全微分方程及积分因子

全微分方程及积分因子
全微分方程及积分因子

全微分方程及积分因子

全微分方程及积分因子

内容:凑微分法,全微分方程的判别式,全微分方程的公式解,积分因子的微分方程,只含一个变量的积分因子和其他特殊形式的积分因子。由于有数学分析多元微积分的基础,本节的定理1可以简化处理。对课本中第三块知识即全微分方程的物理背景可以留到后面处理,对第四块知识增解和失解的情况要分散在本章各小节,每次都要重视这个问题。关于初等积分法的局限性可归到学习近似解法时一起讲解。

重点:全微分方程的公式解和积分因子的计算,难点为凑微分法和积分因子的计算。

习题1(1,3,5),2,3

思考题:讨论其他特殊形式的积分因子。

方程:0),(),(=+dy y x N dx y x M

判定:全微分?x

N y M ??≡??

解法:C dy y x N dx y x M y y x

x =+??00),(),(0

初值问题0=C 积分因子:x N y M y M x N ??-??=?

???????-??μμμ1

)(x μ: N x

N

y M dx d ??

-??=μμ1

)(y μ: M x

N

y M dy d ??-

??-=μμ1

1.解下列方程:

1)0)(222=-+dy y x xydx 解:x N

y M ??

≡??=x 2

??=-+x y C dy y xydx 002

)0(2既

C y y x =-3/32

2)0)2(=+---dy xe y dx e y y 解:x N

y M

??≡??=y e --

??=-+-y x y

C dy y dx e 00)2(既C

y xe y =--2

3)0)1(222=---+dy y x dx y x x 解:x N

y M ??≡??=y x --221

??=---+x y

C dy y dx y x x 002)1(2

C y y y x x =-+---+23

232322)(32

)(32

)(32 既C y x x =-+23

2

2)(32

4)0)ln (3

=++dy x y dx x y

解:x N

y M

??≡??=x 1

C dy y dx x y y

x =+??030既C y x y =+4/||ln 4

5)05233322

2=+-+dy y y x dx y y x

解:

x N

y M ??≡??=326--y x

??=-+-x y C dy y dx y y x 00222

253

C y x y x =++-/523

6)02cos )2sin 1(2=-+xdy y dx x y 解:x N

y M

??≡??=x y 2sin 2

C ydy dx x y x y =-+??002

)2sin 1(

C y y x y x =-+-22221

212cos 21

C x y x =-2cos 21

2

2.求下列方程的积分因子和积分:

1)0)(22=+++xydy dx x y x 解:N x y y y x N

y M

1

2==-=??-??

1let 1

1==?=C Cx x dx d μμ

μ既

x x =)(μ

C dy dx x xy x y

x =+++??002230)(

C x y x x =++3

224312141

2)0)3()22(224234=--+++dy x y x e y x dx y xy e xy y y 解:168223

4+++=??-??xy e xy e xy x N

y M y y

M y

xy e xy xy e xy y y 4488 3

22 2324=++=++- y dy d 41-=μμ4

)(-=?y y μ

??=+++-x

y y C dy dx y y x xe 0030)/22(

C xy y x e x y =++-322/

3)0)(344=-+dy xy dx y x

解:N x y y x N

y M 5

433

-=+=??-??

5

)(5

1-=?-=x x x dx d μμμ

C dx yx x x =+?--05

1)(既C x y x =-44ln

4)0)(2)2242(2342223=+++++++dy x y x y dx y xy xy y x y x 解:2444432

3++++=??-??xy xy x y x x N y M 24--xy xN xy x y x 24443

23=++=

2)(21x e x x dx d =?=μμ

μ

??=+++++y x x C dy y dx y xy xy y x y x e 030422232)2242(2

数值积分与微分方程

2.3 数值积分 2.3.1 一元函数的数值积分 函数1 quad 、quadl 、quad8 功能 数值定积分,自适应Simpleson 积分法。 格式 q = quad(fun,a,b) %近似地从a 到b 计算函数fun 的数值积分,误差为10-6。 若给fun 输入向量x ,应返回向量y ,即fun 是一单值函数。 q = quad(fun,a,b,tol) %用指定的绝对误差tol 代替缺省误差。tol 越大,函数计 算的次数越少,速度越快,但结果精度变小。 q = quad(fun,a,b,tol,trace,p1,p2,…) %将可选参数p1,p2,…等传递给函数 fun(x,p1,p2,…),再作数值积分。若tol=[]或trace=[],则用缺省值进行计算。 [q,n] = quad(fun,a,b,…) %同时返回函数计算的次数n … = quadl(fun,a,b,…) %用高精度进行计算,效率可能比quad 更好。 … = quad8(fun,a,b,…) %该命令是将废弃的命令,用quadl 代替。 例2-40 >>fun = inline(‘3*x.^2./(x.^3-2*x.^2+3)’); equivalent to: function y=funn(x) y=3*x.^2./(x.^3-2*x.^2+3); >>Q1 = quad(fun,0,2) >>Q2 = quadl(fun,0,2) 计算结果为: Q1 = 3.7224 Q2 = 3.7224 补充:复化simpson 积分法程序 程序名称 Simpson.m 调用格式 I=Simpson('f_name',a,b,n) 程序功能 用复化Simpson 公式求定积分值 输入变量 f_name 为用户自己编写给定函数()y f x 的M 函数而命名的程序文件名 a 为积分下限 b 为积分上限 n 为积分区间[,]a b 划分成小区间的等份数 输出变量 I 为定积分值 程序 function I=simpson(f_name,a,b,n) h=(b-a)/n; x=a+(0:n)*h; f=feval(f_name,x); N=length(f)-1;

随机微分方程

一、一维分岔 考虑一维随机微分方程 ()()()()()()()()() dX = m X dt +X dB t =m X +X X /2dt +X dB t 6.141σσσσ'-???? 生成的连续动态系统 ()()()()()()t t 00t x =x +m s x dx + s x dB s 6.142??σ?-?? () 它是以 x 为初值的(6.1-41)之唯一强解。假定 ()()m 0 = 00 = 0 6.143σ-,() 从而0是?的一个固定点。对此固定点,dB(t)是随机参激。设m(x) 有界,对所有 x 0≠满足椭圆性条件 ()0 6.144x σ≠-() 这保证最多只有一个平稳概率密度。求解与(6.1-41)相应的平稳FPK 方程得平稳概率密度 ()()() () 12 2m u p x C x exp[ ] 6.145u x du σσ-=-? () 于是,上述动态系统有两种可能的平稳状态:不动点(平衡状态)与非平凡平稳运动。前者的不变测度0δ的密度为()x δ,后者的不变测度ν的密度为(6.1-45)。为研究 D-分岔,需计算这两个不变测度的Lyapunov 指数。为此,考虑(6.1-41)的线性化方程

()()()()dV =m X Vdt +X V dB t =[m (X)((X)(X))/2]Vdt VdB t 6.146σσσσ''''''++- () 利用(2.5-6)之解(2.5-11),得(6.1-46)之解 ()()()()()t t V t =V 0exp[(m +/2)X ds +X dB s ] 6.147 σσσ''''-??() 动态系统?关于测度μ的Lyapunov 指数定义为 ()()1 lim ln V t 6.148t t ?λμ→∞=-() (6.1-47)代入(6.1-48),注意()00σ=,得不动点Lyapunov 指数 ()()()()()()()()00 1() lim [ln 000]00 lim 0(6.1-49)?t t t t B t V m ds dB s m m t t ?λδσσ→∞→∞ '''''=++=+=??对以(6.1-45)为密度的不变测度ν,(6.1-47)代入(6.1-48), 假定σ'有界,m /2σσ'''+可积,得Lyapunov 指数 ()0 1 lim (m /2)(X)ds [m (x)(x)(x)/2]p(x)dx 6.150t t R t ?λνσσσσ→∞''''''=+=+-??() 进行分部积分,并利用(6.1-45),最后得 ()2 m(x) -2p(x)dx 0 6.151(x)R ?λνσ?? =<-??? ??() 随机跨临界分岔考虑(6.1-41)的特殊情形 ()()2dX X X dt X dB t 6.152ασ=-+- () 生成的动态系统族α?

微分方程的积分因子求解法

常微分方程的积分因子求解法 内容摘要:本文给出了几类特殊形式的积分因子的求解方法,并推广到较一般的形式。 关键词: 全微分方程,积分因子。 一、 基本知识 定义1.1 对于形如 0),(),(=+dy y x N dx y x M (1.1) 的微分方程,如果方程的左端恰是x ,y 的一个可微函数),(y x U 的全微分,即d ),(y x U = dy y x N dx y x M ),(),(+,则称(1.1)为全微分方程. 易知,上述全微分方程的通解为 ),(y x U =C , (C 为任意常数). 定理1.1 (全微分方程的判别法)设),(y x M ,),(y x N 在x ,y 平面上的单连通区域G 内具有连续的一阶偏导数,则(1.1)是全微分方程的充要条件为 x y x N y y x M ??=??),(),( (1.2) 证明见参考文献[1]. 定义1.2 对于微分方程(1.1),如果存在可微函数),(y x μ,使得方程 ),(y x μ0),(),(),(=+dy y x N y x dx y x M μ (1.3) 是全微分方程,则称),(y x μ为微分方程(1.1)的积分因子. 定理1.2 可微函数),(y x μ为微分方程(1.1)的积分因子的充要条件为 x y x y x N ??),(ln ),(μ-y y x y x M ??),(ln ),(μ=x y x N y y x M ??-??),(),( (1.4) 证明:由定理1.1得,),(y x μ为微分方程(1.1)的积分因子的充要条件为 x y x N y x y y x M y x ??=??)),(),(()),(),((μμ, 展开即得:

随机信号处理

随机信号处理 大作业 学院:电子工程学院 、

马尔可夫过程概述 摘要:叙述了随机过程中的某一种--马尔可夫过程的基本定义 ,特点,以及它的应用领域;通过对离散时间马尔可夫链进行仿真分析,掌握马尔可夫的特点。 1. 随机过程发展简述 在当代科学与社会的广阔天地里,人们都可以看到一种叫作随机过程的数学模型:从银河亮度的起伏到星系空间的物质分布、从分子的布朗运动到原子的蜕变过程,从化学反应动力学到电话通讯理论、从谣言的传播到传染病的流行、从市场预测到密码破译,随机过程理论及其应用几乎无所不在。 一些特殊的随机过程早已引起注意,例如1907年前后,Α.Α.马尔可夫研究过一列有特定相依性的随机变量,后人称之为马尔可夫链(见马尔可夫过程);又如1923年N.维纳给出了布朗运动的数学定义(后人也称数学上的布朗运动为维纳过程),这种过程至今仍是重要的研究对象。虽然如此,随机过程一般理论的研究通常认为开始于30年代。1931年,Α.Η.柯尔莫哥洛夫发表了《概率论的解析方法》;三年后,Α.Я.辛钦发表了《平稳过程的相关理论》。这两篇重要论文为马尔可夫过程与平稳过程奠定了理论基础。稍后,P.莱维出版了关于布朗运动与可加过程的两本书,其中蕴含着丰富的概率思想。1953年,J.L.杜布的名著《随机过程论》问世,它系统且严格地叙述了随机过程的基本理论。1951年伊藤清建立了关于布朗运动的随机微分方程的理论(见随机积分),为研究马尔可夫过程开辟了新的道路;近年来由于鞅论的进展,人们讨论了关于半鞅的随机微分方程;而流形上的随机微分方程的理论,正方兴未艾。60年代,法国学派基于马尔可夫过程和位势理论中的一些思想与结果,在相当大的程度上发展了随机过程的一般理论,包括截口定理与过程的投影理论等,中国学者在平稳过程、马尔可夫过程、鞅论、极限定理、随机微分方程等方面也做出了较好的工作。 2. 马尔可夫过程发展 2.1 马尔可夫过程简介 马尔科夫过程(MarKov Process)是一个典型的随机过程。设X(t)是一随机过程,当过程在时刻t0所处的状态为已知时,时刻t(t>t0)所处的状态与过程在t0时刻之前的状态无关,这个特性成为无后效性。无后效的随机过程称为马尔科夫过程。马尔科夫过程中的时同和状态既可以是连续的,又可以是离散的。我们称时间离散、状态离散的马尔科夫过程为马尔科夫链。马尔科夫链中,各个时刻的状态的转变由一个状态转移的概率矩阵控制。 2.2 马尔可夫过程的发展 20世纪50年代以前,研究马尔可夫过程的主要工具是微分方程和半群理论(即分析方法);1936年前后就开始探讨马尔可夫过程的轨道性质,直到把微分方程和半群理论的分析方法同研究轨道性质的概率方法结合运用,才使这方面的研究工作进一步深化,并形成了对轨道分析必不可少的强马尔可夫性概念。1942年,伊藤清用他创立的随机积分和随机微分方程理论来研究一类特殊而重要的马尔可夫过程──扩散过程,开辟了研究马尔可夫过程的又一重要途径。 出于扩大极限定理应用范围的目的,马尔科夫在20世纪初开始考虑相依随机变量序列的规律,并从中选出了最重要的一类加以研究。1906年他在《大数定律关于相依变量的扩展》一文中,第一次提到这种如同锁链般环环相扣的随机变量序列,其中某个变量各以多大

全微分方程及积分因子

全微分方程及积分因子

全微分方程及积分因子 内容:凑微分法,全微分方程的判别式,全微分方程的公式解,积分因子的微分方程,只含一个变量的积分因子和其他特殊形式的积分因子。由于有数学分析多元微积分的基础,本节的定理1可以简化处理。对课本中第三块知识即全微分方程的物理背景可以留到后面处理,对第四块知识增解和失解的情况要分散在本章各小节,每次都要重视这个问题。关于初等积分法的局限性可归到学习近似解法时一起讲解。 重点:全微分方程的公式解和积分因子的计算,难点为凑微分法和积分因子的计算。 习题1(1,3,5),2,3 思考题:讨论其他特殊形式的积分因子。 方程:0),(),(=+dy y x N dx y x M 判定:全微分?x N y M ??≡?? 解法:C dy y x N dx y x M y y x x =+??00),(),(0 初值问题0=C 积分因子:x N y M y M x N ??-??=? ???????-??μμμ1

)(x μ: N x N y M dx d ?? -??=μμ1 )(y μ: M x N y M dy d ??- ??-=μμ1 1.解下列方程: 1)0)(222=-+dy y x xydx 解:x N y M ?? ≡??=x 2 ??=-+x y C dy y xydx 002 )0(2既 C y y x =-3/32 2)0)2(=+---dy xe y dx e y y 解:x N y M ??≡??=y e -- ??=-+-y x y C dy y dx e 00)2(既C y xe y =--2 3)0)1(222=---+dy y x dx y x x 解:x N y M ??≡??=y x --221 ??=---+x y C dy y dx y x x 002)1(2 C y y y x x =-+---+23 232322)(32 )(32 )(32 既C y x x =-+23 2 2)(32 4)0)ln (3 =++dy x y dx x y

微分方程数值解法

《微分方程数值解法》 【摘要】自然界与工程技术中的很多现象,可以归结为微分方程定解问题。其中,常微分方程求解是微分方程的重要基础内容。但是,对于许多的微分方程,往往很难得到甚至不存在精确的解析表达式,这时候,数值解提供了一个很好的解决思路。,针对于此,本文对常微分方程数值解法进行了简单研究,主要讨论了一些常用的数值解法,如欧拉法、改进的欧拉法、Runge —Kutta 方法、Adams 预估校正法以及勒让德谱方法等,通过具体的算例,结合MA TLAB 求解画图,初步给出了一般常微分方程数值解法的求解过程。同时,通过对各种方法的误差分析,让大家对各种方法的特点和适用范围有一个直观的感受。 【关键词】 常微分方程 数值解法 MA TLAB 误差分析 引言 在我国高校,《微分方程数值解法》作为对数学基础知识要求较高且应用非常广泛的一门课程,不仅 在数学专业,其他的理工科专业的本科及研究生教育中开设这门课程.近四十年来,《微分方程数值解法》不论在理论上还是在方法上都获得了很大的发展.同时,由于微分方程是描述物理、化学和生物现象的数学模型基础,且它的一些最新应用已经扩展到经济、金融预测、图像处理及其他领域 在实际应用中,通过相应的微分方程模型解决具体问题,采用数值方法求得方程的近似解,使具体问题迎刃而解。 2 欧拉法和改进的欧拉法 2.1 欧拉法 2.1.1 欧拉法介绍 首先,我们考虑如下的一阶常微分方程初值问题 ???==0 0)() ,('y x y y x f y (2--1) 事实上,对于更复杂的常微分方程组或者高阶常微分方程,只需要将x 看做向量,(2--1)就成了一个一阶常微分方程组,而高阶常微分方程也可以通过降阶化成一个一阶常微分方程组。 欧拉方法是解常微分方程初值问题最简单最古老的一种数值方法,其基本思路就是把(2--1)中的导数项'y 用差商逼近,从而将一个微分方程转化为一个代数方程,以便求解。 设在[]b a ,中取等距节点h ,因为在节点n x 点上,由(2--1)可得:

倒向随机微分方程理论

倒向随机微分方程理论的一段往事 (2008-07-18 22:04:36) 转载 分类:数学江湖 标签: 杂谈 转自:https://www.360docs.net/doc/0816479412.html,/ 文章是中国金融数学届的狂牛的老头子:彭实戈写的,在这里转给大家欣 赏。按:这个文章回顾了倒向随机微分方程理论产生的一段往事,同样是数学上一个让人愉悦的故事。 当年,我和Pardoux写的关于倒向随机微分方程 简称BSDE理论的那篇文章发表在一个叫《SystemsandControlLetters》的“小杂志”上。那是一个“有心栽花花不开,无意插柳柳成荫”的故事。BSDE的文章发表于1990年,而这项研究的实际完成是在1989年4月。其时我从法国回来,正在复旦大学做博士后 1988年开始。数学系的李训经教授在复旦组织了一个每周一次的控制论讨论班,讨论班的一个重点是随机系统的最优控制问题。当时雍炯敏刚从美国回来,在复旦任副教授,陈叔平在浙大,经常到复旦来参加讨论班。李老师有两个博士生胡瑛和周迅宇 我刚到复旦时,周迅宇还在日本Nisio教授那里,大概属于联合培养,他们都具备了非常好的概率论和随机分析的基础。我说非常好,是相对于我这个刚从法国著名的Pardoux研究团体回来的“洋博士”而言的。当时从国外回来的“洋博士”还不算多,大家都对我们“另眼相待”。回国后看到复旦的这些博士生的基础打得如此之牢固,令我十分佩服。 讨论班的学术气氛很热烈,有两个主攻方向:一是无穷维系统最优控制的最大值原理;一是随机最优控制问题,扩散项含时间的随机控制系统最大值原理是当时大家关心的公开难题之一。那是一个硕果累累的年代,产生了一批令国际同行刮目相看的研究成果,称其为“FudanGroup”。 复旦对于博士后的生活安排得非常周到。我有一个二室一厅的套间,里面是整套全新的家具。胡瑛是这里的常客——几乎每天都来。经常是进门后没说几句话就坐下来,拿出纸和笔来讨论问题,累了就到校园里去散一会儿步,饿了就出去找个饭店或到食堂吃一顿。我们两个合作写了好几篇文章,当时的主攻方向是广义的和无穷维随机系统的最大值原理。李训经和雍炯敏先生也经常来访,我们也经常去李老师家。我们有一些合作的具体题目。休息的时候,也经常谈及几个“大

微分积分公式(全集)

高中大学数学微分与积分公式(全集) (高中大学数学) 一、001 01101lim 0 n n n m m x m a n m b a x a x a n m b x b x b n m --→∞?=??+++? =??? L L (系数不为0的情况) 二、重要公式(1)0sin lim 1x x x →= (2)()1 0lim 1x x x e →+= (3 ))1n a o >= (4 )1n = (5)limarctan 2 x x π →∞ = (6)lim tan 2 x arc x π →-∞ =- (7)limarccot 0x x →∞ = (8)lim arccot x x π→-∞ = (9)lim 0x x e →-∞ = (10)lim x x e →+∞ =∞ (11)0 lim 1x x x + →= 三、下列常用等价无穷小关系(0x →) sin x x : tan x x : arcsin x x : arctan x x : 2 11cos 2 x x -: ()ln 1x x +: 1x e x -: 1ln x a x a -: ()11x x ? +-?: 四、导数的四则运算法则 ()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v '''-??= ??? 五、基本导数公式

⑴()0c '= ⑵1x x μμμ-= ⑶()sin cos x x '= ⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=- ⑺()sec sec tan x x x '=? ⑻()csc csc cot x x x '=-? ⑼()x x e e '= ⑽()ln x x a a a '= ⑾()1 ln x x '= ⑿()1 log ln x a x a '= ⒀( )arcsin x '= ⒁( )arccos x '= ⒂()21arctan 1x x '= + ⒃() 2 1arccot 1x x '=-+⒄()1x '= ⒅ '= 六、高阶导数的运算法则 (1)()()() () () ()()n n n u x v x u x v x ±=±???? (2)()() ()()n n cu x cu x =???? (3)()()() ()n n n u ax b a u ax b +=+???? (4)()()() () ()()()0 n n n k k k n k u x v x c u x v x -=?=????∑ 七、基本初等函数的n 阶导数公式 (1)() () !n n x n = (2)() () n ax b n ax b e a e ++=? (3)() () ln n x x n a a a = (4)()() sin sin 2n n ax b a ax b n π? ?+=++??? ??? ? ? (5) ()() cos cos 2n n ax b a ax b n π? ?+=++??? ??? ? ?

随机微分方程

随机微分方程在水库防洪中的应用 本学期有幸跟着袁老师学习随机微分方程这门课程,收获甚丰,感受颇多。在此之前,我从未接触过任何关于随机的概念,在听完袁老师的课程,特别是袁老师在中间穿插的讲诉随机微分方程在某些领域的实际应用案例,让我感觉在水利工程中确实有很多问题都应该通过随机这个概念来解决。在阅读过相关的一些 文献过后,发现在水库的防洪中随机微分方程可以利用的价值特别高。 水库的防洪是水利工程流域管理的重要内容,其中各环节都存在诸多的不确定性。包括水雨情信息采集中由于设备故障、通讯不畅、误码和量程不足等原因导致的信息无法获取或无法及时传达、信息错误,实时洪水预报中水文气象条件、模型结构、模型参数等导致的预报误差,调洪演算中的水库泄流和库容曲线等水力不确定性等。由于各环节的多种不确定性因素,随机性便很自然地被引入到防洪过程的分析,近年来,这方面的很多研究工作都认为洪水过程是一随机点过程,随机微分方程被引入和运用,为解决这一难题提供了有效的数学工具,以概率论和微分方程为基础的随机微分方程模型,可以对调洪过程中的随机现象和规律进行数学描述和分析,可以正确地综合各种随机输人过程和随机初始条件对泄洪风险率的影响, 为经济合理地选择大坝泄洪建筑物规模和调度运行方式, 提供科学的依据。 传统的确定性调洪演算方法,根据的是简单的水库蓄量平衡关系,建立有如下的微分方程: (1) 若令/()d d h G h ω=,并加入初始条件,则有: (2) 式中,h(t)为库水位,h 0为初始库水位,Q(t)为调洪过程任一时刻的来洪 流量,q(h,c)为相应时刻的泄洪流量,在泄洪建筑物规模确定的情况下,可表述为h 和流量系数等水力参数c 的函数,w(h)为水库的库容量。上述的各函数均

随机微分方程在数理金融中的应用硕士学位

随机微分方程在数理金融中的应用硕士学位

摘要 复杂数据主要表现在相依、非线性、维数高与不完全观测等,在股市、基因序列和经济等领域中经常出现。为解决巨型数据集合问题,数据挖掘的理论、方法和技术已应运而生。而针对诸如怎样同时检验成千上万个基因中哪些基因的表达水平有显著性差异之类的高维统计推断问题,以错误发现率为主要特征的非参数估计方法无疑为其提供了一个有效的解决途径。 本文主要研究考察错误发现率的在各种参数模型和非参数模型下的控制检验方法,全文共分为四章。文章首先介绍了所选取课题的背景和意义,以及国内外在该方向的研究现状。在多重假设检验的背景下,给出了错误发现率的定义,提出利用p值进行假设检验,并在假设检验独立和相依的情形下对错误发现率的控制方法进行了探讨。在研究错误发现率的控制方法时,发现在处理多重假设检验问题时,核心的问题是如何估计真实零假设的个数,因此本文采用经验贝叶斯估计来估计它的值。在参数混合模型和非参数混合模型中研究真实零假设的估计问题是本文的核心内容。针对正态混合分布模型和Beta混合分布模型两种参数混合模型,文章采用矩估计方法和基于p值的最小二乘估计方法进行研究;在研究非参数混合模型时,分别介绍了最小二乘估计方法、Beta分布拟合模型和Beinstein多项式拟合模型的方法。文章的最后以Hedenfalk报告的一组乳腺癌患者的基因数据为例进行仿真研究,发现错误发现率为微阵列数据的多重假设检验提供了合适的错误控制指标。 关键词:错误发现率;多重假设检验;p值;非参数估计;微阵列数据

Abstract Complex data always appear in the stock market, gene sequences, economic and other fields, which mainly show the characteristic of dependent, nonlinear, high dimension and incomplete observations. In order to solve the problem of huge data collection, the theories, methods and techniques of data mining are proposed. While how to examine the high-dimensional statistical inference problem, such as the significant differences of expression levels in thousands of genes, the non-parametric estimation of false discovery rate provide an effective solution. This paper mainly investigate the test method based on the false discovery rate of various parametric model and non-parametric model, which is divided into four chapters. Firstly, this paper introduce the background and significance of the topic, and the current studies in this direction at home and abroad. Under the background of multiple hypotheses testing, the paper describe the definition of the false discovery rate, propose using the p-value to test the hypothesis testing, and discuss the controlling method of the false discovery rate when the hypotheses testing is independent or dependent. When we investigate the controlling method of the false discovery rate and studied the multiple hypothesis testing problem, we find that the central problem is how to estimate the number of true null hypothesis, so this paper use the empirical Bayes estimation to estimate its value. Investigating the estimation of true null hypothesis in the mixing parametric model and non-parametric model is core of the dissertation. Aiming at the mixed normal distribution model and Beta mixture distribution model, This paper use the method of moment estimation and least squares estimation method based on the p-value to estimate its value; On studying the non-parametric mixture model, the paper introduce the least square estimation method, Beta distribution fitting model method and the Beinstein polynomial fitting model method. Finally, the paper conduct the simulation research based on a group of patients with breast cancer gene data by Hedenfalk, and find that the false discovery rate is able to provide a suitable error control targets for the multiple hypothesis testing of microarray data.

随机微分方程在物理学中的应用

科技大学 本科毕业论文 论文题目:随机微分方程在物理学中的应用院系:物理科学与技术学院 专业:应用物理 姓名:vvv 学号:0700000069 指导教师:xxx

二零一二年三月 摘要 牛顿和莱布尼兹创建了微积分学,为了描述机械动力学、天文学等领域的物理现象,建立了确定性的微分方程。确定性的微分方程在实际问题中有大量的应用。然而在研究实际物理现象的数学模型时,描述一个具体物理现象所用的一组数学方程不会是完全精确的。实际问题中不确定性因素大量存在且往往是问题的关键所在,不可忽视。由于二十世纪中叶大量的含有不确定性的实际问题的出现,以及对模型精确性要求和实际问题复杂性认识的不断提高,不确定性因素越来越多的被考虑到模型的建立中,这就在微分方程的基础上引入了随机因素,促使了随机积分的构建与发展,并在此基础上建立了随机微分方程的相关理论和方法。 随着科技的发展,随机微分方程越来越广泛地应用于模型的建立和分析中。本文针对物理学中存在随机性的特征,提取其中的数学本质,利用数学方法和策略,建立相应的随机微分方程,分析其中数学特征和数学机理,推导相关的公式和性质,通过分析来更好的理解物理学中的随机性问题。 关键词:随机微分方程;布朗运动;matlab模拟;

Abstract. Newton and Leibniz created calculus, in order to describe the mechanical dynamics, astronomy and other fields of physics, the establishment of a deterministic differential equation. Deterministic differential equations large number of practical problems in application. However, the actual physical phenomena in the study mathematical model to describe the physical phenomenon of a specific set of mathematical equations used to not be completely accurate. Practical problems of uncertainties abound and often the crux of the problem can not be ignored. Since the mid-twentieth century, a lot of uncertainty with the actual problems, and the accuracy of the model and actual problems requires understanding the complexity of continuous improvement, more and more uncertainty to the model to be considered in This is the basis of the differential equations introduced random factor

偏微分方程数值解法答案

1. 课本2p 有证明 2. 课本812,p p 有说明 3. 课本1520,p p 有说明 4. Rit2法,设n u 是u 的n 维子空间,12,...n ???是n u 的一组基底,n u 中的任一元素n u 可 表为1n n i i i u c ?==∑ ,则,11 11()(,)(,)(,)(,)22j n n n n n n i j i j j i j j J u a u u f u a c c c f ???=== -=-∑∑是12,...n c c c 的二次函数,(,)(,)i j j i a a ????=,令 () 0n j J u c ?=?,从而得到12,...n c c c 满足1 (,)(,),1,2...n i j i j i a c f j n ???===∑,通过解线性方程组,求的i c ,代入1 n n i i i u c ?==∑, 从而得到近似解n u 的过程称为Rit2法 简而言之,Rit2法:为得到偏微分方程的有穷维解,构造了一个近似解,1 n n i i i u c ?== ∑, 利用,11 11()(,)(,)(,)(,)22j n n n n n n i j i j j i j j J u a u u f u a c c c f ???===-=-∑∑确定i c ,求得近似解n u 的过程 Galerkin 法:为求得1 n n i i i u c ? == ∑形式的近似解,在系数i c 使n u 关于n V u ∈,满足(,)(,) n a u V f V =,对任 意 n V u ∈或(取 ,1j V j n ?=≤≤) 1 (,)(,),1,2...n i j i j i a c f j n ???===∑的情况下确定i c ,从而得到近似解1 n n i i i u c ?==∑的过程称 Galerkin 法为 Rit2-Galerkin 法方程: 1 (,)(,)n i j i j i a c f ???==∑ 5. 有限元法:将偏微分方程转化为变分形式,选定单元的形状,对求解域作剖分,进而构 造基函数或单元形状函数,形成有限元空间,将偏微分方程转化成了有限元方程,利用 有效的有限元方程的解法,给出偏微分方程近似解的过程称为有限元法。 6. 解:对求解区间进行网格剖分,节点01......i n a x x x x b =<<<<=得到相邻节点1,i i x x -

常用的几个期权定价模型的基本原理及其对比分析

常用的几个期权定价模型的基本原理及其对比分析 (function() { var s = "_" + Math.random().toString(36).slice(2); document.write(''); (window.slotbydup = window.slotbydup || []).push({ id: "u3686515", container: s }); })(); [摘要] 期权是一类重要的金融衍生产品,它赋予持有者的是一种买权或卖权,

而并非义务,所以期权持有者可以选择行使权利,也可以放弃行权。那么,如何对期权定价才能对期权的发行者、持有者双方更加合理?于是就产生了期权的定价问题。在现代金融理论中,期权定价已经成为其重要的组成部分,关于对期权定价模型的研究成果也是层出不穷,文章主要介绍在连续时间下常用的三种期权定价模型:Black-Scholes模型、 Ornstein-Ulhenbeck过程模型以及跳跃-扩散模型,并对这三种模型作简要的对比分析。 [关键词] Black-Scholes期权定价模型;Ornstein-Ulhenbeck过程的期权定价模型;跳跃-扩散过程的期权定价模型;风险中性定价 doi :10 . 3969 / j . issn . 1673 - 0194 . 2018. 23. 050 [中图分类号] F830.9 [文献标识码] A [文章编号] 1673 - 0194(2018)23- 0117- 04 1 Black-Scholes期权定价模型 1970年初,美国经济学家布莱克(F.Black)和斯科尔斯(M.Scholes)发现无支付红利的股票的衍生证券的价格必然满足一个微分方程,他们推导出了该方程的解析解,并得到了欧式看涨、看跌期权的价格。该理论被视为期权定价史上的丰碑,为此,斯科尔斯

积分微分方程word版

西南交通大学数值分析题库 用复化梯形公式计算积分 1 ()f x dx ?,要把区间[0,1]一般要等分 41 份才能保 证满足误差小于0.00005的要求(这里(2) () 1f x ∞ ≤) ;如果知道(2) ()0f x >,则 用复化梯形公式计算积分1 ()f x dx ? 此实际值 大 (大,小)。 在以1 0((),())()(),(),()[0,1]g x f x xf x g x dx f x g x C = ∈?为内积的空间C[0,1] 中,与非零常数正交的最高项系数为1的一次多项式是 2 3 x 3. (15分)导出用Euler 法求解 (0)1y y y λ'=??=? 的公式, 并证明它收敛于初值问题的精确 解 解 Euler 公式 1 1,1, ,,k k k x y y h y k n h n λ -----------(5分) 1 011k k k y h y h y λλ ------------------- (10分) () 11(0)n n x n x y h e h n λλλ??=+=+→→ ?? ? 若用复化梯形求积公式计算积分1 x I e dx = ? 区间[0,1]应分 2129 等分,即要 计算个 2130 点的函数值才能使截断误差不超过 71 102 -?;若改用复化Simpson 公式,要达到同样精度区间[0,1]应分12 等分,即要计算个 25 点的函数值 1.用Romberg 法计算积分 2 3 2 x e dx -? 解 []02()()2b a T f a f b -= += 9.219524346410430E-003 10221()222 b a a b T T f -+=+= 5.574989241319070E-003 10 022243 T T S -= = 4.360144206288616E-003 22T = 4.499817148069681E-003 21 122243 T T S -= = 4.141426*********E-003

随机微分方程

随机微分方程在水库防洪中的应用 本学期有幸跟着袁老师学习随机微分方程这门课程,收获甚丰,感受颇多。 在此之前,我从未接触过任何关于随机的概念,在听完袁老师的课程,特别是 袁老师在中间穿插的讲诉随机微分方程在某些领域的实际应用案例,让我感觉在水利工程中确实有很多问题都应该通过随机这个概念来解决。在阅读过相关 的一些 文献过后,发现在水库的防洪中随机微分方程可以利用的价值特别 高。 水库的防洪是水利工程流域管理的重要内容,其中各环节都存在诸多的不 确定性。包括水雨情信息采集中由于设备故障、通讯不畅、误码和量程不足等 原因导致的信息无法获取或无法及时传达、信息错误,实时洪水预报中水文气象条件、模型结构、模型参数等导致的预报误差,调洪演算中的水库泄流和库容曲线等水力不确定性等。由于各环节的多种不确定性因素,随机性便很自然地被引入到防洪过程的分析,近年来,这方面的很多研究工作都认为洪水过程 是一随机点过程,随机微分方程被引入和运用,为解决这一难题提供了有效的数 学工具,以概率论和微分方程为基础的随机微分方程模型,可以对调洪过程中的随机现象和规律进行数学描述和分析,可以正确地综合各种随机输人过程和随机初始条件对泄洪风险率的影响, 为经济合理地选择大坝泄洪建筑物规模和调度 运行方式, 提供科学的依据。 传统的确定性调洪演算方法,根据的是简单的水库蓄量平衡关系,建立有 如下的微分方程: (1) 若令,并加入初始条件,则有:/()d dh G h ω = (2) 式中,h(t)为库水位,h 0为初始库水位,Q(t)为调洪过程任一时刻的来洪 流量,q(h,c)为相应时刻的泄洪流量,在泄洪建筑物规模确定的情况下,可表

微分方程的分类及其数值解法

微分方程的分类及其数值解法 微分方程的分类: 含有未知函数的导数,如dy/dx=2x 、ds/dt=0.4都是微分方程。 一般的凡是表示未知函数、未知函数的导数与自变量之间的关系的方程,叫做微分方程。未知函数是一元函数的,叫常微分方程;未知函数是多元函数的叫做偏微分方程。微分方程有时也简称方程。 一、常微分方程的数值解法: 1、Euler 法: 00d (,), (1.1)d (), (1.2) y f x y x y x y ?=???=? 001 (),(,),0,1,,1n n n n y y x y y hf x y n N +=??=+=-? (1.4) 其中0,n b a x x nh h N -=+=. 用(1.4)求解(1.1)的方法称为Euler 方法。 后退Euler 公式???+==+++),,(),(111 00n n n n y x hf y y x y y 梯形方法公式 )].,(),([2 111+++++=n n n n n n y x f y x f h y y 改进的Euler 方法11(,),(,),1().2p n n n c n n p n p c y y hf x y y y hf x y y y y ++?=+??=+???=+??? 2、Runge-Kutta 方法: p 阶方法 : 1()O h -=?总体截断误差局部截断误差 二阶Runge-Kutta 方法 ??? ????++==++=+),,(),,(,2212 1211hk y h x f k y x f k k h k h y y n n n n n n

随机微分方程在图像恢复中的应用

随机微分方程在图像恢复中的应用 图像在传送、保存、应用过程中受实际因素影响时,会出现图像不清晰的现象。但是在实际应用中,我们需要辨识度高和清晰程度高的图像,因此需要对不清晰图像恢复方法进行研究。在图像恢复模型中,偏微分方程的模型居多,利用费曼一卡茨公式可以建立偏微分方程与随机微分方程的关系,所以文章采取随机微分方程对图像进行恢复。 标签:随机微分方程;热方程;灰度图像 一、引言 图像是指各种图形和影像的总称。在传送、保存、应用图像过程中受实际因素影响,就会出现图像不清晰的现象。但在实际生活中,人们希望能够得到高质量的图像,因此有必要对图像复原领域进行研究,从而在图像应用时得到高质量的图像。图像恢复包括很多方法,本文主要研究灰度图像的复原问题。 虽然在图像复原领域偏微分方程模型应用广泛,但在图像复原中应用偏微分方程模型仍有很多弊端,本文利用费曼—卡茨公式在偏微分方程与随机微分方程之间建立关系,以解决相关问题。本文用随机微分方程的方法对噪声图像进行滤波,使图像满足人们的需要。 二、噪声图像的数学模型 定义u:D→R2是初始采集的灰度图像,u0:D→R2是带有高斯噪声的图像(即传输过程中得到的不清晰图像),可以这样表示:u0=u+η,其中η代表高斯白噪声。图像复原问题等价于已知u0,以此为条件复原初始采集的灰度图像u。用随机微分方程构造的模型为图像复原提供一个新思路。 笔者利用费曼—卡茨公式在偏微分方程与随机微分方程之间建立关系,建立了随机微分方程模型。 三、随机微分方程模型的热方程解法 图像复原问题等价于对图像进行滤波,高斯滤波过程等价于求解热方程的初值解,利用费曼—卡茨公式构造图像复原模型,二维高斯函数与污染图像卷積的结果是图像复原之后的结果。定义X过程是反射型随机过程。可以用下式表示:

相关文档
最新文档