【计算机专业文献翻译】计算机网络

【计算机专业文献翻译】计算机网络
【计算机专业文献翻译】计算机网络

附录1英文及其译文

Computer Networks

Network Goals

Some reasons are causing centralized computer systems to give way to networks.

The first one is that many organizations already have a substantial number of computers in operation, often located far apart .Initially, each of these computers may have worked in isolation from the other ones, but at a certain time, and management may have decided to connect them to be able to correlate information about the entire organization. Generally speaking, the goal is to make all programs, data, and other resources available to anyone on the network without regard to the physical location of the resource and the user.

The second one is to provider high reliability by having alternative sources of supply. With a network, the temporary loss of a single computer is much less serious, because its users can often be accommodated elsewhere until the service is restored.

Another important reason for distributing computing power has to do with the relative price of computing versus communication. Now the cost of a small computer is negligible, so it becomes attractive to analyze the data at where it is captured, and only to send occasional summaries back to the computer center, to reduce the communication cost, which now represents a larger percentage of the total cost than it used to.

Yet another reason of setting up a computer network is that a computer network can provider a powerful communication medium among widely separated people.

Application of Networks

One of the main areas of potential network use is access to remote data bases. It may someday be easy for people sitting at their terminals

at home to make reservations for airplanes, trains, bused, boats, restaurants, theaters, hotels, and so on, at anywhere in the world with instant confirmation. Home banking, automated newspaper and fully automated library also fall in this category.

Computer aided education is another possible field for using network, with many different coursed being offered.

Teleconferencing is a whole new form of communication. With it, widely separated people can conduct a meeting by typing messages at their terminals. Attendees may leave at will, and find out what they missed when they come back. International contacts by human being may be greatly enhanced by network based communication facilities.

Network Structure

In any network exists a collection of machines intended to running user (i.e., application) program. These machines are called hosts. The hosts are connected by the communication subnet. The job of the subnet is to carry messages from host to host.

The subnet consists of two basic components: nodes and channels. Nodes are specialized computers. All traffic to or from the host goes via its node. Channels are transmission lines.

Broadly speaking, there are two general types of designs for the communication subnet:

(1)Point-to-point channels

(2Broadcast channels

In the first one, the network contains numerous cables or leased telephone lines, each one connecting a pair of nodes. If two nodes that do not share a cable wish to communicate, they must do this indirectly via other nodes. When a message is sent from one node to another via one or more inter mediate nodes, each intermediate node will receive the message and store it until the required output line is free so that it

can transmit the message forward. The subnet using this principle is called a point-to-point or store-and-forward subnet.

When a point-to-point subset is used, the important problem is how to design the interconnected topology between the nodes.

The second kind of communication architecture uses broadcasting. In this design there is a single communication channel shared by all nodes. The inherence in broadcast system is that messages sent by any node are received by all other nodes.

Protocol Hierarchies

To reduce their design complexity, most networks are organized as a series of layers or levels, each one built upon its predecessor. Layer n on one machine carries on a conversation with layer n on another machine. The rules and conventions used in this conversation are collectively called the layer n protocol. In reality, no data are directly transferred from layer n on one machine to layer n on another machine (except in the lowest layer).Instead, each layer passes data and control information to the following layer immediately, until the lowest layer is reached. At the lowest layer there is one physical communication with the other machine, as opposed to the virtual communication used by the higher layers.

Between each pair of adjacent layers there is an interface. The interface defines which primitive operations and services the lower offers to the upper one.

The set of layers and protocols is called network architecture. Design Issues for the Layers

One set of design decisions are the rules for data transfer. Do data only travel in one direction, called simplex communication, or travel in either direction, but not simultaneously, called half-duplex communication, or travel in both directions at once, call full-duplex

communicative?

Error control is an important issue when the physical communication circuits are not perfect. Many error-detecting and error-correcting codes are known, but both ends of the connection must agree on what kind of code is being used. In addition, the receiver must have some way of telling the sender which messages have been correctly received and which has not. When there are multiple paths between source and destination, at some points in the hierarchy, a routing decision must be made.

The ISO Reference Model

The Reference Model of Open System Interconnection (OSI), as ISO calls it, has seven layers. The major ones of the principles, from which ISO applied to get the seven layers, are as follows:

(1) A layer should be created where a different level of abstractions is needed.

(2) Each layer should perform a well defined function.

(3) The function of each layer should be chosen with an eye toward defining internationally standardized protocols.

(4) The layer boundaries should be chosen to minimize the information flow across the interfaces.

(5) The number of layers should be large enough so that distinct functions need not be put together in the same layer without necessity, and small enough so that the architecture will not become out of control. The Physical Layer

The physical layer is concerned with transmitting raw bits over a communication channel. Typical questions here are how many volts should be used to represent an 1 and how many a 0, how many microseconds a bit occupies, whether transmission may proceed simultaneously in both directions, how to establish the initial connection and how to tear town the connection when both sides are finished, how many pins the network

connector has and what kind of function each pin has. The design issues here largely deal with mechanical, electrical and procedural interfacing to the subnet.

The Data Link Layer

The task of the data link layer is to obtain a raw transmission facility and to transform it into a line that appears free of transmission errors to the network layer. It accomplishes this task by breaking the input data up into data frames, transmitting the frames sequentially, and processing the acknowledgment frames sent back by the receiver.

Since the physical layer merely accepts and transmits a stream of bits without any regard to meaning or structure, it can create and recognize frame boundaries until the data link layer. This can be accomplished by attaching special bits patterns to the beginning and the end of the frame. But it may produce two problems: one is a noise burst on the line can destroy a frame completely. In this case, the software on the source machine must retransmit the frame. The other is that some mechanism must be employed to let the transmitter know much buffer space the receiver has at the moment.

The Network Layer

The network layer controls the operation of subnet. It determines the chief characteristics of the node-host interface, and how packets, the units of information exchanged in this layer, are routed within the subnet.

What this layer of software does, basically, is to accept messages from the source host, convert them to packets, and observe the packets to get to the destination. The key design issue is how the route is determined. It could not only base on static table, which are "wired into" the network and rarely changed, but else adopt highly dynamic manner, which can determine each packet again to reflect the current network load.

【计算机专业文献翻译】计算机网络

附录1英文及其译文 Computer Networks Network Goals Some reasons are causing centralized computer systems to give way to networks. The first one is that many organizations already have a substantial number of computers in operation, often located far apart .Initially, each of these computers may have worked in isolation from the other ones, but at a certain time, and management may have decided to connect them to be able to correlate information about the entire organization. Generally speaking, the goal is to make all programs, data, and other resources available to anyone on the network without regard to the physical location of the resource and the user. The second one is to provider high reliability by having alternative sources of supply. With a network, the temporary loss of a single computer is much less serious, because its users can often be accommodated elsewhere until the service is restored. Another important reason for distributing computing power has to do with the relative price of computing versus communication. Now the cost of a small computer is negligible, so it becomes attractive to analyze the data at where it is captured, and only to send occasional summaries back to the computer center, to reduce the communication cost, which now represents a larger percentage of the total cost than it used to. Yet another reason of setting up a computer network is that a computer network can provider a powerful communication medium among widely separated people. Application of Networks One of the main areas of potential network use is access to remote data bases. It may someday be easy for people sitting at their terminals

计算机网络新技术外文翻译文献

计算机网络新技术外文翻译文献 (文档含中英文对照即英文原文和中文翻译) 译文: 计算机网络新技术 摘要 21世纪是一个信息时代的经济,计算机网络技术是这个时期的代表技术,以非常快的、具创造性得不断地发展,并将深入到人民群众的工作,生活和学习中。因此,控制这种技术看起来似乎具有很重要的意义。现在,我主要是采用新技术的几种网络技术在现实生活的应用。 关键字 因特网数字证书数字银包网格存储 3G

1.前言 互联网满36岁,仍然是一个进展中的工作。36年后在加州大学洛杉矶分校的计算机科学家使用15英尺的灰色电缆连接两台笨重的电脑,测试了一种在网络上新的数据交换的方式,这将最终成为互联网依然是一个在取得进展的工作。 大学的研究人员正在试验如何提高网络容量和速度。编程人员正在设法为网页注入更多的智能。并正在进行重新设计网络以减少垃圾邮件(垃圾邮件)和安全麻烦的工作。 与此同时威胁织机:批评人士警告说,商业,法律和政治压力可能会阻碍一些使互联网发展到今天的创新的类型。 斯蒂芬克罗克和温顿瑟夫属于1969年9月2日研究生加入的加州大学洛杉矶分校斯莱昂兰罗克教授工程实验室的团体,作为位无意义的测试数据两台计算机之间默默流动。到第二年的1月,其他三个“节点”加入到了这个网络。 然后是电子邮箱,几年之后,在七十年代后期一个所谓的核心通信协议即TCP / IP 协议,在80年代域名系统和在1990年万维网-现在的第二个最流行的应用背后电子邮件出现了。互联网的扩大,超出其最初的军事和教育领域延伸到了企业和全球的家庭中。 今天,克罗克仍然为互联网工作,为协作设计更好的工具。作为互联网管理机构的安全委员会主席,他正试图保卫系统的核心处理免受来自外部的威胁。 他认识到,他帮助建立的互联网工作远未完成,而这些改变是在商店,以满足多媒体日益增长的需求。网络供应商现唯一的“最佳努力”是在提供的数据包上。克罗克说,需要有更好的保障,以防止跳过和过滤现在常见的视频。 瑟夫,现在在MCI公司说,他希望他建立了有内置安全的互联网。微软,雅虎和美国在线公司,和其他的一些,目前正在努力改进网络,使邮件发送者可以验证的方式发送以降低使用虚假地址发送垃圾邮件。 瑟夫说,现在正在制定许多功能,是不可能立即解决计算速度慢和互联网管道窄,或

计算机专业英语课后单词翻译

P21.KEY TERMS application software 应用软件basic application 基本应用软件communication device通信设备compact disc (CD) 光盘computer competency计算机能力connectivity连通性 data数据 database file数据库文件 desktop computer台式计算机device driver磁盘驱动程序 digital versatile disc(DVD)数字多用途光盘 digital video disc(DVD)数字多用途光盘 document file文档文件 end user终端用户 floppy disk软盘 handheld computer手持计算机hard disk硬盘 hardware硬件 high definition高清 Information信息 information system信息系统information technology信息技术input device输入设备 Internet因特网 keyboard键盘 mainframe computer主机;电脑存储机 memory内存 microcomputer微型机microprocessor微处理器midrange computer中型机minicomputer小型计算机modem调制解调器 monitor监视器 mouse鼠标 network网络 notebook computer笔记本电脑operating system操作系统optical disk光盘 output device输出设备 palm computer掌上电脑 people用户 personal digital assistant(PDA)个人数字助理 presentation file演示文稿primary storage主存 printer打印机 procedure规程 program程序 random access memory随机存储器 secondary storage device辅存software软件 specialized application专门应用软件 supercomputer巨型机 system software系统软件system unit系统单元 tablet PC平板电脑 utility实用程序 wireless revolution无线革命worksheet file工作表

计算机专业英语翻译

国家计算机教育认证 计算机英语 计算机英语词汇对译 蒙阴高新电脑学校 资料整理:孙波 IT CFAC gaoxindiannaoxuexiao

2010年9月1日

?PC personal computer 个人计算机 ?IBM International Business Machine 美国国际商用机器公司的公司简称,是最早推出的个人 计算机品牌。 ?Intel 美国英特尔公司,以生产CPU芯片著称。 ?Pentium Intel公司生产的586 CPU芯片,中文译名为“奔腾”。 ?Address地址 ?Agents代理 ?Analog signals模拟信号 ?Applets程序 ?Asynchronous communications port异步通信端口 ?Attachment附件 ?Access time存取时间 ?access存取 ?accuracy准确性 ?ad network cookies广告网络信息记录软件 ?Add-ons 插件 ?Active-matrix主动矩阵 ?Adapter cards适配卡 ?Advanced application高级应用 ?Analytical graph分析图表 ?Analyze分析 ?Animations动画 ?Application software 应用软件 ?Arithmetic operations算术运算 ?Audio-output device音频输出设备 ?Basic application基础程序 ?Binary coding schemes二进制译码方案 ?Binary system二进制系统 ?Bit比特 ?Browser浏览器 ?Bus line总线 ?Backup tape cartridge units备份磁带盒单元 ?Business-to-consumer企业对消费者 ?Bar code条形码 ?Bar code reader条形码读卡器 ?Bus总线 ?Bandwidth带宽 ?Bluetooth蓝牙 ?Broadband宽带 ?Business-to-business企业对企业电子商务 ?cookies-cutter programs信息记录截取程序 ?cookies信息记录程序

计算机网络专业词汇中英对照

《计算机网络》中英文对照 Chapter 1 End system P28 端系统 Modem P29 调制解调器(俗称:猫) Base station P29 基站 Communication link P30 通信链路 Physical media P30 物理介质 Coaxial cable P30 同轴电缆 Fiber optics P30 光纤 Radio spectrum P30 射频频谱 Transmission rate P30 传输速率 Packets P30 (数据)包,或分组 Routers P30 路由器 Link-layer switches P30 链路层交换机 Path P30 路径 ISP (Internet Service Provider) P30 网络服务提供商 TCP (Transmission Control Protocol) P31 传输控制协议 IP ( Internet Protocol) P31 网际协议 Intranets P31 内网 API (Application Programming Interface) P32 应用程序编程接口Network edge P35 网络边缘 Access Networks P38 接入网 Ethernet P42 以太网 Network core P48 网络核心 Circuit Switching P50 电路转换 Packet Switching 分组交换 FDM (frequency-division multiplexing) P50 频分多路复用 TDM (time-division multiplexing) P50 时分多路复用 Statistical Multiplexing 统计复用 Store-and-forward 存储转发 Queuing delays P53 排队延迟 Transmission delay P60 传输延迟,或发送延迟 Propagation delay P60 传播延迟 Throughput P59 吞吐量 Internet backbone P57 骨干网 Delay P59 延迟,或时延 Loss P59 丢包 Packet-Switched Network P59 分组交换网络 Nodal processing delay P60 节点处理延迟 End-to-end delay P66 端到端延迟 Instantaneous throughput P68 瞬时吞吐量

计算机网络体系结构外文翻译

附录A With the new network technology and application of the continuous rapid development of the computer network should. Use of becoming increasingly widespread, the role played by the increasingly important computer networks and human. More inseparable from the lives of the community's reliance on them will keep growing. In order for computers to communicate, they must speak the same language or protocol. In the early days of networking, networks were disorganized in many ways. Companies developed proprietary network technologies that had great difficulties in exchanging information with other or existing technologies; so network interconnections were very hard to build. To solve this problem, the International Organization for Standardization(ISO)created a network model that helps vendors to create networks compatible with each other. Finding the best software is not easy. A better understanding of what you need and asking the right questions makes it easier. The software should be capable of handling challenges specific to your company. If you operate multiple distribution centers, it may be beneficial to create routes with product originating from more than one depot. Few software providers though, are capable of optimizing routes using multiple depots. The provider should be able to support installation of its product. Make sure to clearly understand what training and software maintenance is offered. Obviously, selecting the right routing/scheduling software is critically important. Unfortunately, some companies are using software that may not be best suited to their operation. Logistics actives with responsibility for approving the software ought to be comfortable they've made the right decision. It is important to realize that not all routing/scheduling software is alike! There questions to ask are:Which operating system is used?How easy is the software to use?Here is a good way to tell. Ask if its graphical user interface(GUI)is flexible. Find out about installation speed - how long does it take?Is the software able to route third party customers with your core business?When was the software originally released and when was it last upgraded? In 1984, ISO released the Open Systems Interconnection(OSI)reference model,

计算机专业英语翻译参考

1.(P1) Computer science deals with the theoretical foundations of information and computation, together with practical techniques for the implementation and application of these foundations, such as programming language theory, computational complexity theory, computer graphics and human-computer interaction. 计算机科学涉及信息和计算的理论基础,以及这些基础的实施和应用的实际技术,如编程语言理论,计算复杂性理论,计算机图形学和人机交互。 2.(P17) The most important piece of graphics hardware is the graphics card, which is the piece of equipment that renders out all images and sends them to a display. There are two types of graphics cards: integrated and dedicated. An integrated graphics card, usually by Intel for use in their computers, is bound to the motherboard and shares RAM (Random Access Memory) with the CPU, reducing the total amount of RAM available. This is undesirable for running programs and applications that use a large amount of video memory. A dedicated graphics card has its own RAM and Processor for generating its images, and does not slow down the computer. Dedicated graphics cards also have higher performance than integrated graphics cards. It is possible to have both dedicated and integrated graphics card, however once a dedicated graphics card is installed, the integrated card will no longer function until the dedicated card is removed. 最重要的一块图形硬件是显卡,是一件呈现出所有的图像,并将它们发送到一个显示器的设备。有两种类型的显卡:集成和专用。集成的显卡,通常由英特尔在他们的计算机上使用,被绑定到主板并且与中央处理器共享内存(随机存取存储器),减少了可用的内存总量。这对于使用大量视频内存的程序和应用来说是不可取的。 专用显卡有它自己的内存和处理器,用于生成它的图像,并且不会减慢计算机的速度。专用显卡也比集成显卡有更高的性能。有可能既有专门的也有集成的显卡,但是,一旦安装了专用显卡,集成显卡将不再起作用,直到专用显卡被移除。 3.(P18) Channel I/O requires the use of instructions that are specifically designed to perform(执行)I/O operations. The I/O instructions address(处理)the channel or the channel and device; the channel asynchronously(异步的)accesses all other required addressing and control information. This is similar to DMA, but more flexible. I/O通道需要使用专门设计来执行I/O操作的指令。I/O指令处理通道或通道和设备;通道异步访问所有其他所需的寻址和控制信息。这是类似于DMA,但更灵活。 4.(P19) 调制解调器是在模拟和数字信号之间进行转换的设备,它经常用于实现计算机之间通过电话线的互相通 信。如果两个调制解调器可同时互相发送数据,那么它们采用的就是全双工工作方式;如果一次只有一个调制解调器可以发送数据,那么它们采用的则是半双工工作方式。 Modem is a device that converts analog(模拟)signals to digital signals or conversely(相反地). It is often used to communicate between computers via(渠道)telephone lines. If the two modems can send data to each other, they use full-duplex mode; if only one modem can transmit data, they use half-duplex mode. 5.(P21) We many have defined our last generation of computer and begun the era of generationless computers. Even though computer manufacturers talk of “fifth” and “sixth” generation computers, this talk is more a marketing play than a reflection of reality. 我们已经定义了我们的上一代计算机,并且开始了计算机的无代时代。即使计算机制造商谈论的“第五”和“第六” 代电脑,这个说法比起现实的反映更像是一个营销游戏。 6.(P21) Although microprocessors are still technically considered to be hardware, portions of their function are also associated with computer software. Since microprocessors have both hardware and software aspects they are therefore often referred to as firmware. 虽然微处理器仍然在技术上被认为是硬件,它们的部分功能也与计算机软件有联系。因为微处理器有硬件和软件两个方面,因此,他们往往被称为固件。 7.(P22) Electronic hardware consists of interconnected(互联的)electronic components(元件/组件)which perform analog or logic operations on received and locally stored information to produce as output or store resulting new information or to provide control for output actuator mechanisms(机制). Electronic hardware can range from individual chips/circuits to distributed information processing systems. Well-designed electronic hardware is composed of functional modules which inter-communicate via precisely

计算机专业英语2008影印版选择题的翻译加答案

CHAPTER 1 1、A common term that describes the combination of traditional computer and communication technologies is b. information technology 一个描述了传统的计算机和通信技术结合的常见的术语 B.信息技术 2、Procedures are typically documented in manuals written by b. computer specialists 程序一般是___在手册撰写记录的 B.计算机专家 3、Which of the following is an example of connectivity? a. Internet 下列哪一项是连接的一个例子吗? A.互联网 4、Windows XP, windows Vista, and Macintosh OS X are all examples of b. operating systems Windows XP,Windows Vista,和Macintosh OS X都是__的例子 B.操作系统 5、Because of their size and cost, these computers are relatively rare. d. supercomputers 由于它们的尺寸和成本,这些电脑是比较少见的。 D.超级计算机 6、The system component that controls and manipulates data in order to produce information is called the d. microprocessor 系统组成,控制和操纵数据来产生信息称为 D.微处理器 7、A system component that translates data and programs that humans can understand into a form that the computer can process is called a(n) c. output device 一个系统组件,将人类可以理解成计算机能够处理的形式的数据和程序被称为 C.输出设备 8、A CD is an example of a(n) c. optical disc CD是___的简称 C.光盘 9、If you want to communicate a message or persuade other people, you would typically use this type of software. d. presentation 如果你想传达信息或说服别人,你通常会使用这种类型的软件。 D.演示 10、Many experts are predicting that this revolution is expected to dramatically affect the way we communicate and use computer technology. d. wireless

计算机网络中英文互译

AN (Access Network) 接入网 ADSL (Asymmetric Digital Subscriber Line):非对称数字用户线 ADSL (Asymmetric Digital Subscriber Line):非对称数字用户线 ATU (Access Termination Unit) 接入端接单元 ARP (Address Resolution Protocol) 地址解析协议 ARQ (Automatic Repeat reQuest) 自动重传请求 BER (Bit Error Rate) 误码率 CBT (Core Based Tree) 基于核心的转发树 CIDR (Classless Inter-Domain Routing) 无分类域间路由选择 DSL (Digital Subscriber Line) 数字用户线 DMT (Discrete Multi-Tone) 离散多音调 DSLAM (DSL Access Multiplexer) 数字用户线接入复用器 DVMRP (Distance Vector Multicast Routing Protocol) 距离向量多播路由选择协议EGP (External Gateway Protocol外部网关协议 FTTH (Fiber To The Home) 光纤到家 FTTB (Fiber To The Building) 光纤到大楼 FTTC (Fiber To The Curb) 光纤到路边 FCS (Frame Check Sequence) 帧检验序列 HDSL (High speed DSL):高速数字用户线 IGP (Interior Gateway Protocol内部网关协议 ICMP(Internet Control Message Protocol) 网际控制报文协议 ISP (Internet Service Provider) 因特网服务提供者 ICMP(Internet Control Message Protocol) 网际控制报文协议 IGMP (Internet Group Management Protocol) 网际组管理协议 LCP (Link Control Protocol) 链路控制协议 LLC (Logical Link Control) 子层逻辑链路控制 LAN (Local Area Network) 局域网 MAC (Medium Access Control) 媒体接入控制 MOSPF (Multicast Extensions to OSPF) 开放最短通路优先的多播扩展 MAN (Metropolitan Area Network) 城域网 NCP (Network Control Protocol) 网络控制协议 NAT (Network Address Translation) 网络地址转换 NIC (Network Interface Card) 网络接口卡 OSPF (Open Shortest Path First) 光内部网关协议 ODN (Optical Distribution Node) 分配结点 PAN (Personal Area Network) 个人区域网 PPP (Point-to-Point Protocol) 点对点协议对等方式(P2P 方式) PIM-SM (Protocol Independent Multicast-Sparse Mode) 协议无关多播-稀疏方式PIM-DM (Protocol Independent Multicast-Dense Mode) 协议无关多播-密集方式RTO (RetransmissionTime-Out) 超时重传时间 RPB (Reverse Path Broadcasting) 反向路径广播

计算机网络外文翻译

附录 一、英文原文: The NetWorks Birth of the Net The Internet has had a relatively brief, but explosive history so far. It grew out of an experiment begun in the 1960's by the U.S. Department of Defense. The DoD wanted to create a computer network that would continue to function in the event of a disaster, such as a nuclear war. If part of the network were damaged or destroyed, the rest of the system still had to work. That network was ARPANET, which linked U.S. scientific and academic researchers. It was the forerunner of today's Internet. In 1985, the National Science Foundation (NSF) created NSFNET, a series of networks for research and education communication. Based on ARPANET protocols, the NSFNET created a national backbone service, provided free to any U.S. research and educational institution. At the same time, regional networks were created to link individual institutions with the national backbone service. NSFNET grew rapidly as people discovered its potential, and as new software applications were created to make access easier. Corporations such as Sprint and MCI began to build their own networks, which they linked to NSFNET. As commercial firms and other regional network providers have taken over the operation of the major Internet arteries, NSF has withdrawn from the backbone business. NSF also coordinated a service called InterNIC, which registered all addresses on the Internet so that data could be routed to the right system. This service has now been taken over by Network Solutions, Inc., in cooperation with NSF. How the Web Works The World Wide Web, the graphical portion of the Internet, is the most popular part of the Internet by far. Once you spend time on the Web,you will begin to feel like there is no limit to what you can discover. The Web allows rich and diverse communication by displaying text, graphics, animation, photos, sound and video. So just what is this miraculous creation? The Web physically consists of your personal computer, web browser software, a connection to an Internet service provider, computers called servers that host digital data and routers and switches to direct the flow of information. The Web is known as a client-server system. Your computer is the client; the remote computers that store electronic files are the servers. Here's how it works: Let's say you want to pay a visit to the the Louvre museum website. First you enter the address or URL of the website in your web browser (more about this shortly). Then your browser requests the web page from the web server that hosts the Louvre's site. The Louvre's server sends the data over the Internet to your computer. Your web

计算机专业英语课文翻译部分(第四版)

1.2 总线互连 总线是连接两个或多个设备的通信通路。总线的关键特征是,它是一条共享传输介质。多个设备连接到总线上,任一个设备发出的信号可以为其他所有连接到总线上的设备所接收。如果两个设备同时传送,它们的信号将会重叠,引起混淆。因此,一次只能有一个设备成功地(利用总线)发送数据。 典型的情况是,总线由多条通信通路或线路组成,每条线(路)能够传送代表二进制1和0的信号。一段时间里,一条线能传送一串二进制数字。总线的几条线放在一起能同时并行传送二进制数字。例如, 一个8位的数据能在8条总线线上传送。 计算机系统包含有多种不同的总线,它们在计算机系统层次结构的各个层次提供部件之间的通路。连接主要计算机部件(处理机, 存储器, I/O)的总线称为系统总线。系统总线通常由50~100条分立的(导)线组成。每条线被赋予一个特定的含义或功能。虽然有许多不同的总线设计,但任何总线上的线都可以分成三个功能组:数据线、地址线和控制线。此外可能还有为连接的模块提供电源的电源线。 数据线提供系统模块间传送数据的路径,这些线组合在一起称为数据总线。典型的数据总线包含8、16或32根线,线的数量称为数据总线的宽度。因为每条线每次传送1位,所以线的数目决定了每次能同时传送多少位。数据总线的宽度是决定系统总体性能的关键因素。 地址线用于指定数据总线上数据的来源和去向。例如,如果处理机希望从存储器中读一个字的数据,它将所需要字的地址放在地址线上。显然,地址总线的宽度决定了系统最大可能的存储器容量。 控制线用来控制对数据线和地址线的访问和使用。由于数据线和地址线被所有部件共享,因此必须用一种方法来控制它们的使用。控制信号在系统模块之间传送命令和定时信息。定时信息指定了数据和地址信息的有效性,命令信号指定了要执行的操作。 大多数计算机系统使用多总线,这些总线通常设计成层次结构。图1.3显示了一个典型的高性能体系结构。一条局部总线把处理机连接到高速缓存控制器,而高速缓存控制器又连接到支持主存储器的系统总线上。高速缓存控制器集成到连接高速总线的桥中。这一总线支持连接到:高速LAN、视频和图形工作站控制器,以及包括SCSI 和FireWire的局部外设总线的接口控制器。低速设备仍然由分开的扩充总线支持,用一个接口来缓冲该扩充总线和高速总线之间的通信流量。 PCI 外部设备互连是流行的高带宽的、独立于处理机的总线,它能够作为中间层或外围设备总线。当前的标准允许在66MHz频率下使用多达64根数据线,其原始传输速率为528MB/s, 或4.224Gbps。PCI被设计成支持各种各样基于微处理机的配置,包括单处理机和多处理机的系统。因此,它提供了一组通用的功能。PCI使用同步时序以及集中式仲裁方案。 在多处理机系统中,一个或多个PCI配置可通过桥接器连接到处理机的系统总线上。系统总线只支持处理机/高速缓存单元、主存储器以及PCI桥接器。使用桥接器使得PCI独立于处理机速度,又提供快速接收和传送数据的能力。 2.1 光存储介质:高密度存储器 2.1.1 光盘 光盘技术最终可能使磁盘和磁带存储淘汰。用这种技术,磁存储器所用的读/写头被两束激光代替。一束激光通过在光盘上刻制微小的凹点,对记录表面进行写;而另一束激光用来从光敏感的记录表面读取数据。由于光束容易被偏转到光盘上所需要的位置,所以不需要存取臂。 对用户而言,光盘正成为最有吸引力的选择。它们(光盘)对环境变化不太敏感,并且它们以每兆字节比磁盘低得多的存储器价格提供更多的直接存取存储器。光盘技术仍在出现,并且还需要稳定;然而,目前有三种主要类型的光盘。它们是CD-ROM、WORM盘和磁光盘。 CD-ROM 1980年引入的,非常成功的CD,或紧密盘是设计来提高音乐的录音重放质量的光盘。为了制作一张CD,把音乐的模拟声音转换成等价的数字声音,并且存储在一张4.72英寸的光盘上。在每张光盘上可以用数字格式(用20亿数字位)记录74分钟的音乐。因为它的巨大存储容量,计算机工业的企业家们立刻认

相关文档
最新文档