模式识别(K近邻算法)

模式识别(K近邻算法)
模式识别(K近邻算法)

K 近邻算法

1.算法思想

取未知样本的x 的k 个近邻,看这k 个近邻中多数属于哪一类,就把x 归于哪一类。具体说就是在N 个已知的样本中,找出x 的k 个近邻。设这N 个样本中,来自1w 类的样本有1N 个,来自2w 的样本有2N 个,...,来自c w 类的样本有c N 个,若c k k k ,,,21 分别是k 个近邻中属于c w w w ,,,21 类的样本数,则我们可以定义判别函数为:

c i k x g i i ,,2,1,)( ==

决策规则为:

若i i j k x g max )(=,则决策j w x ∈ 2.程序代码

%KNN 算法程序

function error=knn(X,Y ,K)

%error 为分类错误率

data=X;

[M,N]=size(X);

Y0=Y;

[m0,n0]=size(Y);

t=[1 2 3];%3类向量

ch=randperm(M);%随机排列1—M

error=0;

for i=1:10

Y1=Y0;

b=ch(1+(i-1)*M/10:i*M/10);

X1=X(b,:);

X(b,:)=[];

Y1(b,:)=[];

c=X;

[m,n]=size(X1); %m=15,n=4

[m1,n]=size(c); %m1=135,n=4

for ii=1:m

for j=1:m1

ss(j,:)=sum((X1(ii,:)-c(j,:)).^2);

end

[z1,z2]=sort(ss); %由小到大排序

hh=hist(Y1(z2(1:K)),t);

[w,best]=max(hh);

yy(i,ii)=t(best); %保存修改的分类结果

end

error=error+sum(Y0(b,:)~=yy(i,:)');

X=data;

end

error=error/M;

%算法主程序:

clc

clear all

load iris.mat

%iris.mat中存放X为150*4的iris数据,Y为150*1的分类结果,以下均使用该数据

n=0;

for i=1:10

error=knn(X,Y,1);

n=n+error;

end

correct=1-n/10

3.程序运行结果

做十折交叉验证得到:

当K=1时,正确分类概率为:0.9587

当K=3时,正确分类概率为:0.9613

当K=5时,正确分类概率为:0.9640

当K=7时,正确分类概率为:0.9653

当K=10时,正确分类概率为:0.9667

当K=30时,正确分类概率为:0.9480

当K=60时,正确分类概率为:0.9027

4.结果分析

从以上的结果我们可以看出当k较小时,随着k的增加,其正确分类的概率也逐渐增加;然而当k增加到一定的值时,即k取较大的值时,随着k的增加,其正确率并没有随之增加,反而大大降低了。因此在实际中选择K的值时应慎重考虑,结合实际结果,选取合适的K 值。

k近邻分类算法

第2章k-近邻算法(kNN) 引言 本章介绍kNN算法的基本理论以及如何使用距离测量的方法分类物品。其次,将使用python从文本文件中导入并解析数据,然后,当存在许多数据来源时,如何避免计算距离时可能碰到的一些常见的错识。 2.1 k-近邻算法概述 k-近邻(k Nearest Neighbors)算法采用测量不同特征之间的距离方法进行分类。它的工作原理是:存在一个样本数据集合,并且样本集中每个数据都存在标签,即我们知道样本每一数据与所属分类的对应关系。输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据的分类标签。一般来说,我们只选择样本数据集中前k 个最相似的数据,这就是k-近邻算法中k的出处,通常k是不大于20的整数。最后,选择k个最相似数据中出现次数最多的分类,作为新数据的分类。 k-近邻算法的优点是精度高,对异常值不敏感,无数据输入假定;缺点是计算复杂度高、空间复杂度高。适用于数值和离散型数据。 2.1.1 准备知识:使用python导入数据 首先,创建名为kNN.py的python模块,然后添加下面代码: from numpy import * #引入科学计算包 import operator #经典python函数库。运算符模块。

#创建数据集 def createDataSet(): group=array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]]) labels=['A','A','B','B'] return group,labels 测试:>>> import kNN >>> group,labels=kNN.createDataSet() 注意:要将kNN.py文件放到Python27文件夹下,否则提示找不到文件。 2.2.2 实施kNN算法 使用k-近邻算法将每组数据划分到某个类中,其伪代码如下: 对未知类别属性的数据集中的每个点依次执行以下操作: 1.计算已知类别数据集中的点与当前点之间的距离; 2.按照距离递增交序排序; 3.选取与当前点距离最小的k个点; 4.确定前k个点所在类别的出现频率; 5.返回前k个点出现频率最高的类别作为当前点的预测分类。 用欧氏距离公式,计算两个向量点xA和xB之间的距离: 例如,点(0, 0)与(1, 2)之间的距离计算为: python函数classify()程序如下所示:

模式识别大作业02125128(修改版)

模式识别大作业 班级 021252 姓名 谭红光 学号 02125128 1.线性投影与Fisher 准则函数 各类在d 维特征空间里的样本均值向量: ∑∈= i k X x k i i x n M 1 ,2,1=i (1) 通过变换w 映射到一维特征空间后,各类的平均值为: ∑∈= i k Y y k i i y n m 1,2,1=i (2) 映射后,各类样本“类内离散度”定义为: 22 ()k i i k i y Y S y m ∈= -∑,2,1=i (3) 显然,我们希望在映射之后,两类的平均值之间的距离越大越好,而各类的样本类内离 散度越小越好。因此,定义Fisher 准则函数: 2 1222 12||()F m m J w s s -= + (4) 使F J 最大的解* w 就是最佳解向量,也就是Fisher 的线性判别式. 从 )(w J F 的表达式可知,它并非w 的显函数,必须进一步变换。 已知: ∑∈= i k Y y k i i y n m 1,2,1=i , 依次代入上两式,有: i T X x k i T k X x T i i M w x n w x w n m i k i k === ∑∑∈∈)1 (1 ,2,1=i (5) 所以:2 21221221||)(||||||||M M w M w M w m m T T T -=-=- w S w w M M M M w b T T T =--=))((2121 (6)

其中:T b M M M M S ))((2121--= (7) b S 是原d 维特征空间里的样本类内离散度矩阵,表示两类均值向量之间的离散度大 小,因此,b S 越大越容易区分。 将(4.5-6) i T i M w m =和(4.5-2) ∑∈= i k X x k i i x n M 1代入(4.5-4)2i S 式中: ∑∈-= i k X x i T k T i M w x w S 22)( ∑∈?--? =i k X x T i k i k T w M x M x w ))(( w S w i T = (8) 其中:T i X x k i k i M x M x S i k ))((--= ∑=,2,1=i (9) 因此:w S w w S S w S S w T T =+=+)(212221 (10) 显然: 21S S S w += (11) w S 称为原d 维特征空间里,样本“类内离散度”矩阵。 w S 是样本“类内总离散度”矩阵。 为了便于分类,显然 i S 越小越好,也就是 w S 越小越好。

模式识别(K近邻算法)

K 近邻算法 1.算法思想 取未知样本的x 的k 个近邻,看这k 个近邻中多数属于哪一类,就把x 归于哪一类。具体说就是在N 个已知的样本中,找出x 的k 个近邻。设这N 个样本中,来自1w 类的样本有1N 个,来自2w 的样本有2N 个,...,来自c w 类的样本有c N 个,若c k k k ,,,21 分别是k 个近邻中属于c w w w ,,,21 类的样本数,则我们可以定义判别函数为: c i k x g i i ,,2,1,)( == 决策规则为: 若i i j k x g max )(=,则决策j w x ∈ 2.程序代码 %KNN 算法程序 function error=knn(X,Y ,K) %error 为分类错误率 data=X; [M,N]=size(X); Y0=Y; [m0,n0]=size(Y); t=[1 2 3];%3类向量 ch=randperm(M);%随机排列1—M error=0; for i=1:10 Y1=Y0; b=ch(1+(i-1)*M/10:i*M/10); X1=X(b,:); X(b,:)=[]; Y1(b,:)=[]; c=X; [m,n]=size(X1); %m=15,n=4 [m1,n]=size(c); %m1=135,n=4 for ii=1:m for j=1:m1 ss(j,:)=sum((X1(ii,:)-c(j,:)).^2); end [z1,z2]=sort(ss); %由小到大排序 hh=hist(Y1(z2(1:K)),t); [w,best]=max(hh); yy(i,ii)=t(best); %保存修改的分类结果 end

西电射频大作业(精心整理)

射频大作业 基于PSpice仿真的振幅调制电路设计数字调制与解调的集成器件学习

目录 题目一:基于PSpice仿真的振幅调制电路设计与性能分析 一、实验设计要求 (3) 二、理论分析 1、问题的分析 (3) 2、差动放大器调幅的设计理论 (4) 2.1、单端输出差动放大器电路 2.2、双端输出差动放大器电路 2.3、单二极管振幅调制电路 2.4、平衡对消二极管调幅电路 三、PSpice仿真的振幅调制电路性能分析 (10) 1、单端输出差动放大器调幅电路设计图及仿真波形 2、双端输出差动放大器调幅电路设计图及仿真波形 3、单二极管振幅调制电路设计图及仿真波形 4、平衡对消二极管调幅电路设计图及仿真波形 四、实验总结 (16) 五、参考文献 题目二数字调制与解调的集成器件学习 一、实验设计要求 (17) 二、概述 (17) 三、引脚功能及组成原理 (18) 四、基本连接电路 (20) 五、参考文献 (21) 六、英文附录 (21)

题目一基于PSpice仿真的振幅调制电路设计 摘要 随着大规模集成电路的广泛发展,电子电路CAD及电子设计自动化(EDA)已成为电路分析和设计中不可缺少的工具。此次振幅调制电路仿真设计基于PSpice,利用其丰富的仿真元器件库和强大的行为建模工具,分别设计了差分对放大器和二极管振幅调制电路,由此对线性时变电路调幅有了更进一步的认识;同时,通过平衡对消技术分别衍生出双端输出的差分对放大器和双回路二极管振幅调制电路,消除了没用的频率分量,从而得到了更好的调幅效果。本文对比研究了单端输出和双端输出的差分对放大器调幅电路及单二极管和双回路二极管调幅电路,通过对比观察时域和频域波形图,可知平衡对消技术可以很好地减小失真。 关键词:PSpice 振幅调制差分对放大器二极管振幅调制电路平衡对消技术 一、实验设计要求 1.1 基本要求 参考教材《射频电路基础》第五章振幅调制与解调中有关差分对放大器调幅和二极管调幅的原理,选择元器件、调制信号和载波参数,完成PSpice电路设计、建模和仿真,实现振幅调制信号的输出和分析。 1.2 实践任务 (1) 选择合适的调制信号和载波的振幅、频率,通过理论计算分析,正确选择晶体管和其它元件;搭建单端输出的差分对放大器,实现载波作为差模输入电压,调制信号控制电流源情况下的振幅调制;调整二者振幅,实现基本无失真的线性时变电路调幅;观察记录电路参数、调制信号、载波和已调波的波形和频谱。 (2) 参考例5.3.1,修改电路为双端输出,对比研究平衡对消技术在该电路中的应用效果。 (3) 选择合适的调制信号和载波的振幅、频率,通过理论计算分析,正确选择二极管和其它元件;搭建单二极管振幅调制电路,实现载波作为大信号,调制信号为小信号情况下的振幅调制;调整二者振幅,实现基本无失真的线性时变电路调幅;观察记录电路参数、调制信号、载波和已调波的波形和频谱。 (4) 参考例5.3.2,修改电路为双回路,对比研究平衡对消技术在该电路中的应用效果。 1.3 写作报告 (1) 按论文形式撰写,包括摘要、正文和参考文献,等等。 (2) 正文包括振幅调制电路的设计原理、理论分析结果、实践任务中各阶段设计的电路、参数、波形和频谱,对观察记录的数据配以图像和表格,同时要有充分的文字做分析和对比,有规律性认识。 (3) 论文结构系统、完备、条理清晰、理论正确、数据翔实、分析完整。 1.4 相关提示 (1) 所有电路和信号参数需要各人自行决定,各人有不同的研究结果,锻炼学生的独立研究和实验分析能力。 (2) 为了提高仿真精度和减小调试难度,可以将调制信号和载波的频率设置得较低。 二、理论分析 1、问题的分析 根据题目的要求,差分对放大器和二极管振幅调制电路目的都是实现基本无

大工19秋《数据挖掘》大作业题目及要求答案

网络教育学院 《数据挖掘》课程大作业 题目:题目一:Knn算法原理以及python实现 姓名: XXX 报名编号: XXX 学习中心:奥鹏XXX 层次:专升本 专业:计算机科学与技术 第一大题:讲述自己在完成大作业过程中遇到的困难,解决问题的思路,以及相关感想,或者对这个项目的认识,或者对Python与数据挖掘的认识等等,300-500字。 答: 数据挖掘是指从大量的数据中通过一些算法寻找隐藏于其中重要实用信息的过程。这些算法包括神经网络法、决策树法、遗传算法、粗糙集法、模糊集法、关联规则法等。在商务管理,股市分析,公司重要信息决策,以及科学研究方面都有十分重要的意义。数据挖掘是一种决策支持过程,它主要基于人工智能、机器学习、模式识别、统计学、数据库、可视化技术,从大量数据中寻找其肉眼难以发现的规律,和大数据联系密切。如今,数据挖掘已经应用在很多行业里,对人们的生产生活以及未来大数据时代起到了重要影响。

第二大题:完成下面一项大作业题目。 2019秋《数据挖掘》课程大作业 注意:从以下5个题目中任选其一作答。 题目一:Knn算法原理以及python实现 要求:文档用使用word撰写即可。 主要内容必须包括: (1)算法介绍。 (2)算法流程。 (3)python实现算法以及预测。 (4)整个word文件名为 [姓名奥鹏卡号学习中心](如 戴卫东101410013979浙江台州奥鹏学习中心[1]VIP ) 答: KNN算法介绍 KNN是一种监督学习算法,通过计算新数据与训练数据特征值之间的距离,然后选取K(K>=1)个距离最近的邻居进行分类判(投票法)或者回归。若K=1,新数据被简单分配给其近邻的类。 KNN算法实现过程 (1)选择一种距离计算方式, 通过数据所有的特征计算新数据与

模式识别特征选择与提取

模式识别特征选择与提取 中国矿业大学计算机科学与技术学院电子信息科学系 班级:信科11-1班,学号:08113545,姓名:褚钰博 联系方法(QQ或手机):390345438,e-mail:390345438@https://www.360docs.net/doc/088832146.html, 日期:2014 年06月10日 摘要 实际问题中常常需要维数约简,如人脸识别、图像检索等。而特征选择和特征提取是两种最常用的维数约简方法。特征选择是从某些事物中提取出本质性的功能、应用、优势等,而特征提取是对特征空间进行变换,将原始特征空间映射到低维空间中。 本文是对主成分分析和线性判别分析。 关键词:特征选择,特征提取,主成分分析,线性判别分析 1.引言 模式识别的主要任务是利用从样本中提取的特征,并将样本划分为相应的模式类别,获得好的分类性能。而分类方法与分类器设计,都是在d(变量统一用斜体)维特征空间已经确定的前提下进行的。因此讨论的分类器设计问题是一个选择什么准则、使用什么方法,将已确定的d维特征空间划分成决策域的问题。对分类器设计方法的研究固然重要,但如何确定合适的特征空间是设计模式识别系统另一个十分重要,甚至更为关键的问题。如果所选用的特征空间能使同类物体分布具有紧致性,即各类样本能分布在该特征空间中彼此分割开的区域内,这就为分类器设计成功提供良好的基础。反之,如果不同类别的样本在该特征空间中混杂在一起,再好的设计方法也无法提高分类器的准确性。本文要讨论的问题就是特征空间如何设计的问题。 基于主成分分析的特征选择算法的思想是建立在这样的基础上的:主成分分析方法将原始特征通过线性变换映射到新的低维空间时,获得的主成分是去了新的物理意义,难以理解,并且主成分是所有原始特征的线性组合。所以将主成分分析与特征选择相结合,设计多种相似性度量准则,通过找到与主成分相关的关键特征或者删除冗余、不相关以及没有意义的特征,将主成分又重新映射到原始空间,来理解成主成分的实际意义。 基于线性判别分析的高维特征选择将单个特征的Fisher准则与其他特征选择算法相结合,分层消除不相关特征与冗余特征。不相关特征滤波器按照每个特征的Fisher评价值进行特征排序,来去除噪音和不相关特征。通过对高维数据特征关联性的分析,冗余特征滤波器选用冗余度量方法和基于相关性的快速过滤器算法。分别在不同情境下进行数据分类实验,验证其性能。

西电计算机视觉大作业

数字水印技术 一、引言 随着互联网广泛普及的应用,各种各样的数据资源包括文本、图片、音频、视频等放在网络服务器上供用户访问。但是这种网络资源的幵放也带了许多弊端,比如一些用户非法下载、非法拷贝、恶意篡改等,因此数字媒体内容的安全和因特网上的侵权问题成为一个急需解决的问题。数字水印作为一项很有潜力的解决手段,正是在这种情况下应运而生。 数字水印(技术是将一些代表性的标识信息,一般需要经过某种适合的变换,变换后的秘密信息(即数字水印),通过某种方式嵌入数字载体(包括文档、音频、软件等)当中,但不影响原载体的使用价值,也不容易被人的知觉系统(如视觉或听觉系统)觉察或注意到。通过这些隐藏在载体中的信息,可以达到确认内容创建者、购买者、传送隐秘信息或者判断载体是否被篡改等目的。在发生产权和内容纠纷时,通过相应的算法可以提取该早已潜入的数字水印,从而验证版权的归属和内容的真伪。 二.算法原理 2.1、灰度图像水印 2.1.1基本原理 处理灰度图像数字水印,采用了LSB(最低有效位)、DCT变换域、DWT变换域三种算法来处理数字水印。在此过程中,处理水印首先将其预处理转化为二值图像,简化算法。 (1)LSB算法原理:最低有效位算法(Least Sig nificant Bit , LSB)是很常见的空间域信息隐藏算法, 该算法就是通过改变图像像素最不重要位来达到嵌入隐秘信息的效果, 该方法隐藏的信息在人的肉眼不能发现的情况下, 其嵌入方法简单、隐藏信息量大、提取方法简单等而获得广泛应用。LSB 信息嵌入过程如下: S′=S+f S ,M 其中,S 和S′分别代表载体信息和嵌入秘密信息后的载密信息;M为待嵌入的秘密信息, 而隐写分析则是从S′中检测出M以至提取M 。 (2)DCT算法原理:DCT 变换在图像压缩中有很多应用,它是JPEG,MPEG 等数据

基于K近邻的分类算法研究-WORD

K近邻算法 算法介绍: K最近邻(k-Nearest neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。KNN算法中,所选择的邻居都是已经正确分类的对象。该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。KNN方法虽然从原理上也依赖于极限定理,但在类别决策时,只与极少量的相邻样本有关。由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合。 KNN算法不仅可以用于分类,还可以用于回归。通过找出一个样本的k个最近邻居,将这些邻居的属性的平均值赋给该样本,就可以得到该样本的属性。更有用的方法是将不同距离的邻居对该样本产生的影响给予不同的权值(weight),如权值与距离成正比。该算法在分类时有个主要的不足是,当样本不平衡时,如一个类的样本容量很大,而其他类样本容量很小时,有可能导致当输入一个新样本时,该样本的K个邻居中大容量类的样本占多数。该算法只计算“最近的”邻居样本,某一类的样本数量很大,那么或者这类样本并不接近目标样本,或者这类样本很靠近目标样本。无论怎样,数量并不能影响运行结果。可以采用权值的方法(和该样本距离小的邻居权值大)来改进。 该方法的另一个不足之处是计算量较大,因为对每一个待分类的文本都要计算它到全体已知样本的距离,才能求得它的K个最近邻点。目前常用的解决方法是事先对已知样本点进行剪辑,事先去除对分类作用不大的样本。该算法比较适用于样本容量比较大的类域的自动分类,而那些样本容量较小的类域采用这种算法比较容易产生误分。

模式识别作业(全)

模式识别大作业 一.K均值聚类(必做,40分) 1.K均值聚类的基本思想以及K均值聚类过程的流程图; 2.利用K均值聚类对Iris数据进行分类,已知类别总数为3。给出具体的C语言代码, 并加注释。例如,对于每一个子函数,标注其主要作用,及其所用参数的意义,对程序中定义的一些主要变量,标注其意义; 3.给出函数调用关系图,并分析算法的时间复杂度; 4.给出程序运行结果,包括分类结果(只要给出相对应的数据的编号即可)以及循环 迭代的次数; 5.分析K均值聚类的优缺点。 二.贝叶斯分类(必做,40分) 1.什么是贝叶斯分类器,其分类的基本思想是什么; 2.两类情况下,贝叶斯分类器的判别函数是什么,如何计算得到其判别函数; 3.在Matlab下,利用mvnrnd()函数随机生成60个二维样本,分别属于两个类别(一 类30个样本点),将这些样本描绘在二维坐标系下,注意特征值取值控制在(-5,5)范围以内; 4.用样本的第一个特征作为分类依据将这60个样本进行分类,统计正确分类的百分 比,并在二维坐标系下将正确分类的样本点与错误分类的样本点用不同标志(正确分类的样本点用“O”,错误分类的样本点用“X”)画出来; 5.用样本的第二个特征作为分类依据将这60个样本再进行分类,统计正确分类的百分 比,并在二维坐标系下将正确分类的样本点与错误分类的样本点用不同标志画出来; 6.用样本的两个特征作为分类依据将这60个样本进行分类,统计正确分类的百分比, 并在二维坐标系下将正确分类的样本点与错误分类的样本点用不同标志画出来; 7.分析上述实验的结果。 8.60个随即样本是如何产生的的;给出上述三种情况下的两类均值、方差、协方差矩 阵以及判别函数; 三.特征选择(选作,15分) 1.经过K均值聚类后,Iris数据被分作3类。从这三类中各选择10个样本点; 2.通过特征选择将选出的30个样本点从4维降低为3维,并将它们在三维的坐标系中

西电数据挖掘大作业k-means和k-medoids

题 目: 数据挖掘 学 院: 电子工程学院 专 业: 智能科学和技术 学生姓名: ** 学 号: 02115*** k -means 实验报告 一、 waveform 数据 1、 算法描述 1. 从数据集{X n }n?1N 中任意选取k 个赋给初始的聚类中心c 1, c 2, …,

c k; 2.对数据集中的每个样本点x i,计算其和各个聚类中心c j的欧氏 距离并获取其类别标号: label(i)=arg min ||x i?c j||2,i=1,…,N,j=1,…,k 3.按下式重新计算k个聚类中心; c j=∑x j s:label(s)=j j ,j=1,2,…k 重复步骤2和步骤3,直到达到最大迭代次数为止2、实验结果 二、图像处理 1、算法描述 同上; 2、实验结果

代码: k_means: %%%%%%%%%K_means%%%%%%%% %%%%%%%%%函数说明%%%%%%%% %输入: % sample——样本集; % k ——聚类数目; %输出: % y ——类标(从0开始) % cnew ——聚类中心 % n ——迭代次数 function [y cnew n]=k_means(sample,k) [N V]=size(sample); %N为样本的个数 K为样本的维数 y=zeros(N,1); %记录样本类标 dist=zeros(1,k); rand_num=randperm(N); cnew=(sample(rand_num(1,1:k),:));%随机初始化聚类中心cold=zeros(k,V); n=0;

K近邻分类数据模拟和实例分析

K近邻分类数据模拟和实例分析 3.1 数据模拟 用MATLAB随机生成150组数据,类别为三类,编程如下 # 程序1: A1=rand(50,2); hold on plot(A1(:,1),A1(:,2),'.') A2=rand(50,2)+0.75; hold on plot(A2(:,1),A2(:,2),'.') hold on A3=rand(50,2)+1.5; plot(A3(:,1),A3(:,2),'.') 再用k近邻分类算法对这150组数据进行分类,取k=15近邻,程序如下# 程序 2: clear all

clc y=importdata('C:\Users\adm\Desktop\test.txt'); p=y(:,2:3); p=p'; Add=zeros(150,1); Add(1:50,:)=ones(50,1); Add(51:100,:)=2*ones(50,1); Add(101:150,:)=3*ones(50,1); figure(1),plot(y(:,1),Add,'g.'); hold on grid on; count=0; for i=1:3 for j=1:50 for k=1:150 distance(k)=mse(p(:,k)-p(:,(i-1)*50+j));%保存每个向量与所有训练样本之间的距离 end [d1 index1]=sort(distance);%对距离distance向量进行从小到大的排序 num=[0 0 0]; for m=1:20 % 考察num,存放的是排序后distance前20个属于每一类别的个数 if index1(m)<=50 num(1)=num(1)+1; elseif index1(m)<=100 num(2)=num(2)+1; else num(3)=num(3)+1; end end [d2 class]=max(num);%属于哪类的个数最多,就属于哪类,class 即就是该向量所属的类别 if i==class count=count+1; end A((i-1)*50+j)=class;%存放判断的结果 end end count rate=count/150 figure(2),plot(y(:,1),A,'r.');grid on;%画图分类 程序运行后得到 count =143 rate =0.9533

计算智能大作业.

题目:遗传算法在图像处理中的应用研究课程: 计算智能 姓名: 学号: 专业:模式识别与智能系统

遗传算法在图像处理中的应用 摘要 遗传算法是一种基于生物自然选择与遗传机理的随机搜索与优化方法。近年来,由于遗传算法求解复杂优化问题的巨大潜力,广泛应用在生物信息学、系统发生学、计算科学、工程学、经济学、化学、制造、数学、物理、药物测量学和其他领域之中,这种算法受到了国内外学者的广泛关注,尤其是在计算机科学人工智能领域中。本文介绍了遗传算法基本理论,描述了它的主要特点和基本性质;重点综述遗传算法在图像处理中的主要应用,特别是在图像分割、图像压缩、图像增强等方面的作用;深入研究目前遗传算法在图像处理领域中存在的问题,并结合自己的研究方向,对这些问题提出了一些深刻的见解,展望了今后遗传算法在图像处理应用的发展方向。 关键词:遗传算法,数字图像处理

1.背景介绍 遗传算法(Genetic Algorithm,GA)是一种自适应启发式群体型概率性迭代式的全局收敛搜索算法,其基本思想来源于生物进化论和群体遗传学,体现了适者生存、优胜劣汰的进化原则。使用遗传算法求解科学研究工作和工程技术中各种组合搜索和优化计算问题这一基本思想早在20世纪60年代初期就由美国Michigan大学的Holland教授提出,其数学框架也于20世纪60年代中期形成。由于GA的整体搜索策略和优化计算不依赖于梯度信息,所以它的应用范围非常广泛,尤其适合于处理传统方法难以解决的高度复杂的非线性问题。它在自适应控制、组合优化、模式识别、机器学习、规划策略、信息处理和人工生命等领域的应用中越来越展示出优越性。 图像处理(image processing),用计算机对图像进行分析,以达到所需结果的技术。又称影像处理。图像处理一般指数字图像处理。数字图像是指用数字摄像机、扫描仪等设备经过采样和数字化得到的一个大的二维数组,该数组的元素称为像素,其值为一整数,称为灰度值。图像处理技术的主要内容包括图像压缩,增强和复原,匹配、描述和识别3个部分。常见的处理有图像数字化、图像编码、图像增强、图像复原、图像分割和图像分析等。图像处理一般指数字图像处理。图像处理是计算机视觉中德一个重要研究领域,然而,在图像处理过程中,如扫描、特征提取、图像分割等不可避免地会存在一些误差,从而影响图像的效果。于是,研究者就开始探索怎么样才能使这些误差最小从而使计算机视觉达到实用化的重要要求,最终,遗传算法凭借其在这些图像处理中的优化计算方面独特的优势成为各种算法的佼佼者,得到了广泛的应用。 2.遗传算法的原理和基本步骤 遗传算法是一个不断迭代过程的搜索算法,它的基本处理流程如下图所示。

神经网络大作业

神经网络的基本特征及其在战斗识别领域的应用前景简介 —神经网络原理及应用报告 课程名称:神经网络原理及应用 课程编号: 指导教师: 学院: 班级: 姓名: 学号: 日期:

神经网络的基本特征及其在战斗识别领域的应用前景简介 摘要:在未来的军事对抗上,对军事打击的物理距离越来越大,对打击的反应时间的要求越来越短,对打击的精度要求越来越高。在这种情况下,迅速且精确的敌我识别系统显得尤其重要。传统的战斗识别方式早已遇到了瓶颈,而神经网络因为它在信息、信号处理、模式识别方面有些独到之处,近年来受到各国军界的普遍重视。 关键词:军事,战斗识别,模式识别,敌我识别,神经网络 1 引言 众多科学家预言,21世纪将是“生物”世纪。这说明生物学的研究和应用已进入了空前繁荣的时代。神经网络系统理论就是近十多年来受其影响而得到飞速发展的一个世界科学研究的前沿领域。这股研究热潮必然会影响到军事技术的研究。在现代战争中,因为远程制导武器的广泛应用,绝大多数军事打击都不再依靠肉眼来辨析敌我,战场上的敌我识别变成了一个重要的问题。据统计,1991年的海湾战争期间,美军与友军之间的误伤比例高达24%;在伊拉克战争期间,共发生17起误伤事件,死18人,伤47人。两场战争的伤亡结果表明,单一的敌我识别武器已不能适应现代战争复杂的作战环境和作战要求。所以提高军队战斗识别的效率是现代军事科技研究中一个极其重要的课题。神经网络作为新的热门技术,必然受到军事研究学者们的青睐。本文只选取战斗识别这一领域,简要探讨神经网络技术在战斗识别领域中的应用前景,但求管中一窥,抛砖引玉。 2 神经网络简介 2.1 神经网络的历史 神经网络的研究可以追溯到上个世纪的1890年。但真正展开神经网络理论研究却始于本世纪40年代。1943年,有心理学家McCulloch和数学家Pitts合作提出了形式神经元的数学模型——MP模型,从此开创了神经网络理论研究的新时代。MP模型以集体并行计算结构来描述神经网络及网络的运行机制,可完成有限的逻辑运算。 1949年,Hebb通过对大脑神经的细胞、人的学习行为和条件反射等一系列

第6章-k近邻算法--机器学习与应用第二版

第6章k 近邻算法 k 近邻算法(kNN 算法)由Thomas 等人在1967年提出[1]。它基于以下朴素思想:要确定一个样本的类别,可以计算它与所有训练样本的距离,然后找出和该样本最接近的k 个样本,统计这些样本的类别进行投票,票数最多的那个类就是分类结果。因为直接比较待预测样本和训练样本的距离,kNN 算法也被称为基于实例的算法。 6.1基本概念 确定样本所属类别的一种最简单的方法是直接比较它和所有训练样本的相似度,然后将其归类为最相似的样本所属的那个类,这是一种模板匹配的思想。k 近邻算法采用了这种思路,下图6.1是使用k 近邻思想进行分类的一个例子: 图6.1k 近邻分类示意图 在上图中有红色和绿色两类样本。对于待分类样本即图中的黑色点,我们寻找离该样本最近的一部分训练样本,在图中是以这个矩形样本为圆心的某一圆范围内的所有样本。然后统计这些样本所属的类别,在这里红色点有12个,绿色有2个,因此把这个样本判定为红色这一类。上面的例子是二分类的情况,我们可以推广到多类,k 近邻算法天然支持多类分类问题。 6.2预测算法 k 近邻算法没有要求解的模型参数,因此没有训练过程,参数k 由人工指定。它在预测时才会计算待预测样本与训练样本的距离。 对于分类问题,给定l 个训练样本(),i i y x ,其中i x 为维特征向量,i y 为标签值,设定

参数k ,假设类型数为c ,待分类样本的特征向量为x 。预测算法的流程为: 1.在训练样本集中找出离x 最近的k 个样本,假设这些样本的集合为N 。 2.统计集合N 中每一类样本的个数,1,...,i C i c =。 3.最终的分类结果为arg max i i C 。 在这里arg max i i C 表示最大的i C 值对应的那个类i 。如果1k =,k 近邻算法退化成最近邻算法。 k 近邻算法实现简单,缺点是当训练样本数大、特征向量维数很高时计算复杂度高。因为每次预测时要计算待预测样本和每一个训练样本的距离,而且要对距离进行排序找到最近的k 个样本。我们可以使用高效的部分排序算法,只找出最小的k 个数;另外一种加速手段是k-d 树实现快速的近邻样本查找。 一个需要解决的问题是参数k 的取值。它需要根据问题和数据的特点来确定。在实现时可以考虑样本的权重,即每个样本有不同的投票权重,这称方法称为为带权重的k 近邻算法。另外还其他改进措施,如模糊k 近邻算法[2]。 kNN 算法也可以用于回归问题。假设离测试样本最近的k 个训练样本的标签值为i y ,则对样本的回归预测输出值为: 1/k i i y y k =??= ??? ∑即所有邻居的标签均值,在这里最近的k 个邻居的贡献被认为是相等的。同样的也可以采用带权重的方案。带样本权重的回归预测函数为: 1/k i i i y w y k =??= ??? ∑其中i w 为第i 个样本的权重。权重值可以人工设定,或者用其他方法来确定,例如设置为与距离成反比。 6.3距离定义 kNN 算法的实现依赖于样本之间的距离值,因此需要定义距离的计算方式。本节介绍几种常用的距离定义,它们适用于不同特点的数据。 两个向量之间的距离为() ,i j d x x ,这是一个将两个维数相同的向量映射为一个实数的函数。距离函数必须满足以下条件,第一个条件是三角不等式:()()() ,,,i k k j i j d d d +≥x x x x x x 这与几何中的三角不等式吻合。第二个条件是非负性,即距离不能是一个负数: (),0 i j d ≥x x 第三个条件是对称性,即A 到B 的距离和B 到A 的距离必须相等:

《模式识别》大作业人脸识别方法

《模式识别》大作业人脸识别方法 ---- 基于PCA 和欧几里得距离判据的模板匹配分类器 一、 理论知识 1、主成分分析 主成分分析是把多个特征映射为少数几个综合特征的一种统计分析方法。在多特征的研究中,往往由于特征个数太多,且彼此之间存在着一定的相关性,因而使得所观测的数据在一定程度上有信息的重叠。当特征较多时,在高维空间中研究样本的分布规律就更麻烦。主成分分析采取一种降维的方法,找出几个综合因子来代表原来众多的特征,使这些综合因子尽可能地反映原来变量的信息,而且彼此之间互不相关,从而达到简化的目的。主成分的表示相当于把原来的特征进行坐标变换(乘以一个变换矩阵),得到相关性较小(严格来说是零)的综合因子。 1.1 问题的提出 一般来说,如果N 个样品中的每个样品有n 个特征12,,n x x x ,经过主成分分析,将 它们综合成n 综合变量,即 11111221221122221122n n n n n n n nn n y c x c x c x y c x c x c x y c x c x c x =+++?? =+++?? ? ?=+++? ij c 由下列原则决定: 1、i y 和j y (i j ≠,i,j = 1,2,...n )相互独立; 2、y 的排序原则是方差从大到小。这样的综合指标因子分别是原变量的第1、第2、……、 第n 个主分量,它们的方差依次递减。 1.2 主成分的导出 我们观察上述方程组,用我们熟知的矩阵表示,设12n x x X x ??????= ?????? 是一个n 维随机向量,12n y y Y y ??????=?????? 是满足上式的新变量所构成的向量。于是我们可以写成Y=CX,C 是一个正交矩阵,满足CC ’=I 。 坐标旋转是指新坐标轴相互正交,仍构成一个直角坐标系。变换后的N 个点在1y 轴上

模式识别 最近邻法和K近邻法MATLAB实现

最近邻法和k-近邻法 学号:02105120姓名:吴林一.基本概念: 最近邻法:对于未知样本x,比较x与N个已知类别的样本之间的欧式距离,并决策x与距离它最近的样本同类。 K近邻法:取未知样本x的k个近邻,看这k个近邻中多数属于哪一类,就把x归为哪一类。K取奇数,为了是避免k1=k2的情况。 二.问题分析: 要判别x属于哪一类,关键要求得与x最近的k个样本(当k=1时,即是最近邻法),然后判别这k个样本的多数属于哪一类。 可采用欧式距离公式求得两个样本间的距离s=sqrt((x1-x2)^2+(y1-y2)^2) 三.算法分析: 该算法中任取每类样本的一半作为训练样本,其余作为测试样本。例如iris中取每类样本的25组作为训练样本,剩余25组作为测试样本,依次求得与一测试样本x距离最近的k 个样本,并判断k个样本多数属于哪一类,则x就属于哪类。测试10次,取10次分类正确率的平均值来检验算法的性能。 四.MATLAB代码: 最近邻算实现对Iris分类 clc; totalsum=0; for ii=1:10 data=load('iris.txt'); data1=data(1:50,1:4);%任取Iris-setosa数据的25组 rbow1=randperm(50); trainsample1=data1(rbow1(:,1:25),1:4); rbow1(:,26:50)=sort(rbow1(:,26:50));%剩余的25组按行下标大小顺序排列testsample1=data1(rbow1(:,26:50),1:4); data2=data(51:100,1:4);%任取Iris-versicolor数据的25组 rbow2=randperm(50); trainsample2=data2(rbow2(:,1:25),1:4); rbow2(:,26:50)=sort(rbow2(:,26:50)); testsample2=data2(rbow2(:,26:50),1:4); data3=data(101:150,1:4);%任取Iris-virginica数据的25组 rbow3=randperm(50); trainsample3=data3(rbow3(:,1:25),1:4); rbow3(:,26:50)=sort(rbow3(:,26:50)); testsample3=data3(rbow3(:,26:50),1:4);

西电数字信号处理大作业

第二章 2.25 已知线性时不变系统的差分方程为 若系统的输入序列x(x)={1,2,3,4,2,1}编写利用递推法计算系统零状态响应的MATLAB程序,并计算出结果。 代码及运行结果: >> A=[1,-0.5]; >> B=[1,0,2]; >> n=0:5; >> xn=[1,2,3,4,2,1]; >> zx=[0,0,0];zy=0; >> zi=filtic(B,A,zy,zx); >> yn=filter(B,A,xn,zi); >> figure(1) >> stem(n,yn,'.'); >> grid on;

2.28图所示系统是由四个子系统T1、T2、T3和T4组成的,分别用单位脉冲响应或差分方程描述为 T1: 其他 T2: 其他 T3: T4: 编写计算整个系统的单位脉冲响应h(n),0≤n≤99的MATLAB程序,并计算结果。 代码及结果如下: >> a=0.25;b=0.5;c=0.25; >> ys=0; >> xn=[1,zeros(1,99)]; >> B=[a,b,c]; >> A=1; >> xi=filtic(B,A,ys); >> yn1=filter(B,A,xn,xi); >> h1=[1,1/2,1/4,1/8,1/16,1/32]; >> h2=[1,1,1,1,1,1]; >> h3=conv(h1,h2); >> h31=[h3,zeros(1,89)]; >> yn2=yn1+h31; >> D=[1,1];C=[1,-0.9,0.81]; >> xi2=filtic(D,C,yn2,xi); >> xi2=filtic(D,C,ys); >> yn=filter(D,C,yn2,xi); >> n=0:99; >> figure(1) >> stem(n,yn,'.'); >> title('单位脉冲响应'); >> xlabel('n');ylabel('yn');

k近邻模型和算法

k 近邻模型和算法 2.1 K 近邻模型 K 近邻法使用的模型实际上对应于对特征空间的划分。模型由三个基本要素 —-距离度量、k 值得选择和分类规则决定。 2.1.1 模型 K 近邻法中,当训练集、距离度量(如欧式距离)、k 值及分类决策规则(如多数表决)确定后,对于任何一个新的输入实例,它所属的类唯一确定。这相当于根据上述要素将特征空间划分为一些子空间,确定子空间里的每个点所述的类。这一事实从最近邻算法中可以看得很清楚。 特征空间中,对每个实例点i x ,距离该点比其他店更近的所有点组成一个区域,叫做单元。每个训练实例点拥有一个单元,所有训练实例点的单元构成对特 征空间的一个划分。最近邻法将实例i x 的类i y 作为其单元中所有点的类标记。这样,每个单元的实例点的类别时确定的。下图是二维特征空间划分的一个例子。 2.1.2 距离度量

特征空间中两个实例点的距离是两个点相似程度的反映。K 近邻模型的特征空间一般是n 维实数向量空间Rn 。使用的距离是欧式距离,但也可以是其他距离,如更一般的Lp 或闽科夫斯基距离。 设特征空间χ是n 维实数向量空间n R ,i x ,,),,,(,) ()2()1(T n i i i i j x x x x x =∈χ ,),,,() ()2()1(T n j j j j x x x x =j i x x ,的距离定义为P L p n l p l j l i j i p x x x x L 11),(? ?? ??-=∑= 这里1≥p 。当2=p 时,称为欧式距离,即 2 1 122,??? ??-=∑=n l l j l i j i x x x x L ) ( 当 时,称为曼哈顿距离,即 ∑=-=n l l j l i j i x x x x L 1 1,) ( 当∞=p 时,它是各个距离坐标的最大值,即 l j l i l j i x x x x L -=∞max ),( 2.1.3 K 值的选择 k 值的选择会对k 近邻法的结果产生重大影响。 如果选择较小的k 值,就相当于用较小的邻域中的训练实例进行预测,“学习”的近似误差会减小,只有与输入实例较近的(相似的)训练实例才会对预测结果起作用。但缺点是“学习”的估计误差会增大,预测结果会对近邻的实例点非常敏感。如果近邻的实例点恰巧是噪声,预测就会出错。换句话说,k 值得减小就意味着整体模型变得复杂,容易发生过拟合。 如果选择较大的k 值,就相当于用较大邻域中的训练实例进行预测。其优点是可以减少学习的估计误差。但缺点是学习的近似误差会增大。这时与输入实例较远的(不相似的)训练实例也会对预测起作用,是预测发生错误。K 值得增大就意味着整体的模型变得简单。 如果k=N ,那么无论输入实例是什么,都将简单的预测它属于在训练实例中最多的类。这时,模型过于简单,完全忽略训练实例中的大量有用信息,是不可取的。 2.1.4 分类决策规则 1 =p

华南理工大学《模式识别》大作业报告

华南理工大学《模式识别》大作业报告 题目:模式识别导论实验 学院计算机科学与工程 专业计算机科学与技术(全英创新班) 学生姓名黄炜杰 学生学号201230590051 指导教师吴斯 课程编号145143 课程学分2分 起始日期2015年5月18日

实验概述 【实验目的及要求】 Purpose: Develop classifiers,which take input features and predict the labels. Requirement: ?Include explanations about why you choose the specific approaches. ?If your classifier includes any parameter that can be adjusted,please report the effectiveness of the parameter on the final classification result. ?In evaluating the results of your classifiers,please compute the precision and recall values of your classifier. ?Partition the dataset into2folds and conduct a cross-validation procedure in measuring the performance. ?Make sure to use figures and tables to summarize your results and clarify your presentation. 【实验环境】 Operating system:window8(64bit) IDE:Matlab R2012b Programming language:Matlab

相关文档
最新文档