中考数学(二次函数提高练习题)压轴题训练及答案

中考数学(二次函数提高练习题)压轴题训练及答案
中考数学(二次函数提高练习题)压轴题训练及答案

一、二次函数 真题与模拟题分类汇编(难题易错题)

1.如图:在平面直角坐标系中,直线l :y=13x ﹣4

3

与x 轴交于点A ,经过点A 的抛物线

y=ax 2﹣3x+c 的对称轴是x=3

2

. (1)求抛物线的解析式;

(2)平移直线l 经过原点O ,得到直线m ,点P 是直线m 上任意一点,PB ⊥x 轴于点B ,PC ⊥y 轴于点C ,若点E 在线段OB 上,点F 在线段OC 的延长线上,连接PE ,PF ,且PE=3PF .求证:PE ⊥PF ;

(3)若(2)中的点P 坐标为(6,2),点E 是x 轴上的点,点F 是y 轴上的点,当PE ⊥PF 时,抛物线上是否存在点Q ,使四边形PEQF 是矩形?如果存在,请求出点Q 的坐标,如果不存在,请说明理由.

【答案】(1)抛物线的解析式为y=x 2﹣3x ﹣4;(2)证明见解析;(3)点Q 的坐标为(﹣2,6)或(2,﹣6). 【解析】 【分析】

(1)先求得点A 的坐标,然后依据抛物线过点A ,对称轴是x=3

2

列出关于a 、c 的方程组求解即可;

(2)设P (3a ,a ),则PC=3a ,PB=a ,然后再证明∠FPC=∠EPB ,最后通过等量代换进行证明即可;

(3)设E (a ,0),然后用含a 的式子表示BE 的长,从而可得到CF 的长,于是可得到点F 的坐标,然后依据中点坐标公式可得到

22x x x x Q P F E ++=,22

y y y y

Q P F E ++=,从而可求得点Q 的坐标(用含a 的式子表示),最后,将点Q 的坐标代入抛物线的解析式求得a 的值即可. 【详解】

(1)当y=0时,14

0 33

x

-=,解得x=4,即A(4,0),抛物线过点A,对称轴是x=

3

2

,得

16120

33

22

a c

a

-+=

?

?

-

?

-=

??

解得

1

4

a

c

=

?

?

=-

?

,抛物线的解析式为y=x2﹣3x﹣4;

(2)∵平移直线l经过原点O,得到直线m,

∴直线m的解析式为y=1

3

x.

∵点P是直线1上任意一点,

∴设P(3a,a),则PC=3a,PB=a.

又∵PE=3PF,

∴PC PB

PF PE

=.

∴∠FPC=∠EPB.

∵∠CPE+∠EPB=90°,

∴∠FPC+∠CPE=90°,

∴FP⊥PE.

(3)如图所示,点E在点B的左侧时,设E(a,0),则BE=6﹣a.

∵CF=3BE=18﹣3a,

∴OF=20﹣3a.

∴F(0,20﹣3a).

∵PEQF为矩形,

22

x x x x

Q P F E

++

=,

22

y y y y

Q P F E

++

=,

∴Q x+6=0+a,Q y+2=20﹣3a+0,

∴Q x=a﹣6,Q y=18﹣3a.

将点Q的坐标代入抛物线的解析式得:18﹣3a=(a﹣6)2﹣3(a﹣6)﹣4,解得:a=4或a=8(舍去).

∴Q(﹣2,6).

如下图所示:当点E 在点B 的右侧时,设E (a ,0),则BE=a ﹣6.

∵CF=3BE=3a ﹣18, ∴OF=3a ﹣20. ∴F (0,20﹣3a ). ∵PEQF 为矩形,

22x x x x Q P F E ++=,22y y y y

Q P F E ++=, ∴Q x +6=0+a ,Q y +2=20﹣3a+0, ∴Q x =a ﹣6,Q y =18﹣3a .

将点Q 的坐标代入抛物线的解析式得:18﹣3a=(a ﹣6)2﹣3(a ﹣6)﹣4,解得:a=8或a=4(舍去). ∴Q (2,﹣6).

综上所述,点Q 的坐标为(﹣2,6)或(2,﹣6). 【点睛】

本题主要考查的是二次函数的综合应用,解答本题主要应用了矩形的性质、待定系数法求二次函数的解析式、中点坐标公式,用含a 的式子表示点Q 的坐标是解题的关键.

2.如图1,抛物线y=ax 2+bx+c (a≠0)与x 轴交于点A (﹣1,0)、B (4,0)两点,与y 轴交于点C ,且OC=3OA .点P 是抛物线上的一个动点,过点P 作PE ⊥x 轴于点E ,交直线BC 于点D ,连接PC . (1)求抛物线的解析式;

(2)如图2,当动点P 只在第一象限的抛物线上运动时,求过点P 作PF ⊥BC 于点F ,试问△PDF 的周长是否有最大值?如果有,请求出其最大值,如果没有,请说明理由. (3)当点P 在抛物线上运动时,将△CPD 沿直线CP 翻折,点D 的对应点为点Q ,试问,四边形CDPQ 是否成为菱形?如果能,请求出此时点P 的坐标,如果不能,请说明理由.

【答案】(1) y=﹣234

x +

94x+3;(2) 有最大值,365

;(3) 存在这样的Q 点,使得四边形CDPQ 是菱形,此时点P 的坐标为(73,256)或(173

,﹣25

3).

【解析】

试题分析: (1)利用待定系数法求二次函数的解析式; (2)设P (m ,﹣34

m 2+9

4m+3),△PFD 的周长为L ,再利用待定系数法求直线BC 的解

析式为:y=﹣34

x+3,表示PD=﹣2

334m m +,证明△PFD ∽△BOC ,根据周长比等于对应

边的比得:

=PED PD BOC BC 的周长的周长,代入得:L=﹣95(m ﹣2)2+365

,求L 的最大值即可;

(3)如图3,当点Q 落在y 轴上时,四边形CDPQ 是菱形,根据翻折的性质知:CD=CQ ,PQ=PD ,∠PCQ=∠PCD ,又知Q 落在y 轴上时,则CQ ∥PD ,由四边相等:CD=DP=PQ=QC ,得四边形CDPQ 是菱形,表示P (n ,﹣

23n 4 +9

4

n+3),则D (n ,﹣34n+3),G (0,﹣3

4n+3),利用勾股定理表示PD 和CD 的长并列式可得结论. 试题解析:

(1)由OC=3OA ,有C (0,3),

将A (﹣1,0),B (4,0),C (0,3)代入y=ax 2+bx+c 中,得: 016403a b c a b c c -+=??

++=??=?

, 解得:34943a b c ?=-??

?

=??=???

故抛物线的解析式为:y=﹣234

x +9

4

x+3; (2)如图2,设P (m ,﹣

34

m 2+9

4m+3),△PFD 的周长为L ,

∵直线BC 经过B (4,0),C (0,3), 设直线BC 的解析式为:y=kx+b , 则403k b b +=??=?

解得:343

k b ?=-?

??=?

∴直线BC 的解析式为:y=﹣3

4

x+3, 则D (m ,﹣334m +),PD=﹣2

334

m m +,

∵PE ⊥x 轴,PE ∥OC , ∴∠BDE=∠BCO , ∵∠BDE=∠PDF , ∴∠PDF=∠BCO , ∵∠PFD=∠BOC=90°, ∴△PFD ∽△BOC ,

=PED PD

BOC BC

的周长的周长,

由(1)得:OC=3,OB=4,BC=5, 故△BOC 的周长=12,

∴23

34125

m m

L -+=,

即L=﹣95(m ﹣2)2+36

5

∴当m=2时,L 最大=

36

5

; (3)存在这样的Q 点,使得四边形CDPQ 是菱形,如图3, 当点Q 落在y 轴上时,四边形CDPQ 是菱形,

理由是:由轴对称的性质知:CD=CQ ,PQ=PD ,∠PCQ=∠PCD , 当点Q 落在y 轴上时,CQ ∥PD , ∴∠PCQ=∠CPD , ∴∠PCD=∠CPD , ∴CD=PD , ∴CD=DP=PQ=QC , ∴四边形CDPQ 是菱形, 过D 作DG ⊥y 轴于点G , 设P (n ,﹣

234n +94n+3),则D (n ,﹣34

n+3),G (0,﹣3

34n +), 在Rt △CGD 中,CD 2=CG 2+GD 2=[(﹣

34

n+3)﹣3]2+n 2=2

2516n ,

而|PD|=|(﹣239344n n ++ 3n ++)﹣(﹣34

n+3)|=|﹣23

4n +3n|,

∵PD=CD , ∴﹣235

344

n n n +=①, ﹣

235

344

n n n +=-②, 解方程①得:n=7

3

或0(不符合条件,舍去), 解方程②得:n=17

3

或0(不符合条件,舍去), 当n=

73时,P (73,256

),如图3,

当n=

173时,P (173

,﹣25

3),如图4,

综上所述,存在这样的Q 点,使得四边形CDPQ 是菱形,此时点P 的坐标为(73,25

6

)或(

173

,﹣25

3).

点睛: 本题是二次函数的综合题,考查了利用待定系数法求函数的解析式、菱形的性质和判定、三角形相似的性质和判定,将周长的最值问题转化为二次函数的最值问题,此类问题要熟练掌握利用解析式表示线段的长,并利用相似比或勾股定理列方程解决问题.

3.在平面直角坐标系xOy 中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),

如图,直线y=1

4

x与抛物线交于A、B两点,直线l为y=﹣1.

(1)求抛物线的解析式;

(2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由.

(3)知F(x0,y0)为平面内一定点,M(m,n)为抛物线上一动点,且点M到直线l的距离与点M到点F的距离总是相等,求定点F的坐标.

【答案】(1)抛物线的解析式为y=1

4

x2﹣x+1.(2)点P的坐标为(

28

13

,﹣1).(3)

定点F的坐标为(2,1).

【解析】

分析:(1)由抛物线的顶点坐标为(2,0),可设抛物线的解析式为y=a(x-2)2,由抛物线过点(4,1),利用待定系数法即可求出抛物线的解析式;

(2)联立直线AB与抛物线解析式成方程组,通过解方程组可求出点A、B的坐标,作点B关于直线l的对称点B′,连接AB′交直线l于点P,此时PA+PB取得最小值,根据点B的坐标可得出点B′的坐标,根据点A、B′的坐标利用待定系数法可求出直线AB′的解析式,再利用一次函数图象上点的坐标特征即可求出点P的坐标;

(3)由点M到直线l的距离与点M到点F的距离总是相等结合二次函数图象上点的坐标

特征,即可得出(1-1

2

-

1

2

y0)m2+(2-2x0+2y0)m+x02+y02-2y0-3=0,由m的任意性可得出关

于x0、y0的方程组,解之即可求出顶点F的坐标.详解:(1)∵抛物线的顶点坐标为(2,0),

设抛物线的解析式为y=a(x-2)2.

∵该抛物线经过点(4,1),

∴1=4a,解得:a=1

4

∴抛物线的解析式为y=1

4(x-2)2=

1

4

x2-x+1.

(2)联立直线AB与抛物线解析式成方程组,得:

214

1

14y x y x x ?????-+??

==,解得:11114x y ?????==,2241x y ??

?==, ∴点A 的坐标为(1,

1

4

),点B 的坐标为(4,1). 作点B 关于直线l 的对称点B′,连接AB′交直线l 于点P ,此时PA+PB 取得最小值(如图1所示).

∵点B (4,1),直线l 为y=-1, ∴点B′的坐标为(4,-3).

设直线AB′的解析式为y=kx+b (k≠0), 将A (1,

1

4

)、B′(4,-3)代入y=kx+b ,得: 1443k b k b ?+??

?+-?==,解得:1312

43k b ?

-??????

==, ∴直线AB′的解析式为y=-1312x+43

, 当y=-1时,有-1312x+4

3

=-1, 解得:x=

28

13

, ∴点P 的坐标为(

28

13

,-1). (3)∵点M 到直线l 的距离与点M 到点F 的距离总是相等, ∴(m-x 0)2+(n-y 0)2=(n+1)2, ∴m 2-2x 0m+x 02-2y 0n+y 02=2n+1. ∵M (m ,n )为抛物线上一动点,

∴n=

14

m 2

-m+1

, ∴m 2-2x 0m+x 02-2y 0(14m 2-m+1)+y 02=2(1

4

m 2-m+1)+1, 整理得:(1-

12-1

2

y 0)m 2+(2-2x 0+2y 0)m+x 02+y 02-2y 0-3=0. ∵m 为任意值,

∴00022000

11

10222220230

y x y x y y ?--??

-+??+--??

===, ∴00

2

1x y ??

?==, ∴定点F 的坐标为(2,1).

点睛:本题考查了待定系数法求二次(一次)函数解析式、二次(一次)函数图象上点的坐标特征、轴对称中的最短路径问题以及解方程组,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用两点之间线段最短找出点P 的位置;(3)根据点M 到直线l 的距离与点M 到点F 的距离总是相等结合二次函数图象上点的坐标特征,找出关于x 0、y 0的方程组.

4.如图1,已知抛物线y=﹣x 2+bx+c 与x 轴交于A (﹣1,0),B (3,0)两点,与y 轴交于C 点,点P 是抛物线上在第一象限内的一个动点,且点P 的横坐标为t . (1)求抛物线的表达式;

(2)设抛物线的对称轴为l ,l 与x 轴的交点为D .在直线l 上是否存在点M ,使得四边形CDPM 是平行四边形?若存在,求出点M 的坐标;若不存在,请说明理由. (3)如图2,连接BC ,PB ,PC ,设△PBC 的面积为S . ①求S 关于t 的函数表达式;

②求P 点到直线BC 的距离的最大值,并求出此时点P 的坐标.

【答案】(1)y=﹣x2+2x+3.(2)当t=2时,点M的坐标为(1,6);当t≠2时,不存

在,理由见解析;(3)y=﹣x+3;P点到直线BC,此时点P的坐

标为(3

2

15

4

).

【解析】

【分析】(1)由点A、B的坐标,利用待定系数法即可求出抛物线的表达式;

(2)连接PC,交抛物线对称轴l于点E,由点A、B的坐标可得出对称轴l为直线x=1,分t=2和t≠2两种情况考虑:当t=2时,由抛物线的对称性可得出此时存在点M,使得四边形CDPM是平行四边形,再根据点C的坐标利用平行四边形的性质可求出点P、M的坐标;当t≠2时,不存在,利用平行四边形对角线互相平分结合CE≠PE可得出此时不存在符合题意的点M;

(3)①过点P作PF∥y轴,交BC于点F,由点B、C的坐标利用待定系数法可求出直线BC的解析式,根据点P的坐标可得出点F的坐标,进而可得出PF的长度,再由三角形的面积公式即可求出S关于t的函数表达式;

②利用二次函数的性质找出S的最大值,利用勾股定理可求出线段BC的长度,利用面积法可求出P点到直线BC的距离的最大值,再找出此时点P的坐标即可得出结论.

【详解】(1)将A(﹣1,0)、B(3,0)代入y=﹣x2+bx+c,

10

930

b c

b c

-++=

?

?

-++=

?

,解得:

2

3

b

c

=

?

?

=

?

∴抛物线的表达式为y=﹣x2+2x+3;

(2)在图1中,连接PC,交抛物线对称轴l于点E,

∵抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,

∴抛物线的对称轴为直线x=1,

当t=2时,点C、P关于直线l对称,此时存在点M,使得四边形CDPM是平行四边形,∵抛物线的表达式为y=﹣x2+2x+3,

∴点C的坐标为(0,3),点P的坐标为(2,3),

∴点M的坐标为(1,6);

当t≠2时,不存在,理由如下:

若四边形CDPM是平行四边形,则CE=PE,

∵点C的横坐标为0,点E的横坐标为0,

∴点P的横坐标t=1×2﹣0=2,

又∵t≠2,

∴不存在;

(3)①在图2中,过点P作PF∥y轴,交BC于点F.

设直线BC的解析式为y=mx+n(m≠0),

将B(3,0)、C(0,3)代入y=mx+n,

30

3

m n

n

+=

?

?

=

?

,解得:

1

3

m

n

=-

?

?

=

?

∴直线BC的解析式为y=﹣x+3,

∵点P的坐标为(t,﹣t2+2t+3),∴点F的坐标为(t,﹣t+3),

∴PF=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t,

∴S=1

2

PF?OB=﹣

3

2

t2+

9

2

t=

3

2

(t﹣

3

2

)2+

27

8

②∵﹣

3

2

<0,

∴当t=3

2

时,S取最大值,最大值为

27

8

∵点B的坐标为(3,0),点C 的坐标为(0,3),

∴线段BC=2232

OB OC

+=,

∴P 点到直线BC 的距离的最大值为

27

292

8

8

32

?

=,

此时点P的坐标为(

3

2

15

4

).

【点睛】本题考查了待定系数法求一次(二次)函数解析式、平行四边形的判定与性质、三角形的面积、一次(二次)函数图象上点的坐标特征以及二次函数的性质,解题的关键是:(1)由点的坐标,利用待定系数法求出抛物线表达式;(2)分t=2和t≠2两种情况考虑;(3)①利用三角形的面积公式找出S关于t的函数表达式;②利用二次函数的性质结合面积法求出P点到直线BC的距离的最大值.

5.如图1,抛物线经过平行四边形的顶点、、,抛物线与轴的另一交点为.经过点的直线将平行四边形分割为面积相等的两部分,与抛物线交于另一点.点为直线上方抛物线上一动点,设点的横坐标为.

(1)求抛物线的解析式;

(2)当何值时,的面积最大?并求最大值的立方根;

(3)是否存在点使为直角三角形?若存在,求出的值;若不存在,说明理

由.

【答案】(1)抛物线解析式为y=﹣x2+2x+3;(2)当t=时,△PEF的面积最大,其最大值为×,

最大值的立方根为=;(3)存在满足条件的点P,t的值为1或

【解析】

试题分析:(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;

(2)由A、C坐标可求得平行四边形的中心的坐标,由抛物线的对称性可求得E点坐标,从而可求得直线EF的解析式,作PH⊥x轴,交直线l于点M,作FN⊥PH,则可用t表示出PM的长,从而可表示出△PEF的面积,再利用二次函数的性质可求得其最大值,再求其最大值的立方根即可;

(3)由题意可知有∠PAE=90°或∠APE=90°两种情况,当∠PAE=90°时,作PG⊥y轴,利用等腰直角三角形的性质可得到关于t的方程,可求得t的值;当∠APE=90°时,作PK⊥x 轴,AQ⊥PK,则可证得△PKE∽△AQP,利用相似三角形的性质可得到关于t的方程,可求得t的值.

试题解析:(1)由题意可得,解得,

∴抛物线解析式为y=﹣x2+2x+3;

(2)∵A(0,3),D(2,3),

∴BC=AD=2,

∵B(﹣1,0),

∴C(1,0),

∴线段AC的中点为(,),

∵直线l将平行四边形ABCD分割为面积相等两部分,

∴直线l过平行四边形的对称中心,

∵A、D关于对称轴对称,

∴抛物线对称轴为x=1,

∴E(3,0),

设直线l的解析式为y=kx+m,把E点和对称中心坐标代入可得,解得,

∴直线l的解析式为y=﹣x+,

联立直线l和抛物线解析式可得,解得或,

∴F(﹣,),

如图1,作PH⊥x轴,交l于点M,作FN⊥PH,

∵P点横坐标为t,

∴P(t,﹣t2+2t+3),M(t,﹣t+),

∴PM=﹣t2+2t+3﹣(﹣t+)=﹣t2+t+,

∴S△PEF=S△PFM+S△PEM=PM?FN+PM?EH=PM?(FN+EH)=(﹣t2+t+)(3+)=﹣(t﹣)+×,

∴当t=时,△PEF的面积最大,其最大值为×,

∴最大值的立方根为=;

(3)由图可知∠PEA≠90°,

∴只能有∠PAE=90°或∠APE=90°,

①当∠PAE=90°时,如图2,作PG⊥y轴,

∵OA=OE ,

∴∠OAE=∠OEA=45°, ∴∠PAG=∠APG=45°, ∴PG=AG ,

∴t=﹣t 2+2t+3﹣3,即﹣t 2+t=0,解得t=1或t=0(舍去), ②当∠APE=90°时,如图3,作PK ⊥x 轴,AQ ⊥PK ,

则PK=﹣t 2+2t+3,AQ=t ,KE=3﹣t ,PQ=﹣t 2+2t+3﹣3=﹣t 2+2t , ∵∠APQ+∠KPE=∠APQ+∠PAQ=90°, ∴∠PAQ=∠KPE ,且∠PKE=∠PQA , ∴△PKE ∽△AQP , ∴

,即

,即t 2﹣t ﹣1=0,解得t=

或t=

<﹣

(舍去),

综上可知存在满足条件的点P ,t 的值为1或.

考点:二次函数综合题

6.如图1,在平面直角坐标系中,直线1y x =-与抛物线2y x bx c =-++交于A B 、两点,其中(),0A m ,()4,B n .该抛物线与y 轴交于点C ,与x 轴交于另一点D .

(1)求m

n 、的值及该抛物线的解析式; (2)如图2.若点P 为线段AD 上的一动点(不与A D 、重合).分别以AP 、DP 为斜边,在直线

AD 的同侧作等腰直角△APM 和等腰直角△DPN ,连接MN ,试确定△MPN 面积最大时P 点的坐标.

(3)如图3.连接BD 、CD ,在线段CD 上是否存在点Q ,使得以A D Q 、、为顶点的三角形

与△ABD 相似,若存在,请直接写出点Q 的坐标;若不存在,请说明理由.

【答案】(1)2

65y x x =-+-;(2)当2m =,即2AP =时,MPN S ?最大,此时

3OP =,所以()3,0P ;(3)存在点Q 坐标为2-3(,)或78-33

?? ???

,. 【解析】

分析:(1)把A 与B 坐标代入一次函数解析式求出m 与n 的值,确定出A 与B 坐标,代入二次函数解析式求出b 与c 的值即可;

(2)由等腰直角△APM 和等腰直角△DPN ,得到∠MPN 为直角,由两直角边乘积的一半表示出三角形MPN 面积,利用二次函数性质确定出三角形面积最大时P 的坐标即可; (3)存在,分两种情况,根据相似得比例,求出AQ 的长,利用两点间的距离公式求出Q 坐标即可.

详解:(1)把A (m ,0),B (4,n )代入y =x ﹣1得:m =1,n =3,∴A (1,0),B (4,3).

∵y =﹣x 2+bx +c 经过点A 与点B ,∴101643b c b c -++=??-++=?,解得:65b c =??=-?

,则二次函数解

析式为y =﹣x 2+6x ﹣5;

(2)如图2,△APM 与△DPN 都为等腰直角三角形,∴∠APM =∠DPN =45°,∴∠MPN =90°,∴△MPN 为直角三角形,令﹣x 2+6x ﹣5=0,得到x =1或x =5,∴D (5,0),即DP =5﹣1=4,设AP =m ,则有DP =4﹣m ,∴PM =22m ,PN =2

2

(4﹣m ),∴S △MPN =

12PM ?PN =122m 2

(4﹣m )=﹣14m 2﹣m =﹣14(m ﹣2)2+1,∴当m =2,即AP =2时,S △MPN 最大,此时OP =3,即P (3,0);

(3)存在,易得直线CD 解析式为y =x ﹣5,设Q (x ,x ﹣5),由题意得:∠BAD =∠ADC =45°,分两种情况讨论:

①当△ABD ∽△DAQ 时,

AB DA =BD AQ ,即324=4AQ ,解得:AQ =82

3

,由两点间的距离公式得:(x ﹣1)2+(x ﹣5)2=1283,解得:x =73,此时Q (73,﹣8

3

); ②当△ABD ∽△DQA 时,BD

AQ

=1,即AQ =10,∴(x ﹣1)2+(x ﹣5)2=10,解得:x =2,此时Q (2,﹣3).

综上,点Q 的坐标为(2,﹣3)或(

73,﹣8

3

). 点睛:本题属于二次函数综合题,涉及的知识有:待定系数法求函数解析式,二次函数的图象与性质,相似三角形的判定与性质,两点间的距离公式,熟练掌握各自的性质是解答本题的关键.

7.如图,抛物线2y ax bx c =++的图象过点(

10)(30)(03)A B C ﹣,、,、,.

(1)求抛物线的解析式;

(2)在抛物线的对称轴上是否存在一点P ,使得△PAC 的周长最小,若存在,请求出点P 的坐标及△PAC 的周长;若不存在,请说明理由;

(3)在(2)的条件下,在x 轴上方的抛物线上是否存在点M (不与C 点重合),使得

PAM PAC S S ??=?若存在,请求出点M 的坐标;若不存在,请说明理由.

【答案】(1)2

23y x x =++-;(2)存在,点(1

2)P ,1032;(3)存在,点M 坐标为(1

4), 【解析】 【分析】

(1)由于条件给出抛物线与x 轴的交点1030A B (﹣,)、(,)

,故可设交点式13y a x x +=()(﹣),把点C 代入即求得a 的值,减小计算量.

(2)由于点A 、B 关于对称轴:直线1x =对称,故有PA PB =,则

PAC C AC PC PA AC PC PB ?++++==,所以当C 、P 、B 在同一直线上时,

PAC C AC CB ?+=最小.利用点A 、B 、C 的坐标求AC 、CB 的长,求直线BC 解析式,把

1x =代入即求得点P 纵坐标.

(3)由PAM PAC S S ??=可得,当两三角形以PA 为底时,高相等,即点C 和点M 到直线PA 距离相等.又因为M 在x 轴上方,故有//CM PA .由点A 、P 坐标求直线AP 解析式,即得到直线CM 解析式.把直线CM 解析式与抛物线解析式联立方程组即求得点M 坐标. 【详解】

解:(1)∵抛物线与x 轴交于点1030A B (﹣,)、(,)

∴可设交点式13y a x x +=(

)(﹣) 把点03C (,)代入得:33a ﹣=

1a ∴=﹣

21323y x x x x ∴+++=-()(﹣)=﹣

∴抛物线解析式为223y x x ++=-

(2)在抛物线的对称轴上存在一点P ,使得PAC ?的周长最小. 如图1,连接PB 、BC

∵点P 在抛物线对称轴直线1x =上,点A 、B 关于对称轴对称

PA PB ∴=

PAC C AC PC PA AC PC PB ?∴++++==

∵当C 、P 、B 在同一直线上时,PC PB CB +=最小

103003A B C (﹣,)、(,)、(,)

AC BC ∴===

PAC C AC CB ?∴+=

设直线BC 解析式为3y kx +=

把点B 代入得:330k +=,解得:1k =﹣ ∴直线BC :3y x +=﹣

132P y ∴+=﹣=

点12P (,)使PAC ?. (3)存在满足条件的点M ,使得PAM PAC S S ??=. ∵PAM PAC S S ??=S △PAM =S △PAC ∴当以PA 为底时,两三角形等高 ∴点C 和点M 到直线PA 距离相等 ∵M 在x 轴上方

//CM PA ∴

1012A P (﹣,),(,)

,设直线AP 解析式为y px d += 02p d p d -+=?∴?+=? 解得:p 1

d 1=??=?

∴直线1AP y x +:=

∴直线CM 解析式为:3y x +=

2

3

23y x y x x =+??=-++?

解得:1103x y =??

=?(即点C ),22

1

4x y =??=? ∴点M 坐标为14(,)

【点睛】

考查了待定系数法求二次函数解析式、一次函数解析式,轴对称的最短路径问题,勾股定理,平行线间距离处处相等,一元二次方程的解法.其中第(3)题条件给出点M 在x 轴上方,无需分类讨论,解法较常规而简单.

8.(12分)如图所示是隧道的截面由抛物线和长方形构成,长方形的长是12 m ,宽是4 m .按照图中所示的直角坐标系,抛物线可以用y=16

-x 2

+bx+c 表示,且抛物线上的点C 到OB 的水平距离为3 m ,到地面OA 的距离为

172

m. (1)求抛物线的函数关系式,并计算出拱顶D 到地面OA 的距离;

(2)一辆货运汽车载一长方体集装箱后高为6m ,宽为4m ,如果隧道内设双向车道,那么这辆货车能否安全通过?

(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m ,那么两排灯的水平距离最小是多少米?

【答案】(1)抛物线的函数关系式为y=16

-

x 2

+2x+4,拱顶D 到地面OA 的距离为10 m ;

(2)两排灯的水平距离最小是

. 【解析】 【详解】

试题分析:根据点B 和点C 在函数图象上,利用待定系数法求出b 和c 的值,从而得出函数解析式,根据解析式求出顶点坐标,得出最大值;根据题意得出车最外侧与地面OA 的交点为(2,0)(或(10,0)),然后求出当x=2或x=10时y 的值,与6进行比较大小,比6大就可以通过,比6小就不能通过;将y=8代入函数,得出x 的值,然后进行做差得出最小值.

试题解析:(1)由题知点17(0,4),3,

2B C ??

???

在抛物线上 所以4

171

9326c b c =??

?=-?++??

,解得24b c =??=?,所以21246y x x =-++ 所以,当62b

x a

=-=时,10t y =≦ 答:2

1246

y x x =-

++,拱顶D 到地面OA 的距离为10米 (2)由题知车最外侧与地面OA 的交点为(2,0)(或(10,0)) 当x=2或x=10时,22

63

y =>,所以可以通过 (3)令8y =,即2

12486

x x -

++=,可得212240x x -+=

,解得1266x x =+=-

12x x -=

答:两排灯的水平距离最小是考点:二次函数的实际应用.

9.如图甲,直线y=﹣x+3与x 轴、y 轴分别交于点B 、点C ,经过B 、C 两点的抛物线y=x 2+bx+c 与x 轴的另一个交点为A ,顶点为P . (1)求该抛物线的解析式;

(2)在该抛物线的对称轴上是否存在点M ,使以C ,P ,M 为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M 的坐标;若不存在,请说明理由; (3)当0<x <3时,在抛物线上求一点E ,使△CBE 的面积有最大值(图乙、丙供画图探

究).

【答案】(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E点坐标为(,)时,△CBE的面积最大.

【解析】

试题分析:(1)由直线解析式可求得B、C坐标,利用待定系数法可求得抛物线解析式;(2)由抛物线解析式可求得P点坐标及对称轴,可设出M点坐标,表示出MC、MP和PC 的长,分MC=MP、MC=PC和MP=PC三种情况,可分别得到关于M点坐标的方程,可求得M点的坐标;

(3)过E作EF⊥x轴,交直线BC于点F,交x轴于点D,可设出E点坐标,表示出F点的坐标,表示出EF的长,进一步可表示出△CBE的面积,利用二次函数的性质可求得其取得最大值时E点的坐标.

试题解析:(1)∵直线y=﹣x+3与x轴、y轴分别交于点B、点C,

∴B(3,0),C(0,3),

把B、C坐标代入抛物线解析式可得,解得,

∴抛物线解析式为y=x2﹣4x+3;

(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,

∴抛物线对称轴为x=2,P(2,﹣1),

设M(2,t),且C(0,3),

∴MC=,MP=|t+1|,PC=,

∵△CPM为等腰三角形,

∴有MC=MP、MC=PC和MP=PC三种情况,

①当MC=MP时,则有=|t+1|,解得t=,此时M(2,);

②当MC=PC时,则有=2,解得t=﹣1(与P点重合,舍去)或t=7,此时M(2,7);

③当MP=PC时,则有|t+1|=2,解得t=﹣1+2或t=﹣1﹣2,此时M(2,﹣

1+2)或(2,﹣1﹣2);

2020年中考复习之提高篇——二次函数压轴题(包含答案)

2020年中考复习之提高篇——二次函数压轴题(含答案) 1.(2019抚顺)(12分)如图1,在平面直角坐标系中,一次函数334 y x =-+的图象与x 轴交于点A ,与y 轴交于B 点,抛物线2y x bx c =-++经过A ,B 两点,在第一象限的抛物线上取一点D ,过点D 作DC x ⊥轴于点C ,交直线AB 于点E . (1)求抛物线的函数表达式 (2)是否存在点D ,使得BDE ?和ACE ?相似?若存在,请求出点D 的坐标,若不存在,请说明理由; (3)如图2,F 是第一象限内抛物线上的动点 (不与点D 重合),点G 是线段AB 上的动点.连接DF ,FG ,当四边形DEGF 是平行四边形且周长最大时,请直接写出点G 的坐标.

2(2019沈阳)如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与x轴交于A,B 两点(点A在点B的左侧),与y轴交于点C,抛物线经过点D(﹣2,﹣3)和点E(3,2),点P是第一象限抛物线上的一个动点. (1)求直线DE和抛物线的表达式; (2)在y轴上取点F(0,1),连接PF,PB,当四边形OBPF面积是7时,求点P的坐标; (3)在(2)的条件下,当点P在抛物线对称轴的右侧时,直线DE上存在两点M,N(点M在点N的上方),且MN=2√2,动点Q从点P出发,沿P→M→N→A的路线运动到终点A,当点Q的运动路程最短时,请直接写出此时点N的坐标.

3(2018年辽宁本溪).如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(3,0),C(0,3)三点,其顶点为D,连接BD,点是线段BD上一个动点(不与B、D重合),过点P作y轴的垂线,垂足为E,连接BE. (1)求抛物线的解析式,并写出顶点D的坐标; (2)如果P点的坐标为(x,y),△PBE的面积为s,求S与x的函数关系式,写出自变量x的取值范围,并求出S的最大值; (3)在(2)的条件下,当S取得最大值时,过点P作x的垂线,垂足为F,连接EF,把△PEF 沿直线EF折叠,点P的对应点为P′,请直接写出P′点坐标,并判断点P′是否在该抛物线上.

2020上海中考数学压轴题专项训练

1文档来源为:从网络收集整理.word 版本可编辑. 24.(本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分5分) 如图,已知抛物线2y x bx c =++经过()01A -, 、()43B -,两点. (1)求抛物线的解析式; (2 求tan ABO ∠的值; (3)过点B 作BC ⊥x 轴,垂足为点C ,点M 是抛物线上一点,直线MN 平行于y 轴交直线AB 于点N ,如果M 、N 、B 、C 为顶点的四边形是平行四边形,求点N 的坐标. 24.解:(1)将A (0,-1)、B (4,-3)分别代入2 y x bx c =++ 得 1, 1643 c b c =-?? ++=-?, ………………………………………………………………(1分) 解,得9 ,12b c =-=- …………………………………………………………………(1分) 所以抛物线的解析式为29 12y x x =- - …………………………………………… (1分) (2)过点B 作BC ⊥x 轴,垂足为C ,过点A 作AH ⊥OB ,垂足为点H ………(1分) 在Rt AOH ?中,OA =1,4 sin sin ,5AOH OBC ∠=∠= ……………………………(1分) ∴4sin 5AH OA AOH =∠= ,∴322,55 OH BH OB OH ==-=, ………………(1分) 在Rt ABH ?中,4222 tan 5511AH ABO BH ∠==÷= ………………………………(1分) (3)直线AB 的解析式为1 12y x =--, ……………………………………………(1分) 设点M 的坐标为29(,1)2m m m --,点N 坐标为1 (,1)2 m m -- 那么MN =2291 (1)(1)422 m m m m m - ----=-; …………………………(1分) ∵M 、N 、B 、C 为顶点的四边形是平行四边形,∴MN =BC =3 解方程2 4m m -=3 得2m =± ……………………………………………(1分) 解方程2 43m m -+=得1m =或3m =; ………………………………………(1分) 所以符合题意的点N 有4 个35 (22),(22),(1,),(3,)22 --+--- ……………………………………………………………………………………(1分) 25.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5

二次函数压轴题专题及答案

2016年中考数学冲刺复习资料:二次函数压轴题 面积类 1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式. (2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M 的横坐标为m,请用m的代数式表示MN的长. (3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m 的值;若不存在,说明理由. 考点:二次函数综合题. 专题:压轴题;数形结合. 分析: (1)已知了抛物线上的三个点的坐标,直接利用待定系数法即可求出抛物线的解析式.(2)先利用待定系数法求出直线BC的解析式,已知点M的横坐标,代入直线BC、抛物线的解析式中,可得到M、N点的坐标,N、M纵坐标的差的绝对值即为MN的长. (3)设MN交x轴于D,那么△BNC的面积可表示为:S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB,MN的表达式在(2)中已求得,OB的长易知,由此列出关于S△BNC、m的函数关系式,根据函数的性质即可判断出△BNC是否具有最大值. 解答: 解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则: a(0+1)(0﹣3)=3,a=﹣1; ∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3. (2)设直线BC的解析式为:y=kx+b,则有:

, 解得; 故直线BC的解析式:y=﹣x+3. 已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3); ∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3). (3)如图; ∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB, ∴S△BNC=(﹣m2+3m)?3=﹣(m﹣)2+(0<m<3); ∴当m=时,△BNC的面积最大,最大值为. 2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C 点,已知B点坐标为(4,0). (1)求抛物线的解析式; (2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标; (3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M 点的坐标. 考点:二次函数综合题.. 专题:压轴题;转化思想. 分析:(1)该函数解析式只有一个待定系数,只需将B点坐标代入解析式中即可.

中考压轴题中的二次函数 带答案和详细解析 30道解答题

中考压轴题的中的二次函数(1) 一.解答题(共30小题) 1.(2016?贵阳模拟)在平面直角坐标系中,已知抛物线经过A(﹣4,0),B(0,﹣4),C (2,0)三点. (1)求抛物线的解析式; (2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S. 求S关于m的函数关系式,并求出S的最大值. (3)若点P是抛物线上的动点,点Q是直线y=﹣x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标. 2.(2015?枣庄)如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(,)和B(4, m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(1)求抛物线的解析式; (2)是否存在这样的P点,使线段PC的长有最大值?若存在,求出这个最大值;若不存在,请说明理由; (3)求△PAC为直角三角形时点P的坐标.

3.(2015?酒泉)如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M. (1)求抛物线的解析式和对称轴; (2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由; (3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由. 4.(2015?通辽)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的顶点为B(2,1),且过点A(0,2),直线y=x与抛物线交于点D,E(点E在对称轴的右侧),抛物线的对称轴交直线y=x于点C,交x轴于点G,EF⊥x轴,垂足为F,点P在抛物线上,且位于对称轴的右侧,PQ⊥x轴,垂足为点Q,△PCQ为等边三角形 (1)求该抛物线的解析式; (2)求点P的坐标; (3)求证:CE=EF; (4)连接PE,在x轴上点Q的右侧是否存在一点M,使△CQM与△CPE全等?若存在,试求出点M的坐标;若不存在,请说明理由.[注:3+2=(+1)2]. 5.(2015?龙岩)如图,已知点D在双曲线y=(x>0)的图象上,以D为圆心的⊙D与 y轴相切于点C(0,4),与x轴交于A,B两点,抛物线y=ax2+bx+c经过A,B,C三点,点P是抛物线上的动点,且线段AP与BC所在直线有交点Q. (1)写出点D的坐标并求出抛物线的解析式; (2)证明∠ACO=∠OBC; (3)探究是否存在点P,使点Q为线段AP的四等分点?若存在,求出点P的坐标;若不存在,请说明理由.

精选中考二次函数压轴题[附答案解析]

精选中考二次函数压轴题(含答案) 1.如图,二次函数c x y +-=2 21的图象经过点D ??? ? ?-29,3,与x 轴交于A 、B 两点. ⑴求c 的值; ⑵如图①,设点C 为该二次函数的图象在x 轴上方的一点,直线AC 将四边形ABCD 的面积二等分,试证明线段BD 被直线AC 平分,并求此时直线AC 的函数解析式; ⑶设点P 、Q 为该二次函数的图象在x 轴上方的两个动点,试猜想:是否存在这样的点P 、Q ,使△AQP ≌△ABP ?如果存在,请举例验证你的猜想;如果不存在,请说明理由.(图②供选用) 2.(2010福建福州)如图,在△ABC 中,∠C =45°,BC =10,高AD =8,矩形EFPQ 的一边QP 在BC 边上,E 、F 两点分别在AB 、AC 上,AD 交EF 于点H . (1)求证:AH AD =EF BC ; (2)设EF =x ,当x 为何值时,矩形EFPQ 的面积最大?并求其最大值; (3)当矩形EFPQ 的面积最大时,该矩形EFPQ 以每秒1个单位的速度沿射线QC 匀速运动(当点Q 与点C 重合时停止运动),设运动时间为t 秒,矩形EFFQ 与△ABC 重叠部分的面积为S ,求S 与t 的函数关系式. 3.(2010福建福州)如图1,在平面直角坐标系中,点B 在直线y =2x 上,过点B 作x 轴的垂线,垂足为A ,OA =5.若抛物线y =16 x 2+bx +c 过O 、A 两点. (1)求该抛物线的解析式; (2)若A 点关于直线y =2x 的对称点为C ,判断点C 是否在该抛物线上,并说明理由; (3)如图2,在(2)的条件下,⊙O 1是以BC 为直径的圆.过原点O 作⊙O 1的切线OP ,P 为切点(点P 与点C 不重合).抛物线上是否存在点Q ,使得以PQ 为直径的圆与⊙O 1相切?若存在,求出点Q 的横坐标;若不存在,请说明理由 4.(2010江苏无锡)如图,矩形ABCD 的顶点A 、B 的坐标分别为(-4,0)和(2,0),BC =23.设直线AC (第2(图1) (图

中考数学压轴题 易错题难题专项训练检测试题

一、中考数学压轴题 1.如图,一张半径为3cm 的圆形纸片,点O 为圆心,将该圆形纸片沿直线l 折叠,直线l 交O 于A B 、两点. (1)若折叠后的圆弧恰好经过点O ,利用直尺和圆规在图中作出满足条件的一条直线l (不写作法,保留作图痕迹),并求此时线段AB 的长度. (2)已知M 是 O 一点,1cm OM =. ①若折叠后的圆弧经过点M ,则线段AB 长度的取值范围是________. ②若折叠后的圆弧与直线OM 相切于点M ,则线段AB 的长度为_________cm . 2.如图1,在 O 中,弦AB ⊥弦CD ,垂足为点E ,连接AD 、BC 、AO , AD AB =. (1)求证:2CAO CDB ∠=∠ (2)如图2,过点O 作OH AD ⊥,垂足为点H ,求证:2OH CE DE += (3)如图3,在(2)的条件下,延长DB 、AC 交于点F ,过点D 作DM AC ⊥,垂足为M ,交AB 于N ,若12BC =,3AF BF =,求MN 的长. 3.已知抛物线2 17 22 2 y x mx m 的顶点为点C . (1)求证:不论m 为何实数,该抛物线与x 轴总有两个不同的交点; (2)若抛物线的对称轴为直线3x =,求m 的值和C 点坐标; (3)如图,直线1y x =-与(2)中的抛物线并于A B 、两点,并与它的对称轴交于点D ,直线x k =交直线AB 于点M ,交抛物线于点N .求当k 为何值时,以C D M N 、、、为顶点的四边形为平行四边形.

4.已知,在Rt △ABC 和Rt △DEF 中,∠ACB=∠EDF=90°,∠A=30°,∠E=45°,AB =EF =6,如图1,D 是斜边AB 的中点,将等腰Rt △DEF 绕点D 顺时针方向旋转角α(0°<α<90°),在旋转过程中,直线DE ,AC 相交于点M ,直线DF ,BC 相交于点N . (1)如图1,当α=60°时,求证:DM =BN ; (2)在上述旋转过程中, DN DM 的值是一个定值吗?请在图2中画出图形并加以证明; (3)如图3,在上述旋转过程中,当点C 落在斜边EF 上时,求两个三角形重合部分四边形CMDN 的面积. 5.如图,在等边ABC ?中,延长AB 至点D ,延长AC 交BD 的中垂线于点E ,连接 BE ,DE . (1)如图1,若310DE =,23BC =,求CE 的长; (2)如图2,连接CD 交BE 于点M ,在CE 上取一点F ,连接DF 交BE 于点N ,且 DF CD =,求证:12 AB EF =; (3)在(2)的条件下,若45AED ∠=?直接写出线段BD ,EF ,ED 的等量关系 6.如图,90EOF ∠=?,矩形ABCD 的边BA 、BC 分别在OF 、OE 上,4AB =, 3BC =,矩形ABCD 沿射线OD 方向,以每秒1个单位长度的速度运动.同时点P 从点A 出发沿折线AD DC -以每秒1个单位长度的速度向终点C 运动,当点P 到达点C 时,

中考数学二次函数压轴题(含答案)

2017年中考数学冲刺复习资料:二次函数压轴题 面积类 1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式. (2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长. (3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由. 考点:二次函数综合题. 专题:压轴题;数形结合. 分析: (1)已知了抛物线上的三个点的坐标,直接利用待定系数法即可求出抛物线的解析式. (2)先利用待定系数法求出直线BC的解析式,已知点M的横坐标,代入直线BC、抛物线的解析式中,可得到M、N点的坐标,N、M纵坐标的差的绝对值即为MN的长. (3)设MN交x轴于D,那么△BNC的面积可表示为:S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB,MN的表达式在(2)中已求得,OB的长易知,由此列出关于S△BNC、m的函数关系式,根据函数的性质即可判断出△BNC是否具有最大值. 解答: 解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则: a(0+1)(0﹣3)=3,a=﹣1; ∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3. (2)设直线BC的解析式为:y=kx+b,则有:

, 解得; 故直线BC的解析式:y=﹣x+3. 已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3); ∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3). (3)如图; ∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB, ∴S△BNC=(﹣m2+3m)?3=﹣(m﹣)2+(0

中考数学(二次函数提高练习题)压轴题训练及答案

一、二次函数 真题与模拟题分类汇编(难题易错题) 1.如图:在平面直角坐标系中,直线l :y=13x ﹣4 3 与x 轴交于点A ,经过点A 的抛物线 y=ax 2﹣3x+c 的对称轴是x=3 2 . (1)求抛物线的解析式; (2)平移直线l 经过原点O ,得到直线m ,点P 是直线m 上任意一点,PB ⊥x 轴于点B ,PC ⊥y 轴于点C ,若点E 在线段OB 上,点F 在线段OC 的延长线上,连接PE ,PF ,且PE=3PF .求证:PE ⊥PF ; (3)若(2)中的点P 坐标为(6,2),点E 是x 轴上的点,点F 是y 轴上的点,当PE ⊥PF 时,抛物线上是否存在点Q ,使四边形PEQF 是矩形?如果存在,请求出点Q 的坐标,如果不存在,请说明理由. 【答案】(1)抛物线的解析式为y=x 2﹣3x ﹣4;(2)证明见解析;(3)点Q 的坐标为(﹣2,6)或(2,﹣6). 【解析】 【分析】 (1)先求得点A 的坐标,然后依据抛物线过点A ,对称轴是x=3 2 列出关于a 、c 的方程组求解即可; (2)设P (3a ,a ),则PC=3a ,PB=a ,然后再证明∠FPC=∠EPB ,最后通过等量代换进行证明即可; (3)设E (a ,0),然后用含a 的式子表示BE 的长,从而可得到CF 的长,于是可得到点F 的坐标,然后依据中点坐标公式可得到 22x x x x Q P F E ++=,22 y y y y Q P F E ++=,从而可求得点Q 的坐标(用含a 的式子表示),最后,将点Q 的坐标代入抛物线的解析式求得a 的值即可. 【详解】

二次函数压轴题(含答案)

面积类 1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式. (2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长. (3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由. 考点:二次函数综合题. 专题:压轴题;数形结合. 分析: (1)已知了抛物线上的三个点的坐标,直接利用待定系数法即可求出抛物线的解析式.(2)先利用待定系数法求出直线BC的解析式,已知点M的横坐标,代入直线BC、抛物线的解析式中,可得到M、N点的坐标,N、M纵坐标的差的绝对值即为MN的长. (3)设MN交x轴于D,那么△BNC的面积可表示为:S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB,MN的表达式在(2)中已求得,OB的长易知,由此列出关于S△BNC、m的函数关系式,根据函数的性质即可判断出△BNC是否具有最大值. 解答: 解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则: a(0+1)(0﹣3)=3,a=﹣1; ∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3. (2)设直线BC的解析式为:y=kx+b,则有: , 解得;

故直线BC的解析式:y=﹣x+3. 已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3); ∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3). (3)如图; ∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB, ∴S△BNC=(﹣m2+3m)?3=﹣(m﹣)2+(0<m<3); ∴当m=时,△BNC的面积最大,最大值为. 2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C 点,已知B点坐标为(4,0). (1)求抛物线的解析式; (2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标; (3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标. 考点:二次函数综合题.. 专题:压轴题;转化思想. 分析:(1)该函数解析式只有一个待定系数,只需将B点坐标代入解析式中即可. (2)首先根据抛物线的解析式确定A点坐标,然后通过证明△ABC是直角三角形来推导出直径AB和圆心的位置,由此确定圆心坐标.

中考数学二次函数压轴题(含答案)

中考数学二次函数压轴题(含答案) 面积类 1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式. (2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长. (3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由. 解答: 解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则: a(0+1)(0﹣3)=3,a=﹣1; ∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3. (2)设直线BC的解析式为:y=kx+b,则有: , 解得;

故直线BC的解析式:y=﹣x+3. 已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3); ∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3). (3)如图; ∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB, ∴S△BNC=(﹣m2+3m)?3=﹣(m﹣)2+(0<m<3); ∴当m=时,△BNC的面积最大,最大值为. 2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0). (1)求抛物线的解析式; (2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标; (3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标. 解答:

解:(1)将B(4,0)代入抛物线的解析式中,得: 0=16a﹣×4﹣2,即:a=; ∴抛物线的解析式为:y=x2﹣x﹣2. (2)由(1)的函数解析式可求得:A(﹣1,0)、C(0,﹣2); ∴OA=1,OC=2,OB=4, 即:OC2=OA?OB,又:OC⊥AB, ∴△OAC∽△OCB,得:∠OCA=∠OBC; ∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°, ∴△ABC为直角三角形,AB为△ABC外接圆的直径; 所以该外接圆的圆心为AB的中点,且坐标为:(,0). (3)已求得:B(4,0)、C(0,﹣2),可得直线BC的解析式为:y=x﹣2; 设直线l∥BC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程:x+b=x2﹣x﹣2,即:x2﹣2x﹣2﹣b=0,且△=0; ∴4﹣4×(﹣2﹣b)=0,即b=﹣4; ∴直线l:y=x﹣4. 所以点M即直线l和抛物线的唯一交点,有: ,解得:即M(2,﹣3). 过M点作MN⊥x轴于N, S△BMC=S梯形OCMN+S△MNB﹣S△OCB=×2×(2+3)+×2×3﹣×2×4=4.

2017上海历年中考数学压轴题专项训练

24.(本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分5分) 如图,已知抛物线2y x bx c =++经过()01A -, 、()43B -,两点. (1)求抛物线的解析式; (2 求tan ABO ∠的值; (3)过点B 作BC ⊥x 轴,垂足为点C ,点M 是抛物线上一点,直线MN 平行于y 轴交直线AB 于点N ,如果M 、N 、B 、C 为顶点的四边形是平行四边形,求点N 的坐标. 24.解:(1)将A (0,-1)、B (4,-3)分别代入2 y x bx c =++ 得1, 1643c b c =-?? ++=-? , ………………………………………………………………(1分) 解,得9 ,12 b c =-=-…………………………………………………………………(1分) 所以抛物线的解析式为29 12 y x x =- -……………………………………………(1分) (2)过点B 作BC ⊥x 轴,垂足为C ,过点A 作AH ⊥OB ,垂足为点H ………(1分) 在Rt AOH ?中,OA =1,4 sin sin ,5 AOH OBC ∠=∠=……………………………(1分) ∴4sin 5AH OA AOH =∠= g ,∴322,55 OH BH OB OH ==-=, ………………(1分) 在Rt ABH ?中,4222 tan 5511 AH ABO BH ∠==÷=………………………………(1分) (3)直线AB 的解析式为1 12y x =- -, ……………………………………………(1分) 设点M 的坐标为29(,1)2m m m --,点N 坐标为1 (,1)2 m m -- 那么MN =2 291 (1)(1)422 m m m m m - ----=-; …………………………(1分) ∵M 、N 、B 、C 为顶点的四边形是平行四边形,∴MN =BC =3 解方程2 4m m -=3 得2m =± ……………………………………………(1分) 解方程2 43m m -+=得1m =或3m =; ………………………………………(1分)

二次函数压轴题解题方法

中考二次函数压轴题———解题通法研究 ——付源 二次函数在全国中考数学中常常作为压轴题,同时在省级,国家级数学竞赛中也有二次函数大题,在宜宾市的拔尖人才考试中同样有二次函数大题,在成都,绵阳,泸县二中等地的外地招生考试中也有二次函数大题,很多学生在有限的时间内都不能很好完成。由于在高中和大学中很多数学知识都与函数知识或函数的思想有关,学生在初中阶段函数知识和函数思维方法学得好否,直接关系到未来数学的学习。所以二次函数综合题自然就成了相关出题老师和专家的必选内容。我通过近6年的研究,思考和演算了上1000道二次函数大题,总结出了解决二次函数压轴题的通法,供大家参考。 几个自定义概念: ①三角形基本模型:有一边在X轴或Y上,或有一边平行于X轴或Y轴的三角形称为三角形基本模型。 ②动点(或不确定点)坐标“一母示”:借助于动点或不确定点所在函数图象的解析式,用一个字母把该点坐标表示出来,简称“设横表纵”。如:动点P在y=2x+1上,就可设P(t, 2t+1).若动点P在y=3x2-2x+1,则可设为P(t,3t2-2t+1)当然 若动点M在X轴上,则设为(t,0).若动点M在Y轴上,设为(0,t). ③动三角形:至少有一边的长度是不确定的,是运动变化的。或至少有一个顶点是运动,变化的三角形称为动三角形。 ④动线段:其长度是运动,变化,不确定的线段称为动线段。 ⑤定三角形:三边的长度固定,或三个顶点固定的三角形称为定三角形。 ⑥定直线:其函数关系式是确定的,不含参数的直线称为定直线。如:y=3x-6。 ⑦X标,Y标:为了记忆和阐述某些问题的方便,我们把横坐标称为x标,纵坐标称为y 标。 ⑧直接动点:相关平面图形(如三角形,四边形,梯形等)上的动点称为直接动点,与之共线的问题中的点叫间接动点。动点坐标“一母示”是针对直接动点坐标而言的。 1.求证“两线段相等”的问题: 借助于函数解析式,先把动点坐标用一个字母表示出来; 然后看两线段的长度是什么距离(即是“点点”距离,还是“点轴距离”,还是“点线距离”,再运用两点之间的距离公式或点到x轴(y轴)的距离公式或点到直线的距离公式,分别把两条线段的长度表示出来,分别把它们进行化简,即可证得两线段相等。 2、“平行于y轴的动线段长度的最大值”的问题: 由于平行于y轴的线段上各个点的横坐标相等(常设为t),借助于两个端点所在的函数图象解析式,把两个端点的纵坐标分别用含有字母t的代数式表示出来,再由两个端点的高 低情况,运用平行于y轴的线段长度计算公式 y上-y下,把动线段的长度就表示成为一个自变量为t,且开口向下的二次函数解析式,利用二次函数的性质,即可求得动线段长度的最大值及端点坐标。 3、求一个已知点关于一条已知直线的对称点的坐标问题:先用点斜式(或称K点法)求出过已知点,且与已知直线垂直的直线解析式,再求出两直线的交点坐标,最后用中点坐标公式即可。 4、“抛物线上是否存在一点,使之到定直线的距离最大”的问题: (方法1)先求出定直线的斜率,由此可设出与定直线平行且与抛物线相切的直线的解析式(注意该直线与定直线的斜率相等,因为平行直线斜率(k)相等),再由该直线与抛物线的

中考二次函数压轴试题分类汇编及答案(1)

中考二次函数压轴题分类汇编 一.极值问题 1.二次函数y=ax2+bx+c的图象经过点(﹣1,4),且与直线y=﹣x+1相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为点C(﹣3,0). (1)求二次函数的表达式; (2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值; (3)在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的N点的坐标. 分析:(1)首先求得A、B的坐标,然后利用待定系数法即可求得二次函数的解析式; (2)设M的横坐标是x,则根据M和N所在函数的解析式,即可利用x表示出M、N的坐标,利用x表示出MN的长,利用二次函数的性质求解; (3)BM与NC互相垂直平分,即四边形BCMN是菱形,则BC=MC,据此即可列方程,求得x的值,从而得到N的坐标. 解:(1)由题设可知A(0,1),B(﹣3,), 根据题意得:,解得:, 则二次函数的解析式是:y=﹣﹣x+1; (2)设N(x,﹣x2﹣x+1),则M、P点的坐标分别是(x,﹣x+1),(x,0). ∴MN=PN﹣PM=﹣x2﹣x+1﹣(﹣x+1)=﹣x2﹣x=﹣(x+)2+, 则当x=﹣时,MN的最大值为; (3)连接MN、BN、BM与NC互相垂直平分, 即四边形BCMN是菱形,由于BC∥MN,即MN=BC,且BC=MC, 即﹣x2﹣x=,且(﹣x+1)2+(x+3)2=,解得:x=1, 故当N(﹣1,4)时,MN和NC互相垂直平分.

点评:本题是待定系数法求二次函数的解析式,以及二次函数的性质、菱形的判定的综合应用,利用 二次函数的性质可以解决实际问题中求最大值或最小值问题. 2.如图,抛物线y=x2+bx+c与y轴交于点C(0,﹣4),与x轴交于点A,B,且B点的坐标为(2,0)(1)求该抛物线的解析式. (2)若点P是AB上的一动点,过点P作PE∥AC,交BC于E,连接CP,求△PCE面积的最大值. (3)若点D为OA的中点,点M是线段AC上一点,且△OMD为等腰三角形,求M点的坐标. 考点:二次函数综合题. 分析:(1)利用待定系数法求出抛物线的解析式; (2)首先求出△PCE面积的表达式,然后利用二次函数的性质求出其最大值; (3)△OMD为等腰三角形,可能有三种情形,需要分类讨论. 解答:解:(1)把点C(0,﹣4),B(2,0)分别代入y=x2+bx+c中, 得, 解得 ∴该抛物线的解析式为y=x2+x﹣4. (2)令y=0,即x2+x﹣4=0,解得x 1=﹣4,x 2 =2, ∴A(﹣4,0),S △ABC =ABOC=12. 设P点坐标为(x,0),则PB=2﹣x. ∵PE∥AC, ∴∠BPE=∠BAC,∠BEP=∠BCA, ∴△PBE∽△ABC, ∴,即, 化简得:S △PBE =(2﹣x)2.

中考数学压轴题专项训练十套(含答案)

做题时间:_______至_______ 家长签字:_____________ 共__________分钟日期:_____月_____日 三、解答题 23.(11分)如图,在直角梯形OABC中,AB∥OC,BC⊥x轴于点C,A(1, 1),B(3,1).动点P从点O出发,沿x轴正方向以每秒1个单位长度的速 度移动.过点P作PQ⊥OA,垂足为Q.设点P移动的时间为t秒(0

做题时间:_______至_______ 家长签字:_____________ 共__________分钟 日 期:_____月_____日 三、解答题 23. (11分)如图,抛物线22++=bx ax y 与x 轴交于A (-1,0),B (4,0)两点, 与y 轴交于点C ,与过点C 且平行于x 轴的直线交于另一点D ,点P 是抛物线上一动点. (1)求抛物线的解析式及点D 的坐标. (2)点E 在x 轴上,若以A ,E ,D ,P 为顶点的四边形是平行四边形,求此时点P 的坐标. (3)过点P 作直线CD 的垂线,垂足为Q .若将△CPQ 沿CP 翻折,点Q 的对应点为Q ′,是否存在点P ,使点Q ′恰好在x 轴上?若存在,求出此时点P 的坐标;若不存在,请说明理由. 备用图

做题时间:_______至_______ 家长签字:_____________ 共__________分钟日期:_____月_____日 三、解答题 23.(11分)如图,已知直线 1 1 2 y x =-+与坐标轴交于A,B两点,以线段AB 为边向上作正方形ABCD,过点A,D,C的抛物线与直线的另一个交点为E. (1)请直接写出C,D两点的坐标,并求出抛物线的解析式; (2 个单位长度的速度沿射线AB下滑,直至顶点D落 在x轴上时停止,设正方形落在x轴下方部分的面积为S,求S关于滑行时间t的函数关系式,并写出相应自变量t的取值范围; (3)在(2)的条件下,抛物线与正方形一起平移,同时停止,求抛物线上C,E两点间的抛物线弧所扫过的面积. 备用图

中考数学二次函数压轴题精编(含答案)

(2010湖北咸宁)16.如图,一次函数y ax b =+的图象与x 轴,y 轴交于A ,B 两点, 与反比例函数k y x =的图象相交于C ,D 两点,分别过C ,D 两 点作y 轴,x 轴的垂线,垂足为E ,F ,连接CF ,DE . 有下列四个结论: ①△CEF 与△DEF 的面积相等; ②△AOB ∽△FOE ; ③△DCE ≌△CDF ; ④AC BD =. 其中正确的结论是 .( 把你认为正确结论的序号都填上) (2010江苏徐州)25.(本题8分)如图,已知A(n ,-2),B(1,4)是一次函数y=kx+b 的图象和反比例函 数y= x m 的图象的两个交点,直线AB 与y 轴交于点C . (1)求反比例函数和一次函数的关系式; (2)求△AOC 的面积; (3)求不等式kx+b-x m <0的解集(直接写出答案). 1. (2009遂宁)把二次函数34 12+--=x x y 用配方法化成()k h x a y +-=2 的形式 A.()22412+--=x y B. ()42412+-=x y C.()42412++-=x y D. 3212 12 +??? ??-=x y 2. (2009嘉兴)已知0≠a ,在同一直角坐标系中,函数ax y =与2ax y =的图象有可能是( ▲ ) 3. (2009烟台)二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函 数a b c y x ++= 在同一坐标系内的图象大致为( ) 4. (2009黄石)已知二次函数y=ax 2+bx+c (a ≠0)的图象如图3所示, 下列结论:①abc >0 ②2a+b <0 ③4a -2b+c <0 ④a+c >0, 其中正确结论的个数为( ) O y x 1 -1A x y O 1 -1 B x y O 1 -1 C x y O 1 -1 D 1- 1 O x y (第11题图) y x O y x O B . C . y x O A . y x O D . A B O x y (第21题) 2 1 2 3 -3 -1 -2 1 3 -3 -1 -2 y x D C A B O F E (第16题)

重庆中考数学压轴题训练

一.压轴题专题训练 1.问题:如图1,在等边三角形ABC 内有一点P,且PA=2,PB= 3,PC=1.求∠BPC 度数的大小和等边三角形ABC 的边长. 李明同学的思路是:将△BPC 绕点B 逆时针旋转60°,画出旋转后的图形(如图2).连接PP′,可得△P′B P是等边三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可证).所 以∠AP′B=150°,而∠BPC=∠AP′B=150°.进而求出等边△ABC 的边长为7 .问题得到解 决. 请你参考李明同学的思路,探究并解决下列问题:如图3,在正方形ABCD 内有一点P,且PA= 5 ,BP= 2 ,PC=1.求∠BPC 度数的大小和正方形ABCD 的边长. 图3 图1 图2

2.阅读下列材料,并解决后面的问题. 在锐角△A BC 中,∠ A 、∠B、∠C 的对边分别是a、b、c.过 A 作AD ⊥BC 于D(如图),则s inB= A D ,sinc= AD ,即AD=csinB ,AD=bsinC , c b 于是csinB=bsinC ,即 b sin B c sin C c a a b .同理有, sin C sin A sin A sin B . a b c ∴??????(*) sin A sin B sin C 即:在一个三角形中,各边和它所对角的正弦的比相等. (1)在锐角三角形中,若已知三个元素a、b、∠A ,运用上述结论(* )和有关定理就可以求出其余三个未知元素c、∠B、∠C,请你按照下列步骤填空,完成求解过程: 用关系式求出第一步,由条件∠B; 用关系式求出第二步,由条件∠C; 用关系式求出第三步,由条件c. o (2)一货轮在 C 处测得灯塔A 在货轮的北偏西30 的方向上,随后货轮以28.4 o 海里/时的速度按北偏东45 的方向航行,半小时后到达B处,此时又测得灯塔A 在货轮的 北偏西o 70 的方向上(如图11),求此时货轮距灯塔A 的距离AB (结果精确到0.1.参考数据:sin 40o =0.643,sin 65o =0.906,sin70o =0.904,sin 75o =0.966). 3. 对于三个数a、b、c,M|a,b,c|表示这三个数的平均数,min { a,b,c}表示a、b、c 这三个数中最小的数,如:M{ -1,2,3} 1 2 3 34 3 ,min {-1,2,3} =-1; M{ -1,2,a} =1 2 a a 3 3 1 ,m{ -1,2,a} = a(a 1(a 1), 1), 解决下列问题: (1)填空:min { sin30°,cos45°,tan30°} =________;若min { 2,2x+2,4-2x} =2, 则x 的取值范围是________; (2)①若M{ 2,x+1,2x} =min { 2,x+1,2x} ,那么x=________; ②根据①,你发现结论“若M {a,b,c} =min{ a,b,c},那么________” (填a,b,c 大小关系); ③运用②,填空:若M{ 2x+y+2,x+2y,2x-y} =min { 2x+y+2, x+2y,2x-y} ,则x+y=________; 2,y=2-x 的图 (3)在同一直角坐标系中作出函数y=x+1,y=(x-1) 象(不需列表,描点),通过图象,得出min { x+1,(x-1)2,2-x} 最大值为________.

中考二次函数压轴题及答案

二次函数压轴题精讲 1.二次函数综合题 (1)二次函数图象与其他函数图象相结合问题 解决此类问题时,先根据给定的函数或函数图象判断出系数的符号,然后判断新的函数关系式中系数的符号,再根据系数与图象的位置关系判断出图象特征,则符合所有特征的图象即为正确选项. (2)二次函数与方程、几何知识的综合应用 将函数知识与方程、几何知识有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件. (3)二次函数在实际生活中的应用题 从实际问题中分析变量之间的关系,建立二次函数模型.关键在于观察、分析、创建,建立直角坐标系下的二次函数图象,然后数形结合解决问题,需要我们注意的是自变量及函数的取值范围要使实际问题有意义.

例1. 已知:如图,在平面直角坐标系中,直线与x轴、y轴的交点分 别为A、B,将∠对折,使点O的对应点H落在直线上,折痕交x轴于点C.(1)直接写出点C的坐标,并求过A、B、C三点的抛物线的解析式; (2)若抛物线的顶点为D,在直线上是否存在点P,使得四边形为平行四边形?若存在,求出点P的坐标;若不存在,说明理由; (3)设抛物线的对称轴与直线的交点为T,Q为线段上一点,直接写出﹣的取值范围.

2.如图,直线2与抛物线26(a≠0)相交于A(,)和B(4,m),点P是线 段上异于A、B的动点,过点P作⊥x轴于点D,交抛物线于点C. (1)求抛物线的解析式; (2)是否存在这样的P点,使线段的长有最大值?若存在,求出这个最大值;若不存在,请说明理由; (3)求△为直角三角形时点P的坐标.

2020中考数学二次函数压轴题(含答案)

中考数学冲刺复习资料:二次函数压轴题 面积类 1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式. (2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长. (3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由. 解答: 解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则: a(0+1)(0﹣3)=3,a=﹣1; ∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3. (2)设直线BC的解析式为:y=kx+b,则有: , 解得; 故直线BC的解析式:y=﹣x+3. 已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3); ∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3). (3)如图; ∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB, ∴S△BNC=(﹣m2+3m)?3=﹣(m﹣)2+(0<m<3); ∴当m=时,△BNC的面积最大,最大值为.

2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C 点,已知B点坐标为(4,0). (1)求抛物线的解析式; (2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标; (3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M 点的坐标. 解答: 解:(1)将B(4,0)代入抛物线的解析式中,得: 0=16a﹣×4﹣2,即:a=; ∴抛物线的解析式为:y=x2﹣x﹣2. (2)由(1)的函数解析式可求得:A(﹣1,0)、C(0,﹣2); ∴OA=1,OC=2,OB=4, 即:OC2=OA?OB,又:OC⊥AB, ∴△OAC∽△OCB,得:∠OCA=∠OBC; ∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°, ∴△ABC为直角三角形,AB为△ABC外接圆的直径; 所以该外接圆的圆心为AB的中点,且坐标为:(,0). (3)已求得:B(4,0)、C(0,﹣2),可得直线BC的解析式为:y=x﹣2; 设直线l∥BC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程: x+b=x2﹣x﹣2,即:x2﹣2x﹣2﹣b=0,且△=0; ∴4﹣4×(﹣2﹣b)=0,即b=﹣4; ∴直线l:y=x﹣4. 所以点M即直线l和抛物线的唯一交点,有:

相关文档
最新文档