实验十一迈克尔逊干涉法测量空气折射率

实验十一迈克尔逊干涉法测量空气折射率
实验十一迈克尔逊干涉法测量空气折射率

实验十一用迈克尔逊干涉光路测空气折射率光的干涉是重要的光学现象之一,是光的波动性的重要实验依据。两列频率相同、振动方向相同和位相差恒定的相干光在空间相交区域将会发生相互加强或减弱现象,即光的干涉现象。光的波长虽然很短(4×10-7~8×10-7m之间),但干涉条纹的间距和条纹数却很容易用光学仪器测得。根据干涉条纹数目和间距的变化与光程差、波长等的关系式,可以推出微小长度变化(光波波长数量级)和微小角度变化等,因此干涉现象在照相技术、测量技术、平面角检测技术、材料应力及形变研究等领域有着广泛地应用。

相干光源的获取除用激光外,在实验室中一般是将同一光源采用分波阵面或分振幅2种方法获得,并使其在空间经不同路径会合后产生干涉。

迈克尔逊干涉仪是1883年美国物理学家迈克尔逊和莫雷合作,为研究“以太”漂移而设计制造出来的精密光学仪器。它是利用分振幅法产生双光束以实现干涉。在近代物理和近代计量技术中,如在光谱线精细结构的研究和用光波标定标准米尺等实验中都有着重要的应用。利用该仪器的原理,研制出多种专用干涉仪。

一、实验目的

1、掌握迈克尔逊干涉光路的原理和调节方法。

2、学会调出非定域干涉条纹、等倾干涉条纹、等厚干涉条纹。

3、学习利用迈克尔逊干涉光路测量常温下空气的折射率。

二、实验仪器

He-Ne激光器及电源,扩束镜(短焦距凸透镜),全反镜,温度计,小孔光阑,密封玻璃管,气压计等。

三、实验原理

1、迈克尔逊干涉光路

图11.1是迈克尔逊干涉光路原理图,从光源S发出的一束光射到分束板1G上,1G的后表面镀有半反射膜(一般镀金属银),光在半反射膜上反射和透射,被分成光强接近相等

的两束光,一束为反射光1,一束为透射光2。当激光束以45°角射向分束板1G 时,被分成相互垂直的两束光。这两束光分别垂直射向两平面反射镜1M 和2M ,经它们反射后再回到分束板1G 的半反射膜上,又汇聚成一束光,射到光屏E 处。由于反射光1和透射光2为两相干光束,因此可以在屏上观察到干涉条纹。补偿板2G 的物理性能和几何形状与1G 完全相同(但没有镀半反射膜),平行于1G ,起着补偿光束2的光程的作用。如果没有2G ,则光束1会三次经过玻璃板,而光束2只经过玻璃板一次。2G 的存在使得光束1、2经过玻璃板的光程相等,从而使光束1、2的光程差只由其几何路程决定。由于本实验采用相干性很好的激光,故补偿板2G 并不重要。但如果使用的是单色性不好、相干性较差的光源,如钠光灯或汞灯,甚至白炽灯,2G 就成为必需的了。这是因为波长不同的光折射率不同,由分光板1G 的厚度所导致的光程就会各不一样,补偿板2G 能同时满足这些不同波长的光所需的不同光程补偿。

图11.1 迈克尔逊干涉原理图

2、干涉图样

M 2′是M 2被G 1反射后成的虚像,从观察者看来,两相干光束是从M 1 和M 2′反射而来的,因此可以把它们产生的干涉等效为M 1 和M 2′之间的空气薄膜所产生的干涉来分析研究。

(1)点光源的非定域干涉

如图11.2所示。激光束经短焦距凸透镜会聚后可得点光源S ,它发出球面波经G 1分束及M 1、M 2反射后射向屏H 的光可以看成是由虚光源是S 1、S 2′ 发出的。其中S 1为点光源S 经G 1及M 1反射后成的像,S 2′ 为点光源S 经M 2及G 1反射后成的像(等效于点光源S 经G 1及'

2M 反射后成的像)。这两个虚光源S 1、S 2′发出的球面波,在它们能相遇的空间里处处相干,即各处都能产生干涉条纹。因此在这个光场中的任何地方放置毛玻璃屏都能观察到干涉条纹。我们称这种干涉为非定域干涉。

随着S 1、S 2′与屏H 的相对位置不同,干涉条纹的形状也不同。当屏H 与S 1S 2′ 的连线垂直时(此时M 1、M 2′ 大体平行)将得到圆条纹,圆心在S 1S 2′连线和屏H 的交点O 处。当屏H 与S 1S 2′连线的垂直平分线垂直时(此时M 1、M 2′与屏H 的距离大体相等,且它们之间有一小夹角)将得到直线条纹。其他情况下将得到椭圆、双曲线干涉条纹。 .S S ′2

S 1M 1

M ′2

M 2H ...S ′

O

G 1

H

图11.2 非定域干涉光路图 图11.3 非定域圆条纹的特性分析图 下面分析非定域圆条纹的特性(如图11.3所示)。

S 1、S 2′到屏上任一点P 的光程差为

'21L S P S P ?=-

当r z 时,有

2cos L d θ

?=

由于θ比较小,所以有

2cos 1,2r z

θ

θθ≈-≈ 所以 22212r L d z ???=- ???

(1) a) 亮纹条件。当光程差L k λ?=时,有亮纹,其轨迹为圆。

22212r d k z λ??-= ???

(2)

若z 、d 不变,则r 越小,k 越大。即靠近中心的条纹干涉级次高,靠近边缘(r 大)的条纹干涉级次低。

b) 条纹间距。令k r 及1k r -分别为两相邻干涉环的半径,根据上式有

22212k r d k z λ??-= ???

(3.1) ()2122112k r d k z λ-??-=- ???

(3.2)

两式相减,得干涉条纹间距

212k k k z r r r r d λ-?=-≈

(4) 由此可见,条纹间距r ?的大小由四种因素决定:

A. 越靠近中心的干涉圆环(半径k r 越小),r ?越大。即干涉条纹中间稀边缘密。

B. d 越小,r ?越大。即M 1与M 2′的距离越小条纹越稀,距离越大条纹越密。

C. z 越大,r ?越大。即点光源S ,接收屏H 及M 1(M 2)镜离分束板G 1越远,则条纹越

稀。

D. 波长越长,r ?越大。

(c )条纹的“吞吐”。缓慢移动M 1镜,改变d ,可看见干涉条纹的“吞”、“吐”现象。这是因为对于某一特定级次为k 1的干涉条纹(干涉环半径为1k r )有

1212212k r d k z λ??-= ? ???

移动M 1镜,当d 增大时,1k r 也增大,可以看到条纹“吐”的现象。当d 减小时,1k r 也减小,可以看到条纹“吞”的现象。

在圆心处,有0r =,2d k λ=。若M 1镜移动了距离d ?,所引起干涉条纹“吞”或“吐”的数目N k ≡?,则有

2d N λ?=

(5)

所以,若已知波长λ,就可以从条纹的“吞”“吐”的数目N ,求得M 1镜移动的距离d ?,这就是干涉测长的基本原理。反之,若已知M 1镜的移动距离d ?和条纹的“吞”“吐”数目N ,则由上式可求得波长λ。

(2) 扩展光源的定域干涉

a 等倾干涉。当M 1与M 2′互相平行时,用扩展光源照射。对于倾角相同的各光束,由上下两表面反射而形成的两相干光束,其光程差均为

2cos L d θ?=

因此形成同一级干涉条纹。用人眼直接观察,或放一会聚透镜在其后焦面上用屏去观察,可以看到一组同心圆环。每一个圆各自对应一恒定的倾角,所以这种干涉称为等倾干涉。等倾干涉条纹定域于无穷远。在这些同心圆状干涉条纹中,以圆心处级别最高,此时0θ=,因而有

2L d k λ?==

当移动M 1镜使d 增大时,圆心处干涉条纹的级次越来越高,可以看到圆环状条纹一个一个从中心“吐”出来的现象;反之,当d 减小时,可以看到圆环状条纹一个一个从中心“吞”进去。每“吞”进或者“吐”出一条条纹时,d 就增大或者减小2λ

对不同级次的干涉条纹进行比较

对第k 级有 2cos k d k θλ=

对第k+1级有 12cos (1)k d k θλ+=+

当θ比较小时,有2

cos 12θθ≈-,可得相邻两条纹的角距离为

12k k k k

d λθθθθ-?=-≈ 上式表明:当d 一定时,越靠近中心的干涉圆环(即k θ越小),k θ?越大,即干涉条纹中间稀边缘密。当k θ一定时,d 越小,k θ?越大,即干涉条纹随着d 的减小而变得稀疏。 b 等厚干涉。当M 1与M 2′成一很小的角度α,且M 1与M 2′之间所形成的空气层很薄时,用扩展光源照明就会出现等厚干涉条纹。因为等厚干涉条纹定域在镜面附近,若用眼睛直接观察,应将眼睛聚焦在镜面附近。当角度α很小时,由上下两表面反射而形成的两相干光束,其光程差仍可近似地表示为2cos L d θ?=。在M 1与M 2′的相交处,由于0d =,光程差为0L ?=,应该观察到直线状亮条纹。但由于两光束分别是从分束板1G 后表面镀的半反射膜的内外侧反射的,位相突变情况不同,会引起附加光程差。若分束板1G 后表面未镀半反射膜,则有半波损失,M 1与M 2′的相交处的干涉条纹应该是暗纹;若分束板1G 后表面镀半反射膜(银或铝或多层介质膜),则情况比较复杂,M 1与M 2′的相交处的干涉条纹就不一定是最暗的。

由于θ是有限的(取决于反射镜对眼睛的张角,一般比较小),所以

22cos 2(1)2

L d d θθ?=≈- 在交棱附近,L ?中的第二项2

d θ可以忽略,光程差主要取决于厚度d ,空气层厚度相同的地方光程差相同,所以观察到的条纹是平行于交棱的等间隔分布的直线条纹。而在远离交棱处, 2d θ(与波长大小可比)项的作用不可忽略,而同一条干涉条纹对应的光程差应相等,因此在θ较大的地方必须要通过增大d 来补偿。所以同一条干涉条纹在θ逐渐增大的地方必须要向d 增大的方向移动,使得干涉条纹逐渐变成弧形,而且弯曲的方向是凸向交棱的方向。

3、迈克尔逊干涉法测空气折射率

如图11.4所示。当光束垂直入射至M 1,M 2镜时,两光束的光程差为 11222()n L n L δ=- (6)

式中n 1和n 2分别是路程L 1,L 2上介质的折射率。

设单色光在真空中的波长为λ,当δ=kλ,k =0,1,2,3,…时,干涉加强,相应接收屏中心的光强为极大。由式(6)知,两束相干光的光程差不但与几何路程有关,还与路程上介质的折射率有关。若气室内气体折射率改变量为Δn 时,则两光束的光程差相应改变2L Δn (L 为气室的长度),从而引起干涉圆环“涌出”或“缩进”N 条,则有 2N n L λ?= (7)

T 扩束镜G 1、G 2分束镜 M 1、M 2 反射镜

图11.4 测量空气折射率实验原理图

如果先将气室抽成真空,这时对光的折射率是1,然后缓慢充气,使管内气体的压强到p ,这时对光的折射率是n ,在这一过程中,折射率改变了1n n ?=-,如果相应条纹变化数为K ,则有

1/2n n K L λ?=-=

1/2n K L λ=+

由上式可知只要能测量出气室由真空变为压强p 的条纹变化数K ,就可以计算出压强为p 时的空气折射率n 。

但是由于实际上不可能将气室完全抽成真空,因此若采用此方法做实验,误差就比较大,能达到大约10﹪。实验上一般用以下方法间接测量K 才比较合理。

由于通常情况下,空气的折射率可以用以下公式求出

910003671.018793.21-?+=-t

p n 式中温度t 的单位是℃,压强p 的单位是Pa 。不难看出,当温度一定时,空气的折射率n 与压强p 成线性关系,所以空气折射率的变化量n ?与压强变化量p ?成正比。由上面的分析可知当气室由真空变为压强p 时,条纹变化数K 与折射率n 之间也是线性关系,因此,空气折射率的变化量n ?与条纹变化数K ?也成正比。故条纹变化数K ?与压强变化量p ?也成正比。由此可得

K K p p

?=? 代入

1/2n K L λ=+

12K

n p L p λ?=+?

可见只要能测量出管内压强改变p ?时的条纹变化数K ?,根据上式就可以计算出压强为p 时的空气的折射率n 。

四、实验步骤及内容

(一)迈克尔逊干涉光路的调节与干涉条纹的观察

1. 调整基本光路

在光学平台按实验装置示意图摆好光路。打开激光光源,调好同轴等高。本实验难点之一是光路的调整,下面着重介绍它。光路调整的要求是:1、1M 、2M 两镜相互垂直;2、经过扩束和准直后的光束应垂直入射到1M 、2M 两镜的中心部分;3、1M 、2M 两镜到分束镜的距离要接近相等。具体调整步骤如下。

(1)粗调

扩束镜先不放入光路,调节激光管支架,使光束基本水平出射。接下来,使激光束从垂直放置的反射镜上反射回来的光能沿原路返回出射孔,然后,水平移动反射镜,移

动后若光束不

再能沿原路返回出射孔,而位于出射孔的上方或下方,说明光束未达到水平入射,应缓慢调整激光管的仰俯倾角,最后使得移动反射镜时反射光总是能沿原路返回出射孔,此时光束水平。激光束经过分束镜后要分别垂直射在1M 、2M 反射镜上,在屏上可以看到由1M 、2M 镜反射回来又经过分束镜的两列小光斑。

(2)细调

用小纸片挡住1M 镜,使由2M 镜反射回来又经过分束镜的一列小光斑中最亮的一个能沿原路返回出射孔(其余较暗的与调节无关)。此时,光束已经垂直入射到2M 镜上了。同样,用小纸片挡住2M 镜,使由1M 镜反射回来又经过分束镜的一列小光斑中最亮的一个能沿原路返回出射孔。此时,光束已经垂直入射到1M 镜上了。调节时注意尽量使光束照射在镜的中心部分。若不能同时入射到1M 、2M 镜的中心,可稍微改变镜的位置,操作要小心,动作要轻慢,防止损坏仪器。此时,显示屏上应该可以看到由1M 、2M 镜反射回来又经过分束镜的两列小光斑中最亮的两个光点在屏上重合,一般应该可以看到闪烁现象。这时1M 、2M 两镜基本互相垂直。

2.干涉条纹的调节与观察

(1)非定域干涉条纹

加上扩束镜,使激光光束会聚成一点光源,均匀照亮1M 、2M ,一般情况就可以观察到非定域干涉条纹。分别调出非定域同心圆环状、椭圆、双曲线以及直线干涉条纹,观察条纹的粗细、疏密等特征,解释成因,即1M 、2M 镜以及屏的位置所需满足的条件。

(2)定域等倾干涉条纹

把两块毛玻璃重叠放置在扩束镜和分束镜之间,使球面波散射成为扩展光源。在M 1与M 2′平行且之间的距离较小时,用聚焦到无穷远的眼睛代替屏,可以看到圆环状条纹。如果眼睛上下移动时各圆的大小保持不变,圆心不“吞”也不“吐”,而仅仅是圆心随眼睛的移动而移动,这时就是看到的就是严格的等倾干涉条纹了。观察条纹的粗细、疏密等特征,说明其所需满足的条件。

实验十一迈克尔逊干涉法测量空气折射率

实验十一用迈克尔逊干涉光路测空气折射率光的干涉是重要的光学现象之一,是光的波动性的重要实验依据。两列频率相同、振动方向相同和位相差恒定的相干光在空间相交区域将会发生相互加强或减弱现象,即光的干涉现象。光的波长虽然很短(4×10-7~8×10-7m之间),但干涉条纹的间距和条纹数却很容易用光学仪器测得。根据干涉条纹数目和间距的变化与光程差、波长等的关系式,可以推出微小长度变化(光波波长数量级)和微小角度变化等,因此干涉现象在照相技术、测量技术、平面角检测技术、材料应力及形变研究等领域有着广泛地应用。 相干光源的获取除用激光外,在实验室中一般是将同一光源采用分波阵面或分振幅2种方法获得,并使其在空间经不同路径会合后产生干涉。 迈克尔逊干涉仪是1883年美国物理学家迈克尔逊和莫雷合作,为研究“以太”漂移而设计制造出来的精密光学仪器。它是利用分振幅法产生双光束以实现干涉。在近代物理和近代计量技术中,如在光谱线精细结构的研究和用光波标定标准米尺等实验中都有着重要的应用。利用该仪器的原理,研制出多种专用干涉仪。 一、实验目的 1、掌握迈克尔逊干涉光路的原理和调节方法。 2、学会调出非定域干涉条纹、等倾干涉条纹、等厚干涉条纹。 3、学习利用迈克尔逊干涉光路测量常温下空气的折射率。 二、实验仪器 He-Ne激光器及电源,扩束镜(短焦距凸透镜),全反镜,温度计,小孔光阑,密封玻璃管,气压计等。 三、实验原理 1、迈克尔逊干涉光路 图11.1是迈克尔逊干涉光路原理图,从光源S发出的一束光射到分束板1G上,1G的后表面镀有半反射膜(一般镀金属银),光在半反射膜上反射和透射,被分成光强接近相等

迈克尔逊干涉仪实验报告87789

迈克耳逊干涉仪 一.实验目的 1.了解迈克尔逊干涉仪的结构和原理,掌握调节方法; 2.用迈克尔逊干涉仪测量钠光波长和精细结构。 二.实验仪器 迈克尔逊干涉仪、钠光灯、透镜等。 三.实验原理 迈克耳孙干涉仪原理如图所示。两平面反射镜M1、M2、光源 S和观察点E (或接收屏)四者北东西南各据一方。M1、M2相互垂直,M2是固定的,M1可沿导轨做精密移动。G1和G2是两块材料相同薄厚均匀相等的平行玻璃片。G1的一个表面上镀有半透明的薄银层或铝层,形成半反半透膜,可使入射光分成强度基本相等的两束光,称G1为分光板。G2与G1平行,以保证两束光在玻璃中所走的光程完全相等且与入射光的波长无关,保证仪器能够观察单、复色光的干涉。可见G2作为补偿光程用,故称之为补偿板。G1、G2与平面镜M1、M2倾斜成45°角。

如上图所示一束光入射到G1上,被G1分为反射光和透射光,这两束光分别经M1和M2反射后又沿原路返回,在分化板后表面分别被透射和反射,于E处相遇后成为相干光,可以产生干涉现象。图中M′2是平面镜M2由半反膜形成的虚像。观察者从E处去看,经M2反射的光好像是从M′2来的。因此干涉仪所产生的干涉和由平面M1与M′2之间的空气薄膜所产生的干涉是完全一样的,在讨论干涉条纹的形成时,只需考察M1和M2两个面所形成的空气薄膜即可。两面相互平行可到面光源在无穷远处产生的等倾干涉,两面有小的夹角可得到面光源在空气膜近处形成的等厚干涉。若光源是点光源,则上述两种情况均可在空间形成非定域干涉。设M1和M′2之间的距离为d,则它们所形成的空气薄膜造成的相干光的光程差近似用下式表示 若M1与M′2平行,则各处d相同,可得等倾干涉。系统具有轴对称不变性,故屏E上的干涉条纹应为一组同心圆环,圆心处对应的光程差最大且等于2d,d 越大圆环越密。反之中心圆斑变大圆环变疏。若d增加则中心“冒出”一个条纹,反之d减小则中心“缩进”一个条纹。故干涉条纹在中心处“冒出”或“缩进”的个数N与d的变化量△d之间有下列关系 根据该关系式就可测量光波波长λ或长度△d。 钠黄双线的精细结构测量原理简介: 干涉条纹可见度定义为:当,时V=1, 此时干涉条纹最清晰,可见度最大;时V=0,可见度最小。 从一视见度最低的位置开始算起,测量一次视见度最低处的位置,者其间的光程差 为,且由关系算出谱线的精细结构。 四.实验结果计与分析 次数初读数 d1(mm) 末读数 d2(mm) △ d=|d1-d2| (mm) (nm)(nm ) 137.7247937.754420.02963592.6592.6

大学物理实验报告系列之空气折射率的测定

【实验名称】 空气折射率的测定 【实验目的】 1、了解空气折射率与压强的关系; 2、进一步熟悉迈克尔逊干涉仪的使用规范; 【实验仪器】 迈克尔逊干涉仪(动镜:100mm ;定镜:加长);压力测定仪;空气室(L=95mm );气囊(1个);橡胶管(导气管2根) 【实验原理】 1、等倾(薄膜)干涉 根据实验7“迈克尔逊干涉仪调节和使用”可知,(如图1所示)两束光到达O 点形成的光程差δ为: δ=2L 2 -2L 1 =2(L 2 -L 1 ) 若在L2臂上加一个为L 的气室,如图2所示,则光程差为: δ=2(L 2 -L )+2n L -2L 1 δ=2(L 2 -L 1 )+2(n-1)L (2) 保持空间距离L 2 、L 1 、L 不变,折射率n 变化时,则δ 随之变化,即条纹级别也随之变 化。(根据光的干涉明暗条纹形成条件,当光程差δ=kλ时为明纹。)以明纹为例有 δ1 =2(L 2 -L 1 )+2(n 1 -1)L =k 1 λ δ2 =2(L 2 -L 1 )+2(n 2 -1)L =k 2 λ 令:Δn =n 2-n 1,m =(k 2-k 1),将上两式相减得折射率变化与条纹数目变化关系式。 2ΔnL=mλ (3) 2、折射率与压强的关系 若气室内压强由大气压p b 变到0时,折射率由n 变化到1,屏上某点(观察屏的中心O 点)条纹变化数为m b ,即 n-1=m b λ/2L (4) 通常在温度处于15℃~30℃范围内,空气折射率可用下式求得: 设从压强p b 变成真空时,条纹变化数为m b ;从压强p 1变成真空时,条纹变化数为m 1;从压强p 2变成真空时,条纹变化数为m 2;则有 根据等比性质,整理得 将(4)、(5)整理得 式中p b 为标况下大气压强,将p 2→p 1时,压强变化记为Δp (=p 1-p 2),条纹变化记为m (=m 1-m 2),则有 3、测量公式

迈克尔逊干涉仪测量空气折射率

空气折射率的测量 学习要点和重点: 1、迈克尔逊干涉仪原理, 2、利用迈克尔逊干涉原理测量气体折射率的方法。 学习难点: 1、 光路的调整, 2、 干涉条纹变化数目的读取。 迈克尔逊干涉仪中的两束相干光各有一段光路在空间上是分开的,在其中一支光路上放进被研究对象不会影响另一支光路。本实验利用迈克尔逊原理测量空气折射率。 一、 实验目的与要求 1、 学习一种测量气体折射率的方法; 2、 进一步了解光的干涉现象及其形成条件; 3、 学习调整光路的方法。 二、 实验仪器 He-Ne 激光器、反射镜2个、分束镜、扩束镜、气室、打气球、气压表、毛玻璃等。 三、 实验原理 迈克尔逊干涉仪光路示意图如图1所示。其中,G 为平板玻璃,称为分束镜,它的一个表面镀有半反射金属膜,使光在金属膜处的反射光束与透射光束的光强基本相等。 M 1、M 2为互相垂直的平面反射镜,M 1、M 2镜面与分束镜G 均成450角;M 1可以移动,M 2固定。2M '表示M 2对G 金属膜的虚像。 从光源S 发出的一束光,在分束镜G 的半反射面上被分成反射光束1和透射光束2。光束1从G 反射出后投向M 1镜,反射回来再穿过G ;光束2投向M 2镜,经M 2镜反射回来再通过G 膜面上反射。于是,反射光束1与透射光束2在空间相遇,发生干涉。 由图1可知,迈克尔逊干涉仪中,当光束垂直入射至M 1、M 2镜时,两束光的光程差δ为 M 2M 图1 迈克尔逊干涉仪光路示意图

)(22211L n L n -=δ (1) 式中,1n 和2n 分别是路程1L 、2L 上介质的折射率。 设单色光在真空中的波长为λ,当 ,3 ,2 ,1 ,0 ,==K K λδ (2) 时干涉相长,相应地在接收屏中心的总光强为极大。由式(1)知,两束相干光的光程差不但与几何路程有关,还与路程上介质的折射率有关。 当1L 支路上介质折射率改变1n ?时,因光程的相应改变而引起的干涉条纹的变化数为N 。由(1)式和(2)式可知 1 12L N n λ = ? (3) 例如:取nm 0.633=λ和mm L 1001=,若条纹变化10=N ,则可以测得0003.0=?n 。可见,测出接收屏上某一处干涉条纹的变化数N ,就能测出光路中折射率的微小变化。 正常状态(Pa P C t 501001325.1,15?==)下,空气对在真空中波长为nm 0.633的光的折射率 00027652.1=n ,它与真空折射率之差为410765.2)1(-?=-n 。用一般方法不易测出这个折射率差, 而用干涉法能很方便地测量,且准确度高。 四、 实验内容及步骤 (一)实验装置 实验装置如图2所示。用He-Ne 激光作光源(He-Ne 激光的真空波长为nm 0.633=λ),并附加小孔光栏H 及扩束镜T 。扩束镜T 可以使激光束扩束。小孔光栏H 是为调节光束使之垂直入射在M 1、M 2镜上时用的。另外,为了测量空气折射率,在一支光路中加入一个玻璃气室,其长度为L 。气压表用来测量气室内气压。在O 处用毛玻璃作接收屏,在它上面可看到干涉条纹。 (二)测量方法 图2 测量空气折射率实验装置示意图 气压表

迈克尔逊干涉实验报告

φ M 1 d L 2d S 1’ S 2’ G S M 1’ M 2 迈克尔逊干涉实验 39042122 吴淼 摘要:迈克尔逊干涉仪是一个经典迈克尔逊和莫雷设计制造出来的精密光学仪器,在近代物理和近代计量技术中都有着重要的应用。通过迈克尔逊干涉的实验,我们可以熟悉迈克尔逊干涉仪的结构并掌握其调整方法,认识电光源非定域干涉条纹的形成与特点,部分从并利用干涉条纹的变化测定光源的波长。 实验原理: (1)迈克尔逊干涉仪的光路 迈克尔逊干涉仪的光路图如图(一)所示。从光源S 发出的一束光 摄在分束板G1上,将光束分为两部分:一部分从G1半反射膜处反射,射向平面镜M2;另一部分从G1透射,射向平面镜M1。因G1和全反射平面镜M1、M2均成45°角,所以两束光均垂直射到M1、M2上。从M2反射回来的光,透过半反射膜;从M2反射回来的光,为半反射膜反射。二者汇集成一束光,在E 处即可观察到干涉条纹。光路中另一平行平板G2与G1平行,其材料厚度与G1完全相同,以补偿两束光的光程差,称为补偿板。在光路中,M1’是M1被G1半反射膜反射所形成的虚像,两束相干光相当于从M1’和M2反射而来,迈克尔逊干涉仪产生的干涉条纹如同M2和M1’之间的空气膜所产生的干涉条纹一样。 (2)单色电光源的非定域干涉条纹 M2平行M1’且相距为d , S 发出的光对M2来说,如S’发出的光,而对于E 处的观察者来说,S’如位于S2’一样。又由于半反 射膜G 的作用,M1如同处于S1’的位 图(一) 迈克尔孙干涉仪光路

置,所以E 处观察到的干涉条纹,犹如S1’、S2’发出的球面波,它们在空间处处相干,把观察屏放在E 空间不同位置,都可以看到干涉花纹,因此 这一干涉为非定域干涉。 如果把观察屏放在垂直于S1’、S2’的位置上,则可以看到一组同心圆,而圆心就是S1’,、S2’的连线与屏的交点E 。设E 处 (ES2’=L )的观察屏上,离中心E 点远处某一点P ,EP 的距离为R ,则两束光的光程差为 2222)2(R L R d L L +-++=? L>>d 时,展开上式并略去d 2/L 2,则有 ?cos 2/222d R L Ld L =+=? 式中φ是圆形干涉条纹的倾角。所以亮纹条件为 2dcos φ=k λ (k=0,1,2,…) ① 由此式可知,当k 、φ一定时,如果d 逐渐减小,则cos φ将增大,即φ角逐渐减小。也就是说,同一k 级条纹,当d 减小时,该圆环半径减小,看到的现象是干涉圆环内缩;如果d 逐渐增大,同理看到的现象是干涉条纹外扩。对于中央条纹,若内缩或外扩N 次,则光程差变化为2Δd=Nλ.式中,Δd 为d 的变化量,所以有 λ=2Δd/N ② 通过此式则能有变化的条纹数目求出光源的波长。 实验仪器: 迈克尔逊干涉仪、氦氖激光器、小孔、扩束镜、毛玻璃。

迈克尔逊干涉仪实验报告精品

1 2 1 2 1 2 1 2 1 2 实验目的: 1) 学会使用迈克尔逊干涉仪 2) 观察等倾、等厚和非定域干涉现象 3) 测量氦氖激光的波长和钠光双线的波长差。 实验仪器: 氦氖激光光源、钠光灯、迈克尔逊干涉仪、毛玻璃屏实验原理: 1:迈克尔逊干涉仪的原理: 迈克尔逊干涉仪的光路图如图所示,光源 S 出 发的光经过称 45。 放置的背面镀银的半透玻璃板 P 1 被分成互相垂直的强度几乎相等的两束光, 光 路 1 通过 M 1 镜反射并再次通过 P 1 照射在观察平 面 E 上,光路 2 通过厚度、折射率与 P 1 相同的玻 璃板 P 2 后由 M 2 镜反射再次通过 P 2 并由 P 1 背面的 反射层反射照射在观察平面 E 上。图中平行于 M 的M ' 是M 经 P 反射所成的虚 1 2 2 1 像,即 P 到 M 与 P 到 M ' 的光程距离相等,故从 P 到M 的光路可用 P 到M ' 等 价替代。这样可以认为 M 与 M ' 之间形成了一个空气间隙, 这个空气间隙的厚度 可以通过移动 M 1 完成,空气间隙的夹角可以通过改变 M 1 镜或 M 2 镜的角度实现。 当 M 与M ' 平行时可以在观察平面 E 处观察到等倾干涉现象,当 M 与M ' 有一 1 2 1 2 定的夹角时可以在观察平面 E 处观察到等厚干涉现象。 2:激光器激光波长测量原理: 由等倾干涉条纹的特点,当 θ =0 时的光程差 δ 最大,即圆心所对应的

1 2 1 2 干 涉级别最高。转动手轮移动 M1,当 d 增加时,相当 于增大了和 k 相应的θ 角 ,可以看到圆 环一个个从中心 “冒出” ;若 d 减小时,圆环逐渐 缩小, 最后“淹没”在中心处。 每“冒” 出或“ 缩”进一个干涉环,相应的光程差改变了一个波长, 也就是 M 与 M ’ 之间距离 变化了半个波长。 若将 M 与 M ’ 之间距离改变了 △d 时,观察到 N 个干涉环变化,则 △d=N 由此可测单色光 的波长。 3:钠光双线波长差的测定: 在使用迈克尔逊干涉仪观察低压钠黄灯双线的等倾干涉条纹时,可以看到 随着动镜 M 1 的移动,条纹本身出现了由清晰到模糊再到清晰的周期性变化,即 反衬度从最大到最小再到最大的周期性变化, 利用这一特性, 可测量钠光双线波长差,对于等倾干涉而言,波长差的计算公式为: 实验内容与数据处理: (1) )观察非定域干涉条纹 1) 通过粗调手轮打开激光光源, 调节激光器使其光束大致垂直于平面反光镜 M 2 入射,取掉投影屏 E ,可以看到两排激光点 2) 粗调手轮移动 M 1 镜的位置,使得通过分光板分开的两路光光程大致相等 3) 调节M 1 、M 2 镜后面的两个旋钮, 使两排激光点重合为一排,并使两个最 亮的光点重合在一起。此时再放上投影屏 E ,就可以看到干涉条纹。 4) 仔细调节 M 、 M 镜后面的两个旋钮,使 M 与 M ' 平行,这时在屏上可 以看到同心圆条纹,这些条纹为非定域条纹。 5) 转动微调手轮,观察干涉条纹的形状、疏密及中心“吞” 、“吐”条纹随光程差 改变的变化情况。

空气折射率的测定

空气折射率的测定 〖摘要〗本实验利用分立光学原件在光学平台上搭制迈克尔孙干涉仪和夫琅禾费双缝干涉装置来测定空气的折射率。 〖关键词〗空气折射率;迈克尔孙干涉;夫琅禾费双缝干涉 1引言 介质的折射率是表征介质光学特性的物理量之一,气体折射率与温度和压强有关,。气折射率对各种波长的光都非常接近于1,然而在很多科学研究领域中,仅把空气折射率近似为1远远满足不了科研的要求,所以研究空气折射率的精确测量方法是很必要的。本实验将用迈克耳孙干涉仪(分振幅法)和夫琅禾费双缝干涉(分波前法)2种方法对空气折射率进行测量(参考值为1.000296)。【1】 2 实验原理 ⑴迈克尔逊干涉仪的原理见图1。其中G为平板玻璃,称为分束镜。它的一个表面镀有半反射金属膜,使光在金属膜处的反射光束与透射光束的光强基本相等。M1、M2M1、M2镜面与分束镜G均成45°角,M1可以 移动,M2固定。 2 M表示M2对G金属膜的虚像。 从光源S发出的一束光,在分束镜G的半反射面上被分成反射光束1和透射光束2。光束1从G反射出后投向M1镜,反射回来再穿过G。光束2投向M2镜,经M2镜反射回来再通过G膜面上反射。于是,反射光束1与透射光束2 发生干涉。

量n 与气压的变化量p ?成正比: 1n n p p -?==?常数 所以: 1n n p p ?=+ ? 又可得: 12N P n L p λ=+ ? 上式给出了气压为p 时的空气折射率n 。 1p 变化 到2p 时的条纹变化数n 即可计算压强为p 的空气折射率n 气室内压强不必从0开始。 (2) 用夫琅和费双缝干涉装置测定空气折射率 并分别通过两气室A 、B L2、L3后在屏上形成干涉条纹。当B 室相对于A 室 气压变化ΔP ΔN n 001p T n n p T l λ ?=+ ?

迈克尔逊干涉仪实验报告

迈克尔逊和法布里-珀罗干涉仪 摘要:迈克尔逊干涉仪是一种精密光学仪器,在近代物理和近代计量技术中都有着重要的应用。通过迈克尔逊干涉的实验,我们可以熟悉迈克尔逊干涉仪的结构并掌握其调整方法,了解电光源非定域干涉条纹的形成与特点和变化规律,并利用干涉条纹的变化测定光源的波长,测量空气折射率。本实验报告简述了迈克尔逊干涉仪实验原理,阐述了具体实验过程与结果以及实验过程中的心得体会,并尝试对实验过程中遇到的一些问题进行解释。 关键词: 迈克尔逊干涉仪;法布里-珀罗干涉仪;干涉;空气折射率; 一、引言 【实验背景】 迈克尔逊干涉仪是1883年美国物理学家迈克尔逊和莫雷合作,为研究“以太”漂移而设计制造出来的精密光学仪器。它是利用分振幅法产生双光束以实现干涉。通过调整该干涉仪,可以产生等厚干涉条纹,也可以产生等倾干涉条纹,主要用于长度和折射率的测量。法布里-珀罗干涉仪是珀罗于1897年所发明的一种能现多光束干涉的仪器,是长度计量和研究光谱超精细结构的有效工具; 它还是激光共振腔的基本构型,其理论也是研究干涉光片的基础,在光学中一直起着重要的作用。在光谱学中,应用精确的迈克尔逊干涉仪或法布里-珀罗干涉仪,可以准确而详细地测定谱线的波长及其精细结构。 【实验目的】 1.掌握迈克尔逊干涉仪和法布里-珀罗干涉仪的工作原理和调节方法; 2.了解各类型干涉条纹的形成条件、条纹特点和变化规律; 3.测量空气的折射率。 【实验原理】 (一) 迈克尔逊干涉仪 1M 、2M 是一对平面反射镜,1G 、2G 是厚度和折射率都完全相同的一对平行玻璃板,1G 称 为分光板,在其表面 A 镀有半反射半透射膜,2G 称为补偿片,与1G 平行。 当光照到1G 上时,在半透膜上分成两束光,透射光1射到1M ,经1M 反射后,透过2G ,在1G 的半透膜上反射到达E ;反射光2射到2M ,经2M 反射后,透过1G 射向E 。两束光在玻璃中的 光程相等。当观察者从E 处向1G 看去时,除直接看到2M 外还可以看到1M 的像1 M 。于是1、2

迈克尔逊干涉仪测量空气折射率实验报告

测量空气折射率实验报告 一、 实验目的: 1.进一步了解光的干涉现象及其形成条件,掌握迈克耳孙干涉光路的原理和调节方法。 2.利用迈克耳孙干涉光路测量常温下空气的折射率。 二、 实验仪器: 迈克耳孙干涉仪、气室组件、激光器、光阑。 三、 实验原理: 迈克尔逊干涉仪光路示意图如图1所示。其中,G 为平板玻璃,称为分束镜,它的一个表面镀有半反射金属膜,使光在金属膜处的反射光束与透射光束的光强基本相等。 M1、M2为互相垂直的平面反射镜,M1、M2镜面与分束镜G 均成450角; M1可以移动,M2固定。2 M '表示M2对G 金属膜的虚像。 从光源S 发出的一束光,在分束镜G 的半反射面上被分成反射光束1和透射光束2。光束1从G 反射出后投向M1镜,反射回来再穿过G ;光束2投向M2镜,经M2镜反射回来再通过G 膜面上反射。于是,反射光束1与透射光束2在空间相遇,发生干涉。 由图1可知,迈克尔逊干涉仪中,当光束垂直入射至M1、M2镜时,两束光的光程差δ为 )(22211L n L n -=δ (1) 式中,1n 和2n 分别是路程1L 、2L 上介质的折射率。 M 2M 图1 迈克尔逊干涉仪光路示意图

设单色光在真空中的波长为λ,当 ,3 ,2 ,1 ,0 ,==K K λδ (2) 时干涉相长,相应地在接收屏中心的总光强为极大。由式(1)知,两束相 干光的光程差不但与几何路程有关,还与路程上介质的折射率有关。 当1L 支路上介质折射率改变1n ?时,因光程的相应改变而引起的干涉条纹的 变化数为N 。由(1)式和(2)式可知 1 12L N n λ = ? (3) 例如:取nm 0.633=λ和mm L 1001=,若条纹变化10=N ,则可以测得 0003.0=?n 。可见,测出接收屏上某一处干涉条纹的变化数N ,就能测出光路 中折射率的微小变化。 正常状态(Pa P C t 501001325.1,15?==)下,空气对在真空中波长为 nm 0.633的光的折射率00027652.1=n ,它与真空折射率之差为 410765.2)1(-?=-n 。用一般方法不易测出这个折射率差,而用干涉法能很方便地测量,且准确度高。 四、 实验装置: 实验装置如图2所示。用He-Ne 激光作光源(He-Ne 激光的真空波长为 nm 0.633=λ),并附加小孔光栏H 及扩束镜T 。扩束镜T 可以使激光束扩束。小孔光栏H 是为调节光束使之垂直入射在M1、M2镜上时用的。另外,为了测量空气折射率,在一支光路中加入一个玻璃气室,其长度为L 。气压表用来测量气室内气压。在O 处用毛玻璃作接收屏,在它上面可看到干涉条纹。 图2 测量空气折射率实验装置示意图 气压表

迈克尔逊干涉仪实验报告

实验目的: 1)学会使用迈克尔逊干涉仪 2)观察等倾、等厚和非定域干涉现象 3)测量氦氖激光的波长和钠光双线的波长差。 实验仪器: 氦氖激光光源、钠光灯、迈克尔逊干涉仪、毛玻璃屏 实验原理: 1:迈克尔逊干涉仪的原理: 迈克尔逊干涉仪的光路图如图所示,光源S 出发的光经过称。45放置的背面镀银的半透玻璃板1P 被分成互相垂直的强度几乎相等的两束光,光 路1通过1M 镜反射并再次通过1P 照射在观察平 面E 上,光路2通过厚度、折射率与1P 相同的玻 璃板2P 后由2M 镜反射再次通过2P 并由1P 背面 的反射层反射照射在观察平面E 上。图中平行于1M 的'2M 是2M 经1P 反射所成的虚像,即1P 到2M 与1P 到'2M 的光程距离相等,故从1P 到2M 的光路可用1P 到'2M 等价替代。这样可以认为1M 与'2M 之间形成了一个空气间隙,这个空气间隙的厚度可以通过移动1M 完成,空气间隙的夹角可以通过改变1M 镜或2M 镜的角度实现。当1M 与' 2M 平行时可以在观察平面E 处观察到等倾干涉现象,当1M 与'2M 有一定的夹角时可以在观察平面E 处观察到等厚干涉现象。 2:激光器激光波长测量原理: 由等倾干涉条纹的特点,当θ =0 时的光程差δ 最大,即圆心所对应的干

涉级别最高。转动手轮移动 M1,当 d 增加时,相当 于增大了和 k 相应的θ 角 ,可以看到圆 环一个个从中心“冒出” ;若 d 减小时,圆环逐渐 缩小,最后“淹没”在中心处。 每“冒”出或“缩”进一个干涉环,相应的光程差改变了一个波长,也就是 M 与M ’之间距离 变化了半个波长。 若将 M 与 M ’之间距离改变了△d 时,观察到 N 个干涉环变化,则△d =N 由此可测单色光的波长。 3:钠光双线波长差的测定: 在使用迈克尔逊干涉仪观察低压钠黄灯双线的等倾干涉条纹时,可以看到随着动镜1M 的移动,条纹本身出现了由清晰到模糊再到清晰的周期性变化,即反衬度从最大到最小再到最大的周期性变化,利用这一特性,可测量钠光双线波长差,对于等倾干涉而言,波长差的计算公式为: 实验内容与数据处理: (1)观察非定域干涉条纹 1)通过粗调手轮打开激光光源,调节激光器使其光束大致垂直于平面反光镜2M 入射,取掉投影屏E ,可以看到两排激光点 2)粗调手轮移动1M 镜的位置,使得通过分光板分开的两路光光程大致相等 3)调节1M 、2M 镜后面的两个旋钮,使两排激光点重合为一排,并使两个最亮的光点重合在一起。此时再放上投影屏E ,就可以看到干涉条纹。 4)仔细调节1M 、2M 镜后面的两个旋钮,使1M 与' 2M 平行,这时在屏上可以看到同心圆条纹,这些条纹为非定域条纹。 5)转动微调手轮,观察干涉条纹的形状、疏密及中心“吞”、“吐”条纹随光程差改变的变化情况。

迈克尔逊干涉仪(实验报告)

一、实验目的 1、掌握迈克尔逊干涉仪的调节方法并观察各种干涉图样。 2、区别等倾干涉、等厚干涉和非定域干涉,测定 He-Ne 激光波长 二、实验仪器 迈克尔逊干涉仪、 He-Ne 激光器及光源、小孔光阑、扩束镜(短焦距会聚镜)、毛玻璃屏等。 (图一) (图二) 三、实验原理 ①用 He-Ne 激光器做光源,使激光通过扩束镜会聚后发散,此时就得到了一个相关性很好的点光源,射到分光板 P1和 P2上后就将光分成了两束分别射到 M1 和 M2 上,反射后通过 P1 、 P2 就可以得到两束相关光,此时就会产生干涉条纹。 ②产生干涉条纹的条件,如图 2 所示, B 、 C 是两个相干点光源,则到 A 点的光程差δ =AB-AC=BCcosi , 若在 A 点出产生了亮条纹,则δ =2dcosi=k λ (k 为亮条纹的级数 ) ,因为 i 和 k 均为不可测的量,所以取其差值,即λ =2 Δ d/ Δ k。 四、实验步骤 1、打开激光电源,先不要放扩束镜,让激光照到分光镜 P1 上,并调节激光的反射光照射到激光筒上。 2、调节 M2 的位置使屏上两排光中最亮的两个光点重回,并调至其闪烁。 3、将扩束镜放于激光前,调节扩束镜的高度和偏角,使光能照在 P1分光镜上,看显示屏上有没有产生同心圆的干涉条纹图案。没有的话重复 2 、 3 步骤,直到产生同心圆的干涉条纹图案。 4、微调 M2是干涉图案处于显示屏的中间。 5、转动微量读数鼓轮,使 M1 移动,可以看到中心条纹冒出或缩进,若看不到此现象,先转动可度轮,再转动微量读数鼓轮。记下当前位置的读数 d0 ,转动微量读数鼓轮,看到中心条纹冒出或缩进 30 次则记一次数据,共记录 10 次数据即 d0、 d1 (9)

油脂中折射率的测定

项目二 油脂中折射率的测定 1实验目的及要求 (1)理解阿贝折光仪测定油脂折射率的原理。 (2)掌握阿贝折光仪的使用和测定方法。 2 测定意义: 油脂的折射率与油脂的组成和结构密切相关,可用来鉴别油脂 的种类和纯度。 油脂中脂肪酸的分子质量越大,不饱和程度越高,其折射率就越大。 油脂中若含有共轭双键和羟基的脂肪酸,其折射率也会偏高。 3 测定原理 (1) 折射现象和折光率 当一束光从一种各向同性的介质m 进入另一种各向同性的介质M 时,不仅光速会发生改变,如果传播方向不垂直于界面,还会发生折射现象,如图1所示。 图1 光在不同介质中的折射 光速在真空中的速度(v 真空)与某一介质中的速度(v 介质)之比定义为该介质的折光率,它等于入射角α与折射角β的正弦之比,即: βαλsin sin v ==介质真空v n t 在测定折光率时,一般光线都是从空气中射入介质中,除精密工作以外,通常都是以空气作为真空标准状态,故常以空气中测得的折光率作为某介质的折光率,即:

β αλsin sin v ==介质空气v n t 物质的折光率随入射光的波长λ、测定时的温度t 及物质的结构等因素而变化,所以,在测定折射率时必须注明所用的光线和温度。 当λ、t 一定时,物质的折光率是一个常数。例如 3611.120=D n 表示入射光波长为钠光D 线(λ=589.3nm ),温度为20℃时,介质的折光率为1.3611。 由于光在任何介质中的速度均小于它在真空中的速度,因此,所有介质的折光率都大于1,即入射角大于折射角。 阿贝尔折光仪测定液体介质折光率的原理 阿贝尔折光仪是根据临界折射现象设计的,如图2所示。 图2 阿贝折光仪的临界折射 入射角 ?=?90i 时,折射角i β最大,称临界折射角。如果从0?到90?(i ?)都有单色光入射,那么从到临界角i β也有折射光。换言之,在临界角i β以内的区域均有光线通过,该区是亮的,而在临界角以外的区域,由于折射光线消失而设有光线通过,故该区是暗的,两区将有一条明暗分界线,有分界线的位置可测出临界角i β。 当i i ββα==?,90时,i i n t ββλsin 1sin 90sin ==? (3) 仪器结构 图(3)是一种典型的阿贝折光仪的结构示意图,图 (4)是它的外形图(辅助棱镜呈开启状态)。

大学物理实验报告系列之空气折射率的测定

【实验名称】空气折射率的测定 【实验目的】 1、了解空气折射率与压强的关系; 2、进一步熟悉迈克尔逊干涉仪的使用规范; 【实验仪器】 迈克尔逊干涉仪(动镜:100mm;定镜:加长);压力测定仪;空气室(L=95mm);气囊(1个);橡胶管(导气管2根) 【实验原理】 1、等倾(薄膜)干涉 根据实验7“迈克尔逊干涉仪调节和使用”可知,(如图1所示)两束光到达O点形成的光程差δ为: δ=2L 2-2L 1 =2(L 2 -L 1 ) 若在L2臂上加一个为L的气室,如图2所示,则光程差为: δ=2(L 2-L)+2n L-2L 1 δ=2(L 2-L 1 )+2(n-1)L (2) 保持空间距离L 2、L 1 、L不变,折射率n变化时,则δ随之变化,即条纹级别也 随之变化。(根据光的干涉明暗条纹形成条件,当光程差δ=kλ时为明纹。)以明纹为例有 δ 1 =2(L 2 -L 1 )+2(n 1 -1)L=k 1 λ δ 2 =2(L 2 -L 1 )+2(n 2 -1)L=k 2 λ 令:Δn=n 2 -n 1 ,m=(k 2 -k 1 ),将上两式相减得折射率变化与条纹数目变化关系式。 2ΔnL=mλ (3) 2、折射率与压强的关系 若气室内压强由大气压p b 变到0时,折射率由n变化到1,屏上某点(观察屏的中 心O点)条纹变化数为m b ,即 n-1=m b λ/2L (4)通常在温度处于15℃~30℃范围内,空气折射率可用下式求得: 设从压强p b 变成真空时,条纹变化数为m b ;从压强p 1 变成真空时,条纹变化数为m 1 ; 从压强p 2 变成真空时,条纹变化数为m 2 ;则有 根据等比性质,整理得

“迈克尔逊干涉仪”实验报告

“迈克尔逊干涉仪”实验报告 【引言】 迈克尔逊干涉仪是美国物理学家迈克尔逊(A.A.Michelson)发明的。1887年迈克尔逊和莫雷(Morley)否定了“以太”的存在,为爱因斯坦的狭义相对论提供了实验依据。迈克尔逊用镉红光波长作为干涉仪光源来测量标准米尺的长度,建立了以光波长为基准的绝对长度标准,即1m=1 553 164.13个镉红线的波长。在光谱学方面,迈克尔逊发现了氢光谱的精细结构以及水银和铊光谱的超精细结构,这一发现在现代原子理论中起了重大作用。迈克尔逊还用该干涉仪测量出太阳系以外星球的大小。 因创造精密的光学仪器,和用以进行光谱学和度量学的研究,并精密测出光速,迈克尔逊于1907年获得了诺贝尔物理学奖。 【实验目的】 (1)了解迈克尔逊干涉仪的原理和调整方法。 (2)测量光波的波长和钠双线波长差。 【实验仪器】 迈克尔逊干涉仪、He-Ne激光器、钠光灯、扩束镜 【实验原理】 1.迈克尔逊干涉仪结构原理 图1是迈克尔逊干涉仪光路图,点光源 S发出的光射在分光镜G1,G1右表面镀有半 透半反射膜,使入射光分成强度相等的两束。 反射光和透射光分别垂直入射到全反射镜M1 和M2,它们经反射后再回到G1的半透半反射 膜处,再分别经过透射和反射后,来到观察区 域E。如到达E处的两束光满足相干条件,可 发生干涉现象。 G2为补偿扳,它与G1为相同材料,有 相同的厚度,且平行安装,目的是要使参加干 涉的两光束经过玻璃板的次数相等,波阵面不会发生横向平移。 M1为可动全反射镜,背部有三个粗调螺丝。 M2为固定全反射镜,背部有三个粗调螺丝,侧面和下面有两个微调螺丝。 2.可动全反镜移动及读数 可动全反镜在导轨上可由粗动手轮和微动手轮的转动而前后移动。可动全反镜位置的读数为: ××.□□△△△ (mm) (1)××在mm刻度尺上读出。

[实验报告]两种光路测空气折射率

两种光路测空气折射率 摘要:折射率是表征介质光学特性的物理量之一。空气折射率会随空气状态而改变,在许多研究领域有重要的参考价值。本实验使用迈克耳孙干涉仪和夫琅禾费双缝干涉,通过改变气压室气压,使空气折射率发生改变,来观察干涉条纹的移动。根据折射率与压强关系,得出空气折射率。 关键词:空气折射率测量;迈克耳孙干涉仪;夫琅禾费双缝干涉;气压; Study on two measurement methods of air refractive index Abstract:Refractive index is one of the physical quantities that can characterize optical properties of medium.The refractive index of air will change with the state of air,which many research fields can make great reference to.In this experiment, we use Michelson interferometer and Fraunhofer interferometer to detect the air refractive index. We change the air refractive index by adjust the pressure of air in air room, and observe the move of stripes. Then use relationships between refractive index and pressure to work out the air refractive index. Key words:measurement of air refractive index;Michelson interferometer;Fraunhofer interferometer ;atmospheric pressure; 一、引言 介质的折射率是表征介质光学特性的物理量之一,气体折射率与温度和压强有关,。气折射率对各 种波长的光都非常接近于1,然而在很多科学研究领域中,仅把空气折射率近似为1远远满足不了科研的要求,所以研究空气折射率的精确测量方法是很必要的。本文将用迈克耳孙干涉仪和夫琅禾费双缝干涉2种方法对空气折射率进行测量。 二、实验原理 1. 迈克耳孙干涉仪测空气折射率 实验光路如图一所示,其中,G为平板玻璃,称为分束镜, 它的一个表面镀有半反射金属膜,使光在金属膜处的反射 光束与透射光束的光强基本相等。M 1、M 2 为互相垂直的平 面反射镜,M 1、M 2 镜面与分束镜G均成450角; M 2 ’表示M 2 对G 金属膜的虚像。从光源S发出的一束光,在分束镜G的半反射面上被分成反射光束1和透射光束2。光束1从G反射出后 投向M 1镜,反射回来再穿过G;光束2投向M 2 镜,经M 2 镜反射 回来再通过G膜面上反射。于是,反射光束1与透射光束2在空间相遇,发生干涉。 在一定温度(15~30),气压不太大时, 气体折射率变 M 2 M O 图1 迈克尔逊干涉仪光路示意图

迈克尔逊干涉仪实验报告

迈克尔逊干涉仪实验报 告 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

迈克耳逊干涉仪 一. 实验目的 1.了解迈克尔逊干涉仪的结构和原理,掌握调节方法; 2.用迈克尔逊干涉仪测量钠光波长和精细结构。 二. 实验仪器 迈克尔逊干涉仪、钠光灯、透镜等。 三. 实验原理 迈克耳孙干涉仪原理如图所示。两平面反射镜M1、M2、光源 S和观察点E (或接收屏)四者北东西南各据一方。M1、M2相互垂直,M2是固定的,M1可沿导轨做精密移动。G1和G2是两块材料相同薄厚均匀相等的平行玻璃片。G1的一个表面上镀有半透明的薄银层或铝层,形成半反半透膜,可使入射光分成强度基本相等的两束光,称G1为分光板。G2与G1平行,以保证两束光在玻璃中所走的光程完全相等且与入射光的波长无关,保证仪器能够观察单、复色光的干涉。可见G2作为补偿光程用,故称之为补偿板。G1、G2与平面镜M1、M2倾斜成45°角。 如上图所示一束光入射到G1上,被G1分为反射光和透射光,这两束光分别经M1和M2反射后又沿原路返回,在分化板后表面分别被透射和反射,于E处相遇后成为相干光,可以产生干涉现象。图中M′2是平面镜M2由半反膜形成的虚像。观察者从E处去看,经M2反射的光好像是从M′2来的。因此干涉仪所产生的干涉和由平面M1与M′2之间的空气薄膜所产生的干涉是完全一样的,在讨论干涉条纹的形成时,只需考察M1和M2两个面所形成的空气薄膜即可。两面相互平行可到面光源在无穷远处产生的等倾干涉,两面有小的夹角可得到面光源在空气膜近处形成的等厚

干涉。若光源是点光源,则上述两种情况均可在空间形成非定域干涉。设M1和M ′2之间的距离为d ,则它们所形成的空气薄膜造成的相干光的光程差近似用下式表示 若M1与M ′2平行,则各处d 相同,可得等倾干涉。系统具有轴对称不变性,故屏E 上的干涉条纹应为一组同心圆环,圆心处对应的光程差最大且等于2d,d 越大圆环越密。反之中心圆斑变大圆环变疏。若d 增加 则中心“冒出”一个条纹,反之d 减小 则中心“缩进”一个条纹。故干涉条纹在中心处“冒出”或“缩进”的个数N 与d 的变化量△d 之间有下列关系 根据该关系式就可测量光波波长λ或长度△d 。 钠黄双线的精细结构测量原理简介: 干涉条纹可见度定义为: 当,时V=1,此时干涉条纹最清晰,可见度最大;时V=0,可见度最小。 从一视见度最低的位置开始算起,测量一次视见度最低处的位置,者其间的光程差为,且由关系算出谱线的精细结构。 四. 实验结果计与分析 钠光的平均波长 次数 初读数 d 1(mm ) 末读数 d 2(mm ) △d=|d 1-d 2| (mm) (nm) (nm) 1 其中λ=2*Δd/100,根据λ0=; = E=% 钠光的精细结构:

玻璃折射率的测定,物理实验报告

此实验报告共六个方案,其中前三个为实验室可做并已测量数据的方案,第一个方案(最小偏向角法)已测量数据并进行了数据处理。 实验目的:测定玻璃折射率,掌握用最小偏向角法测定玻璃折射率的方法,掌握用读数显微镜法测定玻璃折射率的方法,复习分光计的调整等,掌握实验方案的比较,误差分析,物理模型的选择。要求测量精度E≤1%。 方案一,最小偏向角法测定玻璃折射率 实验原理:最小偏向角的测定,假设有一束单色平行光LD入射到棱镜上,经过两次折射后沿ER方向射出,则入射光线LD与出射光线ER间的夹角称为偏向角,如图1所示。 ? 图1最小偏向角的测定 转动三棱镜,改变入射光对光学面AC的入射角,出射光线的方向ER也随之改变,即偏向角 发生变化。沿偏向角减小的方向继续缓慢转动三棱镜,使偏向角逐渐减小;当转到某个位置时,若再继续沿此方向转动,偏向角又将逐渐增大,此位置时偏向角达到最小值,测出最小偏向角 。可以证明棱镜材料的折射率与顶角及最小偏向角的关系式为 实验仪器:分光计,三棱镜。 实验步骤: 1,对分光计进行调节 2,顶角α的测量 利用自准直法测顶角,如下图所示,用两游标来计量位置,分别称为游标1和游标2,旋紧刻度盘 θ和游标2下螺钉是望远镜和刻度盘固定不动转动游标盘,是棱镜AC面对望远镜,记下游标1的读数 1

的读数2θ。转动游标盘,再试AB 面对望远镜,记下游标1的读数'1θ和游标2的读数'2θ。游标两次读数之差21θθ-或者''21 θθ-,就是载物台转过的角度,而且是α角的补角 ''212 1 1802 θθθ θ α? -+-=- 3,最小偏向角法测定玻璃折射率 如下图,当光线以入射角1i 入射到三棱镜的AB 面上后相继经过棱镜两个光学面AB AC 折射后,以 2i 角从AC 出射。出射光线和入射光线的夹角δ称为偏向角。 对于给定三棱镜, 偏向角δ的数值随 入射角1i 的变化而改变。当入射角1i 为某值时(或者1i 与2i 相等时),偏向角δ将达到最小值0δ,0δ称 为最小偏向角,由几何关系和折射定,可得它与棱镜的顶角A 和折射率n 之间有如下关系: 2 sin 2 sin A A n δ+= A.将待测三棱镜放在载物平台,调节平台到适当的高度,使得从平行光管发出的平行光只有少部分能从三棱镜的上方射入望远镜; B.调节三棱镜的位置使得平行光管的平行光以一定的角度入射到棱镜的AB 面;

迈克尔干涉仪测量空气折射率

实验四 用迈克尔逊干涉仪空气的折射率 一、实验目的 用分离的光学元件构建一个迈克尔逊干涉仪。 通过降低空气的压强测量其折射率。 二、仪器和光学元件 光学平台;HeNe 激光;调整架,35x35mm ;平面镜,30x30mm ;磁性基座;分束器50:50;透镜,f=+20mm ;白屏;玻璃容器,手持气压泵,组合夹具,T 形连接,适配器,软管,硅管 三、实验原理 借助迈克尔逊干涉仪装置中的两个镜,光线被引进干涉仪。通过改变光路中容器内气体的压强,推算出空气的折射率。 If two Waves having the same frequency ω , but different amplitudes and different phases are coincident at one location , they superimpose to ()()2211sin sin αα-?+-?=wt a wt a Y The resulting can be described by the followlng : ()α-?=wt A Y sin w ith the amplitude δcos 2212 2212?++=a a a a A (1) and the phase difference 21ααδ-= In a Michelson interferometer , the light beam is split by a half-silvered glass plate into two partial beams ( amplitude splitting ) , reflected by two mirrors , and again brought to interference behind the glass plate . Since only large luminous spots can exhibit circular interference fringes , the Iight beam is expanded between the laser and the glass plate by a lens L . If one replaces the real mirror M3 with its virtual image M3 /, , Which is formed by reflection by the glass plate , a point P of the real light source appears as the points P / , and P " of the virtual light sources L l and L 2 · Due to the different light paths , using the designations in Fig . 2 , 图 2 the phase difference is given by : θλ π δcos 22???= d (2) λis the wavelength of the laser ljght used . According to ( 1 ) , the intensity distribution for a a a ==21 is 2 cos 4~2 22δ ??=a A I (3) Maxima thus occur when δ is equal to a multiple of π2,hence with ( 2 ) λθ?=??m d cos 2;m=1,2,….. ( 4 )

相关文档
最新文档