。 五、已知A、B、C是三个集合,证明A-(B∪C)=(A-B)∩(A-C) (15分)证明∵x∈ A-(B∪C)? x∈ A∧x?(B∪C)? x∈ A∧(x?B∧x?C)?(x∈ A∧x?B)∧(x∈ A∧x?C)? x∈(A-B)∧x∈(A-C)? x∈(A-B)∩(A-C)∴A-(B∪C)=(A-B)∩(A-C) 六、已知R、S是N上的关系,其定义如下:R={| x,y∈N∧y=x2},S={| x,y∈N∧y=x+1}。求R-1、R*S、S*R、R{1,2}、S[{1,2}](10分) 解:R-1={| x,y∈N∧y=x2},R*S={| x,y∈N∧y=x2+1},S*R={| x,y∈N∧y=(x+1)2}, 七、若f:A→B和g:B→C是双射,则(gf)-1=f-1g-1(10分)。 证明:因为f、g是双射,所以gf:A→C是双射,所以gf有逆函数

相关文档
最新文档