图像拼接调研报告

图像拼接调研报告
图像拼接调研报告

图像拼接的调研报告

1.图像拼接的意义和国内外研究现状

1.1 意义

图像拼接(image mosaic)技术是将一组相互间存在重叠部分的图像序列进行空间配准,经重采样融合后形成一幅包含各图像序列信息的宽视角场景的、完整的、高清晰的新图像的技术。图像拼接是数字图像处理领域的一个重要的研究方向,在摄影测量学、计算机视觉、遥感图像分析、计算机图形等领域有着广泛的应用价值。

图像拼接技术一个日益流行的研究领域,是虚拟现实、计算机视觉、计算机图形学和图像处理等领域的重要研究课题,在宇宙空间探测、海底勘测、医学、气象、地质勘测、军事、视频压缩和传输、视频的索引和检索、物体的3D重建、军事侦察和公安取证、数码相机的超分辨率处理等领域都有广泛的应用。因此,图像拼接技术的研究具有很好的应用前景和实际应用价值。

1.2 国内外研究现状。

关于图像拼接的方法国内外已有不少的论文发表,其算法大致可分为基于模型的方法,基于变换域的方法,基于灰度相关的方法和基于特征的方法,而如何提高图像拼接的效率,减少处理时间和增强拼接系统的适应性一直是研究的重点。

①基于模型:

1996年,微软研究院的Richard Szeliski提出了一种2D空间八参数投影变换模型,采用Levenberg-Marquardt迭代非线性最小化方法(简称L-M算法)求出图像间的几何变换参数来进行图像配准。这种方法在处理具有平移、旋转、仿射等多种变换的待拼接图像方面效果好,收敛速度快,因此成为图像拼接领域的经典算法,但是计算量大,拼接效果不稳定。

2000年,Shmuel Peleg等人在Richard Szeliski的基础上做了进一步的改进,提出了自适应图像拼接模型,根据相机的不同运动而自适应选择拼接模型,通过把图像分成狭条进行多重投影来完成图像的拼接。这一研究成果推动了图像拼接技术的进一步的发展,从此自适应问题成为图像拼接领域新的研究热点。

匹兹堡大学的Sevket Gumustekin对消除在固定点旋转摄像机拍摄自然景物时形成的透视变形和全景图像的拼接进行了研究。通过标定摄像机来建立成像模型,根据成像模型将捕获到的图像投影到同一的高斯球面上,从而得到拼接图像。这种方法拼接效果好、可靠性高,但是要求对摄像机进行精确的标定,同时要求摄像机透镜本身的畸形参数引起的图像变形可以忽略不计。

②基于变换域:

1975年,Kuglin和Hines提出了相位相关法,利用傅里叶变换将两幅带配准的图像变换频域,然后利用互功率谱直接计算出两幅图像间的平移矢量。

1987年,De Castro和Morandi提出了扩展相位相关法,利用傅里叶变换的性质能够实现具有旋转和平移变换的图像的配准。随着快速傅里叶变换算法的提出以及信号处理领域对傅里叶变换的成熟应用,Reddy和Chatterji提出了基于快速傅里叶变换(FFT-based)的方法,利用极坐标变换和互功率谱,对具有平移、旋转和缩放变换的图像都能够实现精确配准。

相位相关法计算简单精准,但要求待配准图像之间有较大重叠比例,同时计算量和适用

范围与图像的大小有很大关系。

除了傅里叶变换外,人们还选择更可靠、更符合人眼视觉生理特征的Gabor变换和小波变换进行图像配准。

③基于灰度:基于灰度相关的方法是以两幅图像重叠部分所对应在RGB或CMY颜色系统中灰度级的相关性为准则寻找图像的配准位置。常用的算法有比值匹配法,块匹配法和网格匹配法。

比值匹配法是从一幅图像的重叠区域中部分相邻的两列上取出部分像素。然后以他们的比值作为模板,在另一幅图像中搜索最佳匹配,这种算法计算量小,但精度低;

块匹配是以一幅图像重叠区域中的一块作为模板,在另一幅图像中搜索与此模板最相似的匹配快,这种算法精度较高,但计算量过大;

网格匹配法首先进行粗匹配,每次水平或垂直移动一个步长,记录最佳匹配位置,然后再进行精确匹配,每次步长减半,循环此过程直至步长减为0,这种算法比较其前两种运算量有所减小,但如果粗匹配步长过大会造成较大的误差。

④基于特征:基于特征的方法首先从待匹配图像中提取特征集,利用特征的对应关系进行匹配。基于特征的方法利用了图像的显著特征,具有计算量小,速度快的特点,对于图像的畸变,噪声,遮挡等具有一定鲁棒性,但是他的匹配性能在很大程度上取决于特征提取的质量。

1988年,Halris提出了HarriS兴趣点检测器。HarriS提取的兴趣点具有旋转不变性,并且抗噪声能力强,是一种很好的特征检测算子。

2004年,M.BrownandD.Glowe发表了ReeognizingPanoramas文章,提出了基于尺度不变特征(SIFT)的图像拼接技术,该算法完全自动完成,并采用了多分辨率对图像进行融合,收到了理想的效果。(SIFT算法最早是由D.Gfowe在1999年提出的,2004年做的完善总结,该方法具有尺度不变性和旋转不变性,是目前图像拼接领域最为流行的算法。)Manjunath提出了一种轮廓的图像匹配方法,采用LOG算子提取出两幅图像的特征轮廓,从而确定图像间的变换关系。这种方法在特征轮廓的提取上容易受到噪声的干扰,其计算量随着轮廓数量的增多而增长。

Etienne使用Harris检测器提取兴趣点,通过计算归一化相关系数,沿极线寻找一幅图像中兴趣点的对应点,然后使用第三幅图像来得到更准确的对应;Jane提出了基于小波变换的分层图像匹配算法,在分解后的每一层图像中提取兴趣点进行匹配,用并行策略提高计算速度。

图像配准算法经过几十年的发展已经取得了很大的进展,但由于拍摄环境复杂多变,现在还没有一种算法能够解决所有图像的匹配问题。现在的几种方法各有其优缺点,如果能综合利用这些方法的优点将会取得更好的匹配结果。

2. 图像拼接技术介绍

图像拼接技术主要包括图像配准和图像融合两个关键环节。图像配准是图像拼接的核心部分,其目标是找出对齐的两幅或多幅重叠图像之间的运动情况,图像配准直接关系到图像拼接算法的成功率和运行速度。图像融合技术是用来消除由于几何校正、动态的场景或光照变化引起的相邻图像的强度或颜色不连续问题,将两幅经过匹配确定出重叠区域的图像合并为一幅无缝图像。

2.1 几种主要图像配准方法的优缺点

①基于灰度信息的方法

基于图像灰度的配准方法直接利用图像的灰度信息,根据对应关系模型将每个像素点变换成对应点,采用某种搜索方法,寻找使相似性评价函数值达到极值的变换模型的参数值。

模块匹配的方法是一种最常用的基于灰度信息的图像匹配算法,与所拼接的图像内容无关。虽然模板匹配有计算量大,准确率不高等缺点,但在目前的图像拼接领域还是广泛使用。所谓模板匹配就是在图像的已知重叠区域中裁剪出一块矩形区域作为模板,和被搜素图像中同样大小的一块区域进行对比,根据相似程度来确定最佳的匹配位置。

模板匹配包括以下几个方面:

1、模板特征提取

2、基准模板的选取、确定基准模板的大小和坐标定位

3、模板匹配的相似度量

4、匹配模板的搜素策略

模板匹配一般情况下选用图像的灰度为特征构建模板。在一幅图像处于重叠部分的区域中选取一个区域作为模板,然后在另一幅图像中搜素具有相同或相似值对应位置,从而确定两幅图像重叠区域范围。

模板匹配法简单易行,具有精度高,可靠性高以及抗干扰性强等优点,但计算量将随着模板和待匹配图像的增大而迅速增大,难以达到实时性的要求。

基于图像灰度的方法直接利用图像的灰度信息进行匹配,通过像素对其间某种相似性度

量(如互信息、最小均方差等)的全局最优化实现配准,这种方法不需要对图像进行分割和特征提取,所以精度高,鲁棒性好。但是这种匹配方法对灰度变化非常敏感,没有充分利用灰度统计特性,对每一点的灰度信息依赖较大。

②变换域法

基于变换域的图像配准的一个经典方法是相位相关法,就是利用傅里叶变换的方法,将图像有空间域变换到频率域,根据傅里叶变换的平移原理来实现图像的配准。

由于平移、旋转、缩放等变形在频域都有相应变换,因此完全可以利用傅里叶方法在频域中进行图像匹配。变换域的方法具有对噪声的不敏感性,计算效率高,有成熟的快速算法(FFT算法)和易于硬件实现等特点。一般来说,采用变换域的方法可以为图像拼接提供一个良好的初始配准参数。

③基于特征的配准方法

基于图像特征的方法,首先要对待配准的两幅图像进行处理,提取满足特定应用要求的特征集,将这些特征作为控制结构,寻找两幅图像控制结构的映射关系。基于图像特征的方法,在特征提取后得到的特征点的数量将会大大减少,因此可以提高配准的速度,但其配准的效果很大程度上还取决于特征点的提取精度以及特征点匹配的准确度。

基于特征的方法只需要提取出匹配的特征就可以解出变换模型的参数,因此计算量小,由于是在特征空间上进行匹配,因此对图像的灰度属性和噪声的影响不是很敏感,配准速度快。基于图像特征配准的方法主要困难在于如何提取和选择鲁棒的特征,以及如何对特征进行匹配,其中要克服由于图像噪声和场景中出现遮挡现象所引起的误匹配的问题。

④基于模型的配准方法

基于模型的配准方法是根据图像失真的数学模型来对图像进行非线性校准的配准。典型的算法是Szeliski提出的变换优化法,首先建立图像序列之间的变换模型,然后通过优化算法迭代求出模型中的变化参数,从而实现对待拼接图像的配准。

变换优化法可以处理图像序列之间存在平移、旋转、缩放等几何变换的拼接,不需要任何特征点,收敛速度快,并且在统计上是最优的。但是这种方法的缺点在于,要使整个缩放达到收敛的要求,必须要有一定精度的初始估计值,即也就是认为确定的初始对应点要足够精确,否则将会导致图像配准的失败。

2.2 几种典型算法的优缺点:

2.2.1 基于区域的配准

2.2.1.1 逐一比较法

算法的优点:

(1)算法思路比较简单,容易理解,易于编程实现。

(2)选用的模板越大,包含的信息就越多,匹配结果的可信度也会提高,同时能够对参考图像进行全面的扫描。

算法的缺点:

(1)很难选择待配准图像分块。因为一个如果分块选择的不正确,缺少信息量,则不容易正确的匹配,即发生伪匹配。同时,如果分块过大则降低匹配速度,如果分块过小则容易降低匹配精度。

(2)对图像的旋转变形不能很好的处理。算法本身只是把待配准图像分块在标准参考图像中移动比较,选择一个最相似的匹配块,但是并不能够对图像的旋转变形进行处理,因此对照片的拍摄有严格的要求。

2.2.1.2 分层比较法

图像处理的塔形(或称金字塔:Pyramid)分解方法是由Burt和Adelson首先提出的,其早期主要用于图像的压缩处理及机器人的视觉特性研究。该方法把原始图像分解成许多不同空间分辨率的子图像,高分辨率(尺寸较大)的子图像放在下层,低分辨率(尺寸较小)的图像放在上层,从而形成一个金字塔形状。

在逐一比较法的思想上,为减少运算量,引入了塔形处理的思想,提出了分层比较法。利用图像的塔形分解,可以分析图像中不同大小的物体。同时,通过对低分辨率、尺寸较小的上层进行分析所得到的信息还可以用来指导对高分辨率、尺寸较大的下层进行分析,从而大大简化分析和计算。在搜索过程中,首先进行粗略匹配,每次水平或垂直移动一个步长,计算对应像素点灰度差的平方和,记录最小值的网格位置。其次,以此位置为中心进行精确匹配。每次步长减半,搜索当前最小值,循环这个过程,直到步长为零,最后确定出最佳匹配位置。

算法的优点:

(1)该算法思路简单,容易理解,易于编程实现。

(2)该算法的搜索空间比逐一比较要少,在运算速度较逐一比较法有所提高。

算法的缺点:

(1)算法的精度不高。在是在粗略匹配过程中,移动的步长较大,很有可能将第一幅图像上所取的网格划分开,这样将造成匹配中无法取出与第一幅图像网格完全匹配的最佳网格,很难达到精确匹配。

(2)对图像的旋转变形仍然不能很好的处理。与逐一比较法一样,该算法只是对其运算速度有所改进,让搜索空间变小,并无本质变化,因此对图像的旋转变形并不能进行相应处理。

2.2.2 基于特征的配准

2.2.2.1 比值匹配法

比值匹配法算法思路是利用图像中两列上的部分像素的比值作为模板,即在参考图像T 的重叠区域中分别在两列上取出部分像素,用它们的比值作为模板,然后在搜索图S中搜索最佳的匹配。匹配的过程是在搜索图S中,由左至右依次从间距相同的两列上取出部分像素,并逐一计算其对应像素值比值;然后将这些比值依次与模板进行比较,其最小差值对应的列就是最佳匹配。这样在比较中只利用了一组数据,而这组数据利用了两列像素及其所包含的区域的信息。

比值匹配法的优点:

(1)算法思路清晰简单,容易理解,实现起来比较方便。

(2)在匹配计算的时候,计算量小,速度快。

比值匹配法的缺点:

(1)利用图像的特征信息太少。只利用了两条竖直的平行特征线段的像素的信息,没有能够充分利用了图像重叠区域的大部分特征信息。虽然算法提到,在搜索图S中由左至右依次从间距相同的两列上取出部分像素,计算其对应像素的比值,然后将这些比值依次与模版进行比较,好像是利用了搜索图S中的重叠区域的大部分图像信息,但在参考图像T中,只是任意选择了两条特征线,没有充分利用到参考图像T的重叠区域的特征信息。

(2)对图片的采集提出了较高的要求。此算法对照片先进行垂直方向上的比较,然后再进行水平方向上的比较,这样可以解决上下较小的错开问题。在采集的时候只能使照相机在水平方向上移动。然而,有时候不可避免的照相机镜头会有小角度的旋转,使得拍摄出来的照片有一定的旋转,在这个算法中是无法解决的。而且对重叠区域无明显特征的图像,比较背景是海洋或者天空,这样在选取特征模版的时候存在很大的问题。由于照片中存在大块纹理相同的部分,所以与模版的差别就不大,这样有很多匹配点,很容易造成误匹配。

(3)不易对两条特征线以及特征线之间的距离进行确定。算法中在参考图像T的重叠区域中取出两列像素上的部分像素,并没有给出选择的限制。然而在利用拼接算法实现自动拼接的时候,如果选取的特征线不是很恰当,那么这样的特征线算出来的模版就失去了作为模版的意义。同时,在确定特征线间距时,选的过大,则不能充分利用重叠区域的图像信息。选择的过小,则计算量太大。

2.2.2.2 特征点匹配法

比值匹配法利用图像特征较少,而且在图像发生小角度旋转的时候容易发生误匹配。基于特征点的匹配法可以很好的解决这类问题。特征点主要指图像中的明显点,如房屋角点、圆点等。用于点特征提取得算子称为有利算子或兴趣算子。自七十年代以来出现一系列各不相同、各有特色的兴趣算子,较知名的有Moravec算子、Harris算子和Forstner算子等。

Moravec算子于1977年提出利用灰度方差提取点特征的算子,是在四个主要方向上,选择具有最小灰度方差的点作为特征点的提取方法。

Moravec算子计算简单,运算速度快,但是对边缘和独立的点比较敏感,在抑制噪声方面效果不佳。

Forstner算子的基本思想是对角点在最佳窗口内通过每个像元的边缘直线进行加权中心化,然后对法方程进行代数求解得到其准确位置。

Forstner算子运算速度快且精度高,但是计算方法复杂。

Harris算子是C.Harris和M.J.Stephens在1998年提出的一种基于信号的点特征提取算子。Harris算子是对Moravec算子的改进,它利用一阶偏导来描述亮度的变化。

Harris算子中只用到灰度的一阶差分以及滤波,操作简单,提取的特征点均匀且合理,在纹理信息丰富的区域,Harris算子可以提取出大量有用的特征点,而在纹理信息少的区域,提取的特征点则较少,由于它的计算过程中只涉及到了图像的一阶导数,所以即使存在有图像的旋转,灰度的变化,噪声影响和视点的变换,对角点的提取也是比较稳定的。

由于图像中有很多可以利用的特征,因而产生了多种基于特征的方法。常用的图像特征有:特征点(包括角点、高曲率点等)、直线段、边缘(Robert、高斯-拉普拉斯Log、Canny、Gabor滤波等边缘检测算子)或轮廓、闭合区域、特征结构以及统计特征如矩不变量等。

基于特征的配准方法不是直接利用图像的像素值,而是通过像素导出图像的特征,然后以图像特征为标准,对图像重叠部分的对应特征区域进行搜索匹配,该类拼接算法有比较高的健壮性和鲁棒性。

基于特征的配准方法有两个过程:特征抽取和特征配准。首先从两幅图像中提取灰度变化明显的点、线、区域等特征形成特征集。然后在两幅图像对应的特征集中利用特征匹配算法尽可能地将存在对应关系的特征对选择出来。一系列的图像分割技术都被用到特征的抽取和边界检测上。如canny 算子、拉普拉斯高斯算子、区域生长。抽取出来的空间特征有闭合的边界、开边界、交叉线以及其他特征。特征匹配的算法有:交叉相关、距离变换、动态编程、结构匹配、链码相关等算法。

2.2.3 相位相关法

相位相关度法是基于频域的配准常用算法。它将图像由空域变换到频域以后再进行配准。该算法利用了互功率谱中的相位信息进行图像配准,对图像间的亮度变化不敏感,具有一定的抗干扰能力,而且所获得的相关峰尖锐突出,位移检测范围大,具有较高的匹配精度。

相位相关度法的优点:

(1)该算法简单速度快,因此经常被采用。对于其核心技术傅立叶变换,现在己经出现了很多有关的快速算法,这使得该算法的快速性成为众多算法中的一大优势。另外,傅立叶变换的硬件实现也比其它算法容易。

(2)该算法抗干扰能力强,对于亮度变化不敏感。

相位相关度法的缺点:

(1)该算法要求图像有50%左右的重叠区域,在图像重叠区域很小的时,算法的结果很难保证,容易造成误匹配。

(2)由于Fourier变换依赖于自身的不变属性,所以该算法只适用于具有旋转、平移、比例缩放等变换的图像配准问题。对于任意变换模型,不能直接进行处理,而要使用控制点方法,控制点方法可以解决诸如多项式、局部变形等问题。

2.3配准算法的评价标准

一直以来,图像处理算法的评价标准是图像处理结果分析的一个难点。由于图像类型差异很大(如光学和SAR图像)、波段差异大(如可见光和长波红外图像),有时甚至是有很大噪声的图像,或者数据量较大的图像,这时涉及图像降噪和图像分割等预处理,而却研究的侧重点也各有千秋,所以评价的标准很难用一个指标来界定,往往需要多个评价指标综合评定。本节对常用的评价指标——配准时间、配准率、算法复杂度、算法的可移植性、算法的适用性、图像数据对算法的影响等加以阐释。

?配准时间:对于标准参考图像和待配准图像,从给定的两幅图像的输入开始计时,

直到找到最佳的配准点,整个过程需要的时间就是配准所消耗的时间,即配准时间。

?算法复杂度:算法复杂度分为时间复杂度和空间复杂度。时间复杂度:即程序运行

所需的时间。空间复杂度:即程序运行所需的空间。现在计算机的内存于硬盘(对

应虚存)一般都很大,所以空间复杂度并不是很重要,大家一般都把注意力放在时

间复杂度上。时间复杂度和配准过程时间的区别在于它只考虑程序的运行时间。时

间复杂度在最坏的情况下,对于所考虑的问题,算法规模n的函数。

?配准精度:如果配准误差在一个像素内,则称为像素级配准;如果配准误差小于一

个像素,称为亚像素级配准。

?配准率:N次配准操作中,达到配准精度要求的正确配准的次数所占的百分比。

?可移植性:对于配准算法的可移植性,是指算法软件编程或移植到各种硬件系统上

的可行程度。

?配准算法的适用性:是指算法对不同来源的图像传感器数据是否同样适用。

?图像数据大小对配准算法影响程度,主要是对配准时间的影响,根据标准参考图像

或者待配准图像增大一倍,配准时间将会增大多少,可以判断其影响程度。

过渡,实现无缝合成。传统的融合方法多是在时间域对图像进行算术运算,没有考虑处理图像时其相应频率域的变化。从数学上讲,拼接缝的消除相当于图像颜色或灰度曲面的光滑连接,但实际上图像的拼接与曲面的光滑不同,图像颜色或灰度曲面的光滑表现为对图像的模糊化,从而导致图像模糊不清。

2.4.3 图像融合方法

迄今为止,数据融合方法主要是在像元级和特征级上进行的。常用的融合方法有HIS

融合法、KL变换融合法、高通滤波融合法、小波变换融合法、金字塔变换融合法、样条变换融合法等。下面简要介绍其中的几种方法。

(1)HIS融合法

HIS融合法在多传感器影象像元融合方面应用较广,例如:一低分辨率三波段图象与一高分辨率单波段图象进行融合处理。这种方法将三个波段的低分辨率的数据通过HIS变换转换到HIS空间,同时将单波段高分辨率图象进行对比度拉伸以使其灰度的均值与方差和HIS空间中亮度分量图象一致,然后将拉伸过的高分辨率图象作为新的亮度分量代入HIS

反变换到原始空间中。这样获得的高分辨率彩色图象既具有较高空间分辨率,同时又具有与影象相同的色调和饱和度,有利于目视解译和计算机识别。

(2)KL变换融合法

KL变换融合法又称为主成分分析法。与HIS变换法类似,它将低分辨率的图象(三个波段或更多)作为输入分量进行主成分分析,而将高分辨率图象拉伸使其具有于第一主成分相同的均值和方差,然后用拉伸后的高分辨率影象代替主成分变换的第一分量进行逆变换。高空间分辨率数据与高光谱分辨率数据通过融合得到的新的数据包含了源图象的高分辨率和高光谱分辨率特征,保留了原图象的高频信息。这样,融合图象上目标细部特征更加清晰,光谱信息更加丰富。

(3)高通滤波融合法

高通滤波融合法将高分辨率图象中的边缘信息提取出来,加入到低分辨率高光谱图象中。首先,通过高通滤波器提取高分辨率图象中的高频分量,然后将高通滤波结果加入到高光谱分辨率的图象中,形成高频特征信息突出的融合影象。

(4)小波变换融合法

利用离散的小波变换,将N幅待融合的图象的每一幅分解成M幅子图象,然后在每一级上对来自N幅待融合图象的M幅子图象进行融合,得到该级的融合图象。在得到所有M 级的融合图象后,实施逆变换得到融合结果。

图像记忆的原理和方法[图像拼接原理及方法]

图像记忆的原理和方法[图像拼接原理及方法] 第一章绪论 1.1 图像拼接技术的研究背景及研究意义 图像拼接(image mosaic)是一个日益流行的研究领域,他已经成为照相绘图学、计算机视觉、图像处理和计算机图形学研究中的热点。图像拼接解决的问题一般式,通过对齐一系列空间重叠的图像,构成一个无缝的、高清晰的图像,它具有比单个图像更高的分辨率和更大的视野。 早期的图像拼接研究一直用于照相绘图学,主要是对大量航拍或卫星的图像的整合。近年来随着图像拼接技术的研究和发展,它使基于图像的绘制(IBR )成为结合两个互补领域——计算机视觉和计算机图形学的坚决焦点,在计算机视觉领域中,图像拼接成为对可视化场景描述(Visual Scene Representaions)的主要研究方法:在计算机形学中,现实世界的图像过去一直用于环境贴图,即合成静态的背景和增加合成物体真实感的贴图,图像拼接可以使IBR 从一系列真是图像中快速绘制具有真实感的新视图。 在军事领域网的夜视成像技术中,无论夜视微光还是红外成像设备都会由于摄像器材的限制而无法拍摄视野宽阔的图片,更不用说

360 度的环形图片了。但是在实际应用中,很多时候需要将360 度所拍摄的很多张图片合成一张图片,从而可以使观察者可以观察到周围的全部情况。使用图像拼接技术,在根据拍摄设备和周围景物的情况进行分析后,就可以将通过转动的拍摄器材拍摄的涵盖周围360 度景物的多幅图像进行拼接,从而实时地得到超大视角甚至是360 度角的全景图像。这在红外预警中起到了很大的作用。 微小型履带式移动机器人项目中,单目视觉不能满足机器人的视觉导航需要,并且单目视觉机器人的视野范围明显小于双目视觉机器人的视野。利用图像拼接技术,拼接机器人双目采集的图像,可以增大机器人的视野,给机器人的视觉导航提供方便。在虚拟现实领域中,人们可以利用图像拼接技术来得到宽视角的图像或360 度全景图像,用来虚拟实际场景。这种基于全景图的虚拟现实系统,通过全景图的深度信息抽取,恢复场景的三维信息,进而建立三维模型。这个系统允许用户在虚拟环境中的一点作水平环视以及一定范围内的俯视和 仰视,同时允许在环视的过程中动态地改变焦距。这样的全景图像相当于人站在原地环顾四周时看到的情形。在医学图像处理方面,显微镜或超声波的视野较小,医师无法通过一幅图像进行诊视,同时对于大目标图像的数据测量也需要把不完整的图像拼接为一个整体。所以把相邻的各幅图像拼接起来是实现远程数据测量和远程会诊的关键 环节圆。在遥感技术领域中,利用图像拼接技术中的图像配准技术可以对同一区域的两幅或多幅图像进行比较,也可以利用图像拼接技术

图像拼接原理及方法

第一章绪论 1.1 图像拼接技术的研究背景及研究意义 图像拼接(image mosaic)是一个日益流行的研究领域,他已经成为照相绘图学、计算机视觉、图像处理和计算机图形学研究中的热点。图像拼接解决的问题一般式,通过对齐一系列空间重叠的图像,构成一个无缝的、高清晰的图像,它具有比单个图像更高的分辨率和更大的视野。 早期的图像拼接研究一直用于照相绘图学,主要是对大量航拍或卫星的图像的整合。近年来随着图像拼接技术的研究和发展,它使基于图像的绘制(IBR)成为结合两个互补领域——计算机视觉和计算机图形学的坚决焦点,在计算机视觉领域中,图像拼接成为对可视化场景描述(Visual Scene Representaions)的主要研究方法:在计算机形学中,现实世界的图像过去一直用于环境贴图,即合成静态的背景和增加合成物体真实感的贴图,图像拼接可以使IBR从一系列真是图像中快速绘制具有真实感的新视图。 在军事领域网的夜视成像技术中,无论夜视微光还是红外成像设备都会由于摄像器材的限制而无法拍摄视野宽阔的图片,更不用说360 度的环形图片了。但是在实际应用中,很多时候需要将360 度所拍摄的很多张图片合成一张图片,从而可以使观察者可以观察到周围的全部情况。使用图像拼接技术,在根据拍摄设备和周围景物的情况进行分析后,就可以将通过转动的拍摄器材拍摄的涵盖周围360 度景物的多幅图像进行拼接,从而实时地得到超大视角甚至是360 度角的全景图像。这在红外预警中起到了很大的作用。 微小型履带式移动机器人项目中,单目视觉不能满足机器人的视觉导航需要,并且单目视觉机器人的视野范围明显小于双目视觉机器人的视野。利用图像拼接技术,拼接机器人双目采集的图像,可以增大机器人的视野,给机器人的视觉导航提供方便。在虚拟现实领域中,人们可以利用图像拼接技术来得到宽视角的图像或360 度全景图像,用来虚拟实际场景。这种基于全景图的虚拟现实系统,通过全景图的深度信息抽取,恢复场景的三维信息,进而建立三维模型。这个系统允许用户在虚拟环境中的一点作水平环视以及一定范围内的俯视和仰视,同时允许在环视的过程中动态地改变焦距。这样的全景图像相当于人站在原地环顾四周时看到的情形。在医学图像处理方面,显微镜或超声波的视野较小,医师无法通过一幅图像进行诊视,同时对于大目标图像的数据测量也需要把不完整的图像拼接为一个整体。所以把相邻的各幅图像拼接起来是实现远程数据测量和远程会诊的关键环节圆。在遥感技术领域中,利用图像拼接技术中的图像配准技术可以对来自同一区域的两幅或多幅图像进行比较,也可以利用图像拼接技术将遥感卫星拍摄到的有失真地面图像拼接成比较准确的完整图像,作为进一步研究的依据。 从以上方面可以看出,图像拼接技术的应用前景十分广阔,深入研究图像拼接技术有着很重要的意义 1.2图像拼接算法的分类 图像拼接作为这些年来图像研究方面的重点之一,国内外研究人员也提出了很多拼接算法。图像拼接的质量,主要依赖图像的配准程度,因此图像的配准是拼接算法的核心和关键。根据图像匹配方法的不同仁阔,一般可以将图像拼接算法分为以下两个类型:(1) 基于区域相关的拼接算法。 这是最为传统和最普遍的算法。基于区域的配准方法是从待拼接图像的灰度值出发,对

图像拼接原理及方法

第一章绪论 1.1图像拼接技术的研究背景及研究意义 图像拼接(image mosaic)是一个日益流行的研究领域,他已经成为照相绘图学、计算机视觉、图像处理和计算机图形学研究中的热点。图像拼接解决的问题一般式,通过对齐一系 列空间重叠的图像,构成一个无缝的、高清晰的图像,它具有比单个图像更高的分辨率和更大的视野。 早期的图像拼接研究一直用于照相绘图学,主要是对大量航拍或卫星的图像的整合。近年来随着图像拼接技术的研究和发展,它使基于图像的绘制( IBR )成为结合两个互补领域 ――计算机视觉和计算机图形学的坚决焦点,在计算机视觉领域中,图像拼接成为对可视化 场景描述(Visual Seene Representaions)的主要研究方法:在计算机形学中,现实世界的图像过去一直用于环境贴图,即合成静态的背景和增加合成物体真实感的贴图,图像拼接可以 使IBR从一系列真是图像中快速绘制具有真实感的新视图。 在军事领域网的夜视成像技术中,无论夜视微光还是红外成像设备都会由于摄像器材的限制而无法拍摄视野宽阔的图片,更不用说360度的环形图片了。但是在实际应用中,很 多时候需要将360度所拍摄的很多张图片合成一张图片,从而可以使观察者可以观察到周围的全部情况。使用图像拼接技术,在根据拍摄设备和周围景物的情况进行分析后,就可以将通过转动的拍摄器材拍摄的涵盖周围360度景物的多幅图像进行拼接,从而实时地得到 超大视角甚至是360度角的全景图像。这在红外预警中起到了很大的作用。 微小型履带式移动机器人项目中,单目视觉不能满足机器人的视觉导航需要,并且单目 视觉机器人的视野范围明显小于双目视觉机器人的视野。利用图像拼接技术,拼接机器人双 目采集的图像,可以增大机器人的视野,给机器人的视觉导航提供方便。在虚拟现实领域中,人们可以利用图像拼接技术来得到宽视角的图像或360度全景图像,用来虚拟实际场景。 这种基于全景图的虚拟现实系统,通过全景图的深度信息抽取,恢复场景的三维信息,进而建立三维模型。这个系统允许用户在虚拟环境中的一点作水平环视以及一定范围内的俯视和仰视,同时允许在环视的过程中动态地改变焦距。这样的全景图像相当于人站在原地环顾四 周时看到的情形。在医学图像处理方面,显微镜或超声波的视野较小,医师无法通过一幅图 像进行诊视,同时对于大目标图像的数据测量也需要把不完整的图像拼接为一个整体。所以把相邻的各幅图像拼接起来是实现远程数据测量和远程会诊的关键环节圆。在遥感技术领域中,利用图像拼接技术中的图像配准技术可以对来自同一区域的两幅或多幅图像进行比较,也可以利用图像拼接技术将遥感卫星拍摄到的有失真地面图像拼接成比较准确的完整图像,作为进一步研究的依据。 从以上方面可以看出,图像拼接技术的应用前景十分广阔,深入研究图像拼接技术有着很重 要的意义 1.2图像拼接算法的分类 图像拼接作为这些年来图像研究方面的重点之一,国内外研究人员也提出了很多拼接算 法。图像拼接的质量,主要依赖图像的配准程度,因此图像的配准是拼接算法的核心和关键。根据图像匹配方法的不同仁阔,一般可以将图像拼接算法分为以下两个类型: (1) 基于区域相关的拼接算法。 这是最为传统和最普遍的算法。基于区域的配准方法是从待拼接图像的灰度值出发,对 待配准图像中一块区域与参考图像中的相同尺寸的区域使用最小二乘法或者其它数学方法 计算其灰度值的差异,对此差异比较后来判断待拼接图像重叠区域的相似程度,由此得到待

360°全景拼接技术简介

本文为技术简介,详细算法可以参考后面的参考资料。 1.概述 全景图像(Panorama)通常是指大于双眼正常有效视角(大约水平90度,垂直70度)或双眼余光视角(大约水平180度,垂直90度),在一个固定的观察点,能够提供水平方向上方位角360度,垂直方向上180度的自由浏览(简化的全景只能提供水平方向360度的浏览),乃至360度完整场景范围拍摄的照片。 生成全景图的方法,通常有三种:一是利用专用照相设备,例如全景相机,带鱼眼透镜的广角相机等。其优点是容易得到全景图像且不需要复杂的建模过程,但是由于这些专用设备价格昂贵,不宜普遍适用。二是计算机绘制方法,该方法利用计算机图形学技术建立场景模型,然后绘制虚拟环境的全景图。其优点是绘制全景图的过程不需要实时控制,而且可以绘制出复杂的场景和真实感较强的光照模型,但缺点是建模过程相当繁琐和费时。三是利用普通数码相机和固定三脚架拍摄一系列的相互重叠的照片,并利用一定的算法将这些照片拼接起来,从而生成全景图。 近年来随着图像处理技术的研究和发展,图像拼接技术已经成为计算机视觉和计算机图形学的研究焦点。目前出现的关于图像拼接的商业软件主要有Ptgui、Ulead Cool 360及ArcSoft Panorama Maker等,这些商业软件多是半自动过程,需要排列好图像顺序,或手动点取特征点。 2.全景图类型: 1)柱面全景图 柱面全景图技术较为简单,发展也较为成熟,成为大多数构建全景图虚拟场景的基础。这种方式是将全景图像投影到一个以相机视点为中心的圆柱体内表面,

视线的旋转运动即转化为柱面上的坐标平移运动。这种全景图可以实现水平方向360度连续旋转,而垂直方向的俯仰角度则由于圆柱体的限制要小于180度。柱面全景图有两个显著优点:一是圆柱面可以展开成一个矩形平面,所以可以把柱面全景图展开成一个矩形图像,而且直接利用其在计算机内的图像格式进行存取;二是数据的采集要比立方体和球体都简单。在大多数实际应用中,360度的环视环境即可较好地表达出空间信息,所以柱面全景图模型是较为理想的一种选择。 2)立方体全景图 立方体全景图由六个平面投影图像组成,即将全景图投影到一个立方体的内表面上。这种方式下图像的采集和相机的标定难度较大,需要使用特殊的拍摄装置,依次在水平、垂直方向每隔90度拍摄一张照片,获得六张可以无缝拼接于一个立方体的六个面上的照片。这种方法可以实现水平方向360度旋转、垂直方向180度俯仰的视线观察。 3)球面全景图 球面全景图是指将源图像拼接成一个球体的形状,以相机视点为球心,将图像投影到球体的内表面。与立方体全景图类似,球面全景图也可以实现水平方向360度旋转、垂直方向180度俯仰的视线观察。球面全景图的拼接过程及存储方式较柱面全景图大为复杂,这是因为生成球面全景图的过程中需要将平面图像投影成球面图像,而球面为不可展曲面。因此这是一个平面图像水平和垂直方向的非线性投影过程,同时也很难找到与球面对应且易于存取的数据结构来存放球面图像。目前国内外在这方面提出的研究算法较其他类型全景图少,而且在可靠性和效率方面也存在一些问题。 3.主要内容

图像拼接算法及实现.doc

图像拼接算法及实现(一) 来源:中国论文下载中心 [ 09-06-03 16:36:00 ] 作者:陈挺编辑:studa090420 论文关键词:图像拼接图像配准图像融合全景图 论文摘要:图像拼接(image mosaic)技术是将一组相互间重叠部分的图像序列进行空间匹配对准,经重采样合成后形成一幅包含各图像序列信息的宽视角场景的、完整的、高清晰的新图像的技术。图像拼接在摄影测量学、计算机视觉、遥感图像处理、医学图像分析、计算机图形学等领域有着广泛的应用价值。一般来说,图像拼接的过程由图像获取,图像配准,图像合成三步骤组成,其中图像配准是整个图像拼接的基础。本文研究了两种图像配准算法:基于特征和基于变换域的图像配准算法。在基于特征的配准算法的基础上,提出一种稳健的基于特征点的配准算法。首先改进Harris角点检测算法,有效提高所提取特征点的速度和精度。然后利用相似测度NCC(normalized cross correlation——归一化互相关),通过用双向最大相关系数匹配的方法提取出初始特征点对,用随机采样法RANSAC(Random Sample Consensus)剔除伪特征点对,实现特征点对的精确匹配。最后用正确的特征点匹配对实现图像的配准。本文提出的算法适应性较强,在重复性纹理、旋转角度比较大等较难自动匹配场合下仍可以准确实现图像配准。 Abstract:Image mosaic is a technology that carries on the spatial matching to a series of image which are overlapped with each other, and finally builds a seamless and high quality image which has high resolution and big eyeshot. Image mosaic has widely applications in the fields of photogrammetry, computer vision, remote sensing image processing, medical image analysis, computer graphic and so on. 。In general, the process of image mosaic by the image acquisition, image registration, image synthesis of three steps, one of image registration are the basis of the entire image mosaic. In this paper, two image registration algorithm: Based on the characteristics and transform domain-based image registration algorithm. In feature-based registration algorithm based on a robust feature-based registration algorithm points. First of all, to improve the Harris corner detection algorithm, effectively improve the extraction of feature points of the speed and accuracy. And the use of a similar measure of NCC (normalized cross correlation - Normalized cross-correlation), through the largest correlation coefficient with two-way matching to extract the feature points out the initial right, using random sampling method RANSAC (Random Sample Consensus) excluding pseudo-feature points right, feature points on the implementation of the exact match. Finally with the correct feature point matching for image registration implementation. In this paper, the algorithm adapted, in the repetitive texture, such as relatively large rotation more difficult to automatically match occasions can still achieve an accurate image registration. Key words: image mosaic, image registration, image fusion, panorama 第一章绪论

图像匹配与拼接方法

图像匹配与拼接 分匹配和拼接两部分 一、匹配 当然匹配的方法,有sift,surf什么的,这里主要就介绍一下我自己的方法啦! 特征点提取是必须的,不然搜索范围太大哇!并且可能不可靠,所以特征点提取是必须的。什么点适合做特征点呢?这方面的论文很多啦,主要还是看你用什么方法匹配了,如果是用互相关作为相似性准则的话,那自相关系数随各个方向变化大的点就适合作特征点了,当然还要考虑稳定性,即特征点应该不太受光照、噪声、缩放、旋转等的影响,这样的才是好的特征点。当然,如果确定了应用坏境,不一定要满足不受上四个因素影响的,比如平行的双目匹配、全景图的匹配等,具体问题具体分析吧!角点特征是个人比较喜欢的特征。这里我自己定义了一种局部特征,效果还行,匹配采用互相关为准则的匹配,大概效果如下: 目测这几个匹配点还是正确的哇!在一些应用中,可能需要的匹配点数相当多,这就需要较密集的匹配了。密集的匹配可以根据初始的匹配结果估计搜索范围,这可以加速搜索,同时也要提取更多的特征点呀!话不多说了,下面是密集的匹配:

虽然这样的密度对于三维重构来说还不够,但对于一般的图像拼接来说足够了。匹配完了,下面就要将第二步了。 二、矫正 匹配好两幅图像了,接下来干啥呢?把它们对准呗。可惜了,两幅图像之间不但存在平移,还存在旋转缩放什么的,更复杂的,可能还存在所谓的3D变换,那就复杂啦!不管怎么样,所谓的对准,也就是矫正,总是基于一定的模型的,即基于相机拍摄两幅图像的相对姿态。对于全景图拼接(个人觉得是最简单的且较实用的拼接),需要根据相机焦距或者视场角投影到柱面上,然后两幅图像间的位置就只有一维的平移关系了。但是这对拍摄的相机也是有要求的,就是要保证拍摄两幅图像时,物防焦点是重合的,这样才能根据稀疏的几个点确定所有重叠区域内点的相对位置呀!但实际中很难做到物方焦点重合,比如数码相机或者所谓的智能手机的全景图拍摄,一般人都是拿着相机或者手机绕人旋转,而非绕物方焦点旋转拍摄的,这样拼接起来是绝对有误差的呀!特别是拼接近景,误差就更大了,远景还好。怎么克服这个缺点呢?简单的改进方法就是绕着摄像头旋转吧,虽然这也不是严格绕物方焦距旋转,但起码误差小得多啦,拼接的效果当然也就好得多了,可以试一试哦! 不扯了,第二种模型就是认为两幅图像间存在的变换关系是有2D旋转、缩放、平移的,可以通过一个旋转、缩放、平移矩阵来矫正,这个也不难,但是应用范围却相当有限,不详说了。 第三种模型就是不用模型,或者说认为两幅图像间的对应点存在的是一种线性变换关系,这样只要解一个线性方程组就可以了,似乎也挺简单的。但可惜的是,不是任给的两幅图像间都只存在线性变换呀!它可能是一个3D的线性变换,那就麻烦了,这个必须需要密匹配呀!不然就一定是有误差的,即不能通过稀疏的匹配点来矫正两幅图像的所有对应点的。 还有更多的模型,比如各方位的全景图,需要投影到球面上的哇!不过这个模型也不难。最难的当然是拍摄两幅图像时,相机不同,相机姿态也不同了,这个是很有挑战的,我也很惧怕这个。下面展示三种矫正结果: 1、2D线性模型: 2D矫正,认为匹配点之间存在线性变换,X=ax+by+c,Y=dx+ey+e这样的模型,业内称之放射变换,其中x,y是第一幅点的坐标,X,Y是对应的第二幅图像中的点坐标,使用最小二乘法计算a、b、c、d、e、f,第二幅图相对于第一幅图矫正的结果就是这样的了

基于经验模态分解的图像融合研究

基于经验模态分解的图像融合研究 图像融合是对不同渠道摄取的同一景物的多幅图像进行处理,以得到更清晰更实用的图像的过程。它是图像处理过程中的一个重要环节,比如图像拼接就离不开图像融合,因而研究图像融合具有一定的现实和理论意义。目前,以小波分析为代表的多分辨率图像融合技术是一个研究热点,但小波基函数的选取是小波分析的难点,也是小波分析这种信号分析方法的最大瓶颈。经验模态分解则能突破这种障碍,它根据自身的特性自适应的进行信号分解,显示出极大的优越性。把经 验模态分解用于图像融合,取得了良好的效果。 标签:图像融合;多分辨率分析;经验模态分解;固有模态函数 1 引言 数字图像融合(Digital Image Fusion)是以图像为主要研究内容的数据融合技术,是把来自不同时刻或不同成像设备对同一目标检测的多幅图像数据采用某种方法进行处理,生成一幅能够有效表示出该图像检测信息的图像的过程。由于不同模式的图像传感器的成像机理不同,工作电磁波的波长不同,所以不同图像传感器获得的同一场景的多幅图像之间具有信息的冗余性和互补性,经图像融合技术处理后可以获取对同一场景的更为精确、更为全面、更为可靠的图像描述。正是由于这一特点,图像融合作为信息融合的一种有力工具,已广泛地应用于军事、遥 感、机器人视觉和医学图像处理等领域。 图像融合包含图像配准和无缝合成两个部分。由于成像时受到各种变形因素的影响,得到的各幅图像间存在着相对的几何差异,所以需要对待融合的图像进行配准。图像配准是通过数学模拟来对图像间存在着的几何差异进行校正,把相邻两幅图像合成到同一坐标系下,并使得相同景物在不同的局部图像中对应起来,以便于图像无缝合成。图像配准之后,在某些情况下,由于拍摄时光照、环境条件(如噪声、云、烟雾、雨等)、视野、地点的差异,两幅待拼接图像地重叠区域可能会有较大的差别。如果直接对这样的图像进行简单的叠加拼合,得到的拼接图在拼接位置上会存在明显的接缝以及重叠区域的模糊和失真现象。因此需要一种技术 修正待拼接图像拼接缝附近的颜色值,使之平滑过渡,实现无缝合成。 根据图像的表征层来划分,图像融合可分为三类:像素级融合、特征级融合和决策级融合。常用的融合方法有HIS融合法、KL变换融合法、高通滤波融合法、样条变换融合法、金字塔变换融合法、小波变换融合法等,尤其是多分辨率分析方法(金字塔变换,小波变换等)具有明显的优势。小波变换融合算法主要是利用人眼对局部对比度的变化比较敏感这一事实,根据一定的融合规则,在多幅原

图像拼接算法及实现(一).

图像拼接算法及实现(一) 论文关键词:图像拼接图像配准图像融合全景图 论文摘要:图像拼接(image mosaic)技术是将一组相互间重叠部分的图像序列进行空间匹配对准,经重采样合成后形成一幅包含各图像序列信息的宽视角场景的、完整的、高清晰的新图像的技术。图像拼接在摄影测量学、计算机视觉、遥感图像处理、医学图像分析、计算机图形学等领域有着广泛的应用价值。一般来说,图像拼接的过程由图像获取,图像配准,图像合成三步骤组成,其中图像配准是整个图像拼接的基础。本文研究了两种图像配准算法:基于特征和基于变换域的图像配准算法。在基于特征的配准算法的基础上,提出一种稳健的基于特征点的配准算法。首先改进Harris角点检测算法,有效提高所提取特征点的速度和精度。然后利用相似测度NCC(normalized cross correlation——归一化互相关),通过用双向最大相关系数匹配的方法提取出初始特征点对,用随机采样法RANSAC(Random Sample Consensus)剔除伪特征点对,实现特征点对的精确匹配。最后用正确的特征点匹配对实现图像的配准。本文提出的算法适应性较强,在重复性纹理、旋转角度比较大等较难自动匹配场合下仍可以准确实现图像配准。 Abstract:Image mosaic is a technology that carries on the spatial matching to a series of image which are overlapped with each other, and finally builds a seamless and high quality image which has high resolution and big eyeshot. Image mosaic has widely applications in the fields of photogrammetry, computer vision, remote sensing image processing, medical image analysis, computer graphic and so on. 。In general, the process of image mosaic by the image acquisition, image registration, image synthesis of three steps, one of image registration are the basis of the entire image mosaic. In this paper, two image registration algorithm: Based on the characteristics and transform domain-based image registration algorithm. In feature-based registration algorithm based on a robust feature-based registration algorithm points. First of all, to improve the Harris corner detection algorithm, effectively improve the extraction of feature points of the speed and accuracy. And the use of a similar measure of NCC (normalized cross correlation - Normalized cross-correlation), through the largest correlation coefficient with two-way matching to extract the feature points out the initial right, using random sampling method RANSAC (Random Sample Consensus) excluding pseudo-feature points right, feature points on the implementation of the exact match. Finally with the correct feature point matching for image registration implementation. In this

图像拼接技术的研究历史悠久

图像拼接技术的研究历史悠久。早期用于航空遥感照片合成,由于飞机或卫星上相机和地面景物之间距离很远,这种图像配准采用简单的模板匹配法。这种方法在现在也有广泛应用,可应用于航空图片合成、大文档扫描合成,视频压缩。在20世纪90年代随全视函数、全景建模、光场与光照图、同心拼图、全景图概念的提出,模型维数不断下降。自1994年Chen等人提出全景图拼接技术,国内外出现很多关于全景图生成技术的文章。 全景图生成技术的基本思想是通过普通相机或摄像机对场景信息进行照片图像或视频图像采样,在固定的视点,使相机在水平面内旋转一周拍摄场景,得到一组具有重叠区域的连续环视图像序列:将图像由相机坐标投影到空间坐标:利用图像配准方法寻找将环绕一周的这组图像中,两两相邻的图像间的重叠的区域;将确定的重叠区域利用图像融合方法进行图像序列的无缝拼合,得到一幅全景图像。全景图像根据其选取视点空间的不同可分为:平面、柱面、球表面、立方体表面。 目前图像配准的研究方法主要集中为基于灰度相关的方法、相位相关法、基于特征的方法。基于灰度相关方法的计算量较大,很多力求缩小模版配准计算量的改进算法被提出来。国防科大开发的HVS系统,采用的是一种基于特征线段的图像匹配算法。封静波提出相似曲线的拼接算法通过匹配两幅图像重叠区域每列梯度最大值曲线完成拼接,大大减少了传统模板匹配方法的计算量。薛峰综合基于灰度相关和特征相关算法的优点提出了基于最大梯度和灰度相关的两步配接方法。于乱采用形状模板对模板内图像的边缘点与模板边界的最短距离统计实现特征点匹配。李文辉提出采用基于粒子群优化(POS)的多分辨率算法。 1975年相位相关法由Kuglin和Hines提出,具有场景无关性,能够对纯粹二维平移的图像精确地对齐。DeCastro和Morandi发现用傅立叶变换确定旋转对齐就像平移对齐一样。Reddy和Chatterji改进了Decastro的算法,大大减少了需要转换的数量。张世阳采用了基于2幂子图像的FFT对齐方法,从而减小了FFT的计算量加快图像对齐速度和减小图像间重叠率。吴飞采用基于快速傅立叶变换的图像配准算法求取两相邻视频帧之间的配准系数。 基于特征的图像对齐典型的是基于图像几何特征的对齐方法。几何特征分为低级的 学硕士学位论文基于特征点的嘴卜任曰生成执术的研究 特征,如边、角和高级特征如物体的识别、特征之间的关系。文(34)通过二维高斯模 糊过滤可以得到一些低级特征模型,如边模型、角模型和顶点模型。因为角模型提供了 比坐标点更多的信息,文〔35)中基于几何角模型提出了图像对齐算法,文〔36〕中基 于几何点特征优化匹配和文(37)中利用小波变换提取保留边(。dge一preserving)的视 觉模型进行图像对齐。基于高级特征的图像对齐利用低级特征之间的关系或者通过识别 出的物体实现对齐。文(38)利用特征图像关系图进行图像对齐。而如何选择特征是其 中的关键技术,许多研究人员也在从事这方面的究,如提取特征点算子:Morave。算子〔3,,、Forstner算子〔‘0,、susan算子〔“,、HarriS算子〔‘,,,sIFT算子〔‘3,等。边缘检测算 子:Canny算子〔44]、LoG〔46]算子等。此外用于提高特征点配准精度的算法很多,赵炫利用 概率模型理论精确特征点的匹配〔46]。胡社教提出利用KLT跟踪算法精确确定角点位置,提高变换矩阵的求解精度〔4v]。李寒通过引导互匹配及投票过滤方法提高特征点的检测精度〔#8]。赵辉采用相位相关法进行自动排序的特征角点匹配算法〔49]。

基于特征点的全自动无缝图像拼接方法

-2083- 0引言 图像拼接是计算机视觉领域的一个重要分支。它是一种将多幅相关的重叠图像进行无缝拼接从而获得宽视角全景图像的技术。近年来,国内外对于图像拼接各细节的研究已取得了一些成果[1~3],但对于尺度、视差及光照变化较大的图像序列的拼接效果还有待提高。此外,目前对于完整的全自动无缝图像拼接技术的研究还较少。针对以上现状,本文给出了一种基于特征点的全自动无缝图像拼接方法。该方法依据图像拼接过程中各阶段涉及的理论与技术,利用RANSAC (ran-dom sample consensus )算法、引导互匹配、加权平滑算法等技术克服了传统图像拼接技术中的局限性(如光照、尺度变化的影响等),实现了光照和尺度变化条件下的多视角无缝图像拼接。 1拼接方法的总体设计 文中的图像拼接技术包括4大部分:图像获取;特征点提 取与匹配;图像配准;图像融合。各部分均采用了当前图像处理领域的先进算法,并使用相应的精炼技术对各部分的处理结果进行优化,以达到较理想的拼接效果。整个技术的实现 流程如图1所示。 2图像获取 图像获取是实现图像拼接的前提条件。不同的图像获取 方法会得到不同的输入图像序列,并产生不同的图像拼接效果。目前,获得图像序列的方法主要有3种[4]:①照相机被固定在三脚架上,通过旋转照相机获取图像数据;②照相机固定在可移动平台上,通过平行移动照相机获取图像数据;③手持 收稿日期:2006-04-20E-mail :lihan409@https://www.360docs.net/doc/07318989.html, 作者简介:李寒(1981-),女,辽宁沈阳人,硕士研究生,研究方向为数字图像处理;牛纪桢,女,副教授,研究方向为计算机应用;郭禾,男,副教授,研究方向为数字图像处理、计算机应用。 基于特征点的全自动无缝图像拼接方法 李 寒,牛纪桢,郭禾 (大连理工大学计算机科学与工程系,辽宁大连116023) 摘 要:提出了一种基于特征点的全自动无缝图像拼接方法。该方法采用对于尺度具有鲁棒性的SIFT 算法进行特征点的提取与匹配,并通过引导互匹配及投票过滤的方法提高特征点的匹配精确度,使用稳健的RANSAC 算法求出图像间变换矩阵H 的初值并使用LM 非线性迭代算法精炼H ,最终使用加权平滑算法完成了图像的无缝拼接。整个处理过程完全自动地实现了对一组图像的无缝拼接,克服了传统图像拼接方法在尺度和光照变化条件下的局限性。实验结果验证了方法的有效性。关键词:图像拼接;SIFT 特征点;引导互匹配;随机抽样一致算法;变换矩阵中图法分类号:TP391 文献标识码:A 文章编号:1000-7024(2007)09-2083-03 Automatic seamless image mosaic method based on feature points LI Han, NIU Ji-zhen, GUO He (Department of Computer Science and Engineering,Dalian University of Technology,Dalian 116023,China ) Abstract :An automatic seamless image mosaic method based on feature points is proposed.First a scale-invariant feature extracting algorithm SIFT is used for feature extraction and matching.In order to improve the accuracy of matching,guided complementary matching and voting filter is used.Then,the transforming matrix H is computed with RANSAC algorithm and LM algorithm.And finally image mosaic is completed with smoothing algorithm.The method implements automatically and avoids the disadvantages of tra-ditional image mosaic method under different scale and illumination conditions.Experimental results show that the image mosaic method is stable and effective. Key words :image mosaic;SIFT features;guided complementary matching;RANSAC algorithm;transforming matrix 图1图像拼接技术流程 图像融合图像配准(计算H )特征点提取与匹配 图像获取 H=

图像拼接原理及方法

图像拼接原理及方法 This model paper was revised by the Standardization Office on December 10, 2020

第一章绪论 图像拼接技术的研究背景及研究意义 图像拼接(image mosaic)是一个日益流行的研究领域,他已经成为照相绘图学、计算机视觉、图像处理和计算机图形学研究中的热点。图像拼接解决的问题一般式,通过对齐一系列空间重叠的图像,构成一个无缝的、高清晰的图像,它具有比单个图像更高的分辨率和更大的视野。 早期的图像拼接研究一直用于照相绘图学,主要是对大量航拍或卫星的图像的整合。近年来随着图像拼接技术的研究和发展,它使基于图像的绘制(IBR)成为结合两个互补领域——计算机视觉和计算机图形学的坚决焦点,在计算机视觉领域中,图像拼接成为对可视化场景描述(Visual Scene Representaions)的主要研究方法:在计算机形学中,现实世界的图像过去一直用于环境贴图,即合成静态的背景和增加合成物体真实感的贴图,图像拼接可以使IBR从一系列真是图像中快速绘制具有真实感的新视图。 在军事领域网的夜视成像技术中,无论夜视微光还是红外成像设备都会由于摄像器材的限制而无法拍摄视野宽阔的图片,更不用说360 度的环形图片了。但是在实际应用中,很多时候需要将360 度所拍摄的很多张图片合成一张图片,从而可以使观察者可以观察到周围的全部情况。使用图像拼接技术,在根据拍摄设备和周围景物的情况进行分析后,就可以将通过转动的拍摄器材拍摄的涵盖周围360 度景物的多幅图像进行拼接,从而实时地得到超大视角甚至是360 度角的全景图像。这在红外预警中起到了很大的作用。 微小型履带式移动机器人项目中,单目视觉不能满足机器人的视觉导航需要,并且单目视觉机器人的视野范围明显小于双目视觉机器人的视野。利用图像拼接技术,拼接机器人双目采集的图像,可以增大机器人的视野,给机器人的视觉导航提供方便。在虚拟现实领域中,人们可以利用图像拼接技术来得到宽视角的图像或360 度全景图像,用来虚拟实际场景。这种基于全景图的虚拟现实系统,通过全景图的深度信息抽取,恢复场景的三维信息,进而建立三维模型。这个系统允许用户在虚拟环境中的一点作水平环视以及一定范围内的俯视和仰视,同时允许在环视的过程中动态地改变焦距。这样的全景图像相当于人站在原地环顾四周时看到的情形。在医学图像处理方面,显微镜或超声波的视野较小,医师无法通过一幅图像进行诊视,同时对于大目标图像的数据测量也需要把不完整的图像

视频拼接综述

视频拼接全景摄像机综述 作者:上海凯视力成信息科技有限公司 随着摄像机从模拟走向网络,“高清”日渐成为市场关注的热点,它的出现让人们可以看得更清楚,获得更多的细节。但是,客户在从之前“只能看见人脸”到现在“能看清人脸”的同时,又提出了另一方面的要求,那就是“看得更广”,即在同一个场景中能看到更多的东西。对此,原来是通过用几只摄像头覆盖一个区域,或用快球来回巡航扫描去解决。但在某些场合,这些方案还不能完全满足客户的要求,比如客户需要在同一个画面里确定人的移动,或需要用同一个场景中监看到的事物去说明一些问题,这个时候就需要全景摄像机,本文试图对全景摄像机做一综述。作者:上海凯视力成信息科技有限公司 1.全景摄像机的好处 全景摄像机可以带来如下好处: (1)超宽监控视角。一枚鱼眼镜头尽收360度全景,四周的影像一次尽收眼底,完全消灭死角。 (2)降低成本。一台好的全景摄像机可以替代多台传统摄像机的应用,这种360度实时全景监控能力,使得无需为涵盖整个监控区域而安装多台摄像机,因 而节省了摄像机硬件投资。监控摄像机路数大大减少,可以节省配套设备, 如镜头、防护罩、布线、电源、录像、显示等相应配件和设备的成本,还可 降低施工布线难度,节省安装时间、人工费用以及后续维护费用。 (3)虚拟PTZ技术。采用虚拟PTZ技术,可以放大或移动监控视野内的图像区域,当转变方向观察另一个图像区域时,不会发出任何噪音,隐秘且不易察觉。 由于没有机械移动部件,不需要时刻的进行机械化运转,全景摄像机不会发 生任何磨损,产品结实耐用,使用寿命大大延长。全景环视的图像失真矫正 可对多个图像区进行,这样,与机械PTZ摄像机不同,全景摄像机能同时观 察和摄录多个不同的区域。作者:上海凯视力成信息科技有限公司

图像拼接方法总结

图像拼接方法总结 图像拼接方法总结 (1) 引言 (1) 1 基于网格的拼接 (3) 2基于块匹配的拼接(也叫模板匹配) (4) 3基于比值法拼接 (6) 4 基于FFT的相位相关拼接 (7) 基于特征的图像配准方法 (9) 5 Harris角点检测算法 (10) 6基于SIFT尺度不变特征的图像拼接 (15) SIFT主要思想及特点 (16) SIFT算法详细过程 (16) SIFT匹配算法实现 (20) 7 基于surf 的图像配准 (22) SURF算法介绍 (22) 算法详细过程 (23) 8 基于最大互信息的图像配准 (24) 9 基于小波的图像拼接 (27) 10 基于轮廓特征的图像拼接技术 (27) 引言 首先研究了图像拼接的基本技术,包括图像预处理、图像配准、图像融合, 图像的预处理包括:图像预处理的主要目的是为了:降低图像配准的难度,提高图像配准精度。图像 预处理包括:图像投影、图像去噪、图像修正等。 图像配准采用的算法主要有两类: 一类是基于区域的算法,是指利用两张图像间灰度的关系来确定图像间坐标变化的参数,其中包括基于空间的像素配准算法包括(1基于块匹配,2基于网格匹配,3基于比值匹配),基于频域的算法(4既是基于FFT的相位相关拼接)等。 另一类是基于特征拼接的算法,是利用图像中的明显特征(点,线,边缘,轮廓,角点)来计算图像之间的变换,而不是利用图像中全部的信息,其中包括5 Harris角点检测算法,6 SIFT(角点)尺度不变特征转换算法,7 surf(角点,这种方法是sift方法的改进,速度提高)特征算法, 第三类是8 基于最大互信息的拼接,9 基于小波(将拼接工作由空间域转向小域波,即先对要拼接的图像进行二进小波变换,得到图像的低频、水平、垂直三个分量,然后对这

相关文档
最新文档