基于小波分析的机械故障诊断

基于小波分析的机械故障诊断
基于小波分析的机械故障诊断

绪 论

机械故障诊断技术作为一门新兴的科学,自从二十世纪六七十年代以来已经取得了突飞猛进的发展,尤其是计算机技术的应用,使其达到了智能化阶段。现在,机械故障诊断技术在工业生产中起着越来越重要的作用,生产实践已经证明开展故障诊断与状态预测技术研究具有重要的现实意义。

我国的故障诊断技术在理论研究方面,紧跟国外发展的脚步,在实践应用上还是基本落后于国外的发展。在我国,故障诊断的研究与生产实际联系不是很紧密,研究人员往往缺乏现场故障诊断的经验,研制的系统与实际情况相差甚远,往往是从高等院校和科研部门开始,再进行到个别行业,而国外的发展则是从现场发现问题进而反映到高等院校或科研部门,使得研究有的放矢[1]。

要求机械设备不出故障是不现实的,因为不存在绝对安全可靠的机械设备。因此,为了预防故障和减少损失,必须对设备的运行状态进行监测,及时发现设备的异常状况,并对其发展趋势进行跟踪:对己经形成的或正在形成的故障进行分析诊断,判断故障的部位和产生的原因,并及早采取有效的措施,这样才能做到防患于未然。因此,设各状态监测与故障诊断先进技术的研究对于保证复杂机械设备的安全运行具有重要意义。

关键词:小波分析,故障诊断,小波基选取,奇异性

基于小波分析的机械故障检测

小波奇异性理论用于机械故障检测的基本原理

信号的奇异性与小波变换的模极大值之间有如下的关系:

设)(x g 为一光滑函数,且满足条件0g(x) lim ,1x)dx ( g x ==∞→+∞

∞-?,不妨设)(x g 为高斯函数,即σσπ2221)(x e x g -=

,令 d x,/x)( dg x)(=ψ由于?+∞

∞-=0x)dx (ψ,因此,可取函数x)(ψ

作为基小波。

对函数)(x f 的关于x)(ψ的小波变换可写成

-=-=

?+∞∞-dx a x x f a a W f )()(1),(τψτ?+∞∞-τd d a )(x f dx x g a )(τ (3-6) 其中, )()1()(a

x g a x g a ττ-=仍为高斯函数,不妨设a >0,则 ?∞+∞-=dx x g x f d d

a

a W a f )()(),(τττ (3-7) 积分?+∞∞

-dx x g x f a )()(τ可看作是函数f(x)用高斯函数)(x g a τ按尺度a 进行光滑后的结果,当a 很小时,用)(x g a τ对)(x f 光滑的结果对)(x f 的突变部分的位置及形状影响不大,由式(6)可知,小波变换模),(τa W f 与尺度a 下光滑后函数?+∞

∞-dx x g x f a )()(τ的此,),(τa W f 的极大值点对应的是?+∞

∞-dx x g x f a )()(τ的突变点,当尺度a 较小时, ?+∞

∞-dx x g x f a )()(τ的突变点就是)(x f 本身的突变点。这说明小波变换模极大值的位置与信号突变之间存在一一对应关系。

下面介绍预备定理,它是利用小波变换进行机械故障检测的重要依据。

定理1(预备定理):对于平稳随机信号)(t x ,其小波变换的均值为0,方差随着尺度因子a 的增大而趋于零。

证明:[])(t x W T E a =E ττψτd t x a )()(-?=[]ττψτd t x E a )()(-?=x m ττψd t a )(-? (x m 是)(t x 的均值函数)。为了保证逆变换的存在,要求?dt t )(ψ=0,则[])(t x W T E a =0。 设)()('t x m t x x +=,其中,)('t x 是零均值平稳随机噪声,则[]2

)(t x W T E a =[]2')(t x WT m WT E a x a +。由于x x a m m W T =ττψd t a )(-?=0,则[]2)(t x W T E a =[]

2')(t x WT E a 。噪声)('t x 可以看成白噪声)(t n 驱动的某个线性滤波器的输出。即)()('t h t x =*)(t n ,则)('t x W T a = )(t h *)(t n *a ψ(t)。

设)(ωn S 和n σ2分别是)(t n 的功率谱和方差,)(ωψa 和)(ωH 分别是)(t a ψ,)(t h 的FT,则

[]2')(t x WT E a =ωωωψωπd S H n a )()()(212

2?= ωωψωπσd H a n 222)()(2?。 (3-8) 令 max =c ))((2ωH ,'c =π

σ22c n , 则[]2')(t x WT E a ωωψd c a 2)(?≤=ωωψd a c 2

)(?=ωωψd a c 2')(?=εa c '

,所以,随着尺度a 的增大,[]2')(t x WT E a 趋于零,也即是[]2

)(t x W T E a 随着a 的增大趋于零。 一般说来,机械设备在正常运转时,系统输出的信号由确定性信号和平稳随机噪声叠加而成,其小波变换是两部分小波变换之和。由上述预备定理,并根据小波奇异性理论的相关结论可知,确定性信号边沿对应的小波变换的模极大值随着尺度因子的增大将增大,或随着噪声的影响缓慢衰减。然而,平稳随机噪声作为平稳随机信号的一种,其小波变换的模极大值将随着尺度因子的增大而迅速衰减。因此,在大尺度下,信号的小波变换的模极大值将主要属于确定性信号的边沿。而机械故障信号的出现对应于确定性信号的边沿。根据这一原理,结合小波变换模极大值的位置与信号突变之间存在的一一对应关系,可以将信号的故障点与平稳噪声区别开来,实现机械故障的检测。

小波函数的选取

信号奇异点可通过信号的小波变换局部极大值来定位,而奇异性运用该点的Lipschitz 来定量描述。运用该理论来实现信号的奇异性检测,比常规手段更优越。需要注意的是: 选择不同的小波分析信号的奇异性及奇异性位置和奇异度的大小,其检测效果也不一样,因此,选择合适的小波非常重要。在第二章我们介绍了常见的小波函数,以及不同的小波函数的用处,目前没有一定的规则来断定如何选择小波基。

在实际中,Morlet 小波运用领域较广,可以用于信号表示和分类、图像识别、特征提取;墨西哥草帽小波用于系统辨识;对于数字信号往往选择Haar 或Daubechies 作为小波基;另外还有根据小波函数的消失矩来选择小波基波。本文主要是机械故障的诊断,因此选择Daubechies 小波基函数。

Daubechies (db N) 小波系

Daubechies 小波函数中,除了db1 (即Haar 小波) 外,其他小波没有明确的表达式。通常Daubechies 系中的小波基记为db N , N 为序号, 且N = 1 , 2 , ?, 10 。

Daubechies 小波的特性:具有正交性、双正交性和紧支集,可以进行连续小波变换

(CWT) 、离散小波变换(DWT) ,但不具有对称性,支集宽度为2 N - 1 ,小波函数的消失矩数为N ,规则性系数随阶数的增大而增大,对于大的N ,规则性系数大约为013 N ,而Daubechies 小波函数的阶数严格为正整数。

小波基波选择的标准

在故障的奇异性检测中,信号的奇异点可以从其小波变换的小波系数模极大值中检测出来。其基本原理是当信号在奇异点附近的Lipschitz 指数α> 0 时,其小波变换的模极大值随尺度的增大而增大;当α< 0 时,则随尺度的增大而减小。也就是说在一个合适的尺度下,通过小波变换,根据小波系数模极大值和奇异点的关系,能够检测出信号的奇异点。本文提出的基于小波规则性系数相似性选择小波基,主要是从小波分析和Fourier 变换的基本思想相似, Fourier 变换是以正弦为基波,用其各次谐波来近似某一函数,其中Fourier 系数代表了各次谐波分量在函数中的权重,这一权重实质上表明了各次谐波和这一函数的相似性;而小波分析是利用小波的窗函数特性来分断逼近,而小波系数的大小也反映了小波和函数某段的相似程度[4] 。同时函数和小波的规则性均表示着各自的可微性和平滑程度,这样按相似性,可以用平滑的小波,即规则性系数大的小波,来表示平滑的函数;用不平滑的小波,即规则性系数小的小波,来表示非平滑函数。需要说明的是这里的相似不是绝对的相等或非常接近,只是表示一种趋势。这一思想和利用小波消失矩选择小波函数有着一致性,因小波的规则性系数和小波的消失矩有着同向的变化趋势,这可从Daubechies 小波的消失矩和其小波规则性系数的关系看出,见表1。

表1 部分db 系小波规则性系数表

小波名称db1 db2 db3 db4 db5 db7 db10

规则性系数0 0.5 0.91 1.27 1.59 2.15 2.90不同小波基对信号奇变检测仿真

1) 不同小波基对突变信号突变点检测当信号产生突变时,在突变点处含有高频成分,并且信号形状还很不规则。用Daubechies 小波族的部分小波对阶跃信号阶跃点检测来说明不同小波检测的差异。Daubechies 小波族的db1,db2,db3,db4,db6,db9对阶跃的点检测结果,如图1 所示。

从图1 中可以发现db1 的检测结果最好,这是因为阶跃信号的阶跃点是突变点,且其Lips2chitz 指数一致为0 ,而db1 小波的规则性系数也是0 ,就是说它们在信号的阶跃处有着最大的相似性,因此db1 能最有效地刻画出阶跃点的特

征。db3 ,db5 ,db7 和db9 虽也能检测出突变点,但它们所得检测图的幅值要比db1 小,这是因为它们的规则性系数大,规则性好和阶跃信号在阶跃处的相似性较小。

图3-1不同db 系的小波函数检测突变点的差异(从上到下依次为db123469)这个结果说明小波基波会得到较好的结果。不同小波基对缓变信号的检测在实际的系统故障中也存在着大量的,如果只是检测出信号奇变的突变点,按照规则性系数相似方法,选择规则性系数较小的奇变缓变信号,对其检测的小波基的选择仍可根据小波基规则性系数来确定。这里仍用Daubechies小波族的部

图3-2 不同小波基波对缓变信号的检测

分小波来说明,用db1 ,db3 ,db4 ,db5 和db7 在一个确定的尺度下对缓变信号进行检测,如图2 所示。

从最终的结果来看db5检测所得的图形和缓变信号较接近,也就是说用db5 最能准确地刻画这一缓信号的特征。从图2 中可以看出这一缓变信号变化比较平稳且连续,所以它自然有着较大的Lipschitz 规则性指数,而db5 的规则性系数要比db1 ,db3 和db4 大,这就说明了对缓变性信号的检测要用规则性系数较大的小波做小波基效果会更好。当然也不是越大越好,db7 的检测结果和实际信号的差别要比db5 的结果和实际信号的差别更大就说明这一点,这要考虑到相似性。这也说明缓变信号检测的小波基的选择要比突变信号困难一些,并且在实际系统中不可能算出系统输出信号的规则性系数。实际中往往可通过系统观测信号是否光滑连续,按照规则性系数相似方法, 在一定范围内选择小波基,并要用不同小波基反复尝试比较,才能最终确定。

另外,小波变换是一个尺度可变的信号分析方法,可在不同的尺度下对信号进行处理。因此,即使小波基选定,如尺度不合适,也很难对信号进行有效地分析,特别是对缓变信号。因为突变信号可将尺度尽量选小一点,总可以将突变点检测

出来,对缓变信号,如尺度不适当会使分析结果产生很大的差异。用db3 小波对上

面的缓变信号在不同尺度下进行检测,结果如图 3 所示。

图3-3 db3 小波在不同尺度下对缓变信号检测结果

d1 ,d2 ,d3 ,d4 和d5 分别对应不同的尺度。从图中可以看出d4 所用尺度最能体现这一缓变信号的变化趋势,而其他各层的结果和实际相差较大。同时也说明对缓变信号的检测要在相对较大的尺度下,这是因为小波在大尺度下其变化趋势比在小尺度下要平缓,换句话说其规则性增大了,从而和缓变信号的规则性系数变得接近了。图中的结果也说明了这一点,因d4 的尺度要比d1 ,d2 ,d3 大,但又不是越大越好,d5 的尺度比d4 的尺度要大,但效果却比d4 差就说明这一点。所以对缓变信号的检测,小波变换尺度的选择也很关键。

综上述,本文主要采用db3小波对故障信号进行分解!

故障点的定位与分析

现在我们来看看以上实验,我们的原始信号是一个等幅周期性很强的两组正弦信号组成,其幅值相同,当我们从原始信号里是看不出故障点的定位的,我们采用传统的傅利叶变换也不能得到其准确的位置!现我们采用db3小波单层分解,其图如3-4所示。

图3-4 利用模极大值定位奇异点

通过这次实验,我们有如下结论:

通过模极大值定位奇异点,我们可以清楚地看到故障信号的奇异点的位置,大约在499左右,其模极大值为-0.6247,t=500点左右的模变化量为0.9918,远远超过正常变动范围0.75。

实验及仿真

MATLAB简介

MATLAB是美国的Math Works 公司推出的一个科技应用软件。它的名字是由MATRIX(矩阵)和LABORATORY(实验室) [18]这两个词的前三个字母组合而成。MA TLAB 是主要面向科学计算, 可视化以及交互式程序设计的高技术计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境之中, 为科学研究、工程设计以及必须进行有效数值计算的众多学科领域提供了一种简捷、高效的编程工具。借助于这种编程环境, 任何复杂计算问题及其解的描述均十分符合人们的逻辑思维方式和数学表达习惯, 并在很大程度上摆脱了传统非交互式程序设计语言的编程模式。

MATLAB仿真实验结果

本试验选取正常信号3组和故障信号5组进行测试,测试步骤如下:

(1)通过标准信号来选取小波基函数及小波分解层数;

(2)通过标准信号的小波分解的细节信号来确定模极大值的阀值;

(3)运用选取的小波对测试信号进行检测:首先进行小波分解,其次阀值对分解的细节信号进行检测,最后判断是否存在故障及确定故障点的位置。

试验结果如表:

表5-1仿真试验统计

信号类型总组数准确组数准确率

标准信号 3 3 100%

测试信号 5 4 80%

8 7 87.5%

结论:通过本仿真实验基本上能够实现其设计目的,其准确率能达到87.5%,这在实验是一个很高的数据,故而可以采用本方法。

实验相关如图4-3所示:

图4-5仿真实验

结论:通过对信号的小波分解以及特征提取的仿真,初步得出结果:采用db3小波分解正确识别率高,说明db3小波与信号匹配性好,而采用支集长度大于db3的小波虽然正确识别也比较高,但是由于滤波器长度的增加必然产生边界问题,这会影响检测的准确率。另外由于支集长度大于db3的小波滤波器长度较长,因而会增大计算量,这不利于对信号的快速检测。由于小波分解的层数越多,计算量也就越大,同时也不利于奇

异点检测的准确定位,因而实验采用5层分解,由经验判断,采用一层二层的细节系数作为研究的对象,采用模极大值来判断奇异点,在奇异点处,具有一阶微分,但是一阶微分不连续,其李氏指数理论值为1,而实验值0.9958,误差小于1%。

总结与展望

机械在运转时发生故障是常见的一种现象,基于小波变换的机械故障诊断也是当前比较热门的一项研究之一,如何快速、准确地提取故障信号,如何准确定位故障的发生点及进行故障的预测是机械故障分析与检测的关键性问题。本文就此问题展开如下研究。

本文首先介绍了选题的背景和意义,详细分析了小波变换的基本理论、小波变换用于机械故障检测的基本原理以及一般小波基的选取原则和分解层数。在此基础上,利用模极大值方法对故障信号进行了检测,首先通过试验方法确定了小波基和分解层数,然后利用模极大值方法对故障点进行了定位,最后通过实验仿真验证了这一方法。

通过小波变换对机械故障信号进行检测测,提高了故障检测的准确性,同时使故障检测更具可操作性,基本上实现了最初设计的目的。

然而通过试验方法来确定小波基的选取的方法虽然很实用,但很麻烦,仍需改进。本文所采用的模极大值方法前人也有有过,并非十分新的方法,利用小波变换的方法检测机械故障还有很多问题存在,比如本文的仿真实验是在一台ACER笔记本上进行的,所采用的信号并非真正的故障信号,而是想象的一种模拟信号,如果真正的是机械故障信号其真实性还有待提高。

通过一段时间的了解,我相信在这一方面会做得更好……

参考文献

[1] 徐小力,梁福平,许宝杰.大型汽轮发电机组故障诊断技术现状与发展,2008

[2] 马晓建,陈瑞琪,吴文英,周保堂,贺世正.机械故障诊断中常用解调方法的比

较及应用,[J]东华大学学报(自然科学版),2001 (05).

[3] 何晓霞,沈玉娣,张西宁.连续小波变换在滚动轴承故障诊断中的应用,[J]机械

科学与技术,2001 (04).

[4] 王平,廖明夫.滚动轴承故障特征信息的自动提取方法研究,[J]机械强度,2003

(06)

[5]聂祥飞.基于小波变换的一维信号奇异性检测研究,信息技术,2004(05)

[6]崔锦泰,程正兴译.小波分析导论[M].西安:西安交通大学出版社,1995

[7]林京,屈梁生.基于连续小波变换的奇异性检测与故障诊断,振动工程学报,2000

[8]高志,于啸海.MATLAB小波分析工具箱原理与应用,国防工业出版社,2004

[9]唐远炎,王玲.小波分析与文本文字识别,科学出版社,2003

[10]成礼智,王红霞,罗永.小波的理论与应用,科学出版社,2004

[11]林京,屈梁生.基于连续小波变换的奇异性检测与故障诊断,振动工程学报,

2000(12)

[12]陈中,赵联文.信号奇异性检测中小波分析的应用,重庆师范大学学报(自然科

学版),2004

[13]许彬,郑链,王克勇,宋承天.基于信号奇异性分析的小目标检测方法,红外技

术,2005

[14]周小勇,叶银忠.故障信号检测的小波基选择方法,控制工程,2003(7)

[15]权建峰,李艳,郭东敏,栗鸣.小波变换模极大值方法对信号的奇异性检测,探

测与控制学报,2009 (4)

[16]孙成祥,晁勤.小波变换在信号奇异性检测中的应用仿真研究,江西科学,2007(2)

[17]袁海英,陈光踽.小波分析在信号奇异性检测中的应用,电讯技术,2006

[18]Mallat S.Zero-crossing of a wavelet transfom.IEEE Trans.On Information Theory,

1991,37(4)

[19]Mallat S.Zhong S F.Characterization of signals from multi-scale edges.IEEE Trans.On

Pattern Analysis and Machine Intelligence,1992,14(7)

[20] Mallat S.Hwang WL.Singularity detection and processing with wavelets.IEEE

Trans.On Information Theory,1992,38(2).

小波变换的几个典型应用

第六章小波变换的几个典型应用 6.1 小波变换与信号处理 小波变换作为信号处理的一种手段,逐渐被越来越多领域的理论工作者和工程技术人员所重视和应用,并在许多应用中取得了显著的效果。同传统的处理方法相比,小波变换取得了质的飞跃,在信号处理方面具有更大的优势。比如小波变换可以用于电力负载信号的分析与处理,用于语音信号的分析、变换和综合,还可以检测噪声中的未知瞬态信号。本部分将举例说明。 6.1.1 小波变换在信号分析中的应用 [例6-1] 以含躁的三角波与正弦波的组合信号为例具体说如何利用小波分析来分析信号。已知信号的表达式为 应用db5小波对该信号进行7层分解。xiaobo0601.m 图6-1含躁的三角波与正弦波混合信号波形 分析: (1)在图6-2中,逼近信号a7是一个三角波。 (2)在图6-3中细节信号d1和d2是与噪声相关的,而d3(特别是d4)与正弦信号相关。 图6-2 小波分解后各层逼近信号 图6-3 小波分解后各层细节信号 6.1.2 小波变换在信号降躁和压缩中的应用 一、信号降躁 1.工程中,有用信号一般是一些比较平稳的信号,噪声通常表现为高频信号。2.消躁处理的方法:首先对信号进行小波分解,由于噪声信号多包含在具有较高频率的细节中,我们可以利用门限、阈值等形式对分解所得的小波系数进行处理,然后对信号进行小波重构即可达到对信号的消躁目的。 小波分析进行消躁处理的3种方法: (1)默认阈值消躁处理。该方法利用ddencmp生成信号的默认阈值,然后利用wdencmp函数进行消躁处理。 (2)给定阈值消躁处理。在实际的消躁处理过程中,阈值往往可通过经验公式获得,且这种阈值比默认阈值的可信度高。在进行阈值量化处理时可利用函数wthresh。 (3)强制消躁处理。该方法时将小波分解结构中的高频系数全部置为0,即滤掉所有高频部分,然后对信号进行小波重构。方法简单,消躁后信号比较平滑,但易丢失信号中的有用成分。 小波阈值去噪方法是目前应用最为广泛的小波去噪方法之一。 3.信号降噪的准则: 1.光滑性:在大部分情况下,降噪后的信号应该至少和原信号具有同等的光滑性。

机械设备故障诊断技术研究

题目:机械设备故障诊断技术研究 学号: 姓名: 专业: 指导教师: 2016 年 8 月 30 日

摘要 故障诊断技术对于机械设备的安全运行有着至关重要作用,一直是工程应用领域的重点和难点, 国内外已经对此问题进行了大量的研究工作。该论文介绍了机械设备故障诊断技术的基本概念,在总结研究各种诊断技术的基础上全面分析了现代故障诊断技术存在的问题, 并针对这些问题提出了故障诊断领域将来的研究方向。故障诊断是一项实用性很强的技术, 对其进行理论上的分析研究具有重要的现实意义。 关键词:机械设备故障;诊断技术;研究

第一章引言 随着现代科学技术在设备上的应用,现代设备的结构越来越复杂,功能越来越齐全,自动化程度也越来越高。由于许多无法避免的因素影响,会导致设备出现各种故障,从而降低或失去预定的功能,甚至会造成严重的以至灾难性的事故。国内外接连发生的由设备故障引起的各种空难、海难、爆炸、断裂、倒塌、毁坏、泄漏等恶性事故,造成了极大的经济损失和人员伤亡。生产过程中经常发生的设备故障事故,也会使生产过程不能正常运行或机器设备遭受损坏而造成巨大的经济损失。因此机械设备故障诊断技术在社会中的重要性越来越高,主要体现在[1]:(1)预防事故,保证人员和设备安全。 (2)推动设备维修制度的改革。维修制度从预防制度向预知制度的转变是必然的,而真正实现预知维修的基础是设备故障诊断技术的发展和成熟。 (3)提高经济效益。设备故障诊断的最终目的是避免故障的发生,使零部件的寿命得到充分发挥,延长检修周期,降低维修费用。 因此,机械设备故障诊断技术日益受到广泛重视,对机械设备故障诊断技术的研究也不断深入。但受于机械设备故障成因的复杂性和诊断技术的局限性,目前机械设备故障诊断仍存在一些问题。

基于连续小波变换的信号检测技术与故障诊断

机械工程学报 CHINESE JOURNAL OF MECHANICAL ENGINEERING 2000 Vol.36 No.12 P.95-100 基于连续小波变换的信号检测技术与故障诊断 林京 屈梁生 摘 要:通过分析指出,连续小波变换具有很强的弱信号检测能力,非常适合故障诊断领域。从参数离散到参数优化系统研究了连续小波变换的工程应用方法,建立 了“小波熵”的概念,并以此作为基小波参数的择优标准。论文最后把连续小波技术应用在滚动轴承滚道缺陷和齿轮裂纹的识别中,诊断效果十分理想。 关键词:小波故障诊断滚动轴承齿轮 分类号:TH133.33 TH132.41 FEATURE DETECTION AND FAULT DIAGNOSIS BASED ON CONTINUOUS WAVELET TRANSFORM Lin Jing(State Key Laboratory of Acoustics, Institute ofAcou stics, Chinese Academy of Science)  Qu Liangsheng(Xi’an Jiaotong University) Abstract:It is pointed out that continuous wavelet transform(CWT) has powerful ability for weak signal detection which help itself to be used for fault diagnosis. The method for parameter discretization and optimi zation of CWT is estabished. The concept of wavelet entropy is introduced and it is used as a rule for parameter optimization. In the end, CWT is used fo r fault diagnosis of rolling bearing and gear-box. Very good results are obtain ed using this method. Keywords:Wavelet Fault diagnosis Rolling bearing Gear

基于小波分析的机械故障诊断

绪 论 机械故障诊断技术作为一门新兴的科学,自从二十世纪六七十年代以来已经取得了突飞猛进的发展,尤其是计算机技术的应用,使其达到了智能化阶段。现在,机械故障诊断技术在工业生产中起着越来越重要的作用,生产实践已经证明开展故障诊断与状态预测技术研究具有重要的现实意义。 我国的故障诊断技术在理论研究方面,紧跟国外发展的脚步,在实践应用上还是基本落后于国外的发展。在我国,故障诊断的研究与生产实际联系不是很紧密,研究人员往往缺乏现场故障诊断的经验,研制的系统与实际情况相差甚远,往往是从高等院校和科研部门开始,再进行到个别行业,而国外的发展则是从现场发现问题进而反映到高等院校或科研部门,使得研究有的放矢[1]。 要求机械设备不出故障是不现实的,因为不存在绝对安全可靠的机械设备。因此,为了预防故障和减少损失,必须对设备的运行状态进行监测,及时发现设备的异常状况,并对其发展趋势进行跟踪:对己经形成的或正在形成的故障进行分析诊断,判断故障的部位和产生的原因,并及早采取有效的措施,这样才能做到防患于未然。因此,设各状态监测与故障诊断先进技术的研究对于保证复杂机械设备的安全运行具有重要意义。 关键词:小波分析,故障诊断,小波基选取,奇异性 基于小波分析的机械故障检测 小波奇异性理论用于机械故障检测的基本原理 信号的奇异性与小波变换的模极大值之间有如下的关系: 设)(x g 为一光滑函数,且满足条件0g(x) lim ,1x)dx ( g x ==∞→+∞ ∞-?,不妨设)(x g 为高斯函数,即σσπ2221)(x e x g -= ,令 d x,/x)( dg x)(=ψ由于?+∞ ∞-=0x)dx (ψ,因此,可取函数x)(ψ

研究生《小波理论及应用》复习题

2005年研究生《小波理论及应用》复习题 1. 利用正交小波基建立的采样定理适合于:紧支集且有奇性(函数本身或其导数不连续)的函数(频谱无限的函数)。Shannon 采样定理适合于频谱有限的信号。 2. 信号的突变点在小波变换域常对于小波变换系数模极值点或过零点。并且信号奇异性大小同小波变换的极值随尺度的变化规律相对立。只有在适当尺度下各突变点引起的小波变化才能避免交迭干扰,可以用于信号的去噪、奇异性检测、图象也缘提取、数据压缩等。 3. 信号在一点的李氏指数表征了该点的奇异性大小,α越大,该点的光滑性越小,α越小,该点的奇异性越大。光滑点(可导)时,它的1≥α;如果是脉冲函数,1-=α;白噪声时0≤α。 4. 做出三级尺度下正交小波包变换的二进数图,小波包分解过程?说明小波基与小波包基的区别? 5. 最优小波包基的概念:给定一个序列的代价函数,然后在小波包基中寻找使代价函数最小的基――最优基。 6. 双通道多采样率滤波器组的传递函数为: ()()()()()()()()()()()()()z X z G z G z H z H z X z G z G z H z H z Y z Y z Y -??????-++??????+=+=∧∧∧∧212121请根据此式给出理想重建条件: 为了消除映象()z X -引起的混迭:()()()()0=-+-∧ ∧z G z G z H z H

为了使()z Y 成为()z X 的延迟,要求:()()()()k CZ z G z G z H z H -∧∧=+ (C,K 为任一常数) 7. 正交镜像对称滤波器()()n h n g ,的()jw e G 与()jw e H 以2π=w 为轴左右对称。如果知道QMF 的()n h ,能否确定()()()n h n g n g ∧ ∧,,? ()()()n h n g n 1-= ,()()()n g n h n 1--=∧ , ()()()n h n g n 1-=∧ 8. 试列出几种常用的连续的小波基函数 Morlet 小波,Marr 小波,Difference of Gaussian (DOG ),紧支集样条小波 9. 试简述海森堡测不准原理,说明应用意义? 10. 从连续小波变换到离散小波变换到离散小波框架-双正交小波变换-正交变换、紧支集正交小波变换,其最大的特点是追求变换系数的信息冗余小,含有的信息量越集中。 11. 解释紧支集、双正交、正交小波、紧支集正交小波、光滑性、奇异性。 12. 已知共轭正交滤波器组(CQF )()n h 请列出()()()n g n h n g ∧ ∧,,。 ()()() ()()()()()()???????-=--=-=---=∧∧n h n N g n g n N h n h n N h n g n n 11 13. 共轭正交滤波器()()n g n h ,的()jw e G 与()jw e H 的关系与QMF 情况

设备故障诊断技术说明

设备故障诊断技术简介

上海华阳检测仪器有限公司 Shanghai Huayang MeasuringInstruments Co., Ltd 目录 设备故障诊断技术定义

-----------------------------------------------( 3)一.设备维修制度的进展-----------------------------------------------( 4)二.检测参数类型-------------------------------------------------------( 5) 三.振动检测中位移、速度和加速度参数的选择-----------------------------( 5) 四.测点选择原则------------------------------------------------------( 6) 五.测点编号原则------------------------------------------------------( 7) 六.评判标准----------------------------------------------------------( 7) 七.测量方向及代号----------------------------------------------------

(10) 八.搜集和掌握有关的知识和资料----------------------------------------(10) 九.故障分析与诊断----------------------------------------------------(11) 十.常见故障的识不----------------------------------------------------(14) 1.不平衡------------------------------------------------------------(14) 2.不对中------------------------------------------------------------(14) 3.机械松动----------------------------------------------------------(15) 4. 转子或轴裂纹

基于小波分析的故障诊断算法

基于小波分析的故障诊断算法 前言: 小波变换是一种新的变换分析方法,它继承和发展了短时傅立叶变换局部化的思想,同时又克服了窗口大小不随频率变化等缺点,能够提供一个随频率改变的“时间- 频率”窗口,是进行信号时频分析和处理的理想工具。它的主要特点是通过变换能够充分突出问题某些方面的特征,因此,小波变换在许多领域都得到了成功的应用,特别是小波变换的离散数字算法已被广泛用于许多问题的变换研究中。从此,小波变换越来越引起人们的重视,其应用领域来越来越广泛。 在实际的信号处理过程中,尤其是对非平稳信号的处理中,信号在任一时刻附近的频域特征都很重要。如在故障诊断中,故障点(机械故障、控制系统故障、电力系统故障等)一般都对应于测试信号的突变点。对于这些时变信号进行分析,通常需要提取某一时间段(或瞬间)的频率信息或某一频率段所对应的时间信息。 因此,需要寻求一种具有一定的时间和频率分辨率的基函数来分析时变信号。小波变换继承和发展了短时傅里叶变换的局部化思想,并且克服了其窗口大小和形状固定不变的缺点。它不但可以同时从时域和频域观测信号的局部特征,而且时间分辨率和频率分辨率都是可以变化的,是一种比较理想的信号处理方法。 小波分析被广泛应用于信号处理、图像处理、语音识别、模式识别、数据压缩、故障诊断、量子物理等应用领域中。 小波分析在故障诊断中应用进展 1)基于小波信号分析的故障诊断方法 基于小波分析直接进行故障诊断是属于故障诊断方法中的信号处理法。这一方法的优点是可以回避被诊断对象的数学模型, 这对于那些难以建立解析数学模型的诊断对象是非常有用的。 具体可分为以下4种方法: ①利用小波变换检测信号突变的故障方法连续小波变换能够通过多尺度分析提取信号的奇异点。基本原理是当信号在奇异点附近的Lipschitz指数a >0时,其连续小波变换的模极大值随尺度的增大而增大;当a <0时,则随尺度的增大而减小。噪声对应的Lipschitz指数远小于0, 而信号边沿对应的Lipschitz 指数大于或等于0。因此, 利用小波变换可以区分噪声和信号边沿, 有效地检测出强噪声背景下的信号边沿(奇变)。动态系统的故障通常会导致系统的观测信号发生奇异变化, 可以直接利用小波变换检测观测信号的奇异点, 从而实现对系统故障的检测。比如根据输油管泄漏造成的压力信号突变的特点, 用小波变换检测这些突变点, 实现输油管道的泄漏点诊断。 ②观测信号频率结构变化的故障诊断方法小波多分辨率分析能够描述信号的频谱随 时间变化情况或信号在某时刻

【免费下载】小波分析及其应用

科技文献检索作业 卷 试 料 小波分析及其应用 测控技术1103 雷创新

小波分析及其应用 1.小波分析的概念和特点 1.1小波理论的发展概况 20世纪80年代逐渐发展和兴起的小波分析(wavelctanalysis)是20世纪 数学领域中研究的重要杰出成果之一。小波分析理论作为数学界中一种比较成熟的理论基础,应用到了各种领域的研究当中,推动了小波分析在各工程应用中的发展。它作为一种新的现代数字信号处理算法,汲取了现代分析学中诸如样条分析、傅立叶分析、数值分析和泛函分析等众数学多分支的精华部分,替代了工程界中一直应用的傅立叶变换,它是一种纯频域分析方法,不能在时频同时具有局部化特性。而小波分析中的多尺度分析思想,犹如一台变焦照相机,可以由粗及精逐步观察信号,在局部时频分析中具有很强的灵活性,因此有“数学显微镜”的美称。它能自动随着频率增加而调节成窄的“时窗”和宽的“频窗”,又随着频率降低而调节成宽的“时窗”和窄的“频窗”以适应实际分析需要。另外,小波变换在经过适当离散后可以够成标准正交基或正交系,这些在理论和应用上都具有十分重要的意义,因此,小波分析在各个领域得到了高度的重视并取得了许多重要的成果。 小波变换作为一种数学理论和现代数字信号处埋方法在科学技术界引起了越来越多专家学者的关注和重视。在数学家看来,基于小波变换的小波分析技术是当今数值分析、泛函分析、调和分析等半个多世纪以来发展最完美的结晶,是正在发展中的新的数学分支。在工程领域,特别是在信号处理、图像处理、机器视觉、模糊识别、语音识别、流体力学、量子物理、地震勘测、电磁学、CT成像、机械故障诊断与监控等领域,它被认为是近年来在工具及方法上的重大突破。然而,小波分析虽然在众多领域中已经取得了一定的成果,但是,有专家预言小波分析理论的真正高潮并没有到来。首先,小波分析尚需进一步完善,除一维小波分析理论比较成熟以外,向量小波和多维小波则需要进行更加深入的研究与讨论;其次,针对不同情况选择不同的小波基函数,实现的效果是有差别性的这一问题,对最优小波基函数的选取方法有待进一步研究。在今后数年中,小波理论将成为科技工作者经常使用的又一锐利数学工具,极大地促进科技进步及各个领域工程应用的新发展。 小波分析的概念最早是在1974年由法国地质物理学家 J.Morlet提出的,并通过物理直观和信号处理的实际经验建立了反

小波分析在故障诊断中的实际应用

测 控 系统 课 程 设 计 题目:基于小波分析的故障诊断 院 (系) 机电及自动化学院 专 业 测控技术与仪器1班 学 号 0911211014 姓 名 李志文 级 别 2 0 0 9 指导老师 王启志 2012年6月 Huaqiao university

摘要 基于小波变换的故障诊断是当前比较热门的一项研究之一,如何快速、准确地提取故障信号,如何准确定位故障的发生点及进行故障的预测是故障分析与检测的关键性问题。本文就此问题展开如下研究。 本文详细分析了小波变换的基本理论、小波变换用于故障检测的基本原理。介绍了几种常用的小波及其应用特点。通过实例分析比较不同小波类型的应用特点,通过对他们的优缺点的了解,能够在不同的环境下选取合适的小波类型进行故障检测,同时针对不同的着重点选取恰当的小波。 关键词:小波分析,故障检测,小波基选取,奇异性 ABSTRACT Fault diagnosis based on wavelet transform is one of the popular a study, how quickly and accurately extract the fault signal, and how to accurately locate the fault occurred and the failure of the forecasts are the key issues of fault analysis and detection. On this issue, the following research. In this paper a detailed analysis of the basic theory of wavelet transform, the basic principles of wavelet transform for fault detection. Several commonly used wavelet and its application characteristics. By case analysis comparing different wavelet characteristics, by understanding their strengths and weaknesses in different environments to select the appropriate wavelet for fault detection, and select the appropriate wavelet for a different focus. KEY WORDS:wavelet analysis,defect detection,wavelet basis selection, singularity

《小波分析及其应用》word版

现代数字信号处理作业 小波分析及其应用 电研111 梁帅

小波分析及其应用 1.小波分析的概念和特点 1.1小波理论的发展概况 20世纪80年代逐渐发展和兴起的小波分析(wavelctanalysis)是20世纪数学领域中研究的重要杰出成果之一。小波分析理论作为数学界中一种比较成熟的理论基础,应用到了各种领域的研究当中,推动了小波分析在各工程应用中的发展。它作为一种新的现代数字信号处理算法,汲取了现代分析学中诸如样条分析、傅立叶分析、数值分析和泛函分析等众数学多分支的精华部分,替代了工程界中一直应用的傅立叶变换,它是一种纯频域分析方法,不能在时频同时具有局部化特性。而小波分析中的多尺度分析思想,犹如一台变焦照相机,可以由粗及精逐步观察信号,在局部时频分析中具有很强的灵活性,因此有“数学显微镜”的美称。它能自动随着频率增加而调节成窄的“时窗”和宽的“频窗”,又随着频率降低而调节成宽的“时窗”和窄的“频窗”以适应实际分析需要。另外,小波变换在经过适当离散后可以够成标准正交基或正交系,这些在理论和应用上都具有十分重要的意义,因此,小波分析在各个领域得到了高度的重视并取得了许多重要的成果。 小波变换作为一种数学理论和现代数字信号处埋方法在科学技术界引起了越来越多专家学者的关注和重视。在数学家看来,基于小波变换的小波分析技术是当今数值分析、泛函分析、调和分析等半个多世纪以来发展最完美的结晶,是正在发展中的新的数学分支。在工程领域,特别是在信号处理、图像处理、机器视觉、模糊识别、语音识别、流体力学、量子物理、地震勘测、电磁学、CT成像、机械故障诊断与监控等领域,它被认为是近年来在工具及方法上的重大突破。然而,小波分析虽然在众多领域中已经取得了一定的成果,但是,有专家预言小波分析理论的真正高潮并没有到来。首先,小波分析尚需进一步完善,除一维小波分析理论比较成熟以外,向量小波和多维小波则需要进行更加深入的研究与讨论;其次,针对不同情况选择不同的小波基函数,实现的效果是有差别性的这一问题,对最优小波基函数的选取方法有待进一步研究。在今后数年中,小波理论将成为科技工作者经常使用的又一锐利数学工具,极大地促进科技进步及各个领域工程应用的新发展。 小波分析的概念最早是在1974年由法国地质物理学家J.Morlet提出的,并通过物理直观和信号处理的实际经验建立了反演公示,但当时该理论未能得到数学家的认可。1986年法国数学家YMcyer偶尔构造出一个真正的小波基,并与

旋转机械故障相关诊断技术(最新版)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 旋转机械故障相关诊断技术(最 新版) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

旋转机械故障相关诊断技术(最新版) 一、旋转机械故障的灰色诊断技术 灰色诊断技术就是在故障诊断中应用灰色系统理论,利用信息间存在的关系,充分发挥采集到的振动信息的作用,充分挖掘振动信息的内涵,通过灰色方法加工、分析、处理,使少量的振动信息得到充分的增值和利用,使潜在的故障原因显化。 二、旋转机械故障的模糊诊断技术 模糊诊断技术就是在故障诊断中引入模糊数学方法,将各类故障和征兆视为两类不同的模糊集合,同时用一个模糊关系矩阵来描述二者之间的关系,进而在模糊的环境中对设备故障的原因、部位和程度进行正确、有效地推理、判断。 三、旋转机械故障的神经网络诊断技术 所谓的神经网络就是模仿人类大脑中的神经元与连结方式,以

构成能进行算术和逻辑运算的信息处理系统。神经网络模型由许多类似于神经元的非线性计算单元所组成,这些单元以一种类似于生物神经网络的连结方式彼此相连,以完成所要求的算法。在旋转机械故障的诊断中,引入神经网络技术,以类似于人脑加工信息的方法对收集到的故障信息进行处理,从而对故障的原因、部位和程度进行正确的判断。 云博创意设计 MzYunBo Creative Design Co., Ltd.

小波变换及其应用_李世雄

现代数学讲座 小波变换及其应用 李世雄 (安徽大学数学系 合肥 230039) 科学技术的迅速发展使人类进入了信息时代。在信息社会中人们在各种领域中都会涉及各种信号(语音,音乐,图像,金融数据,……)的分析、加工、识别、传输和存储等问题。长期以来,傅里叶变换一直是处理这方面问题最重要的工具,并且已经发展了一套内容非常丰富并在许多实际问题中行之有效的方法。但是,用傅里叶变换分析处理信号的方法也存在着一定的局限性与弱点,傅里叶变换提供了信号在频率域上的详细特征,但却把时间域上的特征完全丢失了。小波变换是80年代后期发展起来的新数学分支,它是傅里叶变换的发展与扩充,在一定程度上克服了傅里叶变换的弱点与局限性。本文从信号分析与处理的角度来介绍小波变换的基本理论与应用,使具有微积分基础的读者通过本文能对这一新的数学分支有一初步了解。小波变换在函数论、微分方程、数值计算等方面也有着重要的应用,有兴趣的读者可参看[1][4]。 (一)从傅里叶变换谈起 数学中经常用变换这一技巧将问题由繁难化为简易,初等数学中用对数将较繁难的乘除法化为简易的加减法就是很典型的一个例子。而傅里叶变换(简称FT )则是利用积分将一个函数f (t )(-∞

小波变换及应用

小波变换及应用 一. 为什么研究小波变换 傅立叶变换(Fourier Transform ,缩写为FT )由下列公式定义: 正变换公式 ?()()i t f f t e dt ωω∞ --∞ =?? (1) 逆变换公式 ? ∞ ∞ -?= dt e f t f t i ωωπ )(?21 )( (2) 分析: 1.对于确定信号和平稳随机过程,傅立叶变换把时间域与频率域联系起来,许多在时域内难以看清的问题,在频域中往往表现得非常清楚。 2.变换积分核t i e ω±的幅值在任何情况下均为1,即1=±t i e ω,因此,频 谱)(?ωf 的任一频率点值是由时间过程)(t f 在整个时间域),(∞-∞上的贡献决定的;反之,过程)(t f 在某一时刻的状态也是由)(?ωf 在整个频率域),(∞-∞上的贡献决定的。)(t f 与)(?ωf 彼此之间是整体刻画,不能够反映各自在局部区域上的特征,因此不能用于局部分析。特别是傅立叶变换的积分作用平滑了非平稳过程的突变成分。要知道所分析的信号在突变时刻的频率成分,傅立叶变换是无能为力的。 3.实际中存在许多信号具有局部时间范围(特别是突变时刻)内的信号特征(一般是频率成分),例如,在音乐和语音信号中,人们所关心的是什么时刻奏什么音符,发出什么样的音节;图像信号中的细节信息,如边缘特征。 4.为了对非平稳信号作较好的分析,可以对信号在时域上加一个窗函数 )(τ-t g ,使其对信号)(t f 进行乘积运算以实现在τ附近的开窗,再对加窗的信 号进行傅立叶分析,这就是短时傅立叶变换(Short Time Fourier Transform, 缩写为STFT ),或者称为加窗傅立叶变换(Windowed Fourier Transform )。STFT 定义如下: (,)()()i t f S f t g t e dt ωωττ∞ --∞ =-? (3)

机械故障诊断技术 习题参考答案

参考答案 教材:设备故障诊断,沈庆根、郑水英,化学工业出版社,2006.3第1版 2010.6.28 于电子科技大学 1第1章概论 1.1 机械设备故障诊断包括哪几个方面的内容? 答:机械设备故障诊断所包含的内容可分为三部分。 第一部分是利用各种传感器和监测仪表获取设备运行状态的信息,即信号采集。采集到的信号还需要用信号分析系统加以处理,去除无用信息,提取能反映设备状态的有用信息(称为特征信息),从这些信息中发现设备各主要部位和零部件的性能是处于良好状态还是故障状态,这部分内容称为状态监测,它包含了信号采集和信号处理。 第二部分是如果发现设备工作状态不正常或存在故障,则需要对能够反映故障状态的特征参数和信息进行识别,利用专家的知识和经验,像医生诊断疾病那样,诊断出设备存在的故障类型、故障部分、故障程度和产生故障的原因,这部分内容称为故障诊断。 第三部分称为诊断决策,根据诊断结论,采取控制、治理和预防措施。 在故障的预防措施中还包括对设备或关键零部件的可靠性分析和剩余寿命估计。有些机械设备由于结构复杂,影响因素众多,或者对故障形成的机理了解不够,也有从治理措施的有效性来证明诊断结论是否正确。 由此可见,设备诊断技术所包含的内容比较广泛,诸如设备状态参数(力、位移、振动、噪声、裂纹、磨损、腐蚀、温度、压力和流量等)的监测,状态特征参数变化的辨识,机器发生振动和机械损伤时的原因分析,故障的控制与防治,机械零部件的可靠性分析和剩余寿命估计等,都属于设备故障诊断的范畴。 1.2 请简述开展机械设备故障诊断的意义。 答:1、可以带来很大的经济效益。 ①采用故障诊断技术,可以减少突发事故的发生,从而避免突发事故造成的损失,带来可观的经济效益。 ②采用故障诊断技术,可以减少维修费用,降低维修成本。 2、研究故障诊断技术可以带动和促进其他相关学科的发展。故障诊断涉及多方面的科学知识,诊断工作的深入开展,必将推动其他边缘学科的相互交叉、渗透和发展。 2第2章故障诊断的信号处理方法 2.1 信号特征的时域提取方法包括哪些? 答:信号特征的时域提取方法包括平均值、均方根值、有效值、峰值、峰值指标、脉冲指标、裕度指标、偏度指标(或歪度指标、偏斜度指标)、峭度指标。这些指标在故障诊断中不能孤立地看,需要相互印证。同时,还要注意和历史数据进行比较,根据趋势曲线作出判别。 2.2 时域信号统计指标和频谱图在机械故障诊断系统中的作用分别是什么?

机械故障诊断作业

机械故障诊断 绪论:机械设备状态监测与故障诊断:是识别机械设备(机器或机组)运行状态的一门综合性应用科学和技术,它主要研究机械设备运行状态的变化在诊断信息中的反映;通过测取设备状态信号,并结合其历史状况对所测信号进行处理分析,特征提取,从而定量诊断(识别)机械设备及其零部件的运行状态(正常、异常、故障),进一步预测将来状态,最终确定需要采取的必要对策的一门技术。主要内容包括监测、诊断(识别)和预测三个方面。机械设备是现代化工业生产的物质技术基础,设备管理则是企业管理中的重要领域,也就是说,企业管理的现代化必然要以设备管理的现代化作为其重要组成部分,机械设备状态监测与故障诊断技术在设备管理与维修现代化中占有重要的地位。 机械设备状态监测与故障诊断技术在满足可靠性、可用性、维修性、经济性、安全性要求中,扮演着越来越重要的角色。机械故障的诊断的意义当然是不可忽略的。第一,有利于提高设备管理水平,“ 管好、用好、修好”设备,不仅是保证简单再生产的必要条件,而且能提高企业经济效益,推动国民经济持续、稳定、协调地发展。机械设备状态监测与故障诊断是提高设备管理水平的一个重要组成部分;第二,避免重大事故发生,减少事故危害性,现代设备的结构越来越复杂,功能越来越完善,自动化程度越来越高。但是,当设备出现故障时所带来的影响程度也明显增大,有时不仅仅是造成巨大的经济损失,往往还会带来灾难性的事故,发展机械设备状态监测与故障诊断技术,并进行有效、合理的实施,可以掌握设备的状态变化规律及发展趋势,

防止事故于未然,将事故消灭在萌芽;第三,宏观上实施故障诊断能带来经济效益。 机械设备的发展也是从最初最原始的方法到至今的高端迈进。第一阶段:19世纪工业革命到20世纪初,低的生产力水平,事后维修方式;第二阶段:20世纪初到20世纪50年代,规模化生产方式—定期维修—设备诊断技术孕育,由听、摸、闻、看到初步的设备诊断仪器;第三阶段:20世纪60—70年代,大规模生产方式—状态维修—设备诊断技术形成;第四阶段:20世纪80—目前,柔性生产方式—风险管理—智能化设备诊断技术,设备诊断相关信息的集成化、智能化、网络化利用。①第二次世界大战中,认识到这种技术的重要性; ②第二次世界大战后,因对应技术未发展而发展不快;③60年代后,电子技术、计算机技术发展、1965年FFT方法和对应的数字信号处理和分析技术的发展为设备诊断技术奠定了技术基础。 机械设备状态监测与故障诊断是一门正在不断完善和发展的交叉型学科,是一项与现代化工业大生产紧密相关的技术,是机械学科领域的研究热点之一。故障诊断学科需解决的重要问题,故障特征信息提取和故障分类、识别的新理论及新方法研究,复杂故障产生机理及模型的深入研究,故障诊断智能系统研究,包括诊断专家系统和网络化远程诊断系统,而机械故障诊断学的学科范畴也是将多数学科融合一起的一个综合学科。他包括了机械工程,建模技术(CAD、CAE、坐标反求、图像处理),分析技术,测量技术,结构强度,参数辨识,信号处理分析,故障诊断应用力学等等学科。

小波分析及应用(附常用小波变换滤波器系数)

第八章 小波分析及应用 8.1 引言 把函数分解成一系列简单基函数的表示,无论是在理论上,还是实际应用中都有重要意义。 1822年法国数学家傅里叶(J. Fourier 1768-1830)发表的研究热传导理论的“热的力学分析”,提出并证明了将周期函数展开为正弦级数的原理,奠定了傅里叶级数理论的基础[1]。傅里叶级数理论研究的是把函数在三角函数系下的展开,使得对信号和系统的研究归结为对简单的三角函数的研究。傅里叶级数与傅里叶变换共同组成了平常所说的傅里叶分析[2]。傅里叶级数用于分析周期性的函数或分布,理论分析时经常假定周期是π2,定义如式(8.1-1)、(8.1-2) ()()π2,02 L x f ∈?,()∑∞ -∞ == k ikx k e c x f (8.1-1) 其中 ()dx e x f c ikx k -?=π π20 21 (8.1-2) 然而,被分析函数的性质并不能完整地由傅里叶系数来刻划,这里有一个例子来说明[3]:从任一个平方可和的函数)(x f 出发,为了得到一个连续函数)(x g ,只需或者增大f(x)的傅里叶系数的模,或者保持它不变并适当地改变系数的位相。因此,不可能仅根据傅里叶系数大小的阶就预知函数的性质(如大小、正则性)。 傅里叶变换的定义如式(8.1-3)、(8.1-4) ()()dx e x f F x j ωω? ∞∞ -= (8.1-3) ()()ωωπ ωd e F x f x j -∞∞-?= 21 (8.1-4) 通过引入广义函数或分布的概念,可获得奇异函数(如冲击函数)的傅里叶变换的存在。对于时域的常量函数,在频域将表现为冲击函数,表明具有很好的频域局部化性质。由式(8.1-3)可知,为了得到()ωF ,必须有关于f(x)的过去和未来的所有知识,而且f(x)在时域局部值的变化会扩散到整个频域,也就是()ωF 的任意有限区域的信息都不足以确定任意小区域的f(x)。在时域,哈尔(Haar)基是一组具有最好的时域分辨能力的正交基,它在时域上是完全局部化的,但在频域的局部化却很不好,这是由于哈尔系的两个缺点:缺乏正则性与缺乏振动性。研究者们希望寻找关于空间变量(或时间变量)与频域变量都同时好的希尔伯特(Hilbert)基,R. Balian 认为:“在通讯理论中,人们对于在完全给定的时间内,把一个振动信号表示成由其中每一个都拥有足够确定的位置与有一个频率的小波的叠加这件事感兴趣。事实上,有用的信息常常同时被发射信号的频率与信号的时间结构(如音乐)所传递。当把一个信号表达成时间的函数时,其中的频谱表现并不好;相反地,信号的傅里分析却显示不了信号每一分量发射信号的瞬时与持续时

机械故障诊断技术课后答案

机械故障诊断技术 (第二版张建)课后答案 第一章 1、故障诊断的基础是建立在能量耗散的原理上的。 2、机械故障诊断的基本方法课按不同观点来分类,目前流行的分类方法有两种:一是按机械故障诊断方法的难易程度分类,可分为简易诊断法和精密诊断法;二是按机械故障诊断的测试手段来分类,主要分为直接观察法、振动噪声测定法、无损检测法、磨损残余物测定法、机器性能参数测定法。 3、设备运行过程中的盆浴曲线是指什么? 答:指设备维修工程中根据统计得出一般机械设备劣化进程的规律曲线(曲线的形状类似浴盆的剖面线) 4、机械故障诊断包括哪几个方面内容? 答:(1)运行状态的检测根据机械设备在运行时产生的信息判断设备是否运行正常,其目的是为了早期发现设备故障的苗头。 (2)设备运行状态的趋势预报在状态检测的基础上进一步对设备 运行状态的发展趋势进行预测,其目的是为了预知设备劣化的速度,以便生 产安排和维修计划提前做好准备。 (3)故障类型、程度、部位、原因的确定最重要的是设备类型的确定,它是在状态检测的基础上,确定当机器已经处于异常状态时所需进一步解决的问题,其目的是为了最后诊断决策提供依据。 5、请叙述机械设备的故障诊断技术的意义? 答:设备诊断技术是一种了解和掌握设备在使用过程中的状态,确定其整体或局部是正常或异常,早期发现故障及其原因,并能预报故障发展趋势的技术。机械设备的故障诊断可以保证整个企业的生产系统设备的运行,减少经济损失,还可以减少某些关键机床设备因故障存在而导致加工质量降低,保证整个机器产品质量。 6、劣化曲线沿横、纵轴分别分成的三个区间分别是什么,代表什么意义? 答:横轴包括1、磨合期 2、正常使用期 3、耗损期纵轴包括1、绿区(故障率最低,表示机器处于良好状态)2、黄区(故障率有抬高的趋势,表示机器

小波分析及其应用孙延奎2005

《小波分析及其应用》(孙延奎,2005)第5章 可分离二维小波变换算法实现的问题与讨论 孙延奎 摘要:总结分析可分离二维小波变换算法实现的细节,澄清一些概念与问题,纠正例5-2中“转置”的错误,回答读者的问题。 教材中三个方向小波的定义: 12 3(,)()() (,)()()(,)()()x y x y x y x y x y x y ψφψψψφψψψ?=?=??=? ,11,22,33 ,,,,,,,,,,,,(,)j j j j k m j k m k m j k m k m j k m k m k m k m g x y d d d ψψψ=++∑∑∑ (5.5) 经简单计算可得, 1 ,1,,,11,,,,22 ,,,,33 ,,,,,,,j k m j k m j k m j k m j k m j k m j k m j k m c f d f d f d f ?ψψ ψ++?=??=??=??= ?? 我们称序列 {},1 ,2,3,,,j j j j c d d d 为1j c +的(一级)二维小波变换。下面讨论二维小波变换 的快速算法。 设一维多分辨分析 {}j V 的两尺度方程和小波方程为: ( )() ( )() 22k k k k t h t k t g t k φφψφ=-=- 其中, {} k h 为实滤波器,()11k k k g h -=-。则类似一维正交多分辨分析的推导,由 1,11,22,33 1,1,,,,,,,,,,,,,,,(,)j j j j j k m j k m k m j k m k m j k m k m j k m k m k m k m k m f x y c d d d φψψψ+++=+++∑∑∑∑

机械设备故障诊断技术应用案例

机械设备故障诊断技术应用案例 【案例8-1】图8.4(引自参考文献33)为某厂轧机一轴轴承测振的时域波形图,表1为常用时域波形指标值。图中时域波形中有明显脉冲出现,由于峭度指标对冲击的变化十分明显,设备正常运行时峭度值一般为3.0,由表1可看出该轧机轴承峭度值为154.6,但并不能据此判断该设备一定有异常,又经过对数据进行频谱分析后发现,该设备轴承存在故障。因此,采用时域分析法往往可以进行简易诊断,若要精密诊断还需要和其它方法相结合判断。 2/s m ms 0-100-5050100 1500 20406080100120140 图8.4 轧机振动检测时域波形 表1 时域指标 【案例8-2】图8.6(引自参考文献34)所示为带有外圈剥落故障的滚动轴承振动信号,从图中可看到明显的周期性冲击振动,说明外圈剥落严重。用滤波器对该数据进行滤波,然后取包络并进行细化Fourier 分析,即使用共振解调法进行故障诊断,得到的诊断结果如图8.7所示。理论上外圈的故障特征频率0f =46.9Hz ,从频谱图中可明显看到外圈故障频率为46.7Hz 。因此,共振解调法准确的反映了故障特性。 图8.6 外圈剥落故障轴承的振动信号

图8.7 共振解调法诊断外圈剥落故障结果 【案例8-3】图8.10、8.11、8.12所示分别为正常轴承、滚子损伤轴承、外圈损伤轴承声发射信号的时域图和频域图,图中“R1”或“1”所指的波形表示声发射信号的时域波形,“M”所指的波形表示相应的频谱图。各图中右上角的“@”表示实线光标处波形所对应的频率及相应的幅值,“△”表示实线与虚线光标之间的差值。 图8.10 正常轴承声发射信号的时域图和频域图(示波器截图) 图8.11 滚子损伤轴承声发射信号时域图和频域图(示波器截图)

相关文档
最新文档