太阳能电池,太阳能板技术参数

太阳能电池,太阳能板技术参数
太阳能电池,太阳能板技术参数

太阳能板技术参数:

材料:单晶硅24V;玻璃:低铁钢化绒面玻璃,透光率大于90%;密封剂,连接剂:抗紫外线,抗氧化,耐腐蚀;

绝缘电压:大于600V;边框接地电阻:小于10hm;

迎风压强:2400PA 填充因子:73%;

短路电流温度系数+0.4mA/℃

开路电压温度系数-60mv/℃

工作温度:-40℃-+90℃

功率300W;

开路电压:44.5V;短路电流8.45A;工作电压:36.5V;工作电流:7.95A;系统电压1000V;尺寸:750mm(L)*675mm(W)*35mm*(H)

太阳能专用胶体蓄电池:

尺寸:329*172*215;电压12V;容量100AH。standby use 13.6-13.8V Cycle ues 14.7-15V;

控制柜:见照片。陪与路灯所现用终端兼容的控制终端。

控制器:工作电压12/24V ;rated charge current:10A;

rated load current:10A;

LED灯具(60W)

技术参数:灯具材质为全航空铝合金,壁厚在3mm以上;散热装置良好;输入电压范围AC 85~265V,频率47~63Hz,功率因数不低于0.95,电源效率>90%,色温4000k,灯具效率>92%,工作温度-20~55℃,灯具寿命>5万小时;防水、防尘等级IP68以上,光通亮6000k,白色灯光,LED每30瓦为一个模组,灯具内模组可拆卸易更换,LED颗粒为进口产品,无眩光,重量<10kg;平均照度达到20-30LX,照度系数0.4以上。

太阳能电池组件封装工艺大全

太阳能电池组件封装工艺大全 一、太阳能电池组件封装简介 组件线又叫封装线,封装是太阳能电池板生产中的关键步骤,没有良好的封装工艺,多好的电池片也做不出好的组件板。良好的电池封装不仅可以使电池的寿命得到保证,而且还增强了电池的抗击强度。产品的高质量和高寿命是赢得客户满意的关键,所以太阳能电池板的封装工艺至关重要。 太阳能电池组件封装工艺流程图如下: 太阳能电池组件封装结构图 如何保证太阳能电池组件的高效和高寿命? 1、高转换效率、高质量的电池片

下图是电池的结构示意图: (1)金属电极主栅线;(2)金属上电极细栅线;(3)金属底电极;(4)减反射膜;(5)顶区层(扩散层);(6)体区层(基区层); 2、高质量的封装材料 高耐候性、低水蒸汽透过率、良好电绝缘性等性能优异的太阳能电池背板; 交联度高、耐黄变性能好、热稳定性好、粘接力强等性能优异的EVA胶膜; 高粘结强度、密封性好的封装剂(中性硅酮树脂胶); 高透光率、高强度的钢化玻璃等

3、严谨的工作态度 由于太阳电池组件属于高科技产品,生产过程中一些细节问题,一些不起眼问题如应戴手套而不戴、应均匀的涂刷试剂而潦草完事等都是影响产品质量的大敌,所以除了制定合理的制作工艺外,员工的认真和严谨是非常重要的。 二、太阳能电池组件组装工艺介绍 1、电池分选 由于电池片制作条件的随机性,生产出来的电池片性能不尽相同,所以为了有效的将性能一致或相近的电池片组合在一起,应根据其性能参数进行分类;电池测试即通过测试电池片的输出参数(电流和电压)的大小对其进行分类。以提高电池片的利用率,做出质量合格的太阳能电池组件。 2、单焊 是将汇流带焊接到电池正面(负极)的主栅线上,汇流带为镀锡的铜带,焊带的长度约为电池片边长的2倍。多出的焊带在背面焊接时与后面的电池片的背面电极相连(如下图)。 3、串焊 背面焊接是将N张片电池串接在一起形成一个组件串,电池的定位主要靠一个膜具板,操作者使用电烙铁和焊锡丝将单片焊接好的电池的正面电极(负极)焊接到“后面电池”的背面电极(正极)上,这样依次将N张电池片串接在一起并在组件串的正负极焊接出引线。 4、叠层 背面串接好且经过检验合格后,将组件串、玻璃和切割好的EVA 、太阳能电池背板按照一定的层次敷设好,准备层压。敷设时保证电池串与玻璃等材料的相对位置,调整好电池间的距离,为层压打好基础。(敷设层次:由下向上:玻璃、EVA、电池处、EVA、玻璃纤维、背板)。 5、组件层压 将敷设好的电池组件放入层压机内,通过抽真空将组件内的空气抽出,然后加热使EVA 熔化将电池、玻璃和太阳能电池背板粘接在一起;最后冷却取出组件。层压工艺是太阳能电池组件生产的关键一步,层压温度和层压时间根据EVA的性质决定。我们使用普通的EVA 时,层压循环时间约为21分钟,固化温度为138-140℃。 6、修边 层压时EVA熔化后由于压力而向外延伸固化形成毛边,所以层压完毕应将其切除。 7、装框 类似与给玻璃装一个镜框;给玻璃组件装铝框,增加组件的强度,进一步的密封电池组

光伏电站验收标准

太阳能光伏发电系统验收考核办法 第一章总则 为确保太阳能光伏发电系统在现场安装调试完成后,综合检验太阳能光伏发电系统的安全性、功率特性、电能质量、可利用率和噪声水平,并形成稳定生产能力,制定本验收标准。 第二章验收标准 第一条编制依据 (一)太阳能光伏发电系统验收规范CGC/GF003.1-2009 (二)建筑工程施工质量验收统一标准GB50300 (三)建筑结果荷载规范GB50009-2001 (四)电气设备交接试验标准GB50150 (五)电气装置安装工程接地装置施工及验收规范GB50169 (六)电气装置安装工程盘、柜及二次回路结线施工及验收规范GB50171 (七)电气装置安装工程低压电器施工及验收规范GB50254 (八)电器安装工程高压电器施工及验收规范GBJ147 (九)建筑电气工程施工质量验收规范GB50303 (十)光伏组件(PV)安全鉴定第一部分:结构要求GB/T20047.1-2006

(十一)光伏系统性能监测测量、数据交换和分析导则GB/T20513-2006 (十二)(所有部分)交流1000V和直流1500V以下低压配电系统电气安全-防护措施的试验测量或监控设备GB/T18216 (十三)光伏系统并网技术要求GB/T19939 (十四)光伏(PV)系统电网接口特性GB/20046 (十五)地面用晶体硅光伏组件设计鉴定和定型IEC:61215 2005 (十六)并网光伏发电系统文件、试运行测试和检查的基本要求ICE:62446:2009 (十七)保护装置剩余电流动作的一般要求ICE/TR60755:2008 (十八)400V以下低压并网光伏发电专用逆变器技术要求和试验方法CNCA/CTS0004-2009 (十九)太阳能光伏发电运行规程 (二十)电力建设施工及验收技术规程DL/T5007 (二十一)太阳能光伏发电系统技术说明书、使用手册和安装手册 (二十二)太阳能光伏发电系统订货合同中的有关技术性能指标要求 (二十三)太阳能光伏发电系统基础设计图纸与有关标准 第二条验收组织机构 太阳能光伏发电工程调试完成后,建设单位组建验收领导小

太阳能电池组件主要封装材料的特性(精)

太阳能电池组件主要封装材料的特性 一、钢化玻璃 1. 加工原理 钢化玻璃是平板玻璃的二次加工产品,钢化玻璃的加工可分为物理钢化法和化学钢化法。太阳能电池组件对钢化玻璃的透光率要求很高,须大于91.6%,对大于1200nm 的红外光有较高的反射率。另外,厚度要求在3.2mm 。 1)物理钢化玻璃又称为淬火钢化玻璃(将金属工件加热到某一适当温度并保持一段时间,随即浸入淬冷介质中快速冷却)。这种玻璃处于内部受拉,外部受压的应力状态,一旦局部发生破损,便会发生应力释放,玻璃被破碎成无数小块,这些小的碎片没有尖锐棱角,不易伤人。 2)化学钢化玻璃是通过改变玻璃表面的化学组成来提高玻璃的强度,一般是应用离子交换法进行钢化。其效果类似于物理钢化玻璃。 2. 钢化玻璃的主要优点: 1)强度比普通玻璃提高数倍,抗弯强度是普通玻璃的3-5倍,抗冲击强度是普通玻璃5-10倍,提高强度的同时亦提高了安全性。 2)使用安全,其承载能力增大,改善了易碎性质,即使钢化玻璃破坏也呈无锐角的小碎片,极大地降低了对人体的伤害。钢化玻璃的耐急冷急热性比普通玻璃提高2-3倍,一般可承受150LC 以上的温差变化,对防止热炸裂有明显的效果。

钢化玻璃具有良好的热稳定性,能承受的温差是普通玻璃的3倍,可承受200℃的温差变化。 3. 钢化玻璃的缺点: 1)钢化后的玻璃不能再进行切割或加工,只能在钢化前就对玻璃进行加工至需要形状,再进行钢化处理。 2)钢化玻璃强度虽然比普通玻璃强,但是钢化玻璃在温差变化大时有自爆(自己破裂)的可能性,而普通玻璃不存在自爆的可能性。(钢化玻璃在无直接机械外力作用下发生的自动性炸裂叫做钢化玻璃的自爆。) 4. 自爆现象: 1)玻璃质量缺陷的影响 A .玻璃中有结石、杂质:玻璃中有杂质是钢化玻璃的薄弱点,也是应力集中处。 结石若处在钢化玻璃的张应力区是导致炸裂的重要因素。结石存在于玻璃中,与玻璃体有着不同的膨胀系数, 玻璃钢化后结石周围裂纹区域的应力集中成 倍地增加。当结石膨胀系数小于玻璃,结石周围的切向应力处于受拉状态,伴随结石而存在的裂纹扩展极易发生。 B .玻璃中含有硫化镍结晶物 硫化镍夹杂物一般以结晶的小球体存在,直径在0.1-2㎜。外表呈金属状,这些杂夹物是NI3S2,NI7S6和NI-XS ,其中X=0-0.07。只有NI1-XS 相是造成钢化玻璃自发炸碎的主要原因。

太阳能电池片的相关参数

硅太阳能电池的性能参数主要有:短路电流、开路电压、峰值电流、峰值电压、峰值功率、填充因子和转换效率等。 ①短路电流(isc):当将太阳能电池的正负极短路、使u=0时,此时的电流就是电池片的短路电流,短路电流的单位是安培(a),短路电流随着光强的变化而变化。 ②开路电压(uoc):当将太阳能电池的正负极不接负载、使i=0时,此时太阳能电池正负极间的电压就是开路电压,开路电压的单位是伏特(v)。单片太阳能电池的开路电压不随电池片面积的增减而变化,一般为0.5~ 0.7v。 ③峰值电流(im):峰值电流也叫最大工作电流或最佳工作电流。峰值电流是指太阳能电池片输出最大功率时的工作电流,峰值电流的单位是安培(a)。 ④峰值电压(um):峰值电压也叫最大工作电压或最佳工作电压。峰值电压是指太阳能电池片输出最大功率时的工作电压,峰值电压的单位是v。峰值电压不随电池片面积的增减而变化,一般为0.45~0.5v,典型值为 0.48v。 ⑤峰值功率(pm):峰值功率也叫最大输出功率或最佳输出功率。峰值功率是指太阳能电池片正常工作或测试条件下的最大输出功率,也就是峰值电流与峰值电压的乘积:pm===im×um。峰值功率的单位是w(瓦)。太阳能电池的峰值功率取决于太阳辐照度、太阳光谱分布和电池片的工作温度,因此太阳能电池的测量要在标准条件下进行,测量标准为欧洲委员会的101号标准,其条件是:辐照度lkw/㎡、光谱aml.5、测试温度25℃。

⑥填充因子(ff):填充因子也叫曲线因子,是指太阳能电池的最大输出功率与开路电压和短路电流乘积的比值。计算公式为ff=pm/(isc×uoc)。填充因子是评价太阳能电池输出特性好坏的一个重要参数,它的值越高,表明太阳能电池输出特性越趋于矩形,电池的光电转换效率越高。串、并联电阻对填充因子有较大影响,太阳能电池的串联电阻越小,并联电阻越大,填充因子的系数越大。填充因子的系数一般在0.5~0.8之间,也可以用百分数表示。 ⑦转换效率(η):转换效率是指太阳能电池受光照时的最大输出功率与照射到电池上的太阳能量功率的比值。即: η=pm(电池片的峰值效率)/a(电池片的面积)×pin(单位面积的入射光功率),其中pin=lkw/㎡=100mw/cm2。 组件的板形设计一般从两个方向入手。一是根据现有电池片的功率和尺寸确定组件的功率和尺寸大小;二是根据组件尺寸和功率要求选择电池片的尺寸和功率。 电池组件不论功率大小,一般都是由36片、72片、54片和60片等几种串联形式组成。常见的排布方法有4片×9片、6片×6片、6片×12片、6片×9片和6片×10片等。下面就以36片串联形式的电池组件为例介绍电池组件的板型设计方法。

有关太阳能电池板的数据计算(1)

一,太阳能光电产品计算 下面以1kW输出功率,每天使用6个小时为例,介绍一下计算数据: 1.首先应计算出每天消耗的瓦时数(包括逆变器的损耗): 通常逆变器的转换效率为90%(国内企业研制的大功率光伏逆变器最高转换率 已达98.8%),则当输出功率为P 1=1kW时,则实际需要输出功率应为P 2 =1kW/90% =1.11kW;若按每天使用6小时,则耗电量为W 1 =1.11kW*6小时=6.66kWh。 2.蓄电池的选择: 按照蓄电池一次充满后连续放电(非浮充状态下)可供负载一天(6小时)使用 蓄电池采用规格: 2400WH/12V。 蓄电池容量:2400WH/12V=200AH,蓄电池每日放电量 6.66kw/12v=555Ah,即每天(6小时使用时间)的用电量为12V555Ah。蓄电池的最大放电深度最好保持在70%以内, 所以输入应为:W 2 =W 1 /0.7=6.66kwh/0.7=9.51kWh。 总共容量的计算:555Ah/0.7=792.85Ah≈800Ah,实际没有800AH的容量,可以用200AH四组就可以了. 3.太阳能电池容量的计算与当地的地理位置、太阳辐射、气侯等因素有关。首先计算标准辐照度下当地的年平均日照时数H(h) H=年辐射总量(kcal/cm2)×1.63(Wh/kcal) 365×0.1(W/cm2) 式中0.1W/cm2是25℃,AM1.5光谱时的辐照度,也是太阳能电池的标准测试条件。 表1 我国各类地区太阳能年辐射量 将年总辐射量代入公式,可得到各地区标准辐照度下当地的年平均日照时数H (h),结果如表1 按每日有效日照时间为H小时计算,再考虑到充电效率和充电过程中的损耗,充电过程中,太阳能电池板的实际使用功率为70%。 太阳能电池板的输出功率应为P 3 =9.51kWh/H/70%=13.585/H(W)。 太阳能峰值功率WP是在标准条件下:辐射强度1000W/m2,大气质量AM15,电池温度25℃条件下,太阳能电池的输出功率。太阳能电池的额定输出功率与转换效率有关,一般来讲,单位面积的电池组件,转换效率越高,其输出功率越大。太阳能电池目前的转换效率一般在14-17%之间,每平方米的太阳能电池组件输出功率约140-170WP. 面积功率*面积=功率 我们按照面积电池(m2)光电转换效率为15%计算,假设此时太阳光的总功率为 1000W/m2组件的功率为P 3 =13.585/H(kW)

太阳能电池板的生产工艺流程

太阳能电池板的生产工艺流程 太阳能电池板的生产工艺流程 封装是太阳能电池生产中的关键步骤,没有良好的封装工艺,多好的电池也生产不出好的太阳能电池板。电池的封装不仅可以使电池的寿命得到保证,而且还增强了电池的抗击强度。产品的高质量和高寿命是赢得客户满意的关键,所以太阳能电池板的封装质量非常重要。 (1)流程 电池检测——正面焊接——检验——背面串接——检验——敷设(玻璃清洗、材料切割、玻璃预处理、敷设)——层压——去毛边(去边、清洗)——装边框(涂胶、装角键、冲孔、装框、擦洗余胶)——焊接接线盒——高压测试——组件测试——外观检验——包装入库。 (2)组件高效和高寿命的保证措施高转换效率、高质量的电池片;高质量的 原材料,例如,高的交联度的 EVA高黏结强度的封装剂(中性硅酮树脂胶)、高透光率高强度的钢化玻璃等; 合理的封装工艺,严谨的工作作风, 由于太阳电池属于高科技产品,生产过程中一些细节问题,如应该戴手套而不戴、应该均匀地涂刷试剂却潦草完事等都会严重地影响产品质量,所以除了制定合理的工艺外,员工的认真和严谨是非常重要的。 (3)太阳能电池组装工艺简介 ①电池测试:由于电池片制作条件的随机性,生产出来的电池性能不尽相同,所以为了有效地将性能一致或相近的电池组合在一起,所以应根据其性能参数进行分类;电池测试即通过测试电池的输出参数(电流和电压)的大小对其进行分类。以提高电池的利用率,做出质量合格的太阳能电池组件。如果把一片或者几片低功率的电池片装在太阳电池单体中,将会使整个组件的输出功率降低。因此,为了最大限度地降低电池串并联的损失,必须将性能相近的单体电池组合成组件。 ②焊接:一般将6?12个太阳能电池串联起来形成太阳能电池串。传统 上,一般采用银扁线构成电池的接头,然后利用点焊或焊接(用红外灯,利用红外线的热效应)等方法连接起来。现在一般使用60%的Sn、38%的Pb、2%的Ag 电镀后的铜扁丝(厚度约为100?200卩m)。接头需要经过火烧、红外、热风、激光处理。由于铅有毒,因此现在越来越多地采用 96.5 %的铜和 3.5 %的银合金。但是

光伏发电工程验收规范GBT50796-2012

光伏发电工程验收规范(GB/T 50796-2012) 1总则 1.0.1为确保光伏发电工程质量,指导和规范光伏发电工程的验收,制定本规范。 1.0.2本规范适用于通过380V及以上电压等级接人电网的地面和屋顶光伏发电新建、改建和扩建工程的验收,不适用于建筑与光伏一体化和户用光伏发电工程。 1.0.3光伏发电工程应通过单位工程、工程启动、工程试运和移交生产、工程竣工四个阶段的全面检查验收。 1.0.4各阶段验收应按要求组建相应的验收组织,并确定验收主持单位。 1.0.5光伏发电工程的验收,除按本规范执行外,尚应符合国家现行有关标准的规定。

2术语 2.0.1光伏发电工程photovoltaic power project 指利用光伏组件将太阳能转换为电能、并与公共电网有电气连接的工程实体,由光伏组件、逆变器、线路等电气设备、监控系统和建(构)筑物组成。 2.0.2光伏电站photovoltaic power station 指利用光伏组件将太阳能转换为电能、并按电网调度部门指令向公共电网送电的电站,由光伏组件、逆变器、线路、开关、变压器、无功补偿设备等一次设备和继电保护、站内监控、调度自动化、通信等二次设备组成。 2.0.3光伏发电单元photovoltaic power unit 光伏电站中,以一定数量的光伏组件串,通过直流汇流箱多串汇集,经逆变器逆变与隔离升压变压器升压成符合电网频率和电压要求的电源。这种一定数量光伏组件串的集合称为光伏发电单元。 2.0.4观感质量quality of appearance 通过观察和必要的量测所反映的工程外在质量。 2.0.5绿化工程plant engineering 由树木、花卉、草坪、地被植物等构成的植物种植工程。 2.0.6安全防范工程security and protection engineering 以保证光伏电站安全和防范重大事故为目的,综合运用安全防范技术和其他科学技术,为建立具有防入侵、防盗窃、防抢劫、防破坏、防爆安全检查等功能(或其组合)的系统而实施的工程。

太阳能电池性能参数

太阳能电池性能参数 1、开路电压 开路电压UOC:即将太阳能电池置于AM1.5光谱条件、100 mW/cm2的光源强度照射下,在两端开路时,太阳能电池的输出电压值。 2、短路电流 短路电流ISC:就是将太阳能电池置于AM1.5光谱条件、100 mW/cm2的光源强度照射下,在输出端短路时,流过太阳能电池两端的电流值。 3、最大输出功率 太阳能电池的工作电压和电流是随负载电阻而变化的,将不同阻值所对应的工作电压和电流值做成曲线就得到太阳能电池的伏安特性曲线。如果选择的负载电阻值能使输出电压和电流的乘积最大,即可获得最大输出功率,用符号Pm表示。此时的工作电压和工作电流称为最佳工作电压和最佳工作电流,分别用符号Um和Im表示。 4、填充因子 太阳能电池的另一个重要参数是填充因子FF(fill factor),它是最大输出功率与开路电压和短路电流乘积之比。 FF:是衡量太阳能电池输出特性的重要指标,是代表太阳能电池在带最佳负载时,能输出的最大功率的特性,其值越大表示太阳能电池的输出功率越大。FF 的值始终小于1。串、并联电阻对填充因子有较大影响。串联电阻越大,短路电流下降越多,填充因子也随之减少的越多;并联电阻越小,其分电流就越大,导致开路电压就下降的越多,填充因子随之也下降的越多。 5、转换效率 太阳能电池的转换效率指在外部回路上连接最佳负载电阻时的最大能量转换效率,等于太阳能电池的输出功率与入射到太阳能电池表面的能量之比。太阳能电池的光电转换效率是衡量电池质量和技术水平的重要参数,它与电池的结构、结特性、材料性质、工作温度、放射性粒子辐射损伤和环境变化等有关。

图2.4.1 太阳能电池输出特性曲线

太阳能电池组件的封装(精华)

太阳能电池组件的封装(精华) 导读:单件电池片由于输出功率太小,难以满足常规用电需求,因此需要将其封装为组件以提高其输出功率。封装是太阳能电池生产中的关键步骤,没有良好的封装工艺,再好的电池也生产不出好的组件。电池的封装不仅可以使电池的寿命得到保证,而且还增强了电池的抗击强度。产品的高质量和高寿命是赢得客户满意的关键,所以组件的封装质量非常重要。 具有外部封装及内部连接、能单独提供直流电输出的最小不可分割的太阳能电池组合装置,叫太阳能电池组件,即多个单体太阳能电池互联封装后成为组件。太阳能电池组件是太阳能发电系统中的核心部分,也是太阳能发电系统中最重要的部分。 1.防止太阳能电池破损。晶体硅太阳能电池易破损的原因:晶体硅呈脆性;硅太阳能电池面积大;硅太阳能电池厚度小。 2.防止太阳能电池被腐蚀失效。太阳能电池的自然抗性差:太阳电池长期暴露在空气中会出现效率的衰减;太阳电池对紫外线的抵抗能力较差;太阳电池不能抵御冰雹等外力引起的过度机械应力所造成的破坏;太阳电池表面的金属化层容易受到腐蚀;太阳电池表面堆积灰尘后难以清除。 3.满足负载要求,串联或并联成一个能够独立作为电源使用的最小单元。由于单件太阳电池输出功率难以满足常规用电需求,需要将它们串联或者并联后接入用电器进行供电。 太阳能电池组件的种类较多,根据太阳能电池片的类型不同可分为晶体硅(单、多晶硅)太阳能电池组件、非晶硅薄膜太阳能电池组件及砷化镓电池组件等;按照封装材料和工艺的不同可分为环氧树脂封装电池板和层压封装电池组件;按照用途的不同可分为普通型太阳能电池组件和建材型

太阳能电池组件。其中建材型太阳能电池组件又分为单面玻璃透光型电池组件、双面夹胶玻璃电池组件和双面中空玻璃电池组件。由于用晶体硅太阳能电池片制作的电池组件应用占到市场份额的85%以上,在此就主要介绍用晶体硅太阳能电池片制作的电池组件。 单晶硅组件 多晶硅组件 非晶硅组件 第一代室温硫化硅橡胶封装 第二代聚乙烯醇缩丁醛 (PVB )封装 第三代乙烯-醋酸乙烯共聚物(EVA )封

2020年 太阳能组件玻璃检验标准 A-0-工艺部-三级文件-安全作业管理

文件制修/ 订记录表

1 目的 明确玻璃检验标准. 2 范围 本规范适用于各种规格型号太阳能组件专用玻璃的进厂质量检验。 3 定义 无 4 相关文件 《太阳能电池组件玻璃检验作业检验指导书》 GB/T9963-1998钢化玻璃国家检验标准 5 职责 5.1 质量部:依照标准制定相应检验指导书。 5.2 采购部:将标准传递至供应商,并与供应商签订技术协议。 6 管理内容 6.1 外观检验

6.2 几何尺寸检验 6.2.1 长度,宽度符合订货协议要求,允许偏差为±1.0mm。 6.2.2 厚度尺寸公差为±0.2mm。 6.2.3 对角线L﹤1000mm,偏差为≤1.5mm;1000mm≤L≤2000mm,偏差为≤3mm 3.2.4 倒角 2.0mm~5.0mm 6.3 性能检验 6.3 性能检验 6.4 检测仪器,仪表及工卡量具 钢板尺或钢卷尺、游标卡尺或千分尺、钢球。 6.5 检验方法 6.5.1 外观检验 在较好的自然光或自然散射光下,距玻璃表面600mm用肉眼进行观察,必要时使用 放大镜进行检查。 6.5.2 尺寸检验 依据订货协议技术要求用钢板尺或钢卷尺进行多点长宽尺寸测量,取其平均值;用 精度为0.01mm的千分尺测量玻璃各边中心的厚度,取其平均值。 6.5.3 弯曲度检验 以平面钢化玻璃制品为试样。试样垂直立放,水平放置直尺贴紧试样表面进行测量。 弓形时以弧的高度与弦的长度之比的百分率表示。波形时,用波谷到波峰的高与波

峰到波峰或波谷到波谷的距离之比的百分率表示。 6.5.4 机械强度检验 6.5.4.1 将试样放置在高50mm宽15mm与试样外形尺寸大小一致的木框上。 6.5.4.2 将重1040g的钢球自1.0m高度自由落下,冲击点应距试样中心25mm范围 内。每块试样中心只限一次。(备注:试样玻璃单独放置,不可流入生产线使用) 6.5.4.3 试样完好无损。 6.5.5 其它各项性能检验以采购部从厂家索取的性能检验报告为准,性能检验报告完全符 合3.3标准条款时方可认为性能合格,否则认为性能指标不合格。(针对不同厂家、 不同项目定期进行委托检验). 7 安全 无 8 职工健康 无 9 记录 无 10 附件 无

硅太阳能电池的主要性能参数

硅太阳能电池的主要性能参数 本信息来源于太阳能人才网|https://www.360docs.net/doc/055334979.html, 原文链接: 硅太阳能电池的性能参数主要有:短路电流、开路电压、峰值电流、峰值电压、峰值功率、填充因子和转换效率等。 ①短路电流(isc):当将太阳能电池的正负极短路、使u=0时,此时的电流就是电池片的短路电流,短路电流的单位是安培(a),短路电流随着光强的变化而变化。 ②开路电压(uoc):当将太阳能电池的正负极不接负载、使i=0时,此时太阳能电池正负极间的电压就是开路电压,开路电压的单位是伏特(v)。单片太阳能电池的开路电压不随电池片面积的增减而变化,一般为0.5~0.7v。 ③峰值电流(im):峰值电流也叫最大工作电流或最佳工作电流。峰值电流是指太阳能电池片输出最大功率时的工作电流,峰值电流的单位是安培(a)。 ④峰值电压(um):峰值电压也叫最大工作电压或最佳工作电压。峰值电压是指太阳能电池片输出最大功率时的工作电压,峰值电压的单位是v。峰值电压不随电池片面积的增减而变化,一般为0.45~0.5v,典型值为0.48v。 ⑤峰值功率(pm):峰值功率也叫最大输出功率或最佳输出功率。峰值功率是指太阳能电池片正常工作或测试条件下的最大输出功率,也就是峰值电流与峰值电压的乘积:pm===im ×um。峰值功率的单位是w(瓦)。太阳能电池的峰值功率取决于太阳辐照度、太阳光谱分布和电池片的工作温度,因此太阳能电池的测量要在标准条件下进行,测量标准为欧洲委员会的101号标准,其条件是:辐照度lkw/㎡、光谱aml.5、测试温度25℃。 ⑥填充因子(ff):填充因子也叫曲线因子,是指太阳能电池的最大输出功率与开路电压和短路电流乘积的比值。计算公式为ff=pm/(isc×uoc)。填充因子是评价太阳能电池输出特性好坏的一个重要参数,它的值越高,表明太阳能电池输出特性越趋于矩形,电池的光电转换效率越高。 串、并联电阻对填充因子有较大影响,太阳能电池的串联电阻越小,并联电阻越大,填充因子的系数越大。填充因子的系数一般在0.5~0.8之间,也可以用百分数表示。 ⑦转换效率(η):转换效率是指太阳能电池受光照时的最大输出功率与照射到电池上的太阳能量功率的比值。即: η=pm(电池片的峰值效率)/a(电池片的面积)×pin(单位面积的入射光功率),其中pin=lkw /㎡=100mw/cm2。 电池组件的板型设计 在生产电池组件之前,就要对电池组件的外型尺寸、输出功率以及电池片的排列布局等进行设计,这种设计在业内就叫太阳能电池组件的板型设计。电池组件板型设计的过程是一个对电池组件的外型尺寸、输出功率、电池片排列布局等因素综合考虑的过程。设计者既要了解电池片的性能参数,还要了解电池组件的生产工艺过程和用户的使用需求,做到电池组件尺寸合理,电池片排布紧凑美观。 组件的板形设计一般从两个方向入手。一是根据现有电池片的功率和尺寸确定组件的功率和尺寸大小;二是根据组件尺寸和功率要求选择电池片的尺寸和功率。 电池组件不论功率大小,一般都是由36片、72片、54片和60片等几种串联形式组成。常见的排布方法有4片×9片、6片×6片、6片×12片、6片×9片和6片×10片等。下面就以36片串联形式的电池组件为例介绍电池组件的板型设计方法。

太阳能电池片功率计算公式

太阳能电池片功率计算公式 电池片制造商在产品规格表中会给出标准测试条件下的太阳电池性能参数:一般包括有短路电流Isc;开路电压Voc;最大功率点电压Vap;最大功率点电流Iap;最大功率Pmpp; 转换效率Eff等。标准测试条件下,最大功率Pmpp 与转换效率之间有如下关系: Pmpp = 电池面积(m2)*1000(W/m2)*Eff 举例如下: 产品类型转化效率(%) 功率(W) 单晶125*125 15 单晶156*156 15 多晶125*125 15 多晶156*156 15 注1:测试条件符合太阳光谱的辐照强度1000W/m2,电池温度25℃,测试方法 符合IEC904-1,容许偏差Efficiency ±5% REL。 注2: AM是air mass的简称,意思是大气质量。 是一种条件,它描述太阳光入射于地表之平均照度,其太阳总辐照度为1000W/m2;太阳电池的标定温度为25±1℃。 注3:IEC904-1 IEC:国际电工委员会,international electrotechnical commission。 IEC904等同于GB/T6495。 注4:REL :rate of energy loss 能量损耗率

太阳能电池功率 一:首先计算出电流: 如:12V蓄电池系统;30W的灯2只,共60瓦。 电流= 60W÷12V= 5 A 二:计算出蓄电池容量需求: 如:路灯每夜照明时间小时,实际满负载照明为 7小时(h); 例一:1 路 LED 灯 (如晚上7:30开启100%功率,夜11:00降至50%功率,凌晨4:00后再100%功率,凌晨5:00 关闭) 例二:2 路非LED灯(低压钠灯、无极灯、节能灯、等) (如晚上7:30两路开启,夜11:00关闭1路,凌晨4:00开启2路,凌晨5:00关闭) 需要满足连续阴雨天5天的照明需求。(5天另加阴雨天前一夜的照明,计6天)蓄电池= 5A× 7h×( 5+1)天= 5A× 42h =210 AH 另外为了防止蓄电池过充和过放,蓄电池一般充电到90%左右;放电余留5%-20%左右。 所以210AH也只是应用中真正标准的70%-85%左右。另外还要根据负载的不同,测出实际的损耗,实际的工作电流受恒流源、镇流器、线损等影响,可能会在5A的基础上增加15%-25%左右。 三:计算出电池板的需求峰值(WP): 路灯每夜累计照明时间需要为 7小时(h); ★:电池板平均每天接受有效光照时间为小时(h); 最少放宽对电池板需求20%的预留额。 WP÷=(5A× 7h× 120%)÷ WP÷= WP = 162(W) ★:每天光照时间为长江中下游附近地区日照系数。

太阳能电池组件技术示范

太阳电池组件成品技术规范 编写: 校对: 审核: 会签:、 、 、 、

、 、 批准: 太阳电池组件技术总规范 1目的 通过制定太阳电池组件技术总规范,使公司所生产的太阳能电池组件的生产及质量处于规范、可控的状态。保证产品质量,满足客户要求。 2适用范围 2.1本技术规范规定了太阳电池组件的技术要求、外观质量及性能要求。 2.2本技术规范适用于本公司生产的太阳能电池组件(客户另有要求除外)。 2.3本技术规范不能取代本公司与客户签订的技术协议。 3职责权限 3.1技术开发部制定太阳能电池组件成品技术总规范; 3.2公司各相关部门在电池组件生产、检验等环节依据本规范执行。 4引用文件 4.1 GB/T 9535 地面用晶体硅光伏组件——设计鉴定和定型(IEC 61215-2005,

IDT); 4.2 GB/T 20047.1-2006 光伏(PV)组件安全鉴定第1部分:结构要求(IEC 61730-1:2004); 4.3 GB/T 20047.2-2006光伏(PV)组件安全鉴定第2部分:试验要求(IEC 61730-2:2004); 4.4 QEH-2011-RD-I139A太阳电池组件用晶硅电池片技术规范V1.0; 4.5 QEH-2011- RD-I115A太阳电池组件用钢化玻璃技术规范V2; 4.6 QEH-2011- RD-I121A太阳电池组件用EVA技术规范V2; 4.7 QEH-2011- RD-I122A太阳电池组件用背板材料技术规范V2; 4.8 QEH-2011- RD-I114A太阳电池组件用焊带技术规范V1.2; 4.9 QEH-2011- RD-I123A太阳电池组件用接线盒技术规范V2.0; 4.10 QEH-2010-RD-I118A太阳电池组件用铝合金边框技术规范; 4.11 QEH-2011-RD-I119A 太阳电池组件用透明胶带技术规范V1.0; 4.12 QEH-2011-RD-I124太阳能电池组件制造工艺过程卡汇总V4.0; 4.13 IEC 60364-2005 Electrical installations of buildings-Part 5-51 Selection and erection of electrical equipment-Common rules. 5定义 5.1 组件:具有封装及内部连接的、能单独提供直流电输出的、不可分割的最小太阳能电池组合装置。 6内容 6.1 关键材料要求 用于制造晶硅太阳电池的所有材料应根据客户要求,考虑强度、耐用性、化学物

太阳能电池的基本特性与性能参数

1、太阳能电池的基本特性 太阳能电池的基本特性有太阳能电池的极性、太阳电池的性能参数、太阳能电池的伏安特性三个基本特性。具体解释如下 1、太阳能电池的极性 硅太阳能电池的一般制成P+/N型结构或N+/P型结构,P+和N+,表示太阳能电池正面光照层半导体材料的导电类型;N和P,表示太阳能电池背面衬底半导体材料的导电类型。太阳能电池的电性能与制造电池所用半导体材料的特性有关。 2、太阳电池的性能参数 太阳电池的性能参数由开路电压、短路电流、最大输出功率、填充因子、转换效率等组成。这些参数是衡量太阳能电池性能好坏的标志。 3 太阳能电池的伏安特性 P-N结太阳能电池包含一个形成于表面的浅P-N结、一个条状及指状的正面欧姆接触、一个涵盖整个背部表面的背面欧姆接触以及一层在正面的抗反射层。当电池暴露于太阳光谱时,能量小于禁带宽度Eg的光子对电池输出并无贡献。能量大于禁带宽度Eg的光子才会对电池输出贡献能量Eg,大于Eg的能量则会以热的形式消耗掉。因此,在太阳能电池的设计和制造过程中,必须考虑这部分热量对电池稳定性、寿命等的影响。 2、有关太阳电池的性能参数 1、开路电压 开路电压UOC:即将太阳能电池置于100 mW/cm2的光源照射下,在两端开路时,太阳能电池的输出电压值。 2、短路电流 短路电流ISC:就是将太阳能电池置于标准光源的照射下,在输出端短路时,流过太阳能电池两端的电流。 3、大输出功率

太阳能电池的工作电压和电流是随负载电阻而变化的,将不同阻值所对应的工作电压和电流值做成曲线就得到太阳能电池的伏安特性曲线。如果选择的负载电阻值能使输出电压和电流的乘积最大,即可获得最

太阳能电池组件的封装

太阳能电池组件的封装

太阳能电池组件的封装 (二)组件的封装结构 (三)组件的封装材料 1上盖板2黏结剂3底板4边框(四)组件封装的工艺流程 不同结构的组件有不同的封装工艺。平板式硅太阳能电池组件的封装工艺流程,如图17所示。可将这一工艺流程概述为:组件的中间是通过金属导电带焊接在一起的单体电池,电池上卞两侧均为EVA膜,最上面是低铁钢化白玻璃,背面是PVF复合膜。将各层材料按顺序叠好后,放人真空层压机内进行热压封装。最上层的玻璃为低铁钢化白玻璃,透光率高,而且经紫外线长期照射也不会变色。EVA膜中加有抗紫外剂和固化剂,在热压处理过程中固化形成具有一定弹性的保护层,并保证电池与钢化玻璃紧密接触。PVF复合膜具有良好的耐光、防潮、防腐蚀性能。经层压封装后,再于四周加上密封条,装上经过阳极氧化的铝合金边框以及接线盒,即成为成品组件。最后,要对成品组件进行检验测试,测试内容主要包括开路电压、短路电流、填充因

子以及最大输出功率等。 硅片划片切割工艺概况 1用激光来划片切割硅片是目前最为先进的,它使用精度高、而且重复精度也高、工作稳定、速度快、操作简单、维修方便。 2激光最大输出≧50W(可调)、激光波长为1.064μm、 切割厚度≦1.2mm、光源是用Nd:YAG晶体组成激光器、是单氪灯连续泵浦、声光调Q、并用计算机控制二维工作台可预先设定的图形轨迹作各种精确运动。 ± 部件分析: 1操作可分为外控与内控。 2计算机操作系统-有专用软件设立工作台划片步骤实现划片目标。 3电源控制盒-供应激光电源、Q电源驱动、水冷系统的输入电源进行分配及自控,当循环水冷系统出现故障时,自动断开激光电源及Q电源驱动盒的供电。 4激光电源盒-点燃氪灯的自动引燃恒流电源。 5 Q电源驱动盒-产生射频信号并施加到Q开

EVA太阳能电池封装膜的介绍[1]

EVA太阳能电池封装膜的介绍和封装工艺简介 1. EVA太阳能电池封装膜的介绍、太阳能电池的工作原理简介和封装工艺简介 1.1EVA太阳能电池胶膜产品简介 太阳能电池胶膜是用EVA(乙烯-醋酸乙烯共聚物)为主要原料,添加各种助剂后,经加热挤出成型的产品。该胶膜在常温时无粘性,便于裁切分割操作。目前,本胶膜主要用于太阳能电池板的封装。在封装时,先裁切所需尺寸的胶膜,按玻璃-胶膜-电池板-胶膜-TPT叠合于铝合金框内;然后,放入层压机内加热、加压、并抽真空;最后,放入设定温度的固化炉中恒温所需时间即可。 EVA 胶膜特点描述 1:高透光率,提高组件的光电转化效率。 2:合理的交联度,保证组件良好的稳定性和可使用寿命。 3:卓越的耐紫外老化性能和优秀的耐湿热老化行能,保证组件在户外长达25 年的使用寿命。 4:极低的收缩伸长率,保证您的组件尺寸稳定性和一致性。 5:对各种背板和玻璃较强的粘接性能,保证组件安全高效的运行。 1.2太阳能电池简单介绍 1.2.1什么是太阳能电池

太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。 1.2.2太阳能电池的原理 太阳光照在半导体p-n结上,形成新的空穴-电子对,在p-n结电场的作用下,空穴由n区流向p区,电子由p区流向n区,接通电路后就形成电流。这就是光电效应太阳能电池的工作原理。 一、太阳能发电方式太阳能发电有两种方式,一种是光—热—电转换方式,另一种是光—电直接转换方式。 (1)光—热—电转换方式通过利用太阳辐射产生的热能发电,一般是由太阳能集热器将所吸收的热能转换成工质的蒸气,再驱动汽轮机发电。前一个过程是光—热转换过程;后一个过程是热—电转换过程,与普通的火力发电一样.太阳能热发电的缺点是效率很低而成本很高,估计它的投资至少要比普通火电站贵5~10倍.一座1000MW的太阳能热电站需要投资20~25亿美元,平均1kW的投资为2000~2500美元。因此,目前只能小规模地应用于特殊的场合,而大规模利用在经济上很不合算,还不能与普通的火电站或核电站相竞争。 (2)光—电直接转换方式该方式是利用光电效应,将太阳辐射能直接转换成电能,光—电转换的基本装置就是太阳能电池。太阳能电池是一种由于光生伏特效应而将太阳光能直接转化为电能的器件,是一个半导体光电二极管,当太阳光照到光电二极管上时,光电二极管就会把太阳的光能变成电能,产生电流。当许多个电池串联或并联起来就可以成为有比较大的输出功率的太阳能电池方阵了。太阳能电池是一种大有前途的新型电源,具有永久性、清洁性和灵活性三大优点.太阳能电池寿命长,只要太阳存在,太阳能电池就可以一次投资而长期使用;与火力发电、核能发电相比,太阳能电池不会引起环境污染;太阳能电池可以大中小并举,大到百万千瓦的中型电站,小到只供一户用的太阳能电池组,这是其它电源无法比拟的. 1.2.3太阳能电池的分类 太阳能电池按结晶状态可分为结晶系薄膜式和非结晶系薄膜式(以下表示为a-)两大类,而前者又分为单结晶形和多结晶形。 按材料可分为硅薄膜形、化合物半导体薄膜形和有机膜形,而化合物半导体薄膜形又分为非结晶形 (a-Si:H,a-Si:H:F,a-SixGel-x:H等)、ⅢV族(GaAs,InP等)、ⅡⅥ族(Cds系)和磷化锌(Zn 3 p 2 )等。 太阳能电池根据所用材料的不同,太阳能电池还可分为:硅太阳能电池、多元化合物薄膜太阳能电池、聚合物多层修饰电极型太阳能电池、纳米晶太阳能电池、有机太阳能电池,其中硅太阳能电池是目前发展最成熟的,在应用中居主导地位。 (1)硅太阳能电池 硅太阳能电池分为单晶硅太阳能电池、多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池三种。 单晶硅太阳能电池转换效率最高,技术也最为成熟。在实验室里最高的转换效率为24.7%,规模生产时的效率为15%。在大规模应用和工业生产中仍占据主导地位,但由于单晶硅成本价格高,大幅度降低其成本很困难,为了节省硅材料,发展了多晶硅薄膜和非晶硅薄膜做为单晶硅太阳能电池的替代产品。 (2)多元化合物薄膜太阳能电池 多元化合物薄膜太阳能电池材料为无机盐,其主要包括砷化镓III-V族化合物、硫化镉、硫化镉及铜锢硒薄膜电池等。 硫化镉、碲化镉多晶薄膜电池的效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产,但由于镉有剧毒,会对环境造成严重的污染,因此,并不是晶体硅太阳能电池最理想的替代产品。 (3)聚合物多层修饰电极型太阳能电池 以有机聚合物代替无机材料是刚刚开始的一个太阳能电池制造的研究方向。由于有机材料柔性好,制作容易,材料来源广泛,成本底等优势,从而对大规模利用太阳能,提供廉价电能具有重要意义。但以有机材

集团晶硅太阳电池组件质量检验标准修订稿-新版

晶体硅太阳电池组件质量检验标准 (修订稿) 二零一三年九月十六日

《晶体硅太阳电池组件质量检验标准》 编写委员会 主任:张晓鲁 副主任:胡建东吴金华杨存龙 委员:李启钊王怀志孙玉军庞秀兰桑振海李贵信主编:吴金华杨存龙 副主编:李启钊庞秀兰 编写人员:张治卢刚崇锋王雪松董鹏 评审人员:李建勋汪毅徐永邦唐超莫玄超 桑振海付励张雄刘蕾 韩晓冉曹继福严海燕张效乾刘立峰 陈文凯雷力靳旭东徐振兴

前言 为加强中国电力投资集团公司光伏发电站晶体硅太阳电池组件质量检验管理工作,规范光伏发电站晶体硅太阳电池组件质量监造、验收程序,确保光伏发电站建设与生产运营质量,特制订本标准。 本标准编制的主要依据是:现行国家有关工程质量的法律、法规、管理标准、技术标准、GB/T 1.1-2009 标准化工作导则第1部分:标准的结构和编写等有关标准和相关行业标准。 本标准由中国电力投资集团水电与新能源部提出、归口管理并负责解释。

晶体硅太阳电池组件质量检验标准(修订稿) 目录 1总则 (1) 2规范性引用文件 (1) 3工厂检验 (2) 4出厂检验 (12) 5电站现场检验 (13) 6组件送实验室质量检验 (15) 附录 GB/T 2828.1-2003 抽样方法 (16)

1总则 1.1本标准适用于中国电力投资集团公司(以下简称集团公司)及其全资、控股 公司所属或管理的新建和改扩建的光伏发电站工程用晶体硅太阳电池组件质量监造、检验、验收。 1.2本标准适用于中国国内的各地区光伏发电站用晶体硅太阳电池组件(以下简 称组件)的质量检验验收。本标准中的晶体硅太阳电池组件包括单晶硅太阳电池组件、多晶硅太阳电池组件和准单晶太阳电池组件。 1.3本标准所列的检验内容主要包括三种检验,即工厂检验、产品出厂检验和电 站现场检验。 1.4本标准依据国家、行业现行有关工程质量的法律、法规、技术标准编制。1.5本标准未涉及的范围,执行国家现行标准的相关规定。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注明年代的引用文件,仅注明年代的版本适用于本文件。凡是不注明年代的引用文件,其最新版本(包括所有的修改单)适用于本文件。 IEC 61730.1-2004 光伏组件安全认证第1部分:光伏组件的安全性构造要求 IEC 61730.2-2004 光伏组件安全认证第2部分:实验要求 IEC 61215 2005-4 地面用晶体硅光伏组件设计鉴定和定型 UL1703-2004 平板光伏组件 GB/T 2828.1-2003 计数抽样检验程序第1部分:按接收质量限(AQL)检索的逐批检验 抽样计划 GB/T 1.1-2009 标准化工作导则第1部分:标准的结构和编写 GB/T9535-1998 地面用晶体硅光伏组件设计鉴定和定型 GB/T 18912-2002 光伏组件盐雾腐蚀试验 GB/T 19394-2003 光伏(PV)组件紫外试验 GB/T 20047.1-2006 光伏(PV)组件安全鉴定第1部分:结构要求 GB/T 6495.1-1996 光伏器件第1部分:光伏电流-电压特性的测量 GB/T 6495.2-1996 光伏器件第2部分: 标准太阳电池的要求 GB/T 6495.3-1996 光伏器件第3部分:地面用光伏器件的测量原理及标准光谱辐照 度数据

相关文档
最新文档