高三物理复习中的极值与临界问题专题

高三物理复习中的极值与临界问题专题
高三物理复习中的极值与临界问题专题

极值与临界问题专题

常州二中徐展

临界现象是量变质变规律在物理学上的生动体现。即在一定的条件下,当物质的运动从一种形式或性质转变为另一种形式或性质时,往往存在着一种状态向另一种状态过渡的转折点,这个转折点常称为临界点,这种现象也就称为临界现象.如:静力学中的临界平衡;机车运动中的临界速度;碰撞中的能量临界、速度临界及位移临界;电磁感应中动态问题的临界速度或加速度;光学中的临界角;带电粒子在磁场中运动的边界临界;电路中电学量的临界转折等.

解决临界问题,一般有两种方法,第一是以定理、定律为依据,首先求出所研究问题的一般规律和一般解的形式,然后再分析、讨论临界特殊规律和特殊解;第二是直接分析、讨论临界状态,找出临界条件,从而通过临界条件求出临界值。

所谓极值问题,一般而言,就是在一定条件下求最佳结果所需满足的极值条件.求解极值问题的方法从大的角度可分为物理方法和数学方法。物理方法包括(1)利用临界条件求极值;(2)利用问题的边界条件求极值;(3)利用矢量图求极值。数学方法包括(1)用三角函数关系求极值;(2)用二次方程的判别式求极值;(3)用不等式的性质求极值。一般而言,用物理方法求极值直观、形象,对构建模型及动态分析等方面的能力要求较高,而用数学方法求极值思路严谨,对数学能力要求较高.若将二者予以融合,则将相得亦彰,对增强解题能力大有裨益。

在中学物理问题中,有一类问题具有这样的特点,如果从题中给出的条件出发,需经过较复杂的计算才能得到结果的一般形式,并且条件似乎不足,使得结果难以确定,但若我们采用极限思维的方法,将其变化过程引向极端的情况,就能把比较隐蔽的条件或临界现象暴露出来,从而有助于结论的迅速取得。

在应用牛顿运动定律解决动力学问题中,当物体运动的加速度不同时,物体有可能处于不同的状态,特别是题目中出现“最大”、“最小”、“刚好”等词句时,往往会有临界现象。此时要用极限分析法,看物体不同加速度时,会有哪些现象发生,找出临界点,求出临界条件。

解决此类问题重在形成清晰的物理图景,分析清楚物理过程,从而找出临界条件或达到极值的条件,要特别注意可能出现的多种情况。在解决临办极值问题注意以下几点:

1.许多临界问题常在题目的叙述中出现“恰好”、“最大”、“至少”、“不相撞”、“不脱离”……等词句对临界问题给出了明确的暗示,审题是只要抓住这些特定词语其内含规律就能找到临界条件。

2.临界点的两侧,物体的受力情况、变化规律、运动状态一般要发生改变,能否用变化的观点正确分析其运动规律是求解这类题目的关键,而临界点的确定是基础。

3.临界问题通常具有一定的隐蔽性,解题灵活性较大,审题时应力图还原习题的物理情景,抓住临界状态的特征,找到正确的解题方向。

4.确定临界点一般用极端分析法,即把问题(物理过程)推到极端,分析在极端情况下可能出现的状态和满足的条件。

【典型例题与练习】

运动学中的极值与临界问题:

1.一车处于静止状态,车后相距s0=25m处有一个人,当车开始起动以1m/s2的加速度前进的同时,人以6m/s速度匀速追车,能否追上?若追不上,人车间的最小距离为多少?人不可能追上车 18 m。A、B 两车停在同一点,某时刻A车以2m/s2的加速度匀加速开出,2s后B车同向以3m/s2的加速度开出。问:B车追上A车之前,在启动后多长时间两车相距最远,距离是多少?

【解析】〖解法1〗由于当A 车的加速度度小于B 车的加速度,B 车后启动,则B 车一定能追上A 车,在追上前当两车的速度相等时,两车相距最远。设当A 车运动t 时间时,两车速度相等,则有

,(3)A B A B v v a t a t ==- 解得:39B A B

a t s a a ==- 把t 代入两车之间距离差公式得:2211(3)2722

A B A B s s s a t a t m ?=-=--= 〖解法2〗设A 启动ts 两车相距最远,A 车的位移:212A s at =,B 车的位移:21(3)2

B s a t =- 两车间距离为22211(3)0.5913.522

A B A B s s s a t a t t t ?=-=--=-+- 由数学知识可知,当992(0.5)

t s s =-=?-时, 两车间有最大距离:2211(3)2722

A B A B s s s a t a t m ?=-=--= 2. 如图所示,一平直的传送带以速度V=2m/s 匀速运动,传送带把A 处的工件运送到B 处,A 、B 相距L=10m .从A 处把工件无初速地放到传送带上,经时间t=6s 能传送到B 处,欲用最短时间把工件从A 处传到B

处,求传送带的运行速度至少多大? 答案:52m/s(一直加速)

3. 如图所示,一固定斜面的倾角为α,高为h ,一小球从斜面顶端沿水平

方向落至斜面底端,不计小球运动中所受的空气阻力,设重力加速度为

g ,则小球从抛出到离斜面距离最大所经历的时间为

A .g h 2

B .g h 2sin α

C .g h 2

D .g

h 答案:A

牛顿定律角度解题中的极值与临界问题:

4. 一根劲度系数为k 、质量不计的轻弹簧,上端固定,下端系一质量为m 的物体,

有一水平的板将物体托住,并使弹簧处于自然长度,如图所示,现让木板由静

止开始以加速度a (a

【解析】木板与物体分离的临界条件是它们之间的作用力为零。

对于m 物体由牛顿运动定律得:mg F kx ma --=,

当F=0以后,随着x 的增大,物体m 的加速度减小,二者开始分离。

物体与木板分离的临界点为F= 0时,此时由上式可得:(),m g a mg kx ma x k

--== 由木板一直作加速度为a 的匀加速运动,则由运动学规律得

21,2x at t =

==

a

5. 如图所示,物体的质量为2kg ,两根轻绳AB 和AC 的一端连接于竖直墙上,

另一端系于物体上,在物体上另施加一个方向与水平线成θ=600的拉力F ,

若要使两绳都能伸直,求拉力F 的大小范围。

【解析】作出A 受力图如图所示,由平衡条件有:

F.cos θ-F 2-F 1cos θ=0,

Fsin θ+F 1sin θ-mg=0

要使两绳都能绷直,则有:F 10,02≥≥F

由以上各式可解得F 的取值范围为:N F N 340320≤≤。

6. 如图所示,质量为kg M 2=的木块与水平地面的动摩擦因数4.0=μ,木块用

轻绳绕过光滑的定滑轮,轻绳另一端施一大小为20N 的恒力F ,使木块沿地

面向右做直线运动,定滑轮离地面的高度cm h 10=,木块M 可视为质点,问木

块从较远处向右运动到离定滑轮多远时加速度最大?最大加速度为多少?

【解析】设当轻绳与水平方向成角θ时,对M 有

Ma F Mg F =--)sin (cos θμθ

整理得Ma Mg F =-+μθμθ)sin (cos

令A =+θμθsin cos ,可知,当A 取最大值时a 最大。利用三角函数知识有: )sin(12?θμ++=A ,其中2

11a r c s i n μ?+=,而2m a x 1μ+=A ,与此相对应的角为

8.2111

arcsin 902≈+-=μθ 所以加速度的最大值为:22

max /8.61s m g M F a ≈-+=μμ

此时木块离定滑轮的水平距离为:cm h S 25cot ≈=θ

7. 如图所示,跨过定滑轮的轻绳两端,分别系着物体A 和B ,物体A 放在倾角为

θ的斜面上,已知物体A 的质量为m ,物体B 和斜面间动摩擦因数为μ

(μ

值范围.

答案:(sin cos )(sin cos )B m m m θμθθμθ-≤≤+

8. 如图所示,质量均为M 的两个木块A 、B 在水平力F 的作用下,一起沿光滑的水

平面运动,A 与B 的接触面光滑,且与水平面的夹角为60°,求使A 与B 一起

运动时的水平力F 的范围。

答案:F ≤Mg 32

9. 一物体在斜面上以一定速率沿斜面向上运动,斜面的倾角θ可在0°~90°之间变

化。设物体所能达到的最大位移x 与斜面倾角之间的关系如图所示,求x 的最

小值.

答案:θ=60°时,x 的最小值35m

G F 2 F 1 F x y θ θ

10. 一小圆盘静止在桌布上,位于一方桌的水平桌面的中央.桌布的一

边与桌的AB 边重合,如图.已知盘与桌布间的动摩擦因数为μ1,盘

与桌面间的动摩擦因数为μ2,现突然以恒定加速度a 将桌布抽离桌

面,加速度方向是水平的且垂直于AB 边.若圆盘最后未从桌面掉下,

则加速度a 满足的条件是什么?(以g 表示重力加速度) 答案:

11.如图所示,光滑水平面上放置质量分别为m 和2m 的四个木块,其中两个质量为m 的木块间用一不可伸长的轻绳相连,木块间的最大静摩擦力是μmg 。现用水平拉力F 拉其中一个质量为2 m 的木块,使四个木块一同一加

速度运动,则轻绳对m 的最大拉力为

A .53mg μ

B . 43mg μ

C .2

3mg μ D .mg μ3 答案:B

能量角度解题中的极值与临界问题:

12.如图所示,半径为R 、圆心为O 的大圆环固定在竖直平面内,两个轻质小圆环套

在大圆环上.一根轻质长绳穿过两个小圆环,它的两端都系上质量为m 的重物,

忽略小圆环的大小。

(1)将两个小圆环固定在大圆环竖直对称轴的两侧θ=30°的位置上(如图5).在

—两个小圆环间绳子的中点C 处,挂上一个质量M =2m 的重物,使两个小圆环间

的绳子水平,然后无初速释放重物M .设绳子与大、小圆环间的摩擦均可忽略,求重

物M 下降的最大距离.

(2)若不挂重物M .小圆环可以在大圆环上自由移动,且绳子与大、小圆环间及

大、小圆环之间的摩擦均可以忽略,问两个小圆环分别在哪些位置时,系统可处于平

衡状态?

【解析】(1)重物向下先做加速运动,后做减速运动,当重物速度为零时,下

降的距离最大.设下降的最大距离为h ,由机械能守恒定律得: )sin )sin ((222θθR R h mg Mgh -+=

解得

h =,(另解h=0舍去)

(2)系统处于平衡状态时,两小环的可能位置为:

a .两小环同时位于大圆环的底端.

b .两小环同时位于大圆环的顶端.

c .两小环一个位于大圆环的顶端,另一个位于大圆环的底端.

d .除上述三种情况外,根据对称性可知,系统如能平衡,则两小圆环的位置

一定关于大圆环竖直对称轴对称.设平衡时,两小圆环在大圆环竖直对称轴两侧α角

的位置上(如图26所示).对于重物m ,受绳子拉力T 与重力mg 作用,有:T mg = 对于小圆环,受到三个力的作用,水平绳子的拉力T 、竖直绳子的拉力T 、大圆环的支持力N .两绳子的拉力沿大圆环切向的分力大小相等,方向相反

sin sin 'T T αα=

得'αα=,而'90αα+=,所以 45α=。

m m O C θ θ R

13.图示,AB 和CD 为两个对称斜面,其上部足够长,下部分分别与一个光滑的圆

弧面的两端相切,圆弧圆心角为120°,半径R =2.0m,一个质量为m =1kg

的物体在离弧高度为h =3.0m处,以初速度4.0m/s沿斜面运动,若物体与两

斜面间的动摩擦因数μ=0.2,重力加速度g =10m/s2,则:

(1)物体在斜面上(不包括圆弧部分)走过路程的最大值为多少?

(2)物体对圆弧最低点的最大压力和最小压力分别为多少?

答案:38m ,54.5N 、20N ,

14.如图所示,游乐列车由许多节车厢组成。列车全长为L ,圆形轨道半径为R ,(R 远大于一节车厢的高

度h 和长度l ,但L >2πR ).已知列车的车轮是卡在导轨上的光滑槽中只能使列车沿着圆周运动,在轨道的任何地方都不能脱轨。试问:在没有任何动力的情况下,列车在水平轨道上应具有多大初速度v 0,才能使列车通过圆形轨道而运动到右边的水平轨道上?

答案:L g

R v π20>

15.如图所示,空间有一坐标轴,一长度为L 的细绳的一端系一质量为m 的小球,

另一端固定在y 轴上的A 点,坐标系原点O 在A 点下方L/2处。在坐标轴上有

一光滑的细钉。将细线拉至呈水平状态,然后从静止释放小球。

(1)如果细钉在y 轴上的某一点y ′,小球落下后可绕y ′在竖直平面内做圆周

运动,求y ′的可能位置;

(2)如果细钉在x 轴上的某一点x ′,小球落下后可绕x ′在竖直平面内做圆周

运动,求x ′的可能值。 答案:10

21L y L -≤'<-, L x L L x L 23676723<'≤-≤'<-和 万有引力天体运动中的极值与临界问题:

16.在天体演变的过程中,红色巨星发生“超新星爆炸”后可以形成中子星(电子被迫同原子核中的质子

相结合而形成中子),中子星具有极高的密度。

(1)若已知某中子星的密度为1017kg/m 3,该中子星的卫星绕它做圆轨道运动。试求该中子星的卫星运行的最小周期。

(2)中子星也在绕自转轴自转,若某中子星的自转角速度为 6.28×30r/s ,为了使该中子星不因自转而被瓦解,则其密度至少应为多大?(假设中子星是通过中子间的万有引力结合成球状星体,引力常量G =

6.67×10-11N ·m 2/kg 2) 答案:Tmin=1.2×10-3(s) ρmin=1.3×1014(kg/m 3

) 17.计划发射一颗距离地面高度为地球半径R 0的圆形轨道地球卫星,卫星轨道平面与赤道平面重合,已知

地球表面重力加速度为g 。

(1)求出卫星绕地心运动周期T ;

(2)设地球自转周期T 0,该卫星绕地旋转方向与地球自转方向相同,则在赤道上一点的人能连续看到该卫星的时间是多少?

答案:g R 024π,0

02832T R g t ππ-= 静电场、磁场中的极值与临界问题:

18.如图所示,在真空中坐标xoy 平面的0>x 区域内,有磁感强度T

B 2100.1-?=的匀强磁场,方向与xoy 平面垂直,在x 轴上的)0,10(p 点,有一放射源,在xoy

平面内向各个方向发射速率s m v /100.14?=的带正电的粒子,粒子的质量为kg m 25106.1-?=,电量为C q 18106.1-?=,求带电粒子能打到y 轴上的范围。 【解析】据R

v m Bqv 2

= 得cm R 10= 如图所示,当带电粒子打到y 轴上方的A 点与P 连线正好为其圆轨迹的

直径时,A 点既为粒子能打到y 轴上方的最高点.因cm R Op 10==,cm R AP 202==,则cm OP AP OA 31022=-=. 当带电粒子的圆轨迹正好与y 轴下方相切于B点时,B点既为粒子能打到y 轴下方的最低点,易得cm R OB 10==.

综上,带电粒子能打到y 轴上的范围为:cm y cm 31010≤≤-.

19.如图所示,水平放置的平行板电容器,原来两板不带电,上极板接地,

它的极板长L = 0.1m ,两板间距离 d = 0.4 cm ,有一束相同的带电微

粒以相同的初速度先后从两板中央平行极板射入,由于重力作用微粒能

落到下板上,微粒所带电荷立即转移到下极板且均匀分布在下极板上。

设前一微粒落到下极板上时后一微粒才能开始射入两极板间。已知微粒

质量为 m = 2×10-6kg ,电量q = 1×10-8 C ,电容器电容为C =10-6 F ,

取210/g m s =。求:

(1)为使第一个微粒的落点范围能在下板中点到紧靠边缘的B 点之内,求微粒入射的初速度v 0的取值范围。

(2)若带电微粒以第一问中初速度0v 的最小值入射,则最多能有多少个带电微粒落到下极板上?

【解析】(1)若第1个粒子落到O 点,由

2L =V 01t 1,2d =21gt 12得V 01=2.5 m/s 若落到B 点,由L =v 02t 1,2d =2

1gt 22得v 02=5 m/s 故2.5 m/s≤v 0≤5 m/s

cm

/

o cm x /cm y /p ??????????????

???

(2)第n 个微粒落到下板后,若第n+1个微粒恰落到下板边缘B 点,则下板电量以后不会再增加

由L =v 01t ,得t =4×10-2

s . 由

2d =2

1at 2得a =2.5 m/s 2 由mg -qE=ma ,E=dc Q 得Q =6×10-6 C 所以q

Q n ==600(个) 20.核聚变反应需要几百万度以上的高温,为把高温条件下高速运动的离子约束在小范

围内(否则不可能发生核反应),通常采用磁约束的方法(托卡马克装置)。如图5

所示,环状匀强磁场围成中空区域,中空区域中的带电粒子只要速度不是很大,都

不会穿出磁场的外边缘而被约束在该区域内。设环状磁场的内半径为R 1=0.5m ,外

半径R 2=1.0m ,磁场的磁感强度B =1.0T ,若被束缚带电粒子的荷质比为q/m =4×

710C/㎏,中空区域内带电粒子具有各个方向的速度.试计算

(1)粒子沿环状的半径方向射入磁场,不能穿越磁场的最大速度.

(2)所有粒子不能穿越磁场的最大速度

答案:s m /105.17?,s m /100.17?

21.如图所示,半径R=10cm 的圆形匀强磁场区域边界跟y 轴相切于坐标原点O ,磁

感应强度B=0.332T ,方向垂直纸面向里,在O 处有一放射源S ,可沿纸面向各

个方向射出速度均为v=3.2×106m/s 的a 粒子,已知m a =6.64×10-27kg ,q a =3.2×

10-19C 。

①画出a 粒子通过磁场空间做圆周运动的圆心轨迹。

②求出a 粒子通过磁场空间的最大偏转角θ。

③再以过O 点并垂直纸面的直线为轴放置磁场区域,能使穿过磁场区域且偏转角

度最大的a 粒子射到y 轴正方向上,则圆形磁场直径OA 至少应转过多大的角度?

答案:(1)圆心轨迹如图所示(2)θmax =60°(3)圆形磁场直径OA 至少逆时针转过60°

22.两屏幕荧光屏互相垂直放置,在两屏内分别去垂直于两屏交线的直线为x 和y

轴,交点O 为原点,如图所示。在y>0,0

磁场,在y>0,x>a 的区域有垂直于纸面向外的匀强磁场,两区域内的磁感应强

度大小均为B 。在O 点出有一小孔,一束质量为m 、带电量为q (q>0)的粒子

沿x 周经小孔射入磁场,最后打在竖直和水平荧光屏上,使荧光屏发亮。入射粒

子的速度可取从零到某一最大值之间的各种数值。已知速度最大的粒子在0

的区域中运动的时间与在x>a 的区域中运动的时间之比为2︰5,在磁场中运动的

总时间为7T/12,其中T 为该粒子在磁感应强度为B 的匀强磁场中做圆周运动的

周期。试求两个荧光屏上亮线的范围(不计重力的影响)。

答案:2a x a ≤≤ 恒定电流中的极值与临界问题:

23.在图所示电路中,直流发电机E =250 V ,r =3 Ω,R 1=R 2=1 Ω,

电热器组中装有50

只完全相同的电热器,每只电热器的额定电压

为200 V ,额定功率为1000 W ,其他电阻不计,

并且不计电热器电

(1)当接通几只电热器时,实际使用的电热器都能正常工作

?

(2)当接通几只电热器时,发电机输出功率最大

?

(3)当接通几只电热器时,电热器组加热物体最快

?

(4)当接通几只电热器时,电阻R 1、R 2上消耗的功率最大

?

(5)当接通几只电热器时,实际使用的每只电热器中电流最大

?

【解析】每只电热器的电阻R 0=40 Ω,每只电热器的额定电流I 0=

5 A

(1)要使用电器正常工作,必须使电热器两端的实际电压等于200 V ,因此干路电流I =

10 A

而每只电热器额定电流为5 A ,则电热器的只数n1=

2

(2)要使电源输出功率最大,必须使外电阻等于内电阻,由此可得电热器总电阻为

R =r -(R 1+R 2)=3-(1+1) Ω=1

Ω

故有 n 2=

40 (3)要使电热器组加热物体最快,就必须使电热器组得到的电功率最大.有的同学错误地认为电

热器接得越多,总功率越大.这是没有考虑到外电阻的变化会影响电源输出功率的变化.这

里,要注意到A 、B 两点间得到最大功率的条件,相当于把R 1、R 2

视为等效(电源)内电阻,

R ′=R 1+R 2+r =(1+1+3) Ω=5

Ω

所以n 3=8

(4)要使R 1、R 2上消耗功率最大,必须使通过它们的电流为最大,由此电路中总电阻必须最小.即当50只电热器全接通时,可满足要求.所以n 4=50

(5)要使实际使用的每只电热器中电流最大,则在保证U AB 不超过200 V 的前提下使其值尽量地

大.由第(1)问的讨论可知,n 1=2时U AB =200 V ,若n 5=1,看似通过它的电流达到最大,

但实际情况是:电热器被烧坏而无法工作.因此仍要取n 5=2.

24.如图所示,电源内阻r =1Ω,R 1=2Ω,R 2=6Ω,灯L 上标有“3V 、1.5W ”

的字样,当滑动变阻器R 3的滑片P 移到最右端时,电流表示数为1A ,灯

L 恰能正常发光。 (1)求电源的电动势;

(2)求当P 移到最左端时,电流表的示数;

(3)当滑动阻器的Pb 段电阻多大时,变阻器R 3上消耗的功率最大?最大值多大?

答案:6V , 2A ,(2分)R 3=2Ω时变阻器R 3上消耗的功率最大为2W

电磁感应中的极值与临界问题:

25.如图所示,水平的平行虚线间距为d =50cm ,其间有B=1.0T 的匀强磁场。

一个正方形线圈边长为l =10cm ,线圈质量m=100g ,电阻为R =0.020Ω。

开始时,线圈的下边缘到磁场上边缘的距离为h =80cm 。将线圈由静止释

放,其下边缘刚进入磁场和刚穿出磁场时的速度相等。取g =10m/s 2,求:

⑴线圈进入磁场过程中产生的电热Q

⑵线圈下边缘穿越磁场过程中的最小速度v

⑶线圈下边缘穿越磁场过程中加速度的最小值a

R 3

【解析】⑴由于线圈完全处于磁场中时不产生电热,所以线圈进入磁场过程中产生的电热Q就是线圈从图中2位置到4位置产生的电热,而2、4位置动能相同,由能量守恒Q=mgd=0.50J

⑵3位置时线圈速度一定最小,而3到4线圈是自由落体运动因此有

v02-v2=2g(d-l),得v=22m/s

⑶2到3是减速过程,因此安培力

R v

l

B F 2

2

减小,由F-mg=ma知加速度

减小,到3位置时加速度最小,a=4.1m/s2

26.如图所示,PQRS为一正方形导线框,它以恒定的速度向右进入以MN为

边界的匀强磁场,磁场方向垂直线圈平面,MN线与线框的边成450角.E、

F分别为PS和PQ的中点.关于线框中的感应电流,正确的说法是:

A.当E点经过边界MN时,线框中感应电流最大

B.当P点经过边界MN时,线框中感应电流最大

C.当F点经过边界MN时,线框中感应电流最大

D.当Q点经过边界MN时,线框中感应电流最大

答案:B

27.如图所示,在水平台面上铺设两条很长但电阻可忽略的平行导轨MN和

PQ,轨间宽度l=0.50m.水平部分是粗糙的,置于匀强磁场中,磁感强度

B=0.60T,方向竖直向上.倾斜部分是光滑的,该处没有磁场.直导线a

和b可在导轨上滑动,质量均为m=0.20kg,电阻均为R=0.15Ω.b放在

水平导轨上,a置于斜导轨上高h=0.050m处,无初速释放.(设在运动过

程中a、b间距离足够远,且始终与导轨MN、PQ接触并垂直;回路感应

电流的磁场可忽略不计,(g=10m/s2) 求:

⑴由导线和导轨组成回路的最大感应电流是多少?

⑵如果导线与水平导轨间的摩擦系数μ=0.10,当导线b的速度达到最大值时,导线a的加速度大小是多少?

答案:⑴1.0A ⑵2.0m/s

光学中的极值与临界问题:

28.如图所示,一个横截面为直角三角形的三棱镜,∠A=300,∠C=90),BC边

的长为L,三棱镜材料的折射率是

n= ,一束束平行光平行于AC的方

向射到三棱镜AB面上,屏MN与BC平行,到BC的距离为L,求(1)用作图法画出光屏上被照亮部分的宽度;

(2)光屏移动到什么位置才能消除两个照亮部分的阴影区?

答案:2L

6

L

29.如图是一个1

4

圆柱体棱镜的截面图,图中E、F、G、H将半径OM分成5等份,

虚线EE1、FF1、GG1、HH1平行于半径ON,ON边可吸收到达其上的所有光线.已知

该棱镜的折射率n=5

3

,若平行光束垂直入射并覆盖OM,则光线

A.不能从圆孤NF1射出

B.只能从圆孤NG1射出

C. 能从圆孤G1H1射出

D.能从圆孤H1M射出答案:B

高中物理必修一常考题型+例题及答案讲课稿

高中物理必修一常考题型 一、直线运动 1、xt图像与vt图像 2、纸带问题 3、追及与相遇问题 4、水滴下落问题(自由落体) 二、力 1、滑动摩擦力的判断 2、利用正交分解法求解 3、动态和极值问题 三、牛顿定律 1、力、速度、加速度的关系; 2、整体法与隔离法 3、瞬时加速度问题 4、绳活结问题 5、超重失重 6、临界、极值问题 7、与牛顿定律结合的追及问题 8、传送带问题 9、牛二的推广 10、板块问题 11、竖直弹簧模型

一、直线运动 1、xt图像与vt图像 2014生全国(2) 14.甲乙两汽车在一平直公路上同向行驶。在t=0到t=t1的时间内,它们的v-t图像如图所示。 在这段时间内 A.汽车甲的平均速度比乙大 B.汽车乙的平均速度等于 22 1v v C.甲乙两汽车的位移相同 D.汽车甲的加速度大小逐渐减小,汽车乙的加速度大小逐渐增大 2016全国(1) 21.甲、乙两车在平直公路上同向行驶,其v-t图像如图所示。已知两车在t=3s时并排行驶,则 A.在t=1s时,甲车在乙车后 B.在t=0时,甲车在乙车前7.5m C.两车另一次并排行驶的时刻是t=2s D.甲、乙两车两次并排行驶的位置之间沿公路方向的距离 为40m 2、纸带问题 【2012年广州调研】34.(18分)(1) 用如图a所示的装置“验证机械能守恒定律”①下列物理量需要测量的是__________、通过计算得到的是_____________(填写代号)A.重锤质量B.重力加速度 C.重锤下落的高度 D.与下落高度对应的重锤的瞬时速度②设重锤质量为m、打点计时器的打点周期为T、重力加速度为g.图b是实验得到的一条纸带,A、B、C、D、E为相邻的连续点.根据测得的s1、s2、s3、s4写出重物由B点到D点势能减少量的表达式__________,动能增量的表达式__________.由于重锤下落时要克服阻力做功,所以该实验的动能增量总是__________(填“大于”、“等于”或“小于”)重力势能的减小量

高中物理常见临界问题

高中物理常见临界问题(极值问题)分析处理训练 一问题概述: 当物体由一种运动形式(物理过程与物理状态)变为另一种运动形式(物理过程与物理状态)时,可能存在一个过渡的转折点,即分界限的现象。这时物体所处的状态通常称为临界状态,与之相关的物理条件则称为临界条件。这是量变质变规律在物理中的生动表现。如:力学中的刚好滑动;正常行驶;宇宙速度,共振;电学中电源最大输出功率;光学中的临界角;光电效应中的极限频率等 解决临界问题,通常以定理、定律为依据,分析所研究问题的一般规律和一般解的形式及其变化情况,然后找出临界状态,临界条件,从而通过临界条件求出临界值,再根据变化情况,直接写出条件。 所谓极值问题,一般而言,就是在一定条件下求最值结果。求解极值问题的方法从大的角度可分为物理方法和数学方法。物理方法即用临界条件求极值。数学方法包括(1)利用矢量图求极值(2)用三角函数关系求极值;(3)用二次方程的判别式求极值;(4)用不等式的性质求极值。(5)导数法求解。一般而言,用物理方法求极值直观、形象,对构建模型及动态分析等方面的能力要求较高,而用数学方法求极值思路严谨,对数学能力要求较高.若将二者予以融合,则将相得亦彰,对增强解题能力大有裨益。极值问题与临界问题从本质上说是有区别的,但高考中极值问题通常都可用物理临界法求解。 解答临界问题的关键是找临界条件。许多临界问题,题干中常用“恰好”、“最大”、“至少”、“不相撞”、“不脱离”……等词语对临界状态给出了明确的暗示,审题时,一定要抓住这些特定的词语发掘其内含规律,找出临界条件。 有时,有些临界问题中并不显含上述常见的“临界术语”,具有一定的隐蔽性,解题灵活性较大,审题时应力图还原习题的物理情景,耐心讨论状态的变化,可用极限法(把物理问题或过程推向极端,从而将临界状态及临界条件显露出来)假设法(即假设出现某种临界状态,物体的受力情况及运动状态与题设是否相符,最后再根据实际情况进行处理。)数学函数极值法等方法找出临界状态。然后抓住临界状态的特征,找到正确的解题方向。 ※为了提高解题速度,可以理解记住一些重要的临界条件及状态: 物体自由地沿斜面刚好匀速下滑则μ=tgα。 物体刚好滑动静摩擦力达到最大。 两个物体沿同一直线运动,在速度相等时距离最大或最小。 两物体刚好相对静止必速度相等、加速度相等。 两个物体距离最近(远),相对速度相等。 速度达到最值——沿速度方向的合外力为零(曲线运动时则切向合外力为零) 两个一同运动的物体刚好(不)脱离时,两物体间的弹力刚好为零,速度、加速度相等。 刚好到达某点——速度为零(速度不一定为零) 物体刚好(不)滑出——物体到达末端时二者等速。 在竖直面内做圆周运动,绳端物体刚好到达最高点——绳拉力为零,重力是向心力, 杆端物体刚好到达最高点——物体速度等于零。 两个物体刚好(不)分离——两物接触且弹力为零,速度加速度(垂直接触面方向)相等。绳刚好拉直——绳直且拉力为零,绳刚好拉断——张力等于绳所能承受最大拉力。 刚好不相撞——两物体间距为零时等速。 碰撞过程碰后相对速度为零时,损失的动能最大 粒子刚好(不)飞出两极板间匀强电场或匀强磁场——轨迹与板边缘相切,粒子刚好(不)飞出磁场区——轨迹与磁场边界相切。

高三物理二轮复习专题一

专题定位 本专题解决的是受力分析和共点力平衡问题.高考对本专题内容的考查主要有:①对各种性质力特点的理解;②共点力作用下平衡条件的应用.考查的主要物理思想和方法有:①整体法和隔离法;②假设法;③合成法;④正交分解法;⑤矢量三角形法;⑥相似三角形法;⑦等效思想;⑧分解思想. 应考策略 深刻理解各种性质力的特点.熟练掌握分析共点力平衡问题的各种方法. 1. 弹力 (1)大小:弹簧在弹性限度内,弹力的大小可由胡克定律F =kx 计算;一般情况下物体间相互作用的弹力可由平衡条件或牛顿运动定律来求解. (2)方向:一般垂直于接触面(或切面)指向形变恢复的方向;绳的拉力沿绳指向绳收缩的方向. 2. 摩擦力 (1)大小:滑动摩擦力F f =μF N ,与接触面的面积无关;静摩擦力0

(1)大小:F洛=q v B,此式只适用于B⊥v的情况.当B∥v时F洛=0. (2)方向:用左手定则判断,洛伦兹力垂直于B、v决定的平面,洛伦兹力总不做功.6.共点力的平衡 (1)平衡状态:静止或匀速直线运动. (2)平衡条件:F合=0或F x=0,F y=0. (3)常用推论:①若物体受n个作用力而处于平衡状态,则其中任意一个力与其余(n-1) 个力的合力大小相等、方向相反.②若三个共点力的合力为零,则表示这三个力的有向线段首尾相接组成一个封闭三角形. 1.处理平衡问题的基本思路:确定平衡状态(加速度为零)→巧选研究对象(整体法或隔离法)→受力分析→建立平衡方程→求解或作讨论. 2.常用的方法 (1)在判断弹力或摩擦力是否存在以及确定方向时常用假设法. (2)求解平衡问题时常用二力平衡法、矢量三角形法、正交分解法、相似三角形法、图解 法等. 3.带电体的平衡问题仍然满足平衡条件,只是要注意准确分析场力——电场力、安培力或洛伦兹力. 4.如果带电粒子在重力场、电场和磁场三者组成的复合场中做直线运动,则一定是匀速直线运动,因为F洛⊥v. 题型1整体法和隔离法在受力分析中的应用 例1如图1所示,固定在水平地面上的物体P,左侧是光滑圆弧面,一根轻绳跨过物体P 顶点上的小滑轮,一端系有质量为m=4 kg的小球,小球与圆心连线跟水平方向的夹角θ=60°,绳的另一端水平连接物块3,三个物块重均为50 N,作用在物块2的水平力F=20 N,整个系统平衡,g=10 m/s2,则以下正确的是() 图1 A.1和2之间的摩擦力是20 N B.2和3之间的摩擦力是20 N

2021高考物理一轮复习第2章相互作用热点专题系列二求解共点力平衡问题的八种方法学案新人教版

热点专题系列(二)求解共点力平衡问题的八种方法 热点概述:共点力作用下的平衡条件是解决共点力平衡问题的基本依据,广泛应用于力、电、磁等各部分内容的题目中,求解共点力平衡问题的八种常见方法总结如下。 [热点透析] 力的合成、分解法 三个力的平衡问题,一般将任意两个力合成,则该合力与第三个力等大反向,或将其中某个力沿另外两个力的反方向分解,从而得到两对平衡力。 如图所示,用三段不可伸长的轻质细绳OA 、OB 、OC 共同悬挂一重物使其静止,其中OA 与竖直方向的夹角为30°,OB 沿水平方向,A 端、B 端固定。若分别用F A 、F B 、F C 表示OA 、OB 、OC 三根绳上的张力大小,则下列判断中正确的是( ) A .F A >F B >F C B .F A F C >F B D .F C >F A >F B 解析 根据平衡条件有细绳OC 的张力大小等于重物的重力,对O 点受力分析,如图所示。F A =mg cos30°=233mg ,F B =mg tan30°=33mg ,因此得F A >F C >F B ,C 正确。 答案 C 正交分解法 将各力分解到x 轴上和y 轴上,运用两坐标轴上的平衡条件F x =0、F y =0进行分析,多用于三个以上共点力作用下的物体的平衡。值得注意的是,对x 、y 方向选择时,尽可能使较多的力落在x 、y 轴上,被分解的力尽可能是已知力,不宜分解待求力。 如图所示,水平细杆上套有一质量为0.54 kg 的小环A ,用轻绳将质量为0.5 kg 的小球B 与A 相连。B 受到始终与水平方向成53°角的风力作用,与A 一起向右匀速运动,此时轻绳与水平方向夹角为37°,运动过程中B 球始终在水平细杆的下方,则:(取g =10 m/s 2 ,sin37°=0.6,cos37°=0.8)

版高三物理一轮复习专题10电路含高考真题

专题10 电路 1.[2016·全国卷Ⅱ] 阻值相等的四个电阻、电容器C 及电池E (内阻可忽略)连接成如图1-所示电路.开关S 断开且电流稳定时,C 所带的电荷量为Q 1;闭合开关S ,电流再次稳定后,C 所带的电荷量为Q 2.Q 1与Q 2的比值为( ) 图1- A. 25 B.12 C.35 D.23 答案:C 解析: 由已知条件及电容定义式C =Q U 可得:Q 1=U 1C ,Q 2=U 2C ,则Q 1Q 2=U 1U 2 . S 断开时等效电路如图甲所示 甲 U 1=R (R +R ) (R +R )+R R +R (R +R )(R +R )+R ·E ×12=15E ; S 闭合时等效电路如图乙所示, 乙

U 2=R ·R R +R R +R ·R R +R ·E =13E ,则Q 1Q 2=U 1U 2=35,故C 正确. 2.[2016·江苏卷] 如图1-所示的电路中,电源电动势为12 V ,内阻为2 Ω,四个电阻的阻值已在图中标出.闭合开关S ,下列说法正确的有( ) 图1- A .路端电压为10 V B .电源的总功率为10 W C .a 、b 间电压的大小为5 V D .a 、b 间用导线连接后,电路的总电流为1 A 答案:AC 解析: 设四个电阻的等效电阻为R 路,由 1R 路=115 Ω+5 Ω+15 Ω+15 Ω得R 路=10 Ω,由闭合电路欧姆定律知,I =E R 路+r =12 V 10 Ω+2 Ω=1 A ,设路端电压为U ,则U =IR 路=1 A ×10 Ω=10 V ,选项A 正确;电源的总功率P =EI =12 W ,选项B 错误;设电源负极电势为0 V ,则a 点电势φa =0.5 A ×5 Ω-0=2.5 V ,b 点电势φb =0.5 A ×15 Ω-0=7.5 V ,则a 、b 两点的电势差U ab =φa -φb =2.5 V -7.5 V =-5 V ,所以a 、b 间电压的大小为5 V ,选项C 正确;当将a 、b 两点用导线连接后,由于导线没有电阻,此时a 、b 两点电势相等,其等效电路图如图所示.其中一个并联电路的等效电阻为3.75 Ω,显然总电阻为9.5 Ω,电流I =E R 总=2419 A ,故选项D 错误. J3 电路综合问题 3.[2016·天津卷] 如图1-所示,理想变压器原线圈接在交流电源上,图中各电表均为理想电表.下列说法正确的是( )

高中物理中的临界与极值问题

高中物理中的临界与极值问题 宝鸡文理学院附中何治博 一、临界与极值概念所谓物理临界问题是指各种物理变化过程中,随着条件的逐渐变化,数量积累达到一定程度就会引起某种物理现象的发生,即从一种状态变化为另一种状态发生质的变化(如全反射、光电效应、超导现象、线端小球在竖直面内的圆周运动临界速度等),这种物理现象恰好发生(或恰好不发生)的过度转折点即是物理中的临界状态。与之相关的临界状态恰好发生(或恰好不发生)的条件即是临界条件,有关此类条件与结果研究的问题称为临界问题,它是哲学中所讲的量变与质变规律在物理学中的具体反映。极值问题则是指物理变化过程中,随着条件数量连续渐变越过临界位置时或条件数量连续渐变取边界值(也称端点值)时,会使得某物理量达到最大(或最小)的现象,有关此类物理现象及其发生条件研究的问题称为极值问题。临界与极值问题虽是两类不同的问题,但往往互为条件,即临界状态时物理量往往取得极值,反之某物理量取极值时恰好就是物理现象发生转折的临界状态,除非该极值是单调函数的边界值。因此从某种意义上讲,这两类问题的界线又显得非常的模糊,并非泾渭分明。 高中物理中的临界与极值问题,虽然没有在教学大纲或考试说明中明确提出,但近年高考试题中却频频出现。从以往的试题形式来看,有些直接在题干中常用“恰好”、“最大”、“至少”、“不相撞”、“不脱离”……等

词语对临界状态给出了明确的暗示,审题时,要抓住这些特定的词语发掘其内含的物理规律,找出相应的临界条件。也有一些临界问题中并不显含上述常见的“临界术语”,具有一定的隐蔽性,解题灵活性较大,审题时应力图还原习题的物理情景,周密讨论状态的变化。可用极限法把物理问题或物理过程推向极端,从而将临界状态及临界条件显性化;或用假设的方法,假设出现某种临界状态,分析物体的受力情况及运动状态与题设是否相符,最后再根据实际情况进行处理;也可用数学函数极值法找出临界状态,然后抓住临界状态的特征,找到正确的解题方向。从以往试题的内容来看,对于物理临界问题的考查主要集中在力和运动的关系部分,对于极值问题的考查则主要集中在力学或电学等权重较大的部分。 二、常见临界状态及极值条件解答临界与极值问题的关键是寻找相关条件,为了提高解题速度,可以理解并记住一些常见的重要临界状态及极值条件: 1.雨水从水平长度一定的光滑斜面形屋顶流淌时间最短——屋面倾角 为0 45 2.从长斜面上某点平抛出的物体距离斜面最远——速度与斜面平行时 刻 3.物体以初速度沿固定斜面恰好能匀速下滑(物体冲上固定斜面时恰 好不再滑下)—μ=tgθ。 4.物体刚好滑动——静摩擦力达到最大值。

突破17 竖直面内的圆周运动-2019高三物理一轮微专题系列之热点专题突破

突破17 竖直面内的圆周运动 一、竖直平面内圆周运动的临界问题——“轻绳、轻杆”模型 1.“轻绳”模型和“轻杆”模型不同的原因在于“轻绳”只能对小球产生拉力,而“轻杆”既可对小球产生拉力也可对小球产生支持力。 2.有关临界问题出现在变速圆周运动中,竖直平面内的圆周运动是典型的变速圆周运动,一般情况下,只讨论最高点和最低点的情况。 【典例1】如图甲所示,轻杆一端固定在O点,另一端固定一小球,现让小球在竖直平面内做半径为R的圆周运动。小球运动到最高点时,杆与小球间弹力大小为F,小球在最高点的速度大小为v,其F-v2图象如图乙所示,则( )

aR A.小球的质量为b R B.当地的重力加速度大小为b C.v2=c时,小球对杆的弹力方向向上 D.v2=2b时,小球受到的弹力与重力大小相等 【答案】:ACD 【典例2】用长L =0.6 m的绳系着装有m =0.5 kg水的小桶,在竖直平面内做圆周运动,成为“水流星”。G =10 m/s2。求: (1) 最高点水不流出的最小速度为多少?

(2) 若过最高点时速度为3 m/s ,此时水对桶底的压力多大? 【答案】 (1) 2.45 m/s (2) 2.5 N 方向竖直向上 【解析】(1) 水做圆周运动,在最高点水不流出的条件是:水的重力不大于水所需要的向心力。这是最小速度即是过最高点的临界速度v 0。 以水为研究对象, mg =m 0 解得v 0== m/s ≈ 2.45 m/s (2) 因为 v = 3 m/s>v 0,故重力不足以提供向心力,要由桶底对水向下的压力补充,此时所需向心力由以上两力的合力提供。 V = 3 m/s>v 0,水不会流出。 设桶底对水的压力为F ,则由牛顿第二定律有:mg +F =m L v2 解得F =m L v2-mg =0.5×(0.632 -10)N =2.5N 根据牛顿第三定律F ′=-F 所以水对桶底的压力F ′=2.5N ,方向竖直向上。 【跟踪短训】 1. 如图所示,一内壁光滑、质量为m 、半径为r 的环形细圆管,用硬杆竖直固定在天花板上.有一质量为m 的小球(可看做质点)在圆管中运动.小球以速率v 0经过圆管最低点时,杆对圆管的作用力大小为( ) A .m 0 B .mg +m 0 C .2mg +m 0 D .2mg -m 0

2013届高三物理一轮复习专题精练 4.2 运动的合成与分解[1]

2013届高三物理一轮复习专题精练 4.2 运动的合成与分解 一、选择题 1.(广东六校2012届高三第二次联考)在宽度为d 的河中,水流速度为v 2 ,船在静水中速度为v 1(且v 1>v 2),方向可以选择,现让该船开始渡河,则该船 A .可能的最短渡河时间为d/v 2 B .可能的最短渡河位移为d C .只有当船头垂直河岸渡河时,渡河时间才和水速无关 D .不管船头与河岸夹角是多少,渡河时间和水速均无关 1.BD 2.如图所示,一个长直轻杆AB 在墙角沿竖直墙和水平地面滑动,当AB 杆和墙的夹角为θ时,杆的A 端沿墙下滑的速度大小为v 1,B 端沿地面的速度大小为v 2。则v 1、v 2的关系是( ) A .v 1=v 2 B .v 1=v 2cos θ C .v 1=v 2tan θ D .v 1=v 2sin θ 2.C 3.(2012·湖北省襄阳五中高三期中考试)一探照灯照射在云层底面上,云层底面是与地面平行的平面,如图所示,云层底面距地面高h ,探照灯以匀角速度ω在竖直平面内转动,当光束转到与竖直方向夹角为θ时,云层底面上光点的移动速度是 A .h ω B .2cos h ωθ C .cos h ωθ D .tan h ωθ

3.B 4.现在城市的滑板运动非常流行,在水平地面上一名滑板运动员双脚站在滑板上以一定速度向前滑行,在横杆前起跳并越过杆,从而使人与滑板分别从杆的上下通过,如右图所示.假设人和滑板运动过程中受到的各种阻力忽略不计,运动员能顺利完成该动作,最终仍落在滑板原来的位置上.要使这个表演成功,运动员除了跳起的高度足够高外,在起跳时双脚对滑板作用力的合力方向应该( ) A.竖直向下 B.竖直向上 C.向下适当偏后 D.向下适当偏前 4.A 5.在红蜡块的演示实验中,假设蜡块在从静止匀加速上升的同时,将玻璃管沿水平方向向右匀加速移动,那么蜡块的实际运动是() A.一定是直线运动 B.一定是曲线运动 C.可能是直线运动,也可能是曲线运动 D.以上都不对 5. A 6.如图所示,光滑水平桌面上,一小球以速度v向右匀速运动,它经过靠近桌边的竖直木板ad边前方时,木板开始做自由落体运动。若木板开始运动时,cd边与桌面相齐,则小球在木板上的投影轨迹是() 6.B 7.(2012届·江苏无锡市高三期中考试)如图所示,图甲所示,在杂技表演中,猴子沿竖直杆向上运动,其v-t图象如图乙所示;人顶杆沿水平地面运动的s-t图象如图丙所示。若以地面为参考系,下列说法中正确的是()

高中物理中的极值问题

物理中的极值问题 武穴育才高中 刘敬 随着高考新课程改革的深入及素质教育的全面推广,物理极值问题成为中学物理教学的一个重要内容,作为对理解、推理及运算能力都有很高要求的物理学科,如何提高提高学生思维水平,运用数学知识解决物理问题的能力,加强各学科之间的联系,本文筛选出典型范例剖析,从中进行归纳总结。 极值问题常出现如至少、最大、最短、最长等关键词,通常涉及到数学知识有:二次函数配方法,判别式法,不等式法,三角函数法,求导法,几何作图法如点到直线的垂线距离最短,圆的知识等等。 1.配方法:a b ac a b x a c bx ax 44)2(2 22 -++=++ 当a >0时,当2b x a =-时,y min =a b a c 442- 当a <0时当2b x a =-时,y max =a b a c 442- 2.判别式法:二次函数令0≥?,方程有解求极值. 3.利用均值不等式法:ab 2b a ≥+ a=b 时, y min =2ab 4.三角函数法:θθcos sin b a y +==)sin(22θ?++b a 当090=+θ?,22max b a y += 此时,b a arctan =θ 也可用求导法:b a b a y arctan 0sin cos ==-='θθθ,得令 5.求导法:对于数学中的连续函数,我们可以通过求导数的方式求函数的最大值或最小值.由二阶导数判断极值的方法.某点一阶导数为0,二阶导数大于0,说明一阶导数为增函数,判断为最小值;反之,某点一阶导数为0,二阶导数小于0,说明一阶导数为单调减函数,判断此点为最大值. 6.用图象法求极值 通过分析物理过程所遵循的物理规律,找到变量之间的函数关系,作出其图象,由图象求极值。 7.几何作图法 研究复合场中的运动,可将重力和电场力合成后,建立直角坐标系,按等效重力场处理问题。 研究力和运动合成和分解中,可选择合适参考系,将速度及加速度合成,结合矢量三角形处理问题。 例1.木块以速度v 0=12m /s 沿光滑曲面滑行,上升到顶部水平的跳板后飞出,求跳板高度h 多大时, 木块飞行的水平距离s 最大?最大水平距离s 是多少?(g=10 m /s 2)。 解:2202121mv mgh mv =+, vt s =得:22022020)4()4(22)2(g v h g v g h gh v s --=-=

高三物理复习中的极值与临界问题专题

极值与临界问题专题 常州二中徐展 临界现象是量变质变规律在物理学上的生动体现。即在一定的条件下,当物质的运动从一种形式或性质转变为另一种形式或性质时,往往存在着一种状态向另一种状态过渡的转折点,这个转折点常称为临界点,这种现象也就称为临界现象.如:静力学中的临界平衡;机车运动中的临界速度;碰撞中的能量临界、速度临界及位移临界;电磁感应中动态问题的临界速度或加速度;光学中的临界角;带电粒子在磁场中运动的边界临界;电路中电学量的临界转折等. 解决临界问题,一般有两种方法,第一是以定理、定律为依据,首先求出所研究问题的一般规律和一般解的形式,然后再分析、讨论临界特殊规律和特殊解;第二是直接分析、讨论临界状态,找出临界条件,从而通过临界条件求出临界值。 所谓极值问题,一般而言,就是在一定条件下求最佳结果所需满足的极值条件.求解极值问题的方法从大的角度可分为物理方法和数学方法。物理方法包括(1)利用临界条件求极值;(2)利用问题的边界条件求极值;(3)利用矢量图求极值。数学方法包括(1)用三角函数关系求极值;(2)用二次方程的判别式求极值;(3)用不等式的性质求极值。一般而言,用物理方法求极值直观、形象,对构建模型及动态分析等方面的能力要求较高,而用数学方法求极值思路严谨,对数学能力要求较高.若将二者予以融合,则将相得亦彰,对增强解题能力大有裨益。 在中学物理问题中,有一类问题具有这样的特点,如果从题中给出的条件出发,需经过较复杂的计算才能得到结果的一般形式,并且条件似乎不足,使得结果难以确定,但若我们采用极限思维的方法,将其变化过程引向极端的情况,就能把比较隐蔽的条件或临界现象暴露出来,从而有助于结论的迅速取得。 在应用牛顿运动定律解决动力学问题中,当物体运动的加速度不同时,物体有可能处于不同的状态,特别是题目中出现“最大”、“最小”、“刚好”等词句时,往往会有临界现象。此时要用极限分析法,看物体不同加速度时,会有哪些现象发生,找出临界点,求出临界条件。 解决此类问题重在形成清晰的物理图景,分析清楚物理过程,从而找出临界条件或达到极值的条件,要特别注意可能出现的多种情况。在解决临办极值问题注意以下几点: 1.许多临界问题常在题目的叙述中出现“恰好”、“最大”、“至少”、“不相撞”、“不脱离”……等词句对临界问题给出了明确的暗示,审题是只要抓住这些特定词语其内含规律就能找到临界条件。 2.临界点的两侧,物体的受力情况、变化规律、运动状态一般要发生改变,能否用变化的观点正确分析其运动规律是求解这类题目的关键,而临界点的确定是基础。 3.临界问题通常具有一定的隐蔽性,解题灵活性较大,审题时应力图还原习题的物理情景,抓住临界状态的特征,找到正确的解题方向。 4.确定临界点一般用极端分析法,即把问题(物理过程)推到极端,分析在极端情况下可能出现的状态和满足的条件。 【典型例题与练习】 运动学中的极值与临界问题: 1.一车处于静止状态,车后相距s0=25m处有一个人,当车开始起动以1m/s2的加速度前进的同时,人以6m/s速度匀速追车,能否追上?若追不上,人车间的最小距离为多少?人不可能追上车 18 m。A、B 两车停在同一点,某时刻A车以2m/s2的加速度匀加速开出,2s后B车同向以3m/s2的加速度开出。问:B车追上A车之前,在启动后多长时间两车相距最远,距离是多少?

2021年高三物理第二轮总复习教师工作计划

高三的第一轮复习主要是巩固基础知识,为后面的复习做好铺垫,第二轮复习则是提升学生各方面的能力。因此在进入第二轮复习之前,一定要做出合理的计划安排。下面是为您整理的“高三物理第二轮总复习教师工作计划”,希望您喜欢! 高三物理的第二轮总复习教师工作计划 高三物理通过第一轮的复习,学生大都能掌握物理学中的基本概念、规律,及其一般应用。但这些方面的知识,总的感觉是比较零散的,同时,对于综合方面的应用更存在较大的问题。 因此,在第二轮复习中,首要的任务是能把整个高中的知识网络化、系统化,把所学的知识连成线,铺成面,织成网,疏理出知识结构,使之有机地结合在一起。另外,要在理解的基础上,能够综合各部分的内容,进一步提高解题能力。 为达到第二轮复习的目的,经备课组老师讨论决定,仍将以专题复习的形式为主。计划(初稿)如下 一、时间按排 2xx年3月初至2xx年4月中旬(具体安排另附表) 二、内容安排 第一专题牛顿运动定律; 第二专题动量和能量; 第三专题带电粒子在电场中的运动; 第四专题电磁感应和电路分析、计算; 第五专题物理学科内的综合; 第六专题选择题的分析与解题技巧; 第七专题实验题的题型及处理方法; 第八专题论述、计算题的审题方法和技巧; 第九专题物理解题中的数学方法。 三、其它问题

我们认为要搞好第二轮复习还应注意以下几个方面 1、应抓住主干知识及主干知识之间的综合概括起来 高中物理的主干知识有以下方面的内容 (1)力学部分物体的平衡;牛顿运动定律与运动规律的综合应用;动量守恒定律的应用;机械能守恒定律及能的转化和守恒定律。 (2)电磁学部分带电粒子在电、磁场中的运动;有关电路的分析和计算;电磁感应现象及其应用。 (3)光学部分光的反射和折射及其应用。 在各部分的综合应用中,主要以下面几种方式的综合较多(在高考中突出学科内的综合已成为高考物理试题的一个显著特点) (1)牛顿三定律与匀变速直线运动的综合(主要体现在力学、带电粒子在匀强电场中运动、通电导体在磁场中运动,电磁感应过程中导体的运动等形式)。 (2)动量和能量的综合(是解决物理问题中一个基本的观念,一定要加强这方面的训练,也是每年必考内容之一); (3)以带电粒子在电场、磁场中为模型的电学与力学的综合,主要有三种具体的综合形式 一是利用牛顿定律与匀变速直线运动的规律解决带电粒子在匀强电场中的运动;二是利用牛顿定律与圆周运动向心力公式解决带电粒子在磁场中的运动,三是用能量观点解决带电粒子在电场中的运动。 (4)电磁感应现象与闭合电路欧姆定律的综合,用力学和能量观点解决导体在匀强磁场中的运动问题; (5)串、并联电路规律与实验的综合,主要表现为三个方面,一是通过粗略的计算选择实验器材和电表的量程,二是确定滑动变阻器的连接方法,三是确定电流表的内外接法。对以上知识一定要特别重视,尽可能做到每个内容都能过关,绝不能掉以轻心。 2、针对高考能力的要求,应做好以下几项专项训练。 高考《考试大纲》中明确表示学生应具有五个方面的能力即理解能力、推理能力、分析综合能力、应用数学处理物理问题的能力、实验能力。针对以上能力的要求,要注意加强二个方面的专项训练。

2020届高三物理总复习热点专题训练----运动学图像问题(解析版)

2020届高三物理总复习热点专题训练----运动学图像问题 【题型归类】 类型一运动学图象的理解和应用 1.利用传感器与计算机可以绘制出物体运动的图象,某同学在一次实验中得到沿平直轨道运动小车的速度—时间图象,如图所示,由此图象可知() A.小车在20~40 s做加速度恒定的匀变速直线运动 B.20 s末小车回到出发点 C.小车在10~20 s内与20~30 s内的加速度方向相同 D.小车在0~10 s内的平均速度小于在10~20 s内的平均速度 【解析】:20~30 s和30~40 s,加速度的方向相反,A错;20 s末,正向位移最大,B错.10~20 s和20~30 s内,图线斜率符号相同,说明加速度方向相同,C对.小车在0~10 s内的位移小于10~20 s内的位移,故平均速度也小些,D 对. 【答案】:CD 2.如图所示,A、B两物体从同一点开始运动,从A、B两物体的位移图象可知下述说法中正确的是() A.A、B两物体同时自同一位置向同一方向运动 B.A、B两物体自同一位置向同一方向运动, B比A晚出发2 s C.A、B两物体速度大小均为10 m/s D.A、B两物体在A出发后4 s时距原点20 m处相遇 【解析】:由x-t图象可知,A、B两物体自同一位置向同一方向运动,且B比A

晚出发2 s,图象中直线的斜率大小表示做匀速直线运动的速度大小,由x-t图象可知,B物体的运动速度大小比A物体的运动速度大小要大,A、B两直线的交点的物理意义表示相遇,交点的坐标表示相遇的时刻和相遇的位置,故A、B 两物体在A物体出发后4 s时相遇.相遇位置距原点20 m,综上所述,B、D选项正确. 【答案】:BD 类型二两类图像的对比 3.如图甲、乙所示的位移—时间(x-t)图象和速度—时间(v-t)图象中,给出了四条曲线1、2、3、4,代表四个不同物体的运动情况,则下列说法中错误的是() A.图线1、3表示物体做曲线运动 B.x-t图象中0~t1时间内物体1和2的平均速度相等 C.v-t图象中t4时间内3的加速度大于4的加速度 D.两图象中,t2、t5时刻分别表示2、4开始反向运动 【解析】:运动图象反映物体的运动规律,不是运动轨迹,无论速度—时间图象 还是位移—时间图象只能表示物体做直线运动,故A错误;由平均速度v=Δx Δt知 x-t图象在0~t1时间内两物体的位移Δx相同,时间Δt相等,则平均速度相等,故B正确;在v-t图线中图线的斜率表示物体的加速度,在0~t4时间内的前半段图线3的斜率小于图线4的斜率,a3a4,故3的瞬时加速度不是总大于4的瞬时加速度,故C错误; x-t图线的斜率等于物体的速度,斜率大于0,表示物体沿正方向运动;斜率小于0,表示物体沿负方向运动,而t2时刻之前物体的运动沿正方向,t2时刻之后物体沿负方向运动,故t2时刻开始反向运动.v-t图象中速度的正负表示运动方向,从0~t5这段时间内速度为正,故t5时刻反向运动,故D正确.本题选错误的,故选A、C. 【答案】:AC

2019年高考物理一轮复习试题

.精品文档. 2019年高考物理一轮复习试题 测量速度和加速度的方法 【纲要导引】 此专题作为力学实验的重要基础,高考中有时可以单独出题,16年和17年连续两年新课标1卷均考察打点计时器算速度和加速度问题;有时算出速度和加速度验证牛二或动能定理等。此专题是力学实验的核心基础,需要同学们熟练掌握。 【点拨练习】 考点一打点计时器 利用打点计时器测加速度时常考两种方法: (1)逐差法 纸带上存在污点导致点间距不全已知:(10年重庆) 点的间距全部已知直接用公式:,减少偶然误差的影响(奇数段时舍去距离最小偶然误差最大的间隔) (2)平均速度法 ,两边同时除以t,,做图,斜率二倍是加速度,纵轴截距是 开始计时点0的初速。

1. 【10年重庆】某同学用打点计时器测量做匀加速直线运动的物体的加速度,电频率f=50Hz在线带上打出的点中,选 出零点,每隔4个点取1个计数点,因保存不当,纸带被污染,如是22图1所示,A B、、D是依次排列的4个计数点,仅能读出其中3个计数点到零点的距离: =16.6=126.5=624.5 若无法再做实验,可由以上信息推知: ①相信两计数点的时间间隔为___________ S ②打点时物体的速度大小为_____________ /s(取2位有效数字) ③物体的加速度大小为__________ (用、、和f表示) 【答案】①0.1s②2.5③ 【解析】①打点计时器打出的纸带每隔4个点选择一个计数点,则相邻两计数点的时间间隔为T=0.1s . ②根据间的平均速度等于点的速度得v==2.5/s . ③利用逐差法:,两式相加得,由于,,所以就有了,化简即得答案。 2. 【15年江苏】(10分)某同学探究小磁铁在铜管中下落时受电磁阻尼作用的运

动力学中的临界极值问题的处理讲课教案

动力学中的临界极值问题的处理

动力学中临界极值问题的处理及分析 物理学中的临界和极值问题牵涉到一定条件下寻求最佳结果或讨论其物理过程范围的问题,此类问题通常难度较大技巧性强,所涉及的内容往往与动力学、力学密切相关,综合性强。在高考命题中经常以压轴题的形式出现,临界和极值问题是每年高考必考的内容之一。 一.解决动力学中临界极值问题的基本思路 所谓临界问题是指当某种物理现象(或物理状态)变为另一种物理现象(或另一物理状态)的转折状态叫临界状态.可理解成“恰好出现”或“恰好不出现”.某种物理现象转化为另一种物理现象的转折状态称为临界状态。至于是“出现”还是“不出现”,需视具体问题而定。极值问题则是在满足一定的条件下,某物理量出现极大值或极小值的情况。临界问题往往是和极值问题联系在一起的。 解决此类问题重在形成清晰的物理图景,分析清楚物理过程,从而找出临界条件或达到极值的条件,要特别注意可能出现的多种情况。动力学中的临界和极值是物理中的常见题型,同学们在刚刚学过的必修1中匀变速运动规律、共点力平衡、牛顿运动定律中都涉及到临界和极值问题。在解决临办极值问题 注意以下几点:○1临界点是一个特殊的转换状态,是物理过程发生变化的转折点,在这个转折点上,系统的一些物理量达到极值。○2临界点的两侧,物体的受力情况、变化规律、运动状态一般要发生改变,能否用变化的观点正确分析其运动规律是求解这类题目的关键,而临界点的确定是基础。○3许多临界问题 常在题目的叙述中出现“恰好”、“最大”、“至少”、“不相撞”、“不脱离”……等词句对临界问题给出了明确的暗示,审题是只要抓住这些特定词语 其内含规律就能找到临界条件。○4有时,某些临界问题中并不包含常见的临界 术语,但审题时发现某个物理量在变化过程中会发生突变,如运动中汽车做匀 减速运动类问题,则该物理量突变时物体所处的状态即为临界状态。○5临界问 题通常具有一定的隐蔽性,解题灵活性较大,审题时应力图还原习题的物理情 景,抓住临界状态的特征,找到正确的解题方向。○6确定临界点一般用极端分 析法,即把问题(物理过程)推到极端,分析在极端情况下可能出现的状态和满足的条件。解题常用的思路用矢量法、三角函数法、一元二次方程判别式法或根据物理过程的特点求极值法等。 二.匀变速运动规律中与临界极值相关问题的解读 在质点做匀变速运动中涉及到临界与极值的问题主要有“相遇”、“追及”、“最大距离”、“最小距离”、“最大速度”、“最小速度”等。 【例1】速度大小是5m/s的甲、乙两列火车,在同一直线上相向而行。当它们相隔2000m时,一只鸟以10m/s的速度离开甲车头向乙车头飞去,当到达乙车车头时立即返回,并这样连续在两车间来回飞着。问: (1)当两车头相遇时,这鸟共飞行多少时间?

动力学中的临界极值问题的处理

动力学中临界极值问题的处理及分析 物理学中的临界和极值问题牵涉到一定条件下寻求最佳结果或讨论其物理过程范围的问题,此类问题通常难度较大技巧性强,所涉及的内容往往与动力学、力学密切相关,综合性强。在高考命题中经常以压轴题的形式出现,临界和极值问题是每年高考必考的内容之一。一.解决动力学中临界极值问题的基本思路 所谓临界问题是指当某种物理现象(或物理状态)变为另一种物理现象(或另一物理状态)的转折状态叫临界状态.可理解成“恰好出现”或“恰好不出现”.某种物理现象转化为另一种物理现象的转折状态称为临界状态。至于是“出现”还是“不出现”,需视具体问题而定。极值问题则是在满足一定的条件下,某物理量出现极大值或极小值的情况。临界问题往往是和极值问题联系在一起的。 解决此类问题重在形成清晰的物理图景,分析清楚物理过程,从而找出临界条件或达到极值的条件,要特别注意可能出现的多种情况。动力学中的临界和极值是物理中的常见题型,同学们在刚刚学过的必修1中匀变速运动规律、共点力平衡、牛顿运动定律中都涉及到临界和极值问题。在解决临办极值问题注意以下几点:○1临界点是一个特殊的转换状态,是物理过程发生变化的转折点,在这个转折点上,系统的一些物理量达到极值。○2临界点的两侧,物体的受力情况、变化规律、运动状态一般要发生改变,能否用变化的观点正确分析其运动规律是求解这类题目的关键,而临界点的确定是基础。○3许多临界问题常在题目的叙述中出现“恰好”、“最大”、“至少”、“不相撞”、“不脱离”……等词句对临界问题给出了明确的暗示,审题是只要抓住这些特定词语其内含规律就能找到临界条件。○4有时,某些临界问题中并不包含常见的临界术语,但审题时发现某个物理量在变化过程中会发生突变,如运动中汽车做匀减速运动类问题,则该物理量突变时物体所处的状态即为临界状态。○5临界问题通常具有一定的隐蔽性,解题灵活性较大,审题时应力图还原习题的物理情景,抓住临界状态的特征,找到正确的解题方向。○6确定临界点一般用极端分析法,即把问题(物理过程)推到极端,分析在极端情况下可能出现的状态和满足的条件。解题常用的思路用矢量法、三角函数法、一元二次方程判别式法或根据物理过程的特点求极值法等。 二.匀变速运动规律中与临界极值相关问题的解读 在质点做匀变速运动中涉及到临界与极值的问题主要有“相遇”、“追及”、“最大距离”、“最小距离”、“最大速度”、“最小速度”等。 【例1】速度大小是5m/s的甲、乙两列火车,在同一直线上相向而行。当它们相隔2000m 时,一只鸟以10m/s的速度离开甲车头向乙车头飞去,当到达乙车车头时立即返回,并这样连续在两车间来回飞着。问: (1)当两车头相遇时,这鸟共飞行多少时间? (2)相遇前这鸟飞行了多少路程? 【致远提示】甲、乙火车和小鸟运动具有等时性,要分析相遇的临界条件。 【思维总结】本题难度不大,建立物理情景,分清运动过程,找到相遇的临界条件、三个运动物体运动具有等时性和小鸟速率不变是解题的切入点。

2020年高考高三物理二轮复习力学专题复习(含答案)

2020 年高三物理二轮复习力学专题复习 ▲不定项选择题 1.2019年1月3日,“嫦娥四号”探测器成功着陆在月球背面。着陆前的部分运动过程简化如下:在距月面15km 高处绕月做匀速圆周运动,然后减速下降至距月面100m 处悬停,再缓慢降落到月面。己知万有引力常量和月球的第一宇宙速度,月球半径约为 1.7 ×103km,由上述条件不能..估算出() A .月球质量 B .月球表面的重力加速度 C.探测器在15km 高处绕月运动的周期D.探测器悬停时发动机产生的推力 2.“民生在勤”,劳动是幸福的源泉。如图,疫情期间某同学做家务时,使用浸湿的拖把清理地板上的油渍。假设湿拖把的质量为2kg,拖把杆与水平方向成53°角,当对拖把施加一个沿拖把杆向下、大小为10N 的力F1 时,恰好能推动拖把向前匀速运动并将灰尘清理干净。如果想要把地板上的油渍清理干净,需将沿拖把杆向下的力增大到F2=25N 。设拖把与地板、油渍间的动摩擦因数相等且始终不变(可认为油渍与地板间的附着力等于拖把与地板间的滑动摩擦力,重力加速度g取10m/s2,sin53° =0.8 ,cos53° =0.6 ),那么油渍与地板间的附着力约为() A.7.7N B.8.6N C.13.3N D.20N 3.如图所示,物块 A 静止在粗糙水平面上,其上表面为四分之一光滑圆弧。一小滑块 B 在水平外力 F 的作 用下从圆弧底端缓慢向上移动一小段距离,在此过程中, A 始终静止。设 A 对 B 的支持力为F N ,地面对A 4.如图所示,一轻绳跨过光滑的定滑轮,一端与质量为10kg 的吊篮相连,向另一端被站在吊篮里质量为 50kg 的人握住,整个系统悬于空中并处于静止状态。重力加速度g=10m/s2,则该人对吊篮的压力大小为() D.F N增大,F f 不变 C .F N 减小,F f 不 变

高考物理(热点 题型全突破)专题 3 三种特殊的卫星及卫星的变轨问题天体的追击相遇问题(含解析)

专题5.3 三种特殊的卫星及卫星的变轨问题、天体的追击相遇问题一、近地卫星、赤道上物体及同步卫星的运行问题 1.近地卫星、同步卫星、赤道上的物体的比较 比较内容赤道表面的物体近地卫星同步卫星 向心力来源万有引力的分力万有引力 向心力方向指向地心 重力与万有引力的关系重力略小于万有引力重力等于万有引力 线速度 v1=ω1R v 2= GM R v3=ω3(R+h)= GM R+h v1<v3<v2(v2为第一宇宙速度) 角速度 ω1=ω自ω 2= GM R3 ω3=ω自= GM R+h3 ω1=ω3<ω2 向心加速度 a1=ω21R a2=ω22R= GM R2 a3=ω23(R+h) = GM R+h2 a1<a3<a2 卫星的轨道半径r是指卫星绕天体做匀速圆周运动的半径,与天体半径R的关系为r=R+h(h为卫星距离天体表面的高度),当卫星贴近天体表面运动(h≈0)时,可认为两者相等。 【示例1】 (多选)如图,地球赤道上的山丘e、近地资源卫星p和同步通信卫星q均在赤道平面上绕地心做匀速圆周运动。设e、p、q的圆周运动速率分别为v1、v2、v3,向心加速度分别为a1、a2、a3,则( ) A.v1>v2>v3B.v1<v3<v2 C.a1>a2>a3D.a1<a3<a2 【答案】BD 【解析】由题意可知:山丘与同步卫星角速度、周期相同,由v=ωr,a=ω2r可知v1<v3、a1<a3;对同

步卫星和近地资源卫星来说,满足v = GM r 、a =GM r 2,可知v 3<v 2、a 3<a 2。故选项B 、D 正确。 【示例2】(多选)同步卫星离地心距离为r ,运行速率为v 1,加速度为a 1,地球赤道上的物体随地球自转的向心加速度为a 2,第一宇宙速度为v 2,地球的半径为R ,则下列比值正确的是( ) A.a 1a 2=r R B.a 1a 2=r 2 R 2 C.v 1v 2=r R D.v 1v 2= R r 【答案】: AD 【示例3】(2016·四川理综·3)国务院批复,自20XX 年起将4月24日设立为“中国航天日”.1970年4月24日我国首次成功发射的人造卫星东方红一号,目前仍然在椭圆轨道上运行,其轨道近地点高度约为440 km ,远地点高度约为2 060 km ;1984年4月8日成功发射的东方红二号卫星运行在赤道上空35 786 km 的地球同步轨道上.设东方红一号在远地点的加速度为a 1,东方红二号的加速度为a 2,固定在地球赤道上的物体随地球自转的加速度为a 3,则a 1、a 2、a 3的大小关系为( ) A.a 2>a 1>a 3 B.a 3>a 2>a 1 C.a 3>a 1>a 2 D.a 1>a 2>a 3 【答案】 D 【解析】 由于东方红二号卫星是同步卫星,则其角速度和赤道上的物体角速度相等,根据a =ω2 r ,r 2>r 3,则a 2>a 3;由万有引力定律和牛顿第二定律得,G Mm r 2=ma ,由题目中数据可以得出,r 1a 2>a 3,选项D 正确. 【示例4】.有a 、b 、c 、d 四颗地球卫星,a 在地球赤道上未发射,b 在地面附近近地轨道上正常运动,c 是地球同步卫星,d 是高空探测卫星,各卫星排列位置如图,则有( )

相关文档
最新文档