模式识别课程设计

模式识别课程设计
模式识别课程设计

模式识别导论课程设计

学号:

班级:

姓名:

课程名称模式识别考试性质考查试卷类型 A 使用班级电信1101-1103 考试方法大作业人数100 题号一二三四五六七八九十总成绩成绩

(2)分类器设计方法概述及选择依据分析;(10分)

(3)感知器算法原理及算法步骤;(20分)

(4)感知器算法流程设计;(20分)

(5)感知器算法程序;(10分)

(6)程序仿真及结果分析;(20分)

(7)结论;(5分)

(8)参考文献。(5分)

四、请结合具体的应用背景,设计基于K-L变换的特征提取算法,并编写程序,分析结果,提交报告一份。

报告内容包括:(1)具体应用背景的介绍;(10分)

(2)特征提取方法概述及选择依据分析;(10分)

(3)基于K-L变换的特征提取算法原理及步骤;(20分)

(4)基于K-L变换的特征提取算法流程设计;(20分)

(5)基于K-L变换的特征提取算法程序;(10分)

(6)程序仿真及结果分析;(20分)

(7)结论;(5分)

(8)参考文献。(5分)

1具体应用背景的介绍

随着社会经济的发展、人口的增多,人们对水资源的利用更加重视,不同的水资源质量程度不一,为了更好地适应人类的需求,需要对水资源根据污染物有机物、无机物、重金属含量进行适当的分类。在这里将运用模式识别的方法简单的对其分类为一类水与二类水。

2分类器设计方法概述及选择依据分析

感知器是一种神经网络模型,是20世纪50年代中期到60年代初人们对模拟人脑学习能力的一种分类学习机模型的称呼,当时有些人认为它是一种学习记的强有力模型,后来发现估计过高,由于无法实现非线性分类,到60年代中期,从事感知器研究的实验室纷纷下马,但在发展感知器是所获得的一些数学概念,如“赏罚分明”今天仍在模式识别中起着很大的作用。

将用感知器的方法在本次设计中对水资源进行分类

3感知器算法原理及算法步骤

两类线性可分的模式类 21,ωω,设

X W X d T

)(=其中,[]T

121,,,,+=n n w w w w W ,[]T

211,,,,n x x x =X 应具有性质

(3-1)

对样本进行规范化处理,即ω2类样本全部乘以(-1),则有:

2)-(3 0)(T >=X W X d

感知器算法通过对已知类别的训练样本集的学习,寻找一个满足上式的权向量。

感知器算法步骤:

(1)选择N 个分属于ω1和 ω2类的模式样本构成训练样本集{ X1 ,…, XN }构成增广向量形式,并进行规范化处理。任取权向量初始值W(1),开始迭代。迭代次数k=1。

(2)用全部训练样本进行一轮迭代,计算W T (k )X i 的值,并修正权向量。

分两种情况,更新权向量的值:

??

?∈<∈>=2

1

T

,0,0)(ωωX X X W X 若若d

1. (),若0≤T i k X W 分类器对第i 个模式做了错误分类,权向量校正为:()()i c k k X W W +=+1 c :正的校正增量。

2. 若(),0T

>i k X W 分类正确,权向量不变:()()k k W W =+1,统

一写为:

()()()()(),

1,

T k T k k k k k k C k ?≥?+=?

+

(3)分析分类结果:只要有一个错误分类,回到(2),直至对所有样本正确分类。

感知器算法是一种赏罚过程:

分类正确时,对权向量“赏”——这里用“不罚”,即权向量不变; 分类错误时,对权向量“罚”——对其修改,向正确的方向转换。

采用多类情况3的方法时,应有: 若i ω∈X ,则(),,

)(i j d d j i ≠?>X X M j ,,1 =

对于M 类模式应存在M 个判决函数: {}M i d i ,,1,

=,,,,,

算法主要内容:

设有M 中模式类别:M ωωω,,,21 设其权向量初值为:()M j j ,,1,

1 =W 训练样

本为增广向量形式,但不需要规范化处理。第K 次迭代时,一个属于ωi 类的模式样本X 被送入分类器,计算所有判别函数

()()M

j k k d j j ,,1,

T ==X W (3-4)

分二种情况修改权向量:

① 若()()M j i j k d k d j i ,,2,1;, =≠?>,则权向量不变;

()()M j k k j j ,,2,1,

1 ==+W W

② 若第L 个权向量使()()k d k d l i ≤,则相应的权向量作调整,即:

()()()()()()???

??≠=+-=++=+l

i j k k c k k c k k j j

l l i i ,,111W W X

W W X

W W

(3-5)

其中c 为正的校正增量,只要模式类在情况3判别函数时是可分的,则经过有限次迭代后算法收敛。

4感知器算法流程设计

5感知器算法程序

P= [0.4 0.5 0.6; 0.8 0.2 0.1]; %给定训练样本数据

T= [1 1 0]; %给定样本数据所对应的类别,用1表示二类水质,

0表示一类水质

net=newp([0 1;0 1],1); %创建一个有两个输入、样本数据的取

值范围都在[0,1]之间,并且网络只有一个神经元的感知器神经

网络

net.trainParam.epochs = 40; %设置网络的最大训练次数为

40次

net=train(net,P,T); %使用训练函数对创建的网络进行

训练

Y=sim(net,P) %对训练后的网络进行仿真

E1=mae(Y-T) %计算网络的平均绝对误差,表示网络错误

分类

Q=[0.6 0.9 0.4; 0.1 0.3 0.5 ]; %检测训练好的神经网络的性

Y1=sim(net,Q) %对网络进行仿真,仿真输出即为分类的

结果

figure; %创建一个新的绘图窗口

plotpv(Q,Y1); %在坐标图中绘制测试数据

plotpc(net.iw{1},net.b{1}) %在坐标图中绘制分类

6程序仿真及结果分析

从上可知,网络错误分类为0,输出三个数据中一个是一类水质,两个是二类水质。

从上图中可以看出直线上为二类水质,直线下为一类水质。

7结论

感知器算法是一种很好的二分类在线算法。在解决线性可分问题时,感知器具有运算速度快,性能可靠的优点。同时理解感知器的工作原理,可以为我们更好的理解其它复杂的神经网络模型奠定基础。本次设计将matlab知识运用到其中,对本门课程有很好的帮助。

8参考文献

1模式识别导论齐敏、李大健著,清华大学出版社

2模式识别与智能计算杨淑莹著电子工业出版社

3模式识别与智能计算机的matlab实现贾瑛编北京航空航天大学出

版社

模式识别课matlab数字识别程序

名称:模式识别 题目:数字‘3’和‘4’的识别

实验目的与要求: 利用已知的数字样本(3和4),提取样本特征,并确定分类准则,在用测试样本对分类确定准则的错误率进行分析。进一步加深对模式识别方法的理解,强化利用计算机实现模式识别。 实验原理: 1.特征提取原理: 利用MATLAN 软件把图片变为一个二维矩阵,然后对该矩阵进行二值化处理。由于“3”的下半部分在横轴上的投影比“4”的下半部分在横轴上的投影宽,所以可以统计‘3’‘4’在横轴上投影的‘1’的个数作为一个特征。又由于‘4’中间纵向比‘3’的中间‘1’的个数多,所以可以统计‘4’和‘3’中间区域‘1’的个数作为另外一个特征,又考虑‘4’的纵向可能会有点偏,所以在统计一的个数的时候,取的范围稍微大点,但不能太大。 2.分类准则原理: 利用最近邻对测试样本进行分类 实验步骤 1.利用MATLAN 软件把前30个图片变为一个二维矩阵,然后对该矩阵进行二值化处理。 2.利用上述矩阵生成特征向量 3.利用MATLAN 软件把后5个图片变为一个二维矩阵,然后对该矩阵进行二值化处理。 4.对测试样本进行分类,用F矩阵表示结果,如果是‘1’表示分类正确,‘0’表示分类错误。 5.对分类错误率分析 实验原始程序: f=zeros(5,2) w=zeros(35,2) q=zeros(35,2) for i=1:35 filename_1='D:\MATLAB6p5\toolbox\images\imdemos\3\' filename_2='.bmp' a= num2str (i) b=strcat(filename_1,a) c=strcat(b,filename_2) d=imread(c) e=im2bw(d) n=0 for u=1:20 m=0 for t=32:36 if(e(t,u)==0) m=m+1 end end if(m<5) n=n+1 end end

模式识别复习重点总结

1.线性判别方法 (1)两类:二维及多维判别函数,判别边界,判别规则 二维情况:(a )判别函数: ( ) (b )判别边界:g(x)=0; (c n 维情况:(a )判别函数: 也可表示为: (b )判别边界:g 1(x ) =W T X =0 (c )判别规则: (2)多类:3种判别方法(函数、边界、规则) (A)第一种情况:(a)判别函数:M 类可有M 个判别函数 (b) 判别边界:ωi (i=1,2,…,n )类与其它类之间的边界由 g i (x )=0确定 (c) (B)第二种情况:(a)判别函数:有 M (M _ 1)/2个判别平面 (b) 判别边界: (c) 判别规则: (C)第三种情况:(a)判别函数: (b) 判别边界: g i (x ) =g j (x ) 或g i (x ) -g j (x ) =0 (c) 判别规则: 32211)(w x w x w x g ++=为坐标向量为参数,21,x x w 12211......)(+++++=n n n w x w x w x w x g X W x g T =)(为增值模式向量。,=为增值权向量, T n n T n n x x x x X w w w w W )1,...,,(),,...,,(21121+=+X W x g T ij ij =)(0)(=x g ij j i x g ij ≠? ??∈→<∈→>j i x 0x 0)(ωω当当权向量。 个判别函数的 为第式中i w w w w W T in in i i i ),,,...,,(121+=X W x g K k =)(???∈=小,其它最大,当i T k i x X W x g ω)(

北邮模式识别课堂作业答案(参考)

第一次课堂作业 1.人在识别事物时是否可以避免错识 2.如果错识不可避免,那么你是否怀疑你所看到的、听到的、嗅 到的到底是真是的,还是虚假的 3.如果不是,那么你依靠的是什么呢用学术语言该如何表示。 4.我们是以统计学为基础分析模式识别问题,采用的是错误概率 评价分类器性能。如果不采用统计学,你是否能想到还有什么合理地分类 器性能评价指标来替代错误率 1.知觉的特性为选择性、整体性、理解性、恒常性。错觉是错误的知觉,是在特定条件下产生的对客观事物歪曲的知觉。认知是一个过程,需要大脑的参与.人的认知并不神秘,也符合一定的规律,也会产生错误 2.不是 3.辨别事物的最基本方法是计算 . 从不同事物所具有的不同属性为出发点认识事物. 一种是对事物的属性进行度量,属于定量的表示方法(向量表示法 )。另一种则是对事务所包含的成分进行分析,称为定性的描述(结构性描述方法)。 4.风险 第二次课堂作业 作为学生,你需要判断今天的课是否点名。结合该问题(或者其它你熟悉的识别问题,如”天气预报”),说明: 先验概率、后验概率和类条件概率 按照最小错误率如何决策 按照最小风险如何决策 ωi为老师点名的事件,x为判断老师点名的概率 1.先验概率: 指根据以往经验和分析得到的该老师点名的概率,即为先验概率 P(ωi ) 后验概率: 在收到某个消息之后,接收端所了解到的该消息发送的概率称为后验概率。 在上过课之后,了解到的老师点名的概率为后验概率P(ωi|x) 类条件概率:在老师点名这个事件发生的条件下,学生判断老师点名的概率p(x| ωi ) 2. 如果P(ω1|X)>P(ω2|X),则X归为ω1类别 如果P(ω1|X)≤P(ω2|X),则X归为ω2类别 3.1)计算出后验概率 已知P(ωi)和P(X|ωi),i=1,…,c,获得观测到的特征向量X 根据贝叶斯公式计算 j=1,…,x

DX3004模式识别与人工智能--教学大纲概要

《模式识别与人工智能》课程教学大纲 一、课程基本信息 课程代码:DX3004 课程名称:模式识别与人工智能 课程性质:选修课 课程类别:专业与专业方向课程 适用专业:电气信息类专业 总学时: 64 学时 总学分: 4 学分 先修课程:MATLAB程序设计;数据结构;数字信号处理;概率论与数理统计 后续课程:语音处理技术;数字图像处理 课程简介: 模式识别与人工智能是60年代迅速发展起来的一门学科,属于信息,控制和系统科学的范畴。模式识别就是利用计算机对某些物理现象进行分类,在错误概率最小的条件下,使识别的结果尽量与事物相符。模式识别技术主要分为两大类:基于决策理论的统计模式识别和基于形式语言理论的句法模式识别。模式识别的原理和方法在医学、军事等众多领域应用十分广泛。本课程着重讲述模式识别的基本概念,基本方法和算法原理,注重理论与实践紧密结合,通过大量实例讲述如何将所学知识运用到实际应用之中去,避免引用过多的、繁琐的数学推导。这门课的教学目的是让学生掌握统计模式识别基本原理和方法,使学生具有初步综合利用数学知识深入研究有关信息领域问题的能力。 选用教材: 《模式识别》第二版,边肇祺,张学工等编著[M],北京:清华大学出版社,1999; 参考书目: [1] 《模式识别导论》,齐敏,李大健,郝重阳编著[M]. 北京:清华大学出版社,2009; [2] 《人工智能基础》,蔡自兴,蒙祖强[M]. 北京:高等教育出版社,2005; [3] 《模式识别》,汪增福编著[M]. 安徽:中国科学技术大学出版社,2010; 二、课程总目标 本课程为计算机应用技术专业本科生的专业选修课。通过本课程的学习,要求重点掌握统计模式识别的基本理论和应用。掌握统计模式识别方法中的特征提取和分类决策。掌握特征提取和选择的准则和算法,掌握监督学习的原理以及分类器的设计方法。基本掌握非监督模式识别方法。了解应用人工神经网络和模糊理论的模式识别方法。了解模式识别的应用和系统设计。要求学生掌握本课程的基本理论和方法并能在解决实际问题时得到有效地运用,同时为开发研究新的模式识别的理论和方法打下基础。 三、课程教学内容与基本要求 1、教学内容: (1)模式识别与人工智能基本知识; (2)贝叶斯决策理论; (3)概率密度函数的估计; (4)线性判别函数; (5)非线性胖别函数;

【模式识别】期末考试复习资料

题型: 1.填空题5题 填空题 2.名词解释4题 3.问答题4题 4.计算作图题3题 5.综合计算题1题 备注1:没有整理第一章和第六章,老师说不考的 备注2:非线性判别函数相关概念P69 概率相关定义、性质、公式P83以后 最小错误率贝叶斯决策公式P85 最小风险贝叶斯P86 正态贝叶斯P90 综合计算有可能是第六次作业 一、填空题 物以类聚人以群分体现的是聚类分析的基本思想。 模式识别分类:1.从实现方法来分模式识别分为监督分类和非监督分类;2.从理论上来分,有统计模式识别,统计模式识别,模糊模式识别,神经网络模式识别法 聚类分析是按照不同对象之间的差异,根据距离函数的规律做模式分类的。 模式的特性:可观察性、可区分性、相似性 模式识别的任务:一是研究生物体(包括人)是如何感知对象的,二是如何用计算机实现模式识别的理论和方法。 计算机的发展方向:1.神经网络计算机--模拟人的大脑思维;2.生物计算机--运用生物工程技术、蛋白分子作芯片; 3.光计算机--用光作为信息载体,通过对光的处理来完成对信息的处理。 训练学习方法:监督学习、无监督学习(无先验知识,甚至类别数也未知)。 统计模式识别有:1.聚类分析法(非监督);2.判决函数法/几何分类法(监督);3.基于统计决策的概率分类法 - 以模式集在特征空间中分布的类概率密度函数为基础,对总体特征进行研究,以取得分类的方法 数据的标准化目的:消除各个分量之间数值范围大小对算法的影响 模式识别系统的基本构成:书P7 聚类过程遵循的基本步骤:特征选择;近邻测度;聚类准则;聚类算法;结果验证;结果判定。 相似测度基础:以两矢量的方向是否相近作为考虑的基础,矢量长度并不重要。 确定聚类准则的两种方式:阈值准则,函数准则 基于距离阈值的聚类算法——分解聚类:近邻聚类法;最大最小距离聚类法 类间距离计算准则:1)最短距离法2)最长距离法3)中间距离法4)重心法5)类平均距离法6)离差平方和法P24 系统聚类法——合并的思想 用于随机模式分类识别的方法,通常称为贝叶斯判决。 BAYES 决策常用的准则:最小错误率;最小风险 错误率的计算或估计方法:①按理论公式计算;②计算错误率上界;③实验估计。

贝叶斯决策理论-模式识别课程作业

研究生课程作业 贝叶斯决策理论 课程名称模式识别 姓名xx 学号xxxxxxxxx 专业软件工程 任课教师xxxx 提交时间2019.xxx 课程论文提交时间:2019 年3月19 日

需附上习题题目 1. 试简述先验概率,类条件概率密度函数和后验概率等概念间的关系: 先验概率 针对M 个事件出现的可能性而言,不考虑其他任何条件 类条件概率密度函数 是指在已知某类别的特征空间中,出现特 征值X 的概率密度,指第 类样品其属性X 是如何分布的。 后验概率是指通过调查或其它方式获取新的附加信息,利用贝叶斯公式对先验概率进行修正,而后得到的概率。贝叶斯公式可以计算出该样品分属各类别的概率,叫做后验概率;看X 属于那个类的可能性最大,就把X 归于可能性最大的那个类,后验概率作为识别对象归属的依据。贝叶斯公式为 类别的状态是一个随机变量.而某种状态出现的概率是可以估计的。贝叶斯公式体现了先验概率、类条件概率密度函数、后验概率三者关系的式子。 2. 试写出利用先验概率和分布密度函数计算后验概率的公式 3. 写出最小错误率和最小风险决策规则相应的判别函数(两类问题)。 最小错误率 如果12(|)(|)P x P x ωω>,则x 属于1ω 如果12(|)(|)P x P x ωω<,则x 属于2ω 最小风险决策规则 If 12(|) (|) P x P x ωλω< then 1x ω∈ If 12(|) (|) P x P x ωλω> then 2x ω∈

4. 分别写出以下两种情况下,最小错误率贝叶斯决策规则: (1)两类情况,且12(|)(|)P X P X ωω= (2)两类情况,且12()()P P ωω= 最小错误率贝叶斯决策规则为: If 1...,(|)()max (|)i i j j c p x P P x ωωω==, then i x ω∈ 两类情况: 若1122(|)()(|)()p X P p X P ωωωω>,则1X ω∈ 若1122(|)()(|)()p X P p X P ωωωω<,则2X ω∈ (1) 12(|)(|)P X P X ωω=, 若12()()P P ωω>,则1X ω∈ 若12()()P P ωω<,则2X ω∈ (2) 12()()P P ωω=,若12(|)(|)p X p X ωω>,则1X ω∈ 若12(|)(|)p X p X ωω<,则2X ω∈ 5. 对两类问题,证明最小风险贝叶斯决策规则可表示为, 若 112222221111(|)()() (|)()() P x P P x P ωλλωωλλω->- 则1x ω∈,反之则2x ω∈ 计算条件风险 2 111111221(|)(|)(|)(|)j j j R x p x P x P x αλωλωλω===+∑ 2 222112221 (|)(|)(|)(|)j j j R x p x P x P x αλωλωλω===+∑ 如果 111122(|)(|)P x P x λωλω+<211222(|)(|)P x P x λωλω+ 2111112222()(|)()(|)P x P x λλωλλω->- 211111122222()()(|)()()(|)P p x P p x λλωωλλωω->-

模式识别复习重点总结

1.什么是模式及模式识别?模式识别的应用领域主要有哪些? 模式:存在于时间,空间中可观察的事物,具有时间或空间分布的信息; 模式识别:用计算机实现人对各种事物或现象的分析,描述,判断,识别。 模式识别的应用领域:(1)字符识别;(2) 医疗诊断;(3)遥感; (4)指纹识别 脸形识别;(5)检测污染分析,大气,水源,环境监测; (6)自动检测;(7 )语声识别,机器翻译,电话号码自动查询,侦听,机器故障判断; (8)军事应用。 2.模式识别系统的基本组成是什么? (1) 信息的获取:是通过传感器,将光或声音等信息转化为电信息; (2) 预处理:包括A\D,二值化,图象的平滑,变换,增强,恢复,滤波等, 主要指图 象处理; (3) 特征抽取和选择:在测量空间的原始数据通过变换获得在特征空间最能反映分类 本质的特征; (4) 分类器设计:分类器设计的主要功能是通过训练确定判决规则,使按此类判决规 则分类时,错误率最低。把这些判决规则建成标准库; (5) 分类决策:在特征空间中对被识别对象进行分类。 3.模式识别的基本问题有哪些? (1)模式(样本)表示方法:(a )向量表示;(b )矩阵表示;(c )几何表示;(4)基元(链码)表示; (2)模式类的紧致性:模式识别的要求:满足紧致集,才能很好地分类;如果不满足紧致集,就要采取变换的方法,满足紧致集 (3)相似与分类;(a)两个样本x i ,x j 之间的相似度量满足以下要求: ① 应为非负值 ② 样本本身相似性度量应最大 ③ 度量应满足对称性 ④ 在满足紧致性的条件下,相似性应该是点间距离的 单调函数 (b) 用各种距离表示相似性 (4)特征的生成:特征包括:(a)低层特征;(b)中层特征;(c)高层特征 (5) 数据的标准化:(a)极差标准化;(b)方差标准化 4.线性判别方法 (1)两类:二维及多维判别函数,判别边界,判别规则 二维情况:(a )判别函数: ( ) (b )判别边界:g(x)=0; (c n 维情况:(a )判别函数: 也可表示为: 32211)(w x w x w x g ++=为坐标向量为参数,21,x x w 12211......)(+++++=n n n w x w x w x w x g X W x g T =)(为增值模式向量。 ,=为增值权向量,T n n T n n x x x x X w w w w W )1,...,,(),,...,,(21121+=+

北邮模式识别课堂作业答案(参考)

第一次课堂作业 ? 1.人在识别事物时是否可以避免错识? ? 2.如果错识不可避免,那么你是否怀疑你所看到的、听到的、嗅到的到底 是真是的,还是虚假的? ? 3.如果不是,那么你依靠的是什么呢?用学术语言该如何表示。 ? 4.我们是以统计学为基础分析模式识别问题,采用的是错误概率评价分类 器性能。如果不采用统计学,你是否能想到还有什么合理地分类器性能评价指标来替代错误率? 1.知觉的特性为选择性、整体性、理解性、恒常性。错觉是错误的知觉,是在特定条件下产生的对客观事物歪曲的知觉。认知是一个过程,需要大脑的参与.人的认知并不神秘,也符合一定的规律,也会产生错误 2.不是 3.辨别事物的最基本方法是计算.从不同事物所具有的不同属性为出发点认识事物.一种是对事物的属性进行度量,属于定量的表示方法(向量表示法)。另一种则是对事务所包含的成分进行分析,称为定性的描述(结构性描述方法)。 4.风险 第二次课堂作业 ?作为学生,你需要判断今天的课是否点名。结合该问题(或者其它你熟悉的识别问题, 如”天气预报”),说明: ?先验概率、后验概率和类条件概率? ?按照最小错误率如何决策? ?按照最小风险如何决策? ωi为老师点名的事件,x为判断老师点名的概率 1.先验概率:指根据以往经验和分析得到的该老师点名的概率,即为先验概率P(ωi ) 后验概率:在收到某个消息之后,接收端所了解到的该消息发送的概率称为后验概率。 在上过课之后,了解到的老师点名的概率为后验概率P(ωi|x) 类条件概率:在老师点名这个事件发生的条件下,学生判断老师点名的概率p(x| ωi ) 2. 如果P(ω1|X)>P(ω2|X),则X归为ω1类别 如果P(ω1|X)≤P(ω2|X),则X归为ω2类别 3.1)计算出后验概率 已知P(ωi)和P(X|ωi),i=1,…,c,获得观测到的特征向量X 根据贝叶斯公式计算 j=1,…,x 2)计算条件风险

模式识别课程设计

模式识别 课程设计 关于黄绿树叶的分类问题 成员:李家伟2015020907010 黄哲2015020907006 老师:程建 学生签字:

一、小组分工 黄哲:数据采集以及特征提取。 李家伟:算法编写设计,完成测试编写报告。 二、特征提取 选取黄、绿树叶各15片,用老师给出的识别算法进行特征提取 %Extract the feature of the leaf clear, close all I = imread('/Users/DrLee/Desktop/kmeans/1.jpg'); I = im2double(I); figure, imshow(I) n = input('Please input the number of the sample regions n:'); h = input('Please input the width of the sample region h:'); [Pos] = ginput(n); SamNum = size(Pos,1); Region = []; RegionFeatureCum = zeros((2*h+1)*(2*h+1)*3,1); RegionFeature = zeros((2*h+1)*(2*h+1)*3,1); for i = 1:SamNum P = round(Pos(i,:)); rectangle('Position', [P(1) P(2) 2*h+1 2*h+1]); hold on Region{i} = I(P(2)-h:P(2)+h,P(1)-h:P(1)+h,:); RegionFeatureCum = RegionFeatureCum + reshape(Region{i},[(2*h+1)*(2*h+1)*3,1]); end hold off RegionFeature = RegionFeatureCum / SamNum 1~15为绿色树叶特征,16~30为黄色树叶特征,取n=3;h=1,表示每片叶子取三个区域,每个区域的特征为3*3*3维的向量,然后变为27*1的列向量,表格如下。

模式识别大作业02125128(修改版)

模式识别大作业 班级 021252 姓名 谭红光 学号 02125128 1.线性投影与Fisher 准则函数 各类在d 维特征空间里的样本均值向量: ∑∈= i k X x k i i x n M 1 ,2,1=i (1) 通过变换w 映射到一维特征空间后,各类的平均值为: ∑∈= i k Y y k i i y n m 1,2,1=i (2) 映射后,各类样本“类内离散度”定义为: 22 ()k i i k i y Y S y m ∈= -∑,2,1=i (3) 显然,我们希望在映射之后,两类的平均值之间的距离越大越好,而各类的样本类内离 散度越小越好。因此,定义Fisher 准则函数: 2 1222 12||()F m m J w s s -= + (4) 使F J 最大的解* w 就是最佳解向量,也就是Fisher 的线性判别式. 从 )(w J F 的表达式可知,它并非w 的显函数,必须进一步变换。 已知: ∑∈= i k Y y k i i y n m 1,2,1=i , 依次代入上两式,有: i T X x k i T k X x T i i M w x n w x w n m i k i k === ∑∑∈∈)1 (1 ,2,1=i (5) 所以:2 21221221||)(||||||||M M w M w M w m m T T T -=-=- w S w w M M M M w b T T T =--=))((2121 (6)

其中:T b M M M M S ))((2121--= (7) b S 是原d 维特征空间里的样本类内离散度矩阵,表示两类均值向量之间的离散度大 小,因此,b S 越大越容易区分。 将(4.5-6) i T i M w m =和(4.5-2) ∑∈= i k X x k i i x n M 1代入(4.5-4)2i S 式中: ∑∈-= i k X x i T k T i M w x w S 22)( ∑∈?--? =i k X x T i k i k T w M x M x w ))(( w S w i T = (8) 其中:T i X x k i k i M x M x S i k ))((--= ∑=,2,1=i (9) 因此:w S w w S S w S S w T T =+=+)(212221 (10) 显然: 21S S S w += (11) w S 称为原d 维特征空间里,样本“类内离散度”矩阵。 w S 是样本“类内总离散度”矩阵。 为了便于分类,显然 i S 越小越好,也就是 w S 越小越好。

模式识别作业2

作业一: 在一个10类的模式识别问题中,有3类单独满足多类情况1,其余的类别满足多类情况2。问该模式识别问题所需判别函数的最少数目是多少? 答案:将10类问题可看作4类满足多类情况1的问题,可将3类单独满足多类情况1的类找出来,剩下的7类全部划到4类中剩下的一个子类中。再在此子类中,运用多类情况2的判别法则进行分类,此时需要7*(7-1)/2=21个判别函数。故共需要4+21=25个判别函数。 作业二: 一个三类问题,其判别函数如下: d1(x)=-x1, d2(x)=x1+x2-1, d3(x)=x1-x2-1 1.设这些函数是在多类情况1条件下确定的,绘出其判别界 面和每一个模式类别的区域。 2.设为多类情况2,并使:d12(x)= d1(x), d13(x)= d2(x), d23(x)= d3(x)。绘出其判别界面和多类情况2的区域。 3. 设d1(x), d2(x)和d3(x)是在多类情况3的条件下确定的,绘 出其判别界面和每类的区域。 答案: 1

2

3 作业三: 两类模式,每类包括5个3维不同的模式,且良好分布。如果它们是线性可分的,问权向量至少需要几个系数分量?假如要建立二次的多项式判别函数,又至少需要几个系数分量?(设模式的良好分布不因模式变化而改变。) 答案:如果它们是线性可分的,则至少需要4个系数分量;如果要建立二次的多项式判别函数,则至少需要10 25 C 个系数分量。 作业四: 用感知器算法求下列模式分类的解向量w :

ω1: {(0 0 0)T, (1 0 0)T, (1 0 1)T, (1 1 0)T} ω2: {(0 0 1)T, (0 1 1)T, (0 1 0)T, (1 1 1)T} 答案:将属于ω2的训练样本乘以(-1),并写成增广向量的形式。 x①=(0 0 0 1)T,x②=(1 0 0 1)T,x③=(1 0 1 1)T,x④=(1 1 0 1)T x⑤=(0 0 -1 -1)T,x⑥=(0 -1 -1 -1)T,x⑦=(0 -1 0 -1)T,x⑧=(-1 -1 -1 -1)T 第一轮迭代:取C=1,w(1)=(0 0 0 0)T 因w T(1)x①=(0 0 0 0)(0 0 0 1)T=0≯0,故w(2)=w(1)+x①=(0 0 0 1) 因w T(2)x②=(0 0 0 1)(1 0 0 1)T =1>0,故w(3)=w(2)=(0 0 0 1)T 因w T(3)x③=(0 0 0 1)(1 0 1 1)T=1>0,故w(4)=w(3)=(0 0 0 1)T 因w T(4)x④=(0 0 0 1)(1 1 0 1)T=1>0,故w(5)=w(4)=(0 0 0 1)T 因w T(5)x⑤=(0 0 0 1)(0 0 -1 -1)T=-1≯0,故w(6)=w(5)+x⑤=(0 0 -1 0)T 因w T(6)x⑥=(0 0 -1 0)(0 -1 -1 -1)T=1>0,故w(7)=w(6)=(0 0 -1 0)T 因w T(7)x⑦=(0 0 -1 0)(0 -1 0 -1)T=0≯0,故w(8)=w(7)+x⑦=(0 -1 -1 -1)T 因w T(8)x⑧=(0 -1 -1 -1)(-1 -1 -1 -1)T=3>0,故w(9)=w(8)=(0 -1 -1 -1)T 因为只有对全部模式都能正确判别的权向量才是正确的解,因此需进行第二轮迭代。 第二轮迭代:

模式识别课程作业proj03-01

模式识别理论与方法 课程作业实验报告 实验名称:Maximum-Likelihood Parameter Estimation 实验编号:Proj03-01 姓 名: 学 号:规定提交日期:2012年3月27日 实际提交日期:2012年3月27日 摘 要: 参数估计问题是统计学中的经典问题,其中最常用的一种方法是最大似然估计法,最大似然估计是把待估计的参数看作是确定性的量,只是其取值未知。最佳估计就是使得产生已观测到的样本的概率为最大的那个值。 本实验研究的训练样本服从多元正态分布,比较了单变量和多维变量的最大似然估计情况,对样本的均值、方差、协方差做了最大似然估计。 实验结果对不同方式计算出的估计值做了比较分析,得出结论:对均值的最大似然估计 就是对全体样本取平均;协方差的最大似然估计则是N 个)'?x )(?x (u u k k --矩阵的算术平均,对方差2 σ的最大似然估计是有偏估计。 一、 技术论述

(1)高斯情况:∑和u 均未知 实际应用中,多元正态分布更典型的情况是:均值u 和协方差矩阵∑都未知。这样,参数向量θ就由这两个成分组成。 先考虑单变量的情况,其中参数向量θ的组成成分是:221,σθθ==u 。这样,对于单个训练样本的对数似然函数为: 2 12 2 )(212ln 21)(ln θθπθ θ-- - =k k x x p (1) 对上式关于变量θ对导: ???? ? ???????-+--=?=?2 2 2 12 12 2)(21 )(1 )(ln θθθθθθθθk k k x x x p l (2) 运用式l θ?=0,我们得到对于全体样本的对数似然函数的极值条件 0)?(?1 n 112=-∑=k k x θθ (3) 0?) (?11 2 2 2 112 =-+ -∑ ∑==n k k n k x θθθ (4) 其中1?θ,2?θ分别是对于1θ,2θ的最大似然估计。 把1?θ,2?θ用u ?,2?σ代替,并进行简单的整理,我们得到下述的对于均值和方差的最大似然估计结果 ∑==n k k x n u 1 1 ? (5) 2 1 2 )?(1 ?∑=-= n k k u x n σ (6) 当高斯函数为多元时,最大似然估计的过程也是非常类似的。对于多元高斯分布的均值u 和协方差矩阵∑的最大似然估计结果为: ∑=1 1 ?n k x n u (7) t k n k k u x u x )?()?(n 1 ?1 --=∑ ∑= (8) 二、 实验结果

《模式识别基础》课程标准

《模式识别基础》课程标准 (执笔人:刘雨审阅学院:电子科学与工程学院)课程编号:08113 英文名称:Pattern Recognition 预修课程:高等数学,线性代数,概率论与数理统计,程序设计 学时安排:40学时,其中讲授32学时,实践8学时。 学分:2 一、课程概述 (一)课程性质地位 模式识别课基础程是军事指挥类本科生信息工程专业的专业基础课,通信工程专业的选修课。在知识结构中处于承上启下的重要位置,对于巩固已学知识、开展专业课学习及未来工作具有重要意义。课程特点是理论与实践联系密切,是培养学生理论素养、实践技能和创新能力的重要环节。是以后工作中理解、使用信息战中涉及的众多信息处理技术的重要知识储备。 本课程主要介绍统计模式识别的基本理论和方法,包括聚类分析,判别域代数界面方程法,统计判决、训练学习与错误率估计,最近邻方法以及特征提取与选择。 模式识别是研究信息分类识别理论和方法的学科,综合性、交叉性强。从内涵讲,模式识别是一门数据处理、信息分析的学科,从应用讲,属于人工智能、机器学习范畴。理论上它涉及的数学知识较多,如代数学、矩阵论、函数论、概率统计、最优化方法、图论等,用到信号处理、控制论、计算机技术、生理物理学等知识。典型应用有文字、语音、图像、视频机器识别,雷达、红外、声纳、遥感目标识别,可用于军事、侦探、生物、天文、地质、经济、医学等众多领域。 (二)课程基本理念 以学生为主体,教师为主导,精讲多练,以用促学,学以致用。使学生理解模式识别的本质,掌握利用机器进行信息识别分类的基本原理和方法,在思、学、用、思、学、用的循环中,达到培养理论素养,锻炼实践技能,激发创新能力的目的。 (三)课程设计思路 围绕培养科技底蕴厚实、创新能力突出的高素质人才的目标,本课程的培养目标是:使学生掌握统计模式识别的基本原理和方法,了解其应用领域和发展动态,达到夯实理论基础、锻炼理论素养及实践技能、激发创新能力的目的。 模式识别是研究分类识别理论和方法的学科,综合性、交叉性强,涉及的数学知识多,应用广。针对其特点,教学设计的思路是:以模式可分性为核心,模式特征提取、学习、分类为主线,理论上分层次、抓重点,方法上重比较、突出应用适应性。除了讲授传统的、经典的重要内容之外,结合科研成果,介绍不断出现的新理论、新方法,新技术、新应用,开拓学生视野,激发学习兴趣,培养创新能力。 教学设计以章为单元,用实际科研例子为引导,围绕基本原理展开。选择两个以上基本方法,辅以实验,最后进行对比分析、归纳总结。使学生在课程学习中达到一个思、学、用、

模式识别复习重点总结

1.什么是模式及模式识别模式识别的应用领域主要有哪些 模式:存在于时间,空间中可观察的事物,具有时间或空间分布的信息; 模式识别:用计算机实现人对各种事物或现象的分析,描述,判断,识别。 模式识别的应用领域:(1)字符识别;(2)医疗诊断;(3)遥感; (4)指纹识别脸形识别;(5)检测污染分析,大气,水源,环境监测;(6)自动检测;(7 )语声识别,机器翻译,电话号码自动查询,侦听,机器故障判断; (8)军事应用。 2.模式识别系统的基本组成是什么 (1)信息的获取:是通过传感器,将光或声音等信息转化为电信息; (2)预处理:包括A\D,二值化,图象的平滑,变换,增强,恢复,滤波等, 主要指图象处理; (3)特征抽取和选择:在测量空间的原始数据通过变换获得在特征空间最能反映分类本质的特征; (4)分类器设计:分类器设计的主要功能是通过训练确定判决规则,使按此类判决规则分类时,错误率最低。把这些判决规则建成标 准库; (5)分类决策:在特征空间中对被识别对象进行分类。 3.模式识别的基本问题有哪些

(1)模式(样本)表示方法:(a )向量表示;(b )矩阵表示;(c )几何表示;(4)基元(链码)表示; (2)模式类的紧致性:模式识别的要求:满足紧致集,才能很好地分类;如果不满足紧致集,就要采取变换的方法,满足紧致集 (3)相似与分类;(a)两个样本x i ,x j 之间的相似度量满足以下要求: ① 应为非负值 ② 样本本身相似性度量应最大 ③ 度量应满足对称性 ④ 在满足紧致性的条件下,相似性应该是点间距离的 单调函数 (b) 用各种距离表示相似性 (4)特征的生成:特征包括:(a)低层特征;(b)中层特征;(c)高层特征 (5) 数据的标准化:(a)极差标准化;(b)方差标准化 4.线性判别方法 (1)两类:二维及多维判别函数,判别边界,判别规则 二 维 情 况 :(a )判别函数: ( ) (b )判别边界:g(x)=0; (c n 维情况:(a )判别函数: 也可表示为: 32211)(w x w x w x g ++=为坐标向量 为参数,21,x x w 1 2211......)(+++++=n n n w x w x w x w x g X W x g T =)(

模式识别作业(全)

模式识别大作业 一.K均值聚类(必做,40分) 1.K均值聚类的基本思想以及K均值聚类过程的流程图; 2.利用K均值聚类对Iris数据进行分类,已知类别总数为3。给出具体的C语言代码, 并加注释。例如,对于每一个子函数,标注其主要作用,及其所用参数的意义,对程序中定义的一些主要变量,标注其意义; 3.给出函数调用关系图,并分析算法的时间复杂度; 4.给出程序运行结果,包括分类结果(只要给出相对应的数据的编号即可)以及循环 迭代的次数; 5.分析K均值聚类的优缺点。 二.贝叶斯分类(必做,40分) 1.什么是贝叶斯分类器,其分类的基本思想是什么; 2.两类情况下,贝叶斯分类器的判别函数是什么,如何计算得到其判别函数; 3.在Matlab下,利用mvnrnd()函数随机生成60个二维样本,分别属于两个类别(一 类30个样本点),将这些样本描绘在二维坐标系下,注意特征值取值控制在(-5,5)范围以内; 4.用样本的第一个特征作为分类依据将这60个样本进行分类,统计正确分类的百分 比,并在二维坐标系下将正确分类的样本点与错误分类的样本点用不同标志(正确分类的样本点用“O”,错误分类的样本点用“X”)画出来; 5.用样本的第二个特征作为分类依据将这60个样本再进行分类,统计正确分类的百分 比,并在二维坐标系下将正确分类的样本点与错误分类的样本点用不同标志画出来; 6.用样本的两个特征作为分类依据将这60个样本进行分类,统计正确分类的百分比, 并在二维坐标系下将正确分类的样本点与错误分类的样本点用不同标志画出来; 7.分析上述实验的结果。 8.60个随即样本是如何产生的的;给出上述三种情况下的两类均值、方差、协方差矩 阵以及判别函数; 三.特征选择(选作,15分) 1.经过K均值聚类后,Iris数据被分作3类。从这三类中各选择10个样本点; 2.通过特征选择将选出的30个样本点从4维降低为3维,并将它们在三维的坐标系中

模式识别上机作业[1]培训课件

模式识别上机作业 队别:研究生二队 姓名:孙祥威 学号:112082

作业一: 1{(0,0),(0,1)} ω=, 2{(1,0),(1,1)} ω=。用感知器固定增量法求判别函数,设 1(1,1,1) w=,1 k ρ=。写程序上机运行,写出判别函数,打出图表。 解答: 1、程序代码如下: clc,clear w=[0 0 1; 0 1 1; -1 0 -1; -1 -1 -1]; W=[1 1 1]; rowk=1; flag=1; flagS=zeros(1,size(w,1)); k=0; while flag for i=1:size(w,1) if isempty(find(flagS==0)) flag=0; break; end k=k+1; pb=w(i,:)*W'; if pb<=0 flagS(i)=0; W=W+rowk*w(i,:); else flagS(i)=1; end end end W,k wp1=[0 0; 0 1;]; wp2=[1 0; 1 1]; plot(wp1(:,1),wp1(:,2),'o')

hold on plot(wp2(:,1),wp2(:,2),'*') hold on y=-0.2:1/100:1.2; plot(1/3*ones(1,size(y)),y,'r-') axis([-0.25 1.25 -0.25 1.25]) 2、判别函数。计算得到增广权矢量为*(3,0,1)T w =-,故判别函数表达式为: 1310x -+= 3、分类示意图: 图 1 感知器算法分类结果图 作业二: 在下列条件下,求待定样本(2,0)T x =的类别,画出分界线,编程上机。 1、二类协方差相等;2、二类协方差不等。 训练样本号k 1 2 3 1 2 3 特征1x 1 1 2 -1 -1 -2

模式识别复习题1

模式识别 复习题 1. 简单描述模式识别系统的基本构成(典型过程)? 2. 什么是监督模式识别(学习)?什么是非监督模式识别(学习)? 对一副道路图像,希望把道路部分划分出来,可以采用以下两种方法: (1). 在该图像中分别在道路部分与非道路部分画出一个窗口,把在这两个窗口中的象素数据作为训练集,用某种判别准则求得分类器参数,再用该分类器对整幅图进行分类。 (2).将整幅图的每个象素的属性记录在一张数据表中,然后用某种方法将这些数据按它们的自然分布状况划分成两类。因此每个象素就分别得到相应的类别号,从而实现了道路图像的分割。 试问以上两种方法哪一种是监督学习,哪个是非监督学习? 3. 给出一个模式识别的例子。 4. 应用贝叶斯决策的条件是什么?列出几种常用的贝叶斯决策规 则,并简单说明其规则. 5. 分别写出在以下两种情况:(1)12(|)(|)P x P x ωω=;(2)12()() P P ωω=下的最小错误率贝叶斯决策规则。 6. (教材P17 例2.1) 7. (教材P20 例2.2),并说明一下最小风险贝叶斯决策和最小错误 率贝叶斯决策的关系。 8. 设在一维特征空间中有两类服从正态分布的样本, 12122,1,3,σσμμ====两类先验概率之比12(),() P e P ωω= 试确定按照最小错误率贝叶斯决策规则的决策分界面的x 值。

9. 设12{,,...,}N x x x =X 为来自点二项分布的样本集,即 1(,),0,1,01,1x x f x P P Q x P Q P -==≤≤=-,试求参数P 的最大似然估 计量?P 。 10. 假设损失函数为二次函数2??(,)()P P P P λ=-,P 的先验密度为均匀分布,即()1,01f P P =≤≤。在这样的假设条件下,求上题中的贝叶 斯估计量?P 。 11. 设12{,,...,}N x x x =X 为来自(|)p x θ的随机样本,其中0x θ≤≤时, 1 (|)p x θθ=,否则为0。证明θ的最大似然估计是max k k x 。 12. 考虑一维正态分布的参数估计。设样本(一维)12,,...,N x x x 都是由 独立的抽样试验采集的,且概率密度函数服从正态分布,其均值μ和方差2σ未知。求均值和方差的最大似然估计。 13. 设一维样本12{,,...,}N x x x =X 是取自正态分布2(,)N μσ的样本集,其中 均值μ为未知的参数,方差2σ已知。未知参数μ是随机变量,它的先验分布也是正态分布200(,)N μσ,200,μσ为已知。求μ的贝叶斯估计 ?μ 。 14. 什么是概率密度函数的参数估计和非参数估计?分别列去两种 参数估计方法和非参数估计方法。 15. 最大似然估计和Parzen 窗法的基本原理?

模式识别作业Homework#2

Homework #2 Note:In some problem (this is true for the entire quarter) you will need to make some assumptions since the problem statement may not fully specify the problem space. Make sure that you make reasonable assumptions and clearly state them. Work alone: You are expected to do your own work on all assignments; there are no group assignments in this course. You may (and are encouraged to) engage in general discussions with your classmates regarding the assignments, but specific details of a solution, including the solution itself, must always be your own work. Problem: In this problem we will investigate the importance of having the correct model for classification. Load file hw2.mat and open it in Matlab using command load hw2. Using command whos, you should see six array c1, c2, c3 and t1, t2, t3, each has size 500 by 2. Arrays c1, c2, c3 hold the training data, and arrays t1, t2, t3 hold the testing data. That is arrays c1, c2, c3 should be used to train your classifier, and arrays t1, t2, t3 should be used to test how the classifier performs on the data it hasn’t seen. Arrays c1 holds training data for the first class, c2 for the second class, c3 for the third class. Arrays t1, t2, t3 hold the test data, where the true class of data in t1, t2, t3 comes from the first, second, third classed respectively. Of course, array ci and ti were drawn from the same distribution for each i. Each training and testing example has 2 features. Thus all arrays are two dimensional, the number of rows is equal to the number of examples, and there are 2 columns, column 1 has the first feature, column 2 has the second feature. (a)Visualize the examples by using Matlab scatter command a plotting each class in different color. For example, for class 1 use scatter(c1(:,1),c1(:,2),’r’);. Other possible colors can be found by typing help plot. (b)From the scatter plot in (a), for which classes the multivariate normal distribution looks like a possible model, and for which classes it is grossly wrong? If you are not sure how to answer this part, do parts (c-d) first. (c)Suppose we make an erroneous assumption that all classed have multivariate normal Nμ. Compute the Maximum Likelihood estimates for the means and distributions()∑, covariance matrices (remember you have to do it separately for each class). Make sure you use only the training data; this is the data in arrays c1, c2, and c3. (d)You can visualize what the estimated distributions look like using Matlab contour(). Recall that the data should be denser along the smaller ellipse, because these are closer to the estimated mean. (e)Use the ML estimates from the step (c) to design the ML classifier (this is the Bayes classifier under zero-one loss function with equal priors). Thus we are assuming that priors are the same for each class. Now classify the test example (that is only those

相关文档
最新文档