数学模型习题解答解读

数学模型习题解答解读
数学模型习题解答解读

上机练习题一

班级: 姓名: 学号:

1.建立起始值=3,增量值=5.5,终止值=44的一维数组x 答案: x=(3:5.5:44)

2.写出计算 Sin(30o )的程序语句. 答案: sin(pi*30/180) 或 sin(pi/6)

3.矩阵??????????=187624323A ,矩阵????

??????=333222111B ;分别求出B A ?及A 与B 中对应元素之间的乘积. 答案:A = [3,2,3; 4,2,6; 7,8,1]

B = [1,1,1; 2,2,2; 3,3,3]

A*B ;A.*B

4计算行列式的值1

876243

23=A 。答案:det(A)

5对矩阵 ????

??????=187624323A 进行下述操作。 (1)求秩。答案:rank(A)

(2)求转置。答案:A'

(3) 对矩阵求逆,求伪逆。答案:inv(A) ,pinv(A)

(4) 左右反转,上下反转。答案:fliplr(A),flipud(A)

(5) 求矩阵的特征值. 答案:[u,v]=eig(A)

(6) 取出上三角和下三角. 答案:triu(A) tril(A)

(7)以A 为分块作一个3行2列的分块矩阵。答案:repmat(a)

6 计算矩阵??????????897473535与????

??????638976242之和。

>> a=[5 3 5;3 7 4;7 9 8];

>> b=[2 4 2;6 7 9;8 3 6];

>> a+b

7 计算??????=572396a 与??

????=864142b 的数组乘积。 >> a=[6 9 3;2 7 5]; >> b=[2 4 1;4 6 8];

ans =

12 36 3

8 42 40

8 已知:????

??????=987654321a ,分别计算a 的数组平方和矩阵平方,并观察其结果。

>> a=[1 2 3;4 5 6;7 8 9];

>> a.^2

ans =

1 4 9

16 25 36

49 64 81

>> a^2

ans =

30 36 42

66 81 96

102 126 150

上机练习题二

班级: 姓名:

学号:

1 对于B AX =,如果??????????

=753467294A ,????

?

?????=282637B ,求解X 。

>> A=[4 9 2;7 6 4;3 5 7];

>> B=[37 26 28]’;

>> X=A\B

X =

-0.5118

4.0427

1.3318

2 角度[]604530=x ,求x 的正弦、余弦、正切和余切。

>> x=[30 45 60];

>> x1=x/180*pi;

>> sin(x1)

ans =

0.5000 0.7071 0.8660

>> cos(x1)

ans =

0.8660 0.7071 0.5000 >> tan(x1)

0.5774 1.0000 1.7321

>> cot(x1)

ans =

1.7321 1.0000 0.5774

3 将矩阵??

????=7524a 、??????=3817b 和??????=2695c 组合成两个新矩阵: (1)组合成一个4?3的矩阵,第一列为按列顺序排列的a 矩阵元素,第二列为按列顺序排列的b 矩阵元素,第三列为按列顺序排列的c 矩阵元素,即

????

?

?

??????237912685574

(2)按照a 、b 、c 的列顺序组合成一个行矢量,即

[]296531877254

答案:a=[4 2;5 7];

b=[7 1;8 3];

c=[5 9;6 2];

% (1)

>> d=[a(:) b(:) c(:)]

d =

4 7 5

5 8 6

2 1 9

7 3 2

% (2)

>> e=[a(:);b(:);c(:)]'

e =

4 5 2 7 7 8 1 3 5 6

9 2 或利用(1)中产生的d

>> e=reshape(d,1,12)

ans =

4 5 2 7 7 8 1 3 5 6

9 2 4求解在x =8时多项式(x -1)(x -2) (x -3)(x -4)的值。

>> p=poly([1 2 3 4]);

>> polyvalm(p,8)% polyval(p,8)

ans =

840

5求方程023973234=-++x x x 的全部根。

p=[3,7,9,0,-23]; %建立多项式系数向量

x=roots(p) %求根

上机练习题三

班级: 姓名: 学号:

1、 设x 是数组,求均值和方差

解:函数文件如下:

function [xx,s]=func1(x)

n=length(x);

xx=sum(x)/n;

s=sqrt((sum(x.^2)-n*xx^2)/(n-1));

命令窗口:

>> x=[1 2 3 4 5];[xx,s]=func1(x)

2、求满足100)1ln(0

>+∑=m

n n 的最小m 值

s=0;

n=0;

while(s<=100)

s=s+log(1+n);

n=n+1;

end

n,s

3、用循环语句形成Fibonacci 数列,....4,3,,12121=+===--k F F F F F k k k 。并验证极限2

5

11+→

-k k F F (

提示:计算至两边误差小于精度1e-8为止)

解: 求Fibonacci 数列的函数文件:

function fibo(k)

clc;

f(1)=1;

f(2)=1;

for n=3:k

f(n)=f(n-1)+f(n-2)

end

f(k)

验证极限的函数文件:

function [k,a]=funTest(e)

a=abs(1-(1+sqrt(5))/2);

k=2; while(a>e)

k=k+1; a=abs(fun(k)/fun(k-1)-(1+sqrt(5))/2); end 命令行:

>> [k,a]=funTest(10^-8)

k =

21

a =

9.7719e-009

或者M 文件如下:

clear; F(1)=1;F(2)=1;k=2;x=0;

e=1e-8; a=(1+sqrt(5))/2;

while abs(x-a)>e

k=k+1; F(k)=F(k-1)+F(k-2); x=F(k)/F(k-1);

end

a,x,k 4、分别用for 和while 循环结构编写程序,求出∑==

610123i i

K ,并考虑一种避免循环语句的程序设计,比较各种算法的运行时间。

解:for 循环结构:M 文件loop.m

k=0;

for i=1:10^6

k=k+sqrt(3)*2^-i;

end

k

while 循环结构:M 文件loop1.m

k=0;i=1;

while i<=10^6

k=k+sqrt(3)*2^(-i);

i=i+1;

end

k

非循环结构:M 文件nonLoop.m

i=1:10^6;

x=sqrt(3)*(2.^-i);

k=sum(x) 速度比较:>>tic;loop;toc %循环结构的执行时间

k =

1.7321

Elapsed time is 1.813000 seconds.

>> tic;nonLoop;toc %非循环结构的执行时间

k =

1.7321

Elapsed time is 1.094000 seconds.

上机练习题四

班级: 姓名: 学号:

1、作图描述气温变化

>> x=0:24;

>> y=[15,14,14,14,14,15,16,18,20,22,23,25,28,31,32,31,29,27,25,24,22,20,18,17,16];

>> plot(x,y)

2、作出下列函数图形

(1))2sin(22--=x x x y 22≤≤-x (分别使用plot 和fplot 完成)

解:>> fplot('x^2*sin(x^2-x-2)',[-2 2]) %fplot 方法

>> x=-2:0.1:2;y=x.^2.*sin(x.^2-x-2);plot(x,y) %plot 方法 如图(4.1)

(2)19

42

2=+y x (椭圆 提示:用参数方程) 解:>> r=-pi:0.1:pi;x=2*cos(r);y=3*sin(r);plot(x,y) % 如图(4.2)

解法二

x=-2:1/100:2;

y1=3*sqrt(1-x.^2/4); y2=-3*sqrt(1-x.^2/4);

plot(x,y1,'r-',x,y2,'r-'); axis equal tight;

图(4.1) 图(4.2)

(3)22y x z += (抛物面) 3,3<

解:(错误)>> x=[-3:0.1:3];y=[-3:0.1:3];z=x.^2+y.^2; plot3(x,y,z) % 如图(4.31)

(正确)>> xa=-3:0.1:3;ya=-3:0.1:3;[x,y]=meshgrid(xa,ya); % 如图(4.32)

>> z=x.^2+y.^2;mesh(x,y,z); >> surf(x,y,z)

图(4.31)error 图(4.32)

(4)曲面133,3,622232224<<-<+---++=y x y x y x y x x z

解: >> xa=linspace(-3,3,100);ya=linspace(-3,13,100);

>> [x,y]=meshgrid(xa,ya);

>> z=x.^4+3*x.^2+y.^2-2*x-2*y-2*x.^2.*y+6;

>> mesh(x,y,z)

>> surf(x,y,z)

(5)空间曲线20),2cos(,cos ,sin <<===t t z t y t x

解:>> t=linspace(0,2,50);x=sin(t);y=cos(t);z=cos(2*t);

>> plot3(x,y,z)

(6)半球面2sin cos ,2sin sin ,2cos ,0360,090x y z φθφθφθφ===≤≤≤≤

解: >> a=linspace(0,pi/2,50);b=linspace(0,2*pi,50);

>> [a,b]=meshgrid(a,b); >> x=2*sin(a).*cos(b);y=2*sin(a).*sin(b);z=2*cos(a);

>> surf(x,y,z)

(7)三条曲线合成图π<<-===x x y x x y x y 0,sin ),10sin(sin ,sin 321

解: >>x=linspace(0,pi,50);y1=sin(x);

>> plot(x,y1);hold on;

>> y2=sin(x).*sin(10*x);

>> plot(x,y2);

>> y3=-sin(x);

>> plot(x,y3);

>> hold off;

3、作下列分段函数图??

???-<≤>-=1.11.11.11.11.1x x x x y

x=-5:0.1:5;

for i=1:length(x)

if x(i)>1.1

y(i)=1.1;

elseif x(i)<-1.1

y(i)=-1.1;

else

y(i)=x(i);

end

end

plot(x,y);

grid on;

或者M 文件如下:

x=-5:0.1:5;

y=1.1.*( x>1.1)+x.*( x <=1.1&x>=-1.1)-1.1.*(x<-1.1);

plot(x,y)

4、用MATLAB 函数表示下列函数,并作图。

??

???-≤++--≤+<--->+---=1),5.175.375.0exp(5457.011),6exp(7575.01),5.175.375.0exp(5457.0),(222222y x x x y y x x y y x x x y y x p

解:建立M 文件pxy 如下:

xa=-2:0.05:2;ya=xa;

nx=length(xa);ny=length(ya);

[x,y]=meshgrid(xa,ya);

z=zeros(nx,ny);

[a1,b1]=find(x+y>1); %第a1列b1行对应的x+y>1 (x 对应列;y 对应行)

%第a1列对应的x 值是xa(a1);第b1行对应的y 值是ya(b1)

z((a1-1)*ny+b1)=0.5457*exp(-0.75*ya(b1).^2-3.75*xa(a1).^2-1.5*xa(a1));

[a2,b2]=find(x+y<=1&x+y>-1);

z((a2-1)*ny+b2)=0.7575*exp(-ya(b2).^2-6*xa(a2).^2);

[a3,b3]=find(x+y<=-1);

z((a3-1)*ny+b3)=0.5457*exp(-0.75*ya(b3).^2-3.75*xa(a3).^2+1.5*xa(a3));

surf(x,y,z);

命令窗口:

>> pxy

运行结果如右图:

或者M文件如下:

clear;close;

xa=-2:0.1:2;ya=-2:0.1:2;[x,y]=meshgrid(xa,ya);

z=zeros(size(x));

k1=find(x+y>1);

z(k1)=0.5457*exp(-0.75*y(k1).^2-3.75*x(k1).^2-1.5*x(k1));

k2=find(x+y<=1&x+y>-1);

z(k2)=0.7575*exp(-y(k2).^2-6*x(k2).^2);

k3=find(x+y<-1);

z(k3)=0.5457*exp(-0.75*y(k3).^2-3.75*x(k3).^2+1.5*x(k3)); mesh(x,y,z);

或者M文件如下:

xa=-2:0.05:2;ya=xa;

[x,y]=meshgrid(xa,ya);

z=0.5457*exp(-0.75*y.^2-3.75*x.^2-1.5*x).*(x+y>1)+...

0.7575*exp(-y.^2-6*x.^2).*(x+y<=1&x+y>-1)+...

0.5457*exp(-0.75*y.^2-3.75*x.^2+1.5*x).*(x+y<=-1);

surf(x,y,z);

上机练习题五

班级:姓名:学号:

1、运行demo

解:>>demo

2、查询trapz的功能、用法、目录、程序结构、相同目录下其它文件

解:>> help trapz ――功能用法

>> type trapz――程序结构,源码

>> which trapz――所在目录

>> help C:\MATLAB6p5\toolbox\matlab\datafun――该目录下其它文件

3在[0,4pi]画sin(x),cos(x)(在同一个图象中); 其中cos(x)图象用红色小圆圈画.并在函数图上标注“y=sin(x)”, “y=cos(x)” ,x轴,y轴,标题为“正弦余弦函数图象”.

x=linspace(0,4*pi,100);

y=sin(x);

plot(x,y);

gtext('y = sin(x)');% 图形注解,注意要用鼠标定位

hold on;

y=cos(x);

plot(x,y,'ro');

gtext ('y = cos(x)');% 图形注解

xlabel('x轴'); % x轴注解

ylabel('y轴'); % y轴注解

title('正弦余弦函数图象'); % 图形标题

4从键盘输入若干个数,当输入0时结束输入,求这些数的平均值和它们之和。

sum=0;

cnt=0;

val=input('Enter a number (end in 0):');

while (val~=0)

sum=sum+val;

cnt=cnt+1;

val=input('Enter a number (end in 0):');

end

if (cnt > 0)

sum

mean=sum/cnt

end

5若一个数等于它的各个真因子之和,则称该数为完数,如6=1+2+3,所以6是完数。求[1,500]之间的全部完数。

for m=1:500

s=0;

for k=1:m/2

if rem(m,k)==0

s=s+k;

end

end

if m==s

disp(m);

end

end

上机练习题六

班级: 姓名: 学号:

1 假定数据点来源为:x e x x x f x sin )53()(52-+-=,试根据生成的数据进行插值处理,得出较平滑的曲线。 x=0:.12:1;y=(x.^2-3*x+5).*exp(-5*x).*sin(x);plot(x,y,x,y,'o')

x1=0:.02:1;y0=(x1.^2-3*x1+5).*exp(-5*x1).*sin(x1);

y1=interp1(x,y,x1);

>> y2=interp1(x,y,x1,'cubic');

>> y3=interp1(x,y,x1,'spline');

>> y4=interp1(x,y,x1,'nearest');

>> plot(x1,[y1;y2;y3;y4],':',x,y,'o',x1,y0)或者plot(x1,[y1',y2',y3',y4'],':',x,y,'o',x1,y0)

2 用不同插值的方法计算sin(x)在pi/2的值

clear

clc

x=0:0.2:pi;%产生包含被插值点的采样点(做成一个向量)

y=sin(x);%求出各采样点对应的样本值

y1=interp1(x,y,pi/2);%用默认的'linear'方法计算sin(pi/2)

y2=interp1(x,y,pi/2,'nearest');%用默认的'linear'方法计算sin(pi/2)

y3=interp1(x,y,pi/2,'cubic');%用三次多项式插值方法计算sin(pi/2)

y4=interp1(x,y,pi/2,'spline');%用三次样条插值方法计算sin(pi/2)

y5=spline(x,y,pi/2);%直接用'spline'方法计算sin(pi/2),功能与y4相同

disp('各种方法的插值结果:')

out=['y1=', num2str(y1)

'y2=',num2str(y2);

'y3=',num2str(y3)]

out2=['y4=',num2str(y4)

'y5=',num2str(y5)]

3求

?????-=-=y x dt dy y

x dt dx 224 的通解

[x,y]=dsolve('Dx=4*x-2*y','Dy=2*x-y', 't')

%P149(3)的求解

[x,y]=dsolve('Dx=a*y','Dy=-b*x ', 'x(0)=x0', 'y(0)=y0', 't')

y=dsolve('Dy=(b*x)/(a*y)', 'y(0)=y0','x');

4

相比较。的数值解,并与精确解求11)(2)0(10,)1(422'++=?????=≤≤+--=t t y y t t t y y

方法一:

%微分方程的M 函数funt.m 文件

function y=funt(t,y)

y=(y^2-t-2)/4/(t+1);

%以下是求解的脚本m 函数,可自由取名,然后在command 窗口调用该函数求解.

ts=[0,10];%自变量的求解区间

y0=2;%初值条件

[t,y]=ode23('funt',ts,y0);%用2,3阶龙格库塔方法求‘funt ’文件里的微分方程

y1=sqrt(t+1)+1;%求精确解对应点上的函数值

[t,y,y1]%以三列的形式显示结果,其中第一列为采样点t 对应的值,第二列为t 对应的数值解,第二列为t 对应的精确解。

方法二:

%或者直接用内建函数编写待求的微分方程,在一个M 脚本文件里执行求解。

funt=inline('(y^2-t-2)/4/(t+1)') %内建函数编写待求的微分方程

ts=[0,10];%自变量的求解区间

y0=2;%初值条件

[t,y]=ode23(funt,ts,y0);%用2,3阶龙格库塔方法求‘funt ’文件里的微分方程

y1=sqrt(t+1)+1;%求精确解对应点上的函数值

[t,y,y1]

5

绘制系统相平面图象。,求解微分方程组,并,,取模型的状态方程表示为

382810)()()()()()()()()()()()(321233223211===-+-=+-=+-=βρσρσσβt x t x t x t x t x

t x t x t x

t x t x t x t x

lorenz

第一种方法建立lorenz 函数模型的状态方程

function xp=lorenz(t,x)%建立lorenz 函数模型的状态方程

xp=[-8/3,0,x(2);0,-10,10;-x(2),28,-1]*x%表明x 是一个三维向量,前面是一个线性方程组的系数矩阵,xp%是一个三维的输出表示x(1),x(2),x(3)的一阶导数向量。

第二种方法建立lorenz 函数模型的状态方程

function xp=lorenz1(t,x)%建立lorenz 函数模型的状态方程

xp=[-8/3*x(1)+x(2)*x(3);-10*x(2)+10*x(3);-x(2)*x(1)+28*x(2)-x(3)];

%求解微分方程

clear;clc;

x0=[0,0,eps]';%三个初值条件构成的向量

[t,x]=ode23('lorenz',[0,100],x0);

[t,x]

plot(t,x),grid,pause%绘制解x(1),x(2),x(3)各自相对于变量t 的图象,按任意键后继续下面的程序 figure;plot3(x(:,1),x(:,2),x(:,3));%绘制解x(1),x(2),x(3)的关于系统的相平面图象

axis([10,40,-20,20,-20,20]);

上机练习题七

班级: 姓名: 学号: 1有一组测量数据如下表所示,数据具有y =x 2+1的变化趋势,用最小二乘法求解y 。

x 1 1.5 2 2.5 3 3.5 4 4.5

5

y -1.4 2.7 3 5.9 8.4 12.2 16.6 18.8 26.2

>> x=[1 1.5 2 2.5 3 3.5 4 4.5 5]'

>> y=[-1.4 2.7 3 5.9 8.4 12.2 16.6 18.8 26.2]'

>> e=[ones(size(x)) x.^2]

>> c=e\y

>> x1=[1:0.1:5]';

>> y1=[ones(size(x1)),x1.^2]*c;

>> plot(x,y,'ro',x1,y1,'k')

2求下列线性方程组的解

(1)????

??????-=????????????????????---129351623114321x x x 解:>> a=[4 1 -1;3 2 -6;1 -5 3];b=[9; -2; 1];x=a\b %唯一解

x =

2.3830

1.4894

2.0213

(2)????

??????--=????????????????????---121351623334321x x x 解:>> a=[4 -3 3;3 2 -6;1 -5 3];b=[-1;-2;1];x=a\b %唯一解

x =

-0.4706

-0.2941

(3)????

??????=????????????????-11151231421x x 解:>> a=[4 1;3 2;1 -5];b=[1;1;1];x=a\b %最小二乘近似解

x =

0.3311

-0.1219

(4)??????????=?????

?????????????????--3211211112111124321x x x x ,求通解 解:>> a=[2 1 -1 1;1 2 1 -1; 1 1 2 1];b=[1;2;3];

>> rank(a),rank([a,b])

ans =

3

ans =

3 %说明有无穷多解

>> rref([a,b]) %行最简化

ans =

1.0000 0 0 1.5000 1.0000

0 1.0000 0 -1.5000 0

0 0 1.0000 0.5000 1.0000

%通解为:15.141+-=x x ,425.1x x =,15.043+-=x x

3、求下列矩阵的行列式、逆、特征值和特征向量

(1)????

? ??---351623114

解:>> a=[4 1 -1;3 2 -6;1 -5 3];det(a),inv(a),[v,d]=eig(a)

ans = -94 行列式 ans =

0.2553 -0.0213 0.0426

0.1596 -0.1383 -0.2234 矩阵的逆 0.1809 -0.2234 -0.0532

v =

0.0185 -0.9009 -0.3066

-0.7693 -0.1240 -0.7248 特征向量 -0.6386 -0.4158 0.6170

d =

-3.0527 0 0

0 3.6760 0 特征值

0 0 8.3766

(2)????

? ??--351533134

解:>> a=[4 3 1;3 3 -5;1 -5 3];det(a),inv(a),[v,d]=eig(a)

ans =

-124 行列式

ans =

0.1290 0.1129 0.1452 0.1129 -0.0887 -0.1855 矩阵的逆 0.1452 -0.1855 -0.0242 v = 0.3757 -0.8583 0.3496 -0.6881 -0.0056 0.7255 特征向量 -0.6208 -0.5131 -0.5927

d =

-3.1480 0 0

0 4.6176 0 特征值 0 0 8.5304

(3) ??????

? ??1097591086781075675 解:>> a=[5 7 6 5;7 10 8 7;6 8 10 9;5 7 9 10];det(a),inv(a),[v,d]=eig(a)

ans =

1 行列式

ans =

68.0000 -41.0000 -17.0000 10.0000

-41.0000 25.0000 10.0000 -6.0000 矩阵的逆 -17.0000 10.0000 5.0000 -3.0000

10.0000 -6.0000 -3.0000 2.0000

v =

0.8304 0.0933 0.3963 0.3803

-0.5016 -0.3017 0.6149 0.5286 特征向量 -0.2086 0.7603 -0.2716 0.5520

0.1237 -0.5676 -0.6254 0.5209

d =

0.0102 0 0 0

0 0.8431 0 0

0 0 3.8581 0 特征值 0 0 0 30.2887

(4)

n=5;

tria = 6*eye(n-1); %构造上三角

rown = zeros(1,n-1);

coln = zeros(n,1);

数学建模典型例题

一、人体重变化 某人的食量是10467焦/天,最基本新陈代谢要自动消耗其中的5038焦/天。每天的体育运动消耗热量大约是69焦/(千克?天)乘以他的体重(千克)。假设以脂肪形式贮存的热量100% 地有效,而1千克脂肪含热量41868焦。试研究此人体重随时间变化的规律。 一、问题分析 人体重W(t)随时间t变化是由于消耗量和吸收量的差值所引起的,假设人体重随时间的变化是连续变化过程,因此可以通过研究在△t时间内体重W的变化值列出微分方程。 二、模型假设 1、以脂肪形式贮存的热量100%有效 2、当补充能量多于消耗能量时,多余能量以脂肪形式贮存 3、假设体重的变化是一个连续函数 4、初始体重为W0 三、模型建立 假设在△t时间内: 体重的变化量为W(t+△t)-W(t); 身体一天内的热量的剩余为(10467-5038-69*W(t)) 将其乘以△t即为一小段时间内剩下的热量; 转换成微分方程为:d[W(t+△t)-W(t)]=(10467-5038-69*W(t))dt; 四、模型求解 d(5429-69W)/(5429-69W)=-69dt/41686 W(0)=W0 解得: 5429-69W=(5429-69W0)e(-69t/41686) 即: W(t)=5429/69-(5429-69W0)/5429e(-69t/41686) 当t趋于无穷时,w=81; 二、投资策略模型 一、问题重述 一家公司要投资一个车队并尝试着决定保留汽车时间的最佳方案。5年后,它将卖出所有剩余汽车并让一家外围公司提供运输。在策划下一个5年计划时,这家公司评估在年i 的开始买进汽车并在年j的开始卖出汽车,将有净成本a ij(购入价减去折旧加上运营和维修成本)ij

数学建模典型例题(二)

6 小行星的轨道模型 问题 一天文学家要确定一颗小行星绕太阳运行的轨道,他在轨道平面内建立以太阳为原点的直角坐标系,在两坐标轴上取天文测量单位(一天文单位为地球到太阳的平均距离:1.4959787×1011m ).在5个不同的时间对小行星作了5次观察,测得轨道上5个点的坐标数据如表6.1. 表6.1 坐标数据 由Kepler (开普勒)第一定律知,小行星轨道为一椭圆.现需要建立椭圆的方程以供研究(注:椭圆的一般方程可表示为 012225423221=+++++y a x a y a xy a x a . 问题分析与建立模型 天文学家确定小行星运动的轨道时,他的依据是轨道上五个点的坐标数据: (x 1, y 1), (x 2, y 2), (x 3, y 3), (x 4, y 4), (x 5, y 5). 由Kepler 第一定律知,小行星轨道为一椭圆.而椭圆属于二次曲线,二次曲线的一般方程为012225423221=+++++y a x a y a xy a x a .为了确定方程中的五个待定 系数,将五个点的坐标分别代入上面的方程,得 ???? ?????-=++++-=++++-=++++-=++++-=++++.122212221222122212225554253552251454424344224 135342 3333223125242 232222211514213112211y a x a y a y x a x a , y a x a y a y x a x a ,y a x a y a y x a x a ,y a x a y a y x a x a ,y a x a y a y x a x a 这是一个包含五个未知数的线性方程组,写成矩阵

数学建模常用的十种解题方法

数学建模常用的十种解题方法 摘要 当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。这个建立数学模型的全过程就称为数学建模。数学建模的十种常用方法有蒙特卡罗算法;数据拟合、参数估计、插值等数据处理算法;解决线性规划、整数规划、多元规划、二次规划等规划类问题的数学规划算法;图论算法;动态规划、回溯搜索、分治算法、分支定界等计算机算法;最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法;网格算法和穷举法;一些连续离散化方法;数值分析算法;图象处理算法。 关键词:数学建模;蒙特卡罗算法;数据处理算法;数学规划算法;图论算法 一、蒙特卡罗算法 蒙特卡罗算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法。在工程、通讯、金融等技术问题中, 实验数据很难获取, 或实验数据的获取需耗费很多的人力、物力, 对此, 用计算机随机模拟就是最简单、经济、实用的方法; 此外, 对一些复杂的计算问题, 如非线性议程组求解、最优化、积分微分方程及一些偏微分方程的解⑿, 蒙特卡罗方法也是非常有效的。 一般情况下, 蒙特卜罗算法在二重积分中用均匀随机数计算积分比较简单, 但精度不太理想。通过方差分析, 论证了利用有利随机数, 可以使积分计算的精度达到最优。本文给出算例, 并用MA TA LA B 实现。 1蒙特卡罗计算重积分的最简算法-------均匀随机数法 二重积分的蒙特卡罗方法(均匀随机数) 实际计算中常常要遇到如()dxdy y x f D ??,的二重积分, 也常常发现许多时候被积函数的原函数很难求出, 或者原函数根本就不是初等函数, 对于这样的重积分, 可以设计一种蒙特卡罗的方法计算。 定理 1 )1( 设式()y x f ,区域 D 上的有界函数, 用均匀随机数计算()??D dxdy y x f ,的方法: (l) 取一个包含D 的矩形区域Ω,a ≦x ≦b, c ≦y ≦d , 其面积A =(b 一a) (d 一c) ; ()j i y x ,,i=1,…,n 在Ω上的均匀分布随机数列,不妨设()j i y x ,, j=1,…k 为落在D 中的k 个随机数, 则n 充分大时, 有

数学建模典型例题

一、人体重变化 某人得食量就是10467焦/天,最基本新陈代谢要自动消耗其中得5038焦/天。每天得体育运动消耗热量大约就是69焦/(千克?天)乘以她得体重(千克)。假设以脂肪形式贮存得热量100% 地有效,而1千克脂肪含热量41868焦。试研究此人体重随时间变化得规律. 一、问题分析 人体重W(t)随时间t变化就是由于消耗量与吸收量得差值所引起得,假设人体重随时间得变化就是连续变化过程,因此可以通过研究在△t时间内体重W得变化值列出微分方程。 二、模型假设 1、以脂肪形式贮存得热量100%有效 2、当补充能量多于消耗能量时,多余能量以脂肪形式贮存 3、假设体重得变化就是一个连续函数 4、初始体重为W0 三、模型建立 假设在△t时间内: 体重得变化量为W(t+△t)—W(t); 身体一天内得热量得剩余为(10467—5038-69*W(t)) 将其乘以△t即为一小段时间内剩下得热量; 转换成微分方程为:d[W(t+△t)-W(t)]=(10467—5038-69*W(t))dt; 四、模型求解 d(5429—69W)/(5429-69W)=-69dt/41686 W(0)=W0 解得: 5429-69W=(5429-69W0)e(-69t/41686) 即:

W(t)=5429/69—(5429-69W0)/5429e(-69t/41686) 当t趋于无穷时,w=81; 二、投资策略模型 一、问题重述 一家公司要投资一个车队并尝试着决定保留汽车时间得最佳方案。5年后,它将卖出所有剩余汽车并让一家外围公司提供运输。在策划下一个5年计划时,这家公司评估在年i得开始买进汽车并在年j得开始卖出汽车,将有净成本aij(购入价减去折旧加上运营与维修成本).以千元计数aij得由下面得表给出: 请寻找什么时间买进与卖出汽车得最便宜得策略。 二、问题分析 本问题就是寻找成本最低得投资策略,可视为寻找最短路径问题.因此可利用图论法分析,用Dijkstra算法找出最短路径,即为最低成本得投资策略。 三、条件假设 除购入价折旧以及运营与维护成本外无其她费用; 四、模型建立 二 5 11 7 三6 4

2003全国大学生数学建模竞赛B题优秀论文(出题人亲作)

2003高教社杯全国大学生数学建模竞赛 B 题参考答案 注意:以下答案是命题人给出的,仅供参考。各评阅组应根据对题目的理解及学生的解答,自主地进行评阅。 问题分析: 本题目与典型的运输问题明显有以下不同: 1. 运输矿石与岩石两种物资; 2. 产量大于销量的不平衡运输; 3. 在品位约束下矿石要搭配运输; 4. 产地、销地均有单位时间的流量限制; 5. 运输车辆每次都是满载,154吨/车次; 6. 铲位数多于铲车数意味着最优的选择不多于7个产地; 7. 最后求出各条路线上的派出车辆数及安排。 运输问题对应着线性规划,以上第1、2、3、4条可通过变量设计、调整约束条件实现; 第5条使其变为整数线性规划;第6条用线性模型实现的一种办法,是从1207 10 C 个整数规划中取最优的即得到最佳物流;对第7条由最佳物流算出各条路线上的最少派出车辆数(整数),再给出具体安排即完成全部计算。 对于这个实际问题,要求快速算法,计算含50个变量的整数规划比较困难。另外,这是一个二层规划,第二层是组合优化,如果求最优解计算量较大,现成的各种算法都无能为力。于是问题变为找一个寻求近优解的近似解法,例如可用启发式方法求解。 调用120次整数规划可用三种方法避免:(1)先不考虑电铲数量约束运行整数线性规划,再对解中运量最少的几个铲位进行筛选;(2)在整数线性规划的铲车约束中调用sign 函数来实现;(3)增加10个0-1变量来标志各个铲位是否有产量。 这是一个多目标规划,第一问的目标有两层:第一层是总运量(吨公里)最小,第二层是出动卡车数最少,从而实现运输成本最小。第二问的目标有:岩石产量最大;矿石产量最大;运量最小,三者的重要性应按此序。 合理的假设主要有: 1. 卡车在一个班次中不应发生等待或熄火后再启动的情况; 2. 在铲位或卸点处因两条路线(及以上)造成的冲突时,只要平均时间能完成任务即 可,不进行排时讨论; 3. 空载与重载的速度都是28km/h ,耗油相差却很大,因此总运量只考虑重载运量; 4. 卡车可提前退出系统。 符号:x ij ~ 从i 号铲位到j 号卸点的石料运量 单位 吨; c ij ~ 从i 号铲位到j 号卸点的距离 公里; T ij ~ 从i 号铲位到j 号卸点路线上运行一个周期平均所需时间 分; A ij ~ 从i 号铲位到j 号卸点最多能同时运行的卡车数 辆; B ij ~ 从i 号铲位到j 号卸点路线上一辆车最多可以运行的次数 次; p i ~ i 号铲位的矿石铁含量。 % p =(30,28,29,32,31,33,32,31,33,31) q j ~ j 号卸点任务需求 吨 q =(1.2,1.3,1.3,1.9,1.3)*10000

数学建模例题及解析

。 例1差分方程—-资金的时间价值 问题1:抵押贷款买房——从一则广告谈起 每家人家都希望有一套(甚至一栋)属于自己的住房,但又没有足够的资金一次买下,这就产生了贷款买房的问题。先看一下下面的广告(这是1991年1月1日某大城市晚报上登的一则广告),任何人看了这则广告都会产生许多疑问,且不谈广告中没有谈住房面积、设施等等,人们关心的是:如果一次付款买这栋房要多少钱呢?银行贷款的利息是多少呢?为什么每个月要付1200元呢?是怎样算出来的?因为人们都知道,若知道了房价(一次付款买房的价格),如果自己只能支付一部分款,那就要把其余的款项通过借贷方式来解决,只要知道利息,就应该可以算出五年还清每月要付多少钱才能按时还清贷款了,从而也就可以对是否要去买该广告中所说的房子作出决策了。现在我们来进行数学建模。由于本问题比较简单无需太多的抽象和简化。 a。明确变量、参数,显然下面的量是要考虑的: 需要借多少钱,用记; 月利率(贷款通常按复利计)用R记; 每月还多少钱用x记; 借期记为N个月。 b.建立变量之间的明确的数学关系。若用记第k个月时尚欠的款数,则一个月后(加上利息后)欠款 , 不过我们又还了x元所以总的欠款为 k=0,1,2,3, 而一开始的借款为.所以我们的数学模型可表述如下 (1) c. (1)的求解。由

(2)这就是之间的显式关系。 d.针对广告中的情形我们来看(1)和(2)中哪些量是已知的。N=5年=60个月,已知;每月还款x=1200元,已知A.即一次性付款购买价减去70000元后剩下的要另外去借的款,并没有告诉你,此外银行贷款利率R也没告诉你,这造成了我们决策的困难.然而,由(2)可知60个月后还清,即,从而得 (3) A和x之间的关系式,如果我们已经知道银(3)表示N=60,x=1200给定时0 A。例如,若R=0.01,则由(3)可算得行的贷款利息R,就可以算出0 53946元。如果该房地产公司说一次性付款的房价大于70000十53946=123946元的话,你就应自己去银行借款。事实上,利用图形计算器或Mathematica这样的 数学软件可把(3)的图形画出来,从而可以进行估算决策。以下我们进一步考虑下面两个问题。 注1问题1标题中“抵押贷款”的意思无非是银行伯你借了钱不还,因而要你用某种不动产(包括房子的产权)作抵押,即万一你还不出钱了,就没收你的不动产。 例题1某高校一对年青夫妇为买房要用银行贷款60000元,月利率0.01,贷款期25年=300月,这对夫妇希望知道每月要还多少钱,25年就可还清。假设这对

数学建模知识竞赛题库

数学建模知识竞赛题库 1.请问计算机中的二进制源于我国古代的哪部经典? D A.《墨经》 B.《诗经》 C.《周书》 D.《周易》 2.世界上面积最大的高原是?D A.青藏高原 B.帕米尔高原 C.黄土高原 D.巴西高原 3.我国海洋国土面积约有多少万平方公里? B A.200 B.300 C.280 D.340 4.世界上面值最高的邮票是匈牙利五百亿彭哥,它的图案是B A.猫 B.飞鸽 C.海鸥 D.鹰 5. 龙虾是我们的一种美食、你知道它体内的血是什么颜色的吗?B A.红色 B.蓝色 C.灰色 D.绿色 6.MATLAB使用三维向量[R G B]来表示一种颜色,则黑色为(D ) A. [1 0 1] B. [1 1 1] C. [0 0 1] D. [0 0 0] 7.秦始皇之后,有几个朝代对长城进行了修葺? A A.7个 B.8个 C.9个 D.10个 8.中国历史上历时最长的朝代是?A A.周朝 B.汉朝 C.唐朝 D.宋朝 9我国第一个获得世界冠军的是谁?C A 吴传玉 B 郑凤荣 C 荣国团 D 陈镜开 10.我国最早在奥运会上获得金牌的是哪位运动员?B A.李宁 B.许海峰 C.高凤莲 D.吴佳怩

11.围棋共有多少个棋子?B A.360 B.361 C.362 D.365 12下列属于物理模型的是:A A水箱中的舰艇 B分子结构图 C火箭模型 D电路图 13名言:生命在于运动是谁说的?C A.车尔尼夫斯基 B.普希金 C.伏尔泰 D.契诃夫 14.饱食后不宜剧烈运动是因为B A.会得阑尾炎 B.有障消化 C.导致神经衰弱 D.呕吐 15、MATLAB软件中,把二维矩阵按一维方式寻址时的寻址访问是按(B)优先的。 A.行 B.列 C.对角线 D.左上角16红军长征中,哪次战役最突出反应毛泽东的军事思想和指挥才?A A.四渡赤水B.抢渡大渡河C.飞夺泸定桥D.直罗镇战役 17色盲患者最普遍的不易分辨的颜色是什么?A A.红绿 B.蓝绿 C.红蓝 D.绿蓝 18下列哪种症状是没有理由遗传的? A.精神分裂症 B.近视 C.糖尿病 D.口吃 19下面哪个变量是正无穷大变量?(A )

全国数学建模大赛题目

2010高教社杯全国大学生数学建模竞赛题目 A题储油罐的变位识别与罐容表标定 通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,采用流量计和油位计来测量进/出油量与罐内油位高度等数据,通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量的变化情况。 许多储油罐在使用一段时间后,由于地基变形等原因,使罐体的位置会发生纵向倾斜和横向偏转等变化(以下称为变位),从而导致罐容表发生改变。按照有关规定,需要定期对罐容表进行重新标定。图1是一种典型的储油罐尺寸及形状示意图,其主体为圆柱体,两端为球冠体。图2是其罐体纵向倾斜变位的示意图,图3是罐体横向偏转变位的截面示意图。 请你们用数学建模方法研究解决储油罐的变位识别与罐容表标定的问题。 (1)为了掌握罐体变位后对罐容表的影响,利用如图4的小椭圆型储油罐(两端平头的椭圆柱体),分别对罐体无变位和倾斜角为α=4.10的纵向变位两种情况做了实验,实验数据如附件1所示。请建立数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm的罐容表标定值。 (2)对于图1所示的实际储油罐,试建立罐体变位后标定罐容表的数学模型,即罐内储油量与油位高度及变位参数(纵向倾斜角度α和横向偏转角度β)之间的一般关系。请利用罐体变位后在进/出油过程中的实际检测数据(附件2),根据你们所建立的数学模型确定变位参数,并给出罐体变位后油位高度间隔为10cm的罐容表标定值。进一步利用附件2中的实际检测数据来分析检验你们模型的正确性与方法的可靠性。 附件1:小椭圆储油罐的实验数据 附件2:实际储油罐的检测数据 地平线油位探针

数学建模优化问题经典练习

1、高压容器公司制造小、中、大三种尺寸的金属容器,所用资源为金属板、劳 万元,可使用的金属板有500t,劳动力有300人/月,机器有100台/月,此外,不管每种容器制造的数量是多少,都要支付一笔固定的费用:小号为100万元,中号为150万元,大号为200万元,现在要制定一个生产计划,使获得的利润为最大, max=4*x1+5*x2+6*x3-100*y1-150*y2-200*y3; 2*x1+4*x2+8*x3<=500; 2*x1+3*x2+4*x3<=300; 1*x1+2*x2+3*x3<=100; @bin(y1); @bin(y2); @bin(y3); y1+y2+y3>=1; Global optimal solution found. Objective value: 300.0000 Extended solver steps: 0 Total solver iterations: 0 Variable Value Reduced Cost X1 100.0000 0.000000 X2 0.000000 3.000000 X3 0.000000 6.000000 Y1 1.000000 100.0000 Y2 0.000000 150.0000 Y3 0.000000 200.0000 Row Slack or Surplus Dual Price 1 300.0000 1.000000 2 300.0000 0.000000 3 100.0000 0.000000 4 0.000000 4.000000 5 0.000000 0.000000

数学建模题目及其答案(疾病诊断)

数学建模疾病的诊断 现要你给出疾病诊断的一种方法。 胃癌患者容易被误诊为萎缩性胃炎患者或非胃病者。从胃癌患者中抽 取5人(编号为1-5),从萎缩性胃炎患者中抽取5人(编号为6-10),以及非胃病者 中抽取5人(编号为11-15),每人化验4项生化指标:血清铜蓝蛋白( X)、 1 蓝色反应( X)、尿吲哚乙酸(3X)、中性硫化物(4X)、测得数据如表1 2 所示: 表1. 从人体中化验出的生化指标 根据数据,试给出鉴别胃病的方法。

论文题目:胃病的诊断 摘要 在临床医学中,诊断试验是一种诊断疾病的重要方法。好的诊断试验方法将对临床诊断的正确性和疾病的治疗效果起重要影响。因此,对于不同疾病不断发现新的诊断试验方法是医学进步的重要标志。传统的诊断试验方法有生化检测、DNA检测和影像检测等方法。而本文则通过利用多元统计分析中的判别分析及SPSS软件的辅助较好地解决了临床医学中胃病鉴别的问题。在临床医学上,既提高了临床诊断的正确性,又对疾病的治疗效果起了重要效果,同时也减轻了病人的负担。 判别分析是在分类确定的条件下,根据某一研究对象的各种特征值判别其类型归属问题的一种多变量统计分析方法。 其基本原理是按照一定的判别准则,建立一个或多个判别函数,用研究对象的大量资料确定判别函数中的待定系数,并计算判别指标。 首先,由判别分析定义可知,只有当多个总体的特征具有显著的差异时,进行判别分析才有意义,且总体间差异越大,才会使误判率越小。因此在进行判别分析时,有必要对总体多元变量的均值进行是否不等的显著性检验。 其次,利用判别分析中的费歇判别和贝叶斯判别进行判别函数的建立。 最后,利用所建立的判别函数进行回判并测得其误判率,以及对其修正。 本文利用SPSS软件实现了对总体间给类变量的均值是否不等的显著性检验并根据样本建立了相应的费歇判别函数和贝叶斯判别函数,最后进行了回判并测得了误判率,从而获得了在临床诊断中模型,给临床上的诊断试验提供了新方法和新建议。 关键词:判别分析;判别函数;Fisher判别;Bayes判别 一问题的提出 在传统的胃病诊断中,胃癌患者容易被误诊为萎缩性胃炎患者或非胃病患者,为了提高医学上诊断的准确性,也为了减少因误诊而造成的病人死亡率,必须要找出一种最准确最有效的诊断方法。为诊断疾病,必须从人体中提取4项生化指标进行化验,即血

数学模型经典例题

一、把椅子往地面一放,通常只有三只脚着地,放不稳,然而只需稍挪动几次,就可以使四只脚同时着地放稳了,就四脚连线成长方形的情形建模并加以说明。(15分) 解:一、模型假设: 1. 椅子四只脚一样长,椅脚与地面的接触可以看作一个点,四脚连线呈长方形。 2. 地面高度是连续变化的,沿任何方向都不会出现间断,地面可以看成一张光滑曲面。 3. 地面是相对平坦的,使椅子在任何位置至少有三只脚同时着地。 (3分) 二、建立模型: 以初始位置的中位线为坐标轴建立直角坐标系,用θ表示椅子绕中心O 旋转的角度,椅子的位置可以用θ确定: ()f θ记为A 、B 两点与地面的距离之和 ()g θ记为C 、D 两点与地面的距离之和 由假设3可得,()f θ、()g θ中至少有一个为0。 由假设2知()f θ、()g θ是θ的连续函数。 (3分) 问题归结为: 已知()f θ和()g θ是θ的连续函数,对任意θ, ()()0f g θθ=,且设()()00,00g f =>。证明存在0θ, 使得()()000f g θθ== (3分) 三、模型求解: 令()()()h f θθθ=-g 若()()000f g =,结论成立 若()()000f g 、不同时为,不妨设()()00,00g f =>,椅子旋转()180π或后,AB 与CD 互换,即()()0,0g f ππ>=,则()(0)0,0h h π><。 (3分) 由f g 和的连续性知h 也是连续函数。根据连续函数的基本性质,必存在 ()000θθπ<<使000()0,()()h f g θθθ==即。 最后,因为00()()0f g θθ=,所以00()()0f g θθ==。 (3分) 图 5

减速路障间距设计 ;经典数学建模题目分析

组号:702 田宇;孙蕙雯;樊博 校园减速路障间距设计 摘要:减速路障的间距设计合理对于减速带作用的发挥具有重要的意义。本文利用查阅的相关资料,采用Lingo回归分析和最小二乘法,对汽车的加速时加速度和加速时的加速度进行了参数估计。根据题意进行数学建模,建立了汽车在一条具有多个减速带的公路上加速后减速匀速通过减速带的一维直线运动的模型。通过牛顿运动学公式进行了模型求解,最后得出了相邻减速带间的最佳距离。 关键词:减速带间距;一维直线运动模型;最小二乘法

一、问题的提出 1.1 问题的背景 校园、居民小区的道路中间,常常设置用于限制汽车速度的减速带(路障)。减速带使路面稍微拱起以达到车辆减速目的,设置在需要车辆减速慢行的路段和容易引发交通事故的路段,是用于减速机动车、非机动车行使速度的新型交通专用安全设置。减速带很大程度减少了各交通要道口的事故发生,是交通安全的新型专用设施。汽车在行驶中既安全又起到缓冲减速目的,提高交通道口的安全。随着校园车辆的逐渐增多,在校园中合理的设置减速带又成为一个很重要的实际问题。 减速带的使用效果在很大程度上取决于车辆的运行速度和减速带的放置间距间距。因此,为确保限速安全和驾驶人的舒适,合理设定道路的限速具有很重要的意义。 1.2 问题重述 校园道路需要设置路障以限制车速,如果车速不超过40km/h,应该相距多远? 二、问题的分析 2.1 模型预备知识 道路减速带的减速原理:道路减速带的减速是通过影响驾驶员的驾驶心理实现的。当车辆以较高速度进入道路减速带时,剧烈的振动会从轮胎经车身及座椅传递给驾驶员,使驾驶员产生强烈的生理刺激(包括振动刺激和视觉刺激)和心理刺激,从而促使驾驶员主动减速,使车辆以较低的速度通过道路减速带。 2.2问题的分析 1、汽车通过减速带时速度近于零,过减速带后加速。 2、车速达到40km/h时因为前面有下一个减速带而减速,至减速带处车速又近于零。 3、如此循环达到减速目的。

经典的数学建模例子1

经典的数学建模例子 一、摘要 SARS SARS就是传染性非典型肺炎,全称严重急性呼吸综合症(Severe Acute Respiratory Syndromes),简称SARS,是一种因感染SARS相关冠状病毒而导致的以发热、干咳、胸闷为主要症状,严重者出现快速进展的呼吸系统衰竭,是一种新的呼吸道传染病,传染性极强、病情进展快速。 当一种传染病流行的时候,会给人们的工作学习带来很大的不变,能有效地进行隔离、预防,会大大减少人员的得病率,当一种传染病开始流行时,在一定的条件下其趋势就像真菌的繁殖曲线,如果能通过计算预测但大概推算出其发病率高峰时期,及时的隔离预防。那会给社会人力带来很大的方便,当年SARS的爆发给我们带来和大的不便和损失,因此本论文就以SARS为例,来研究传染病的传播规律、为预测和控制传染病蔓延创造条件和帮助。 1 二、正文 1、模型的背景问题描述 SARS(Severe Acute Respiratory Syndrome,严重急性呼吸道综合症, 俗称:非典型肺炎)是21世纪第一个在世界范围内传播的传染病。SARS的爆发和蔓延给我国的经济发展和人民生活带来了很大影响,我们从中得到了许多重要的经验和教训,认识到定量地研究传染病的传播规律、为预测和控制传染病蔓延创造条件的重要性。 要求:(1)建立传染病传播的指数模型,评价其合理性和实用性。 (2)建立一个适合的模型,说明为什么优于问题1中的模型;特别要说明怎样才能 3 建立一个真正能够预测以及能为预防和控制提供可靠、足够的信息的模型,这样做的困难在哪里?对于卫生部门所采取的措施做出评论,如:提前或延后5天采取严格的隔离措施,对疫情传播所造成的影响做出估计。表中提供的数据供参考。 (3)说明建立传染病数学模型的重要性。 2、模型假设 (一)答;

数学建模例题及解析

。 例1差分方程——资金的时间价值 问题1:抵押贷款买房——从一则广告谈起 每家人家都希望有一套(甚至一栋)属于自己的住房,但又没有足够的资金一次买下,这就产生了贷款买房的问题。先看一下下面的广告(这是1991年1月1日某大城市晚报上登的一则广告),任何人看了这则广告都会产生许多疑问,且不谈广告中没有谈住房面积、设施等等,人们关心的是:如果一次付款买这栋房要多少钱呢?银行贷款的利息是多少呢?为什么每个月要付1200元呢?是怎样算出来的?因为人们都知道,若知道了房价(一次付款买房的价格),如果自己只能支付一部分款,那就要把其余的款项通过借贷方式来解决,只要知道利息,就应该可以算出五年还清每月要付多少钱才能按时还清贷款了,从而也就可以对是否要去买该广告中所说的房子作出决策了。现在我们来进行数学建模。由于本问题比较简单无需太多的抽象和简化。 a.明确变量、参数,显然下面的量是要考虑的: 需要借多少钱,用记; 月利率(贷款通常按复利计)用R记; 每月还多少钱用x记; 借期记为N个月。 b.建立变量之间的明确的数学关系。若用记第k个月时尚欠的款数,则一个月后(加上利息后)欠款,不过我们又还了x元所以总的欠款为 k=0,1,2,3, 而一开始的借款为。所以我们的数学模型可表述如下 (1) c. (1)的求解。由

(2) 这就是之间的显式关系。 d.针对广告中的情形我们来看(1)和(2)中哪些量是已知的。N=5年=60个月,已知;每月还款x=1200元,已知A。即一次性付款购买价减去70000元后剩下的要另外去借的款,并没有告诉你,此外银行贷款利率R也没告诉你,这造成了我们决策的困难。然而,由(2)可知60个月后还清,即,从而得 (3) A和x之间的关系式,如果我们已经知道银行(3)表示N=60,x=1200给定时0 A。例如,若R =0.01,则由(3)可算得的贷款利息R,就可以算出0 53946元。如果该房地产公司说一次性付款的房价大于70000十53946=123946元的话,你就应自己去银行借款。事实上,利用图形计算器或Mathematica这样的 数学软件可把(3)的图形画出来,从而可以进行估算决策。以下我们进一步考虑下面两个问题。 注1问题1标题中“抵押贷款”的意思无非是银行伯你借了钱不还,因而要你用某种不动产(包括房子的产权)作抵押,即万一你还不出钱了,就没收你的不动产。例题1某高校一对年青夫妇为买房要用银行贷款60000元,月利率0.01,贷款期25年=300月,这对夫妇希望知道每月要还多少钱,25年就可还清。假设这对夫妇每月可有节余900元,是否可以去买房呢?

历年全国数学建模试题及其解法归纳

历年全国数学建模试题及解法归纳 赛题解法 93A非线性交调的频率设计拟合、规划 93B足球队排名图论、层次分析、整数规划94A逢山开路图论、插值、动态规划 94B锁具装箱问题图论、组合数学 95A飞行管理问题非线性规划、线性规划 95B天车与冶炼炉的作业调度动态规划、排队论、图论96A最优捕鱼策略微分方程、优化 96B节水洗衣机非线性规划 97A零件的参数设计非线性规划 97B截断切割的最优排列随机模拟、图论 98A一类投资组合问题多目标优化、非线性规划98B灾情巡视的最佳路线图论、组合优化 99A自动化车床管理随机优化、计算机模拟 99B钻井布局0-1规划、图论 00A DNA序列分类模式识别、Fisher判别、人工 神经网络 00B钢管订购和运输组合优化、运输问题 01A血管三维重建曲线拟合、曲面重建

赛题解法 01B 公交车调度问题多目标规划 02A车灯线光源的优化非线性规划 02B彩票问题单目标决策 03A SARS的传播微分方程、差分方程 03B 露天矿生产的车辆安排整数规划、运输问题 04A奥运会临时超市网点设计统计分析、数据处理、优化04B电力市场的输电阻塞管理数据拟合、优化 05A长江水质的评价和预测预测评价、数据处理 05B DVD在线租赁随机规划、整数规划 06A出版社书号问题整数规划、数据处理、优化06B Hiv病毒问题线性规划、回归分析 07A 人口问题微分方程、数据处理、优化07B 公交车问题多目标规划、动态规划、图 论、0-1规划 08A 照相机问题非线性方程组、优化 08B 大学学费问题数据收集和处理、统计分 析、回归分析 2009年A题制动器试验台的控制方法分析工程控制 2009年B题眼科病床的合理安排排队论,优化,仿真,综 合评价 2009年C题卫星监控几何问题,搜集数据

一些基本的数学建模示例

1.3 一些基本的数学建模示例 1.3.1椅子的摆放问题 1.3.2 双层玻璃的功效问题 1.3.3 搭积木问题 1.3.4 四足动物的身长和体重关系问题 1.3.5 圆杆堆垛问题 1.3.6 公平的席位分配问题 1.3.7 中国人重姓名问题 1.3.8实物交换问题 椅子能在不平的地面上放稳吗?下面用数学建模的方法解决此问题。 模型准备 仔细分析本问题的实质,发现本问题与椅子腿、地面及椅子腿和地面是否接触有关。如果把椅子腿看成平面上的点,并引入椅子腿和地面距离的函数关系就可以将问题1与平面几何和连续函数联系起来,从而可以用几何知识和连续函数知识来进行数学建模。为讨论问题方便,我们对问题进行简化,先做出如下3个假设: 模型假设 1、椅子的四条腿一样长,椅子脚与地面接触可以视为一个点,四脚连线是正方形(对椅子的假设) 2、地面高度是连续变化的,沿任何方向都不出现间断。(对地面的假设) 3、椅子放在地面上至少有三只脚同时着地,(对椅子和地面之间关系的假设) 根据上述假设做本问题的模型构成: 模型构成Array用变量表示椅子的位置,引入平面图形及坐 标系如图1-1。图中A、B、C、D为椅子的四只脚, 坐标系原点选为椅子中心,坐标轴选为椅子的四 只脚的对角线。于是由假设2,椅子的移动位置 可以由正方形沿坐标原点旋转的角度θ来唯一表 示,而且椅子脚与地面的垂直距离就成为θ的函 数。注意到正方形的中心对称性,可以用椅子的 相对两个脚与地面的距离之和来表示这对应两 个脚与地面的距离关系,这样,用一个函数就可 以描述椅子两个脚是否着地情况。本题引入两个 函数即可以描述椅子四图 1-1

数学建模1例题解析

1.贷款问题 小王夫妇计划贷款20万元购买一套房子,他们打算用20年的时间还清贷款。目前,银行的利率是0.6%/月。他们采用等额还款的方式(即每月的还款额相同)偿还贷款。 (1)在上述条件下,小王夫妇每月的还款额是多少?共计付了多少利息? (2)在贷款满5年后,他们认为他们有经济能力还完余下的款额,打算提前还贷,那么他们在第6年初,应一次付给银行多少钱,才能将余下全部的贷款还清? (3)如果在第6年初,银行的贷款利率由0.6%/月调到0.8%/月,他们仍然采用等额还款的方式,在余下的15年内将贷款还清,那么在第6年后,每月的还款额应是多少? (4)某借贷公司的广告称,对于贷款期在20年以上的客户,他们帮你提前三年还清贷款。但条件是: (i)每半个月付款一次,但付款额不增加,即一次付款额是原付给银行还款额的1/2; (ii)因为增加必要的档案、文书等管理工作,因此要预付给借贷公司贷款总额10%的佣金。 试分析,小王夫妇是否要请这家借贷公司帮助还款。 解答: (1)贷款总月数为N=20*12=240,第240个月的欠款额为0,即。 利用式子 (元),即每个月还 款1574.70元,共还款(元),共计付利息177928.00元。 (2)贷款5年(即5*12=60个月)后的欠款额为, 利用公式:, 所以,(元) (3)元,即第六年初,贷款利率,所以余下的15年,每个月还款额为:(元) (4)按照借贷公司的条件(i)每半个月付款一次,但付款额不增加,即一次付款额是原付给银行还款额的,付款的时间缩短,但是前17年的付款总额不

变。帮忙提前三年还清需要资金数: 。 对于条件(ii)佣金数: 分析:因为预付佣金20000元,按照银行存款利率/月,17年的存款本息为 即在第17年需要给付借贷公司的钱少于给付银行的钱。所以建议请这家借贷公司帮助还款。 2.冷却定律与破案 按照Newton冷却定律,温度为T的物体在温度为的环境中冷却的速度与温差成正比。用此定律建立相应的微分方程模型。 凌晨某地发生一起凶杀案,警方于晨6时到达案发现场,测得尸温26℃,室温10℃,晨8时又测得尸温18℃。若近似认为室温不变,估计凶杀案的发生时间。 解答: 根据Newton冷却定律,可知温度T的微分方程为: 此方程为一阶线性微分方程,其通解为: 根据题目已知:,时,;,; 带入通解中得: 解得:,。可知 人体正常体温为,令,得,可估计凶杀发生时间为。3.锻炼想象力、洞察力和判断力的问题(只简单回答出理由即可)

经典的数学建模例子

一、摘要 SARS SARS就是传染性非典型肺炎,全称严重急性呼吸综合症(Severe Acute Respiratory Syndromes),简称SARS,是一种因感染SARS相关冠状病毒而导致的以发热、干咳、胸闷为主要症状,严重者出现快速进展的呼吸系统衰竭,是一种新的呼吸道传染病,传染性极强、病情进展快速。 当一种传染病流行的时候,会给人们的工作学习带来很大的不变,能有效地进行隔离、预防,会大大减少人员的得病率,当一种传染病开始流行时,在一定的条件下其趋势就像真菌的繁殖曲线,如果能通过计算预测但大概推算出其发病率高峰时期,及时的隔离预防。那会给社会人力带来很大的方便,当年SARS的爆发给我们带来和大的不便和损失,因此本论文就以SARS为例,来研究传染病的传播规律、为预测和控制传染病蔓延创造条件和帮助。 1

二、正文 1、模型的背景问题描述 SARS(Severe Acute Respiratory Syndrome,严重急性呼吸道综合症, 俗称:非典型肺炎)是21世纪第一个在世界范围内传播的传染病。SARS的爆发和蔓延给我国的经济发展和人民生活带来了很大影响,我们从中得到了许多重要的经验和教训,认识到定量地研究传染病的传播规律、为预测和控制传染病蔓延创造条件的重要性。

要求:(1)建立传染病传播的指数模型,评价其合理性和实用性。 (2)建立一个适合的模型,说明为什么优于问题1中的模型;特别要说明怎样才能 3

建立一个真正能够预测以及能为预防和控制提供可靠、足够的信息的模型,这样做的困难在哪里?对于卫生部门所采取的措施做出评论,如:提前或延后5天采取严格的隔离措施,对疫情传播所造成的影响做出估计。表中提供的数据供参考。 (3)说明建立传染病数学模型的重要性。 2、模型假设 (一)答; 从上列图表可知道在4月20到5月7日期已确诊的发病人总数呈指数增长趋势5月20到6月1日增长缓慢,6月1日到6月12日总数几乎不变。其形式与生物学中真菌繁殖总数相似。 从表格和准备中,作如下假设。 1、不考虑SARS在人体中的潜伏期,也就是说当人一旦传染就表现出来立即就具有传染 性。 2、当健康者满足一地条件时,健康者才被传染。 3、整个发病期间为自然状态也就是无人为外界干扰,政府等其它形式进行隔离预防。 4、忽略特殊情况,如个别人体质弱或强的。 假定初始时刻得病例数为M0。平均每位病人每天可传染N个人,可传染他人的时间为T 天。则在T天内,病例数目的增长随着时间t(单位天)的关系是; M(t)=M0(1+N)t 如果不考虑对传染期的限制则病例数将按照指数规律增长考虑,当传染期T的作用后,变化将显著偏离指数规律,增长速度会放慢。把达到T天的病例从可以引发直接传染的基数中去掉,为了方便,从开始到高峰期间,均采用同样的N值,(从拟合这一阶段的数据库定出),到达高峰之后在10天的范围内逐步调整N值,到比较小,然后保持不变,拟合后在控制阶段的全部数据。 评价及其合理性和实用性; 本模型主要有三个参数M0、N、T,且都具有实际意义。T可理解为平均每个病人在被发现前后可以造成直接传染的期限,在此期限后失去传染能力,可能原因是被隔离、病愈或死去等等。N表示某种社会条件下平均每位病人每天传播的人数(但并非文中所述的一个病人的感染他人的平均概率)。整个模型抓住了SARS传播过程中两个主要特征:传染期T和传染率N,反映了SARS的传播过程。使人很容易理解该模型。 模型灵活 通过调整M0、N、T值,就可以描述不同地区,不同环境下SARS的初期传播规律预测准确 通过模型对表格的调查结果进行了分析,得到的预测值与实际统计数据较接近。可大致预测出疫情的爆发点和发展趋势。 预期模型的缺点: 1、对于如何确定对于三个参数M0、N、T,未给出一般的原则或算法,只能通过对 于已发病地区的数据进行拟合得出。按照作者的表述,N值是以病发高峰为界取各段的平均值作为传染概率,虽然简化了运算,但是在现实情况下,不同地区的N值是不同的。在实际应用中,如果没有一定量的数据,是无法得出N值的。在我们对该模型

简单的数学建模题目

〈〈数学模型及数学软件》上机报告 专业:班级:姓名:学号: 地点及机位编号:日期时间:5月26日 一、上机训练题目或内容 报童每天清晨从报社购进报纸零售,晚上将没有卖完的报纸退回。设每份报纸的购进价为,零售价为,退回价为,应该自然地假设。这就是说,报童售出一份报纸赚,退回一份报纸赔。报童如果每天购进的报纸太少,不够卖的,会少赚钱;如果购进太多,卖不完,将要赔钱。请你为报童筹划一下,他应该如何确定每天购进报纸的数量,以获得最大的收入。 二、数学模型或求解分析或算法描述 解:设: 报纸具有时效性每份报纸进价b元,卖出价a元,卖不完退回份报纸c元。设每日的订购量为n,如 果订购的多了,报纸剩下会造成浪费,甚至陪钱。订的少了,报纸不够卖,又会少赚钱。为了获得最大效益,现在要 确定最优订购量n。 n的意义:n是每天购进报纸的数量,确定n一方面可以使报童长期以内拥有一个稳定的收入,另一方 面也可以让报社确定每日的印刷量,避免纸张浪费。所以,笔者认为n的意义是双重的。 本题就是让我们根据a、b、c及r来确定每日进购数n。 基本假设 1、假设报童现在要与报社签定一个长期的订购合同,所以要确定每日的订购量n。 2、假设报纸每日的需求量是r,但报童是一个初次涉足卖报行业的菜鸟,毫无经验,无法掌握需求量r的 分布函数,只知道每份报纸的进价b、售价a及退回价c。 3、假设每日的定购量是n。 4、报童的目的是尽可能的多赚钱。 建立模型 应该根据需求量r确定需求量n,而需求量r是随机的,所以这是一个风险决策问题。而报童却因为 自身的局限,无法掌握每日需求量的分布规律,已确定优化模型的目标函数。但是要得到n值,我们可以 从卖报纸的结果入手,结合r与n的量化关系,从实际出发最终确定n值。 由常识可以知道卖报纸只有赚钱、不赚钱不赔钱、赔钱会有三种结果。现在用简单的数学式表示这三种结果。 1、赚钱。赚钱又可分为两种情况: ①r>n,则最终收益为(a-b)n (1) r0 整理得:r/n>(b-c)/(a-c) (2) 2、由(2)式容易得出不赚钱不赔钱 r/n=(b-c)/(a-c) (3) 3、赔钱 r/n<(b-c)/(a-c) (4)

高教社杯全国大学生数学建模竞赛题目A题

2017年高教社杯全国大学生数学建模竞赛题目 (请先阅读“全国大学生数学建模竞赛论文格式规范”) A题CT系统参数标定及成像 CT(Computed Tomography)可以在不破坏样品的情况下,利用样品对射线能量的吸收特性对生物组织和工程材料的样品进行断层成像,由此获取样品内部的结构信息。一种典型的二维CT系统如图1所示,平行入射的X射线垂直于探测器平面,每个探测器单元看成一个接收点,且等距排列。X射线的发射器和探测器相对位置固定不变,整个发射-接收系统绕某固定的旋转中心逆时针旋转180次。对每一个X射线方向,在具有512个等距单元的探测器上测量经位置固定不动的二维待检测介质吸收衰减后的射线能量,并经过增益等处理后得到180组接收信息。 CT系统安装时往往存在误差,从而影响成像质量,因此需要对安装好的CT系统进行参数标定,即借助于已知结构的样品(称为模板)标定CT系统的参数,并据此对未知结构的样品进行成像。 请建立相应的数学模型和算法,解决以下问题: (1) 在正方形托盘上放置两个均匀固体介质组成的标定模板,模板的几何信息如图2所示,相应的数据文件见附件1,其中每一点的数值反映了该点的吸收强度,这里称为“吸收率”。对应于该模板的接收信息见附件2。请根据这一模板及其接收信息,确定CT系统旋转中心在正方形托盘中的位置、探测器单元之间的距离以及该CT系统使用的X射线的180个方向。 (2) 附件3是利用上述CT系统得到的某未知介质的接收信息。利用(1)中得到的标定参数,确定该未知介质在正方形托盘中的位置、几何形状和吸收率等信息。另外,请具体给出图3所给的10个位置处的吸收率,相应的数据文件见附件4。 (3) 附件5是利用上述CT系统得到的另一个未知介质的接收信息。利用(1)中得到的标定参数,给出该未知介质的相关信息。另外,请具体给出图3所给的10个位置处的吸收率。 (4) 分析(1)中参数标定的精度和稳定性。在此基础上自行设计新模板、建立对应的标定模型,以改进标定精度和稳定性,并说明理由。 (1)-(4)中的所有数值结果均保留4位小数。同时提供(2)和(3)重建得到的介质吸收率的数据文件(大小为256×256,格式同附件1,文件名分别为和)

相关文档
最新文档