随机过程 第五章 连续时间的马尔可夫链

随机过程 第五章 连续时间的马尔可夫链
随机过程 第五章 连续时间的马尔可夫链

第五章 连续时间的马尔可夫链

5.1连续时间的马尔可夫链

考虑取非负整数值的连续时间随机过程}.0),({≥t t X

定义5.1 设随机过程}.0),({≥t t X ,状态空间}0,{≥=n i I n ,若对任意

121...0+<<<≤n t t t 及I i i i n ∈+121,...,,有

})(,...)(,)()({221111n n n n i t X i t X i t X i t X P ====++

=})()({11n n n n i t X i t X P ==++ (5.1) 则称}.0),({≥t t X 为连续时间马尔可夫链.

由定义知,连续时间马尔可夫链是具有马尔可夫性的随机过程,即过程在已知现在时刻n t 及一切过去时刻所处状态的条件下,将来时刻1+n t 的状态只依赖于现在状态而与过去无关.

记(5.1)式条件概率一般形式为

),(})()({t s p i s X j t s X P ij ===+ (5.2) 它表示系统在s 时刻处于状态i,经过时间t 后转移到状态j 的转移概率.

定义5.2 若(5.2)式的转移概率与s 无关,则称连续时间马尔可夫链具有平稳的或齐次的转移概率,此时转移概率简记为 ),(),(t p t s p ij ij =

其转移概率矩阵简记为).0,,()),(()(≥∈=t I j i t p t P ij

以下的讨论均假定我们所考虑的连续时间马尔可夫链都具有齐次转移概率.简称为齐次马尔可夫过程.

假设在某时刻,比如说时刻0,马尔可夫链进入状态i,而且接下来的s 个单位时间单位中过程未离开状态i,(即未发生转移),问随后的t 个单位时间中过程仍不离开状态i 的概率是多少呢?由马尔可夫我们知道,过程在时刻s 处于状态i 条件下,在区间[s,s+t]中仍然处于i 的概率正是它处于i 至少t 个单位的无条件概率..若记

i h 为记过程在转移到另一个状态之前停留在状态i 的时间,则对一切s,t 0≥有

},{}{t h P s h t s h P i i i >=>+>

可见,随机变量i h 具有无记忆性,因此i h 服从指数分布.

由此可见,一个连续时间马尔可夫链,每当它进入状态i,具有如下性质: (1) 在转移到另一状态之前处于状态i 的时间服从参数为i v 的指数分布;

(2) 当过程离开状态i 时,接着以概率ij p 进行状态j,1=∑≠i

j ij p .

上述性质也是我们构造连续时间马尔可夫链的一种方法.

当∞=i v 时,称状态i 为瞬时状态,因为过程一旦进入此状态立即就离开.0=i v 时,称状态i 为吸收状态,因为过程一旦进入状态就永远不再离开了.尽管瞬时状态在理论上是可能的,但以后假设对一切i, ∞<≤i v 0.因此,实际上一个连续时间的马尔可夫链是一个这样的随机过程,它按照一个离散时间的马尔可夫链从一个状态转移到另一个状态,但在转移到下一个状态之前,它在各个状态停留的时间服从指数分布.此外在状态i 过程停留的时间与下一个到达的状态必须是相互独立的随机变量.因此下一个到达的状态依赖于i h ,那么过程处于状态i 已有多久的信息与一个状态的预报有关,这与马尔可夫性的假定相矛盾.

定理5.1 齐次马尔可夫过程的转移概率具有下列性质:

;0)1(≥ij p (2)

;1=∑

∈ij I

j p

(3) ∑∈=+I

k kj ik ij s p t p s t p )()()(.

其中(3)式即为连续时间齐次马尔可夫链的切普曼—柯尔哥洛夫方程. 证明 只证(3).由全概率公式及马尔可夫性可得 ===+=+)})0()({)(i X j s t X P s t p ij =∑∈===+I

k i X k t X j s t X P })0()(,)({

=})()({})0()({k t X j s t X P i X k t X P I

k ==+==∑∈

∑∈=I

k kj ik s p t p )()(.

对于转移概率)(t p ij ,一般还假定它满足:

???≠==→.

,0,1)(lim 0j i j

i t p ij t

(5.3)

称(5.3)式为正则条件.正则条件说明,过程刚进入某状态不可能立即又跳跃到另一状态.这正好说明一个物理系统要在有限时间内发生限多次跳跃,从而消耗无穷多的能量这是不可能的.

定义5.3 对于任 一0≥t 记 },)({)(j t X P t p j ==

,},)0({)0(I j j X P p p j j ∈===

分别称}{},),({,I j p I j t p j j ∈∈ 齐次马尔可夫过程的绝对概率分布和初始概率分布.

定理5.2齐次马尔可夫过程的绝对概率及有限维概率分布具有下列性质: (1) ,0)(≥t p j (2)

,1)(=∑

∈t p j I

j

(3) )()(t p p t p ij I

i i j ∑∈=;

(4) );()()(h p t p h t p ij I

i i j ∑∈=+

(5)

).()...(})(,...,)({112111211-∈--==

==-∑n n i i i i ii I

i i n n t t p t t p p p i t X i t X p n n

例5.1试证明泊松过程}0),({≥t t X 为连续时间齐次马尔可夫链. 证明 先证泊松过程具有马尔可夫性,再证明齐次性.由泊松过程的定义

它是独立增量过程,且X(0)=0.11,...0+<<

})(,...,)()({1111n n n n i t X i t X i t X P ===++

= ,.)0()()()({1111i X t X i i t X t X P n n n n =--==-++ =,111212)()(,...)()(---=--=-n n n n i i t X t X i i t X t X } = })()({11n n n n i i t X t X P -=-++ . 另一方面,因为

})()({11n n n n i t X i t X P ==++

=})0()()()({11n n n n n n i X t X i i t X t X P =--=-++ =})()({11n n n n i i t X t X P -=-++

所以})(,...,)()({1111n n n n i t X i t X i t X P ===++=})()({11n n n n i t X i t X P ==++. 即泊松过程是一个连续时间马尔可夫过程.以下证明齐次性. 当i j ≥ 时,由泊松过程的定义

})()({i s X j t s X P ==+= })()({i j s X t s X P -=-+

=)!

()(i j t e

i

j t

---λλ j

?????<≥-==--i j i

j i j t e t p t s p i j t ij ij ,0,)!

()()(),(λλ, 即转移概率只与t 有关,泊松过程具有齐次性.

5.2柯尔莫哥洛夫微分方程

对于连续时间齐次马尔可夫链转移概率)(t p ij 的求解一般比较复杂.下面首先讨论)(t p ij 的可微性及)(t p ij 满足的柯尔莫哥洛夫微分程.

引理5.1 设齐次马尔可夫过程满足正则性条件(5.3),则对于任意固定的

)(,,t p I j i ij ∈是t 的一致连续函数.

证明 设h>0,由定理5.1得

)()()()()(t p t p h p t p h t p ij rj I

r ir ij ij -=-+∑∈

)()()()()(t p t p h p t p h p ij ij ii rj i

r ir -+=∑≠

=)()](1[)()(t p h p t p h p ij ii rj i

r ir --=∑≠

故有)],(1[)()](1[)()(h p t p h p t p h t p ii ij ii ij ij --≥--=-+ ),(1)()()()()(h p h p t p h p t p h t p ii i

r ir rj i

r ir ij ij -=≤≤-+∑∑≠≠

因此

).(1)()(h p t p h t p ii ij ij -≤-+

对于h<0,同样有).(1)()(h p t p h t p ii ij ij --≤-+ 综上所述得到

).(1)()(h p t p h t p ii ij ij -≤-+ 由正则性条件知

,0)()(lim 0=-+→t p h t p ij ij h 即)(t p ij 关于t 是一致连续的.

以下我们恒设齐次马尔可夫过程满足正则性条件(5.3)式.

定理5.3 设)(t p ij 是齐次马尔可夫过程的转移概率,则下列极限存在 (1);)

(1lim 0

∞≤==??-→?ii i ii t q v t t p (2).,)(lim 0

j i q t

t p ij ij t ≠∞<=??→?

我们称ij q 为齐次马尔可夫过程从状态i 到状态j 的转移概率或跳跃强度.定理中的极限的概率意义为:在长为t ?的时间区间内,过程从状态i 转移到另一其他状态的转移概率为)(1t p ii ?-等于t q ii ?加一个比t ?高阶的无穷小量,而过程从状态i 转移到状态j 的转移概率为)(t p ij ?等于t q ij ?加一个比t ?高阶的无穷小量. 推论 对有限齐次马尔可夫过程,有 ∞<=∑≠i

j ij ii q q

证明 由定理5.1 ,有

)()(1,1)(t p t p t p

i

j ij ii I

j ij

?=?-=?∑∑≠∈

由于求和是在有限集中进行,故有

.)(lim )

(1lim 00∑∑≠≠→?→?=??=??-=i

j ij ij i j t ii t ii q t t p t t p q (5.4)

对于状态空间无限的齐次马尔可夫过程,一般只有 ∑≠≥i

j ij ii q q .

若连续时间齐次马尔可夫是具有有限状态空间I={0,1,2,…,n},则其转移速率构

成以下形式的矩阵

?

?

???

???????---=nn n n n n q q q q q q

q q q Q .....................

1

11110

00100 (5.5) 由(5.4)式知,Q 矩阵的每一行元素之和为0,对角线元素为负或0,其余.0,≥ij q 利用Q 矩阵可以推出任意时间间隔t 的转移概率所满足的方法组,从而可以求解转移概率.

由切普曼---柯尔莫哥洛夫方程有 ),()()(t p h p h t p I

k kj ik ij ∑∈=+

或等价地

)()](1[)()()()(t p h p t p h p t p h t p ij ii kj i

k ik ij ij --=-+∑≠

两边除以h 后令0→h 取极限,应用定理5.3得到 )()()

(lim )

()(lim 00

t p q t p h

h p h

t p h t p ij ii kj i

k ik h ij ij h -=-+∑

≠→→ (5.6) 假定在(5.6)式的右边可交换极限与求和,再运用定理5.3,于是得到以下结论: 定理5.4 (柯尔莫哥洛夫向后方程)假设,ii i

k ik q q =∑≠则对一切i,j 及0≥t ,有

,)()(ij ii i

k kj ik ij

p q t p q t p -='∑≠ (5.7) 证明 只要证明(5.6)式右边极限与求和可交换次序.现在对于任意固定的N,有

≥∑

≠→)()

(inf

lim 0t p h

h p kj i

k ik h )()()

(inf lim ,,0t p q t p h h p kj N

k i k ik kj N

k i k ik h ∑∑

<≠<≠→= 因为上式对一切N 成立,所以

)()()

(inf

lim ,

,

0t p q t p h h p kj i k ik kj i k ik h ∑∑

≠≠→≥ (5.8) 为了倒转不等式,注意对于N>i,由于,1)(≤t p kj 所以 ≤∑

≠→)()

(sup lim ,

0t p h

h p kj i k ik h ≤+≤∑∑

≥<≠→])

()()(sup[

lim ,0N

k ik kj N

k i k ik h h h p t p h h p ≤--+≤∑∑

<≠<≠→])()(1)()(sup[

lim ,,0N

k i k ik ii kj N

k i k ik h h h p h h p t p h h p ,)(,,∑∑<≠<≠-

+≤

N

k i k ik

ii kj N

k i k ik

q

q t p q

令∞→N ,由定理5.3和条件得

)()()

(sup lim ,

,

0t p q t p h h p kj i k ik kj i k ik h ∑∑

≠≠→≤. 上式连同(5.8)可得 )()()

(lim ,

,

0t p q t p h h p kj i k ik kj i k ik h ∑∑

≠≠→=.

定理5.4中)(t p ij 满足的微分方程组以柯尔莫可洛夫向后方程著称.称它们为

向后方程,是因为在计算时刻t+h 的状态的概率分布时我们对退后到时刻h 的状态取条件,即我们从

)

()(})0()({..

})(,)0()({)(h p t p i X k h X P k h X i X j h t X P h t p ik I

k kj I

k ij ∑∑∈∈======+=+

开始计算.

对时刻t 的状态取条件,我们可以导出另一组方程,称为柯尔莫哥洛夫向前方程.可得

),()()(h p t p h t p kj I

k ik ij ∑∈=+

)()()()()(t p h p t p t p h t p ij kj I

k ik ij ij -=-+∑∈

=)()](1[)()(t p h p h p t p ij jj kj j

k ik --=∑≠,

所以 )}.()

(1)()({lim )

()(lim 00

t p h h p h h p t p h

t p h t p ij jj kj j

k ik h ij ij h --=-+∑≠→→

假定我们能交换极限与求和,则由定理5.3便得到

),()()(t p q q t p t p ij ii j

k kj ik ij

-='∑≠ 令人遗憾的是上述极限与求和的交换不是恒成立,所以上式并非总是成立.然而在

大多数模型中----包括全部生灭过程与全部有限状态的模型,它们是成立的. 定理5.5(柯尔莫哥洛夫向前方程) 在适当的正则条件下,

,)()()(jj ij kj i

k ik ij

q t p q t p t p -='∑≠ (5.9) 利用方程组(5.7)或(5.9)及初始条件 .,0)0(,1)0(j i p p ij ii ≠==

我们可以解得)(t p ij .柯尔莫哥洛夫向后和向前方程虽然形式不同,但是可以证明它们所求得的解)(t p ij 是相同的.在实际应用中,当固定最后所处状态j,研究)(t p ij 时(i=0,1,2,…,n),采用向后方程比较方便;当固定状态i,研究)(t p ij 时(j=0,1,2,…,),则采用向前方程较方便.

向后方程和向前方程可以写成矩阵形式

),()(t QP t P =' (5.10) ,)()(Q t P t P =' (5.11) 其中

?????

???????---= (222120121110)

020100q q q q q q

q q q Q ?????

???????=......

...

...

(222120121110)

020100p p p p p p

p p p P 这样,连续时间马尔可夫链的转移概率的求解问题就是矩阵微分方程的求解问题,其转移概率由其转移速率矩阵Q 决定.特别地,若Q 是一个有限维矩阵,则(5.10)和(5.11)的解为 .!)()(0

∑∞

===j j

Qt

j Qt e

t P

定理5.6 .齐次马尔可夫过程在t 时刻处于状态I j ∈的绝对概率)(t p j 满足下列方程:

.)()()(kj j

k k jj j j q t p q t p t p ∑≠+-=' (5.12)

证明 由定理5.2,有)()(t p p t p ij I

i i j ∑∈=t

将向前方程(5.9)式两边乘以,i p 并对i 求和得

.)())(()(kj j

k ik

i

I

i jj ij

i

I

i ij

I

i i

q t p

p q t p

p t p p ∑∑

∑∑≠∈∈∈+-='

故 .)()()(kj j

k k jj j j q t p q t p t p ∑≠+-=' .

与离散马尔可夫链类似,我们讨论转移概率 )(t p ij 当 ∞→t 时的极限分布与平稳分布的有限性质.

定义5.4 设)(t p ij 为连续时间马尔可夫链的转移概率,若存在时刻 21,t t ,使得 ,0)(1>t p ij ,0)(2>t p ij

则称状态i 和j 是互通的.若所有状态都是互通的,则称此马尔可夫链为不可约

的.

定理5.7 设连续时间的马尔可夫是不可约的,则有下列性质:

(1) 若它是正常返的,则极限)(lim t p ij t ∞→存在且等于.,0I j j ∈>π这里

.,0I j j ∈>π是方程组

1,==∑∑∈≠I

j j kj j

k k jj j q q πππ (5.13)

的唯一非负解.此时称.,0{I j j ∈>π是该过程的平稳分布,并且有 .)(lim j j t t p π=∞→ (2) 若它是零常返的或非常返的,则

.,,0)(lim )(lim I j i t p t p j t ij t ∈==∞→∞→

在实际问题中,有些问题可以用柯尔莫哥洛夫方程直接求解,有些问题虽然不能求解但是可以用方程(5.13)求解.

例5.2 考虑两个状态的连续时间马尔可夫链,在转移到状态1之前链在状态0停留的时间是参数为λ的指数变量,而在回到状态0之前它停留在状态1的时间是参数为μ的指数变量,显然该链是一个齐次马尔可夫过程,其状态转移概率为 ),()(01h o h h p +=λ),()(10h o h h p +=μ

由定理5.3知

由柯尔莫哥洛夫向前方程得到

)()()(000100

t p t p t p λμ-='=,)()(00μμλ++-t p 其中最后一个等式来自).(1)(0001t p t p -=因为,1)0(00=p 由常数变易法得 ,)()(00t e t p μλμ

λλμ

λμ+-++

+=

若记,,00μ

λμ

μμ

λλλ+=

+=

,)()(0000t e t p μλλμ+-+=

类似地由向前方程)()()(010001

t p t p t p μλ-=' 可解得 ,)()(0001t e t p μλλλ+--=

,

)()(lim )

(1lim 100

1010

011011q h p dh

d

h

h p h h p q h h h ===

=-==→→μ,)()

(lim )(1lim 0100101

000000q h p dh

d

h

h p h h p q h h h ===

=-==→→λ

由对称性知,)()(0011t e t p μλμλ+-+= ,)()(0010t e t p μλμμ+--= 转移概率的极限为

),(lim )(lim 10000t p t p t t ∞→∞→==μ),(lim )(lim 11001t p t p t t ∞→∞→==λ 由此可见,当∞→t 时, )(t p ij 的极限存在且与i 无关.定理5.6知,平稳分布为 0100,λπμπ== 若取初始分布为平稳分布,即

,}0)0({00μ===p X P ,}1)0({01λ===p X P 则过程在时刻t 的绝对概率分布为 )()()(1010000t p p t p p t p +=

=0)(000)(00]1[][μμλμλμμλμλ=-+++-+-t t e e

=0)(000)(00][]1[λμλλλμμλμλ=++-+-+-t t e e .

例5.3 机器维修问题.设例5.2中状态0代表某机器正常工作状态1代表机器出故障.状态转移概率与例5.2相同,即在h 时间内,机器从正常工作变为出故障的概率为),()(01h o h h p +=λ在h 时间内,机器从有故障变为经修复后正常工作的概率为),()(10h o h h p +=μ试求在t=0时正常工作的机器,在t=5时为正常工作的概率. 解 由例5.2已求得该过程的Q 矩阵为

???

?

??--=μμλλQ .

根据题意,要求机器最后所处的状态为正常工作,只需计算)(00t p 即可. 由例5.2知

,)()(0000t e t p μλλμ+-+=,,00μ

λμμμ

λλλ+=

+=

故 ,)5(5)(0000μλλμ+-+=e p 因为P{X(0)=0}=1=,0p 所以

====)5()5(}0)5({0000p p p X P .)5(5)(0000μλλμ+-+=e p

)

()()(1010101t p p t p p t p +=

5.3 生灭过程

连续时间马尔可夫链的一类重要特殊情形是生灭过程,它的特征是在很短的时间内,系统的状态只能从状态i 转移到状态i-1或i+1或保持不变,确切定义如下. 定义5.5 设齐次马尔可夫过程}0),({≥t t X 的状态空间为I={0,1,2,…},转移概率为)(t p ij ,如果

,0),()(1,>+=+i i i i h o h h p λλ

,0,0),()(01,=>+=-μμμi i i i h o h h p ),()(1)(,h o h h p i i i i ++-=μλ

则称 }0),({≥t t X 为生灭过程,i λ为出生率,

i μ为死亡率.

若,λλi i =μλμμ,(,i i =是正常数),则称}0),({≥t t X 为线性生灭过程.

若0≡i μ,则称}0),({≥t t X 为纯生过程. 若0≡i λ,则称}0),({≥t t X 为纯灭过程. 生灭过程可作如下概率解释:若以X(t)表示一个生物群体在t 时刻的大小,则在很短的时间h 内(不计高阶无穷小),群体变化有三种可能,状态由i 变到i+1,即增加一个个体,其概率为h i λ;.状态由i 变到i-1,即减少一个个体,.其概率为h i μ;群体大小保持不变,其概率为.)(1h i i μλ+- 由定理5.3得到 ,0,)()(,0≥+=-==i h p dh

d

t q i i h ii ii μλ ???≥-=≥+===

=,1,1,,0,1,)()(0i i j i i j h p dh d

t q i

i h ij ij μλ

,2,0≥-=j i q ij 故柯尔莫哥洛夫向前方程为

.,),()()()()(1,11,1I j i t p t p t p t p j i j ij j j j i j ij

∈++-='++--μμλλ 故柯尔莫哥洛夫向后方程为

.,),()()()()(,11,I j i t p t p t p t p j i i ij j j j i i ij

∈++-='+-λμλμ 因为上述方程组的求解较为困难,我们讨论其平稳分布.由(5.13)式,有 ,1100πμπλ=

,

2),()(,≥-=j i h o h p j i

.1,)(1111≥+=+++--j j j j j j j j πμπλπμλ 逐步递推得

,010

1πμλπ=…, ,11--=j j

j j πμλπ 再利用11=∑∞

=j j π,得平稳分布,

1

1211100)......1(-∞

=-∑+=j j

j μμμλλλπ,

1

12111021110)......1(......-∞=--∑+=j j

j j j j μμμλλλμμμλλλπ

例5.4 生灭过程例子

M/M/S 排队系统.假设顾客按照参数为λ的泊松过程来到一个有s 个服务员的服务站,即相继来到之间的时间是均值为λ

1的独立指数随机变量,每一个顾客一

来到,如果有服务员空闲,则直接进行服务,否则此顾客加入排队系列.当一个服务员结束对一位顾客的服务时顾客就离开服务系统,排队中的下一顾客进入服务. 假定相继的服务时间是独立的指数随机变量,均值为μ1.如果我们以X(t)记时刻t

系统中的人数,则}0),({≥t t X 是生灭过程

???>≤≤=,,,

1,s n s s n n n μμμ

.0,≥=n n λλ

M/M/s 排队系统中M 表示马尔可夫过程,s 代表s 个服务员.特别在M/M/1排队系

统中,μμλλ==n n ,,若1<μλ,则由(5.14)可得

.0),1()()(1)(1

≥-

=+=

∑∞

=n n n n

n

n μ

λ

μλμ

λμ

λπ

随机过程 第五章 连续时间的马尔可夫链

第五章 连续时间的马尔可夫链 5.1连续时间的马尔可夫链 考虑取非负整数值的连续时间随机过程}.0),({≥t t X 定义5.1 设随机过程}.0),({≥t t X ,状态空间}0,{≥=n i I n ,若对任意 121...0+<<<≤n t t t 及I i i i n ∈+121,...,,有 })(,...)(,)()({221111n n n n i t X i t X i t X i t X P ====++ =})()({11n n n n i t X i t X P ==++ (5.1) 则称}.0),({≥t t X 为连续时间马尔可夫链. 由定义知,连续时间马尔可夫链是具有马尔可夫性的随机过程,即过程在已知现在时刻n t 及一切过去时刻所处状态的条件下,将来时刻1+n t 的状态只依赖于现在状态而与过去无关. 记(5.1)式条件概率一般形式为 ),(})()({t s p i s X j t s X P ij ===+ (5.2) 它表示系统在s 时刻处于状态i,经过时间t 后转移到状态j 的转移概率. 定义5.2 若(5.2)式的转移概率与s 无关,则称连续时间马尔可夫链具有平稳的或齐次的转移概率,此时转移概率简记为 ),(),(t p t s p ij ij = 其转移概率矩阵简记为).0,,()),(()(≥∈=t I j i t p t P ij 以下的讨论均假定我们所考虑的连续时间马尔可夫链都具有齐次转移概率.简称为齐次马尔可夫过程. 假设在某时刻,比如说时刻0,马尔可夫链进入状态i,而且接下来的s 个单位时间单位中过程未离开状态i,(即未发生转移),问随后的t 个单位时间中过程仍不离开状态i 的概率是多少呢?由马尔可夫我们知道,过程在时刻s 处于状态i 条件下,在区间[s,s+t]中仍然处于i 的概率正是它处于i 至少t 个单位的无条件概率..若记 i h 为记过程在转移到另一个状态之前停留在状态i 的时间,则对一切s,t 0≥有 },{}{t h P s h t s h P i i i >=>+> 可见,随机变量i h 具有无记忆性,因此i h 服从指数分布. 由此可见,一个连续时间马尔可夫链,每当它进入状态i,具有如下性质: (1) 在转移到另一状态之前处于状态i 的时间服从参数为i v 的指数分布;

107509-概率统计随机过程课件-第十三章马尔可夫链第一节第二节(上)

第十三章 马尔可夫链 马尔可夫过程是一类特殊的随 机过程, 马尔可夫链是离散状态的马尔可夫过程,最初是由俄国数学家马尔可夫1896年提出和研究的. 应用十分广泛,其应用领域涉及 计算机,通信,自动控制,随机服务,可靠性,生物学,经济,管理,教育,气象,物理,化学等等. 第一节 马尔可夫链的定义 一.定义 定义 1 设随机过程} ),({T t t X ∈的状态空间S 是有限集或可列集,对任意正整数n ,对于T 内任意1+n 个参数121+<

如果条件概率 })(,,)(,)(|)({221111n n n n j t X j t X j t X j t X P =???===++})(|)({11n n n n j t X j t X P ===++,(13.1) 恒成立,则称此过程为马尔可夫链. 式(13.1)称为马尔可夫性,或称无后效性. 马氏性的直观含义可以解释如下: 将n t 看作为现在时刻,那末,121,,,-???n t t t 就是过去时刻,而1+n t 则是将来时刻.于是,(13.1)式是说,当已知系统现时情况的条件下,系统将来的发展变化与系统的过去无关.我们称之为无后效性. 许多实际问题都具有这种无后 效性. 例如 生物基因遗传从这一代 到下一代的转移中仅依赖于这一代而与以往各代无关. 再如,每当评估一个复杂的计 算机系统的性能时,就要充分利用系统在各个时刻的状态演变所具有

的通常概率特性:即系统下一个将到达的状态,仅依赖于目前所处的状态,而与以往处过的状态无关. 此外,诸如某公司的经营状况 等等也常常具有或近似具有无后效性. 二. 马尔可夫链的分类 状态空间S 是离散的(有限集或可列集),参数集T 可为离散或连续的两类. 三.离散参数马尔可夫链 (1)转移概率 定义2 在离散参数马尔可夫链 },,,,,),({210??????=n t t t t t t X 中, 条件概率 )(})(|)({1m ij m m t p i t X j t X P ===+ 称为)(t X 在时刻(参数)m t 由状态i 一 步转移到状态j 的一步转移概率, 简称转移概率.

随机过程-C4马尔可夫链

练习四:马尔可夫链 随机过程练习题 1.设质点在区间[0,4]的整数点作随机游动,到达0点或4点后以概率1停留在原处, 在其它整数点分别以概率 3 1 向左、右移动一格或停留在原处。求质点随机游动的一步和二步转移的概率矩阵。 2.独立地重复抛掷一枚硬币,每次抛掷出现正面的概率为p ,对于2≥n 求,令n X =0, 1,2或3,这些值分别对应于第1-n 次和第n 次抛掷的结果为(正,正),(正,反), (反,正)或(反,反)。求马尔可夫链},2,1,0,{ =n X n 的一步和二步转移的概率矩阵。 3.设}0,{≥n X n 为马尔可夫链,试证: (1)},,,|,,,{11002211n n m n m n n n n n i X i X i X i X i X i X P ======++++++ }|,,,{2211n n m n m n n n n n i X i X i X i X P =====++++++ (2)}|,,,,,,{11221100++++++======n n m n m n n n n n i X i X i X i X i X i X P }|,,,{111100++=====n n n n i X i X i X i X P ==?+++m n n n X i X P ,,{22 }|11+++=n n m n i X i 4.设}1,{≥n X n 为有限齐次马尔可夫链,其初始分布和转移概率矩阵为==0{X P p i 4,3,2,1,4 1}==i i ,???? ?? ? ??=4/14/14/14/18/34/18/14/14/14/14/14/14/14/14/14/1P ,试证 }41|4{}41,1|4{12102<<=≠<<==X X P X X X P 5.设}),({T t t X ∈为随机过程,且)(11t X X =,,),(22 t X X = ),(n n t X X =为独 立同分布随机变量序列,令2,,)(,011110≥=+===-n X cY Y X t Y Y Y n n n ,试证 }0,{≥n Y n 是马尔可夫链。 6.已知随机游动的转移概率矩阵为???? ? ??=5.005.05.05.0005.05.0P ,求三步转移概率矩阵) 3(P 及 当初始分布为1}3{,0}2{}1{000======X P X P X P 时经三步转移后处于状态 3的概率。 7.已知本月销售状态的初始分布和转移概率矩阵如下: (1))4.0,2.0,4.0()0(=T P ,???? ? ??=6.02.02.02.07.01.01.08.08.0P ;

第五章 连续时间的Markov链

第五章 连续时间的马尔可夫链 第四章我们讨论了时间和状态都是离散的M arkov 链,本章我们研究的是时间连续、状态离散的M arkov 过程,即连续时间的M arkov 链. 连续时间的M arkov 链可以理解为一个做如下运动的随机过程:它以一个离散时间M arkov 链的方式从一个状态转移到另一状态,在两次转移之间以指数分布在前一状态停留. 这个指数分布只与过程现在的状态有关,与过去的状态无关(具有无记忆性),但与将来转移到的状态独立. 5.1 连续时间马尔可夫链的基本概念 定义 5.1 设随机过程{(),0}X t t ≥,状态空间{,1}n I i n =≥,若对任意的正整数 1210n t t t +≤<<< 及任意的非负整数121,,,n i i i I +∈ ,条件概率满足 {}111122()|(),(),,()n n n n P X t i X t i X t i X t i ++==== {}11()|()n n n n P X t i X t i ++=== (5.1) 则称{(),0}X t t ≥为连续时间的M arkov 链. 由定义知,连续时间的M arkov 链是具有M arkov 性(或称无后效性)的随机过程,它的直观意义是:过程在已知现在时刻n t 及一切过去时刻所处状态的条件下,将来时刻1n t +的状态只依赖于现在的状态而与过去的状态无关. 记(5.1)式条件概率的一般形式为 {()|()}(,)ij P X s t j X s i p s t +=== (5.2) 它表示系统在s 时刻处于状态i ,经过时间t 后在时刻s t +转移到状态j 的转移概率,通常称它为转移概率函数.一般地,它不仅与t 有关,还与s 有关. 定义 5.2 若(5.2)式的转移概率函数与s 无关,则称连续时间M arkov 链具有平稳的转移概率函数,称该M arkov 链为连续时间的齐次(或时齐)M arkov 链. 此时转移概率函数简记为(,)()ij ij p s t p t =.相应地,转移概率矩阵简记为()(()),(,,0)ij P t p t i j I t =∈≥. 若状态空间{0,1,2,}I = ,则有 ()00010210 11 12 012() ()() ...()()()()()... ... .. ....()()( )...... .. .... ij n n n p t p t p t p t p t p t P t p t p t p t p t ?? ? ? ?== ? ? ?? ? (5.3) 假设在某时刻,比如说时刻0,M arkov 链进入状态i ,在接下来的s 个单位时间内过程 未离开状态i (即未发生转移),我们要讨论的问题是在随后的t 个单位时间中过程仍不离开状态i 的概率是多少?由M arkov 性知,过程在时刻s 处于状态i 的条件下,在区间[,] s s t +

马尔可夫链

马尔可夫链 马尔可夫链(Markov chains )是一类重要的随机过程,它的状态空间是有限的或可数无限的。经过一段时间系统从一个状态转到另一个状态这种进程只依赖于当前出发时的状态而与以前的历史无关。马尔可夫链有着广泛的应用,也是研究排队系统的重要工具。 1) 离散时间参数的马尔可夫链 ①基本概念 定义 5.7 设{()0,1,2,}X n n ???=,是一个随机过程,状态空间{0,1,2,}E =,如果对于任意的一组整数 时间120k n n n ???≤<<<,以及任意状态12,, ,k i i i E ∈,都有条件概率 11{()|()}k k k k P X n i X n i --=== (5-17) 即过程{()0,1,2,}X n n ???=,未来所处的状态只与当前的状态有关,而与以前曾处于什么状态无关,则称 {()0,1,2,}X n n ???=,是一个离散时间参数的马尔可夫链。当E 为可列无限集时称其为可列无限状态的马尔可 夫链,否则称其为有限状态的马尔可夫链。 定义5.8 设{()0,1,2,}X n n ???=,是状态空间{0,1,2, }E =上的马尔可夫链,条件概率 (,){()|()}ij p m k P X m k j X m i i j E =+==∈,、 (5-18) 称为马尔可夫链{()0,1,2,}X n n ???=,在m 时刻的k 步转移概率。 k 步转移概率的直观意义是:质点在时刻m 处于状态i 的条件下,再经过k 步(k 个单位时间)转移到状 态j 的条件概率。特别地,当1k =时, (,1){(1)|()}ij p m P X m j X m i =+== (5-19) 称为一步转移概率,简称转移概率。 如果k 步转移概率(,)ij p m k i j E ∈,、,只与k 有关,而与时间起点m 无关,则{()}X n 称为离散时间的齐次马尔可夫链。 定义5.9 设{()0,1,2,}X n n ???=,是状态空间{0,1,2,}E ???=上的马尔可夫链,矩阵 0001010 11101(,)(,)(,)(,)(,)(,)(,)(,)(,) (,) n n j j jn p m k p m k p m k p m k p m k p m k P m k p m k p m k p m k ?? ???? ? ?=? ?????? ? (5-20) 称为{()}X n 在m 时刻的k 步转移概率矩阵。 当1k =时,(,1)P m 称为一步转移概率矩阵。 对于齐次马尔可夫链,容易推得k 步转移概率矩阵与一步转移概率矩阵具有关系 ()(),,1k P m k P m =????,1,2,k ???= (5-21)

随机过程——马尔可夫过程的应用

随机过程——马尔可夫过程的应用 年级:2013级 专业:通信工程3班 姓名:李毓哲 学号:31

摘要:随机信号分析与处理是研究随机信号的特点及其处理方法的专业基础, 是目标检测、估计、滤波灯信号处理理论的基础,在通信、雷达、自动检测、随机振动、图像处理、气象预报、生物医学、地震信号处理等领域有着广泛的应用,随着信息技术的发展,随机信号分析与处理的理论讲日益广泛与深入。 随机过程是与时间相关的随机变量,在确定的时刻它是随机变量。随机过程的具体取值称作其样本函数,所有样本函数构成的集合称作随机过程的样本函数空间,所有样本函数空间及其统计特性即构成了随机过程。通信工程中存在大量的随机现象和随机问题。如:信源是随机过程;信道不仅对随机过程进行了变换,而且会叠加随机噪声等。 马尔可夫过程是一类非常重要的随机过程。随着现代科学技术的发展,很多在应用中出现的马氏过程模型的研究受到越来越多的重视。在现实世界中,有很多过程都是马尔可夫过程,马尔可夫过程在研究质点的随机运动、自动控制、通信技术、生物工程等领域中有着广泛的应用。我们可以通过对马尔可夫过程的研究来分析马尔可夫信源的特性。 关键词:随机过程,马尔可夫过程,通信工程,应用

目录 一、摘要 二、随机过程 、随机过程的基本概念及定义 、随机过程的数学描述 、基于MATLAB的随机过程分析方法三、马尔可夫过程 马尔可夫过程的概念 马尔可夫过程的数学描述 四、马尔可夫过程的应用 马尔可夫模型在通信系统中的应用 马尔可夫模型在语音处理的应用 马尔可夫模型的其他应用 五、结论 参考文献

二、随机过程 、随机过程的基本概念及定义 自然界变换的过程通常可以分为两大类——确定过程和随机过程。如果每次试验所得到的观测过程都相同,且都是时间t的一个确定函数,具有确定的变换规律,那么这样的过程就是确定过程。反之,如果每次试验所得到观测过程都不相同,是时间t的不同函数,没有为确定的变换规律,这样的过程称为随机过程。 、随机过程的数学描述 设随机试验E的样本空间Ω,T是一个数集(T∈(-∞,∞)),如果对于每一个t ∈T,都有一个定义在样本空间Ω上的随机变量 X(w,t),w∈Ω,则称依赖于t的一族随机变量{X(w,t),t∈T}为随机过程或随机函数,简记为{X(t),t∈T }或X(t),其中t称为参数,T称为参数集。当T={0,1,2,…},T={1,2,…},T={…,-2,-1,0,1,2,…}时,{X(w,t)t∈T}称为随机序列或时间序列。 、基于MATLAB的典型随机过程的仿真 信号处理仿真分析中都需要模拟产生各种随机序列,通常都是先产生白噪声序列,然后经过变换得到相关的随机序列,MATLAB有许多产生各种分布白噪声的函数。

随机过程与马尔可夫链习题答案

信息论与编码课程习题1——预备知识 概率论与马尔可夫链 1、某同学下周一上午是否上课,取决于当天情绪及天气情况,且当天是否下雨与心情好坏没有关系。若下雨且心情好,则50%的可能会上课;若不下雨且心情好,则有10%的可能性不上课;若不下雨且心情不好则有40%的可能性上课;若下雨且心情不好,则有90%的可能不会上课。假设当天下雨的概率为30%,该同学当天心情好的概率为20%,试计算该同学周一上课的可能性是多大? 分析: 天气情况用随机变量X 表示,“0”表示下雨,“1”表示不下雨;心情好坏用Y 表示,“0”表示心情好用“0”表示,心情不好用“1”表示;是否上课用随机变量Z 表示,“0”表示上课,“1”表示不上课。由题意可知 已知[]5.00,0|0====Y X Z P ,[]5.00,0|1====Y X Z P []1.00,1|1====Y X Z P ,[]9.00,1|0====Y X Z P []4.01,1|0====Y X Z P ,[]6.01,1|1====Y X Z P []9.01,0|1====Y X Z P ,[]1.01,0|0====Y X Z P []3.00==X P ,[]7.01==X P []2.00==Y P ,[]8.01==Y P 即题目实际上给出了八个个条件概率和四个概率 [][][][]0,0|00|000===?==?===X Y Z P X Y P X P Z P [][][]0,1|00|10===?==?=+X Y Z P X Y P X P [][][]1,0|01|01===?==?=+X Y Z P X Y P X P [][][]1,1|01|11===?==?=+X Y Z P X Y P X P 由于X ,Y 相互独立,则有 [][][][]0,0|0000===?=?===X Y Z P Y P X P Z P [][][]0,1|010===?=?=+X Y Z P Y P X P [][][]1,0|001===?=?=+X Y Z P Y P X P [][][]1,1|011===?=?=+X Y Z P Y P X P []5.02.03.00??==Z P 1.08.03.0??+9.02.07.0??+1.08.07.0??+ =? 注意:全概率公式的应用 2、已知随机变量X 和Y 的联合分布律如又表所示, 且()Y X Y X g Z +==2 11,,()Y X Y X g Z /,22==, 求:

随机过程-C4马尔可夫链复习过程

随机过程-C4马尔可 夫链

收集于网络,如有侵权请联系管理员删除 练习四:马尔可夫链 随机过程练习题 1.设质点在区间[0,4]的整数点作随机游动,到达0点或4点后以概率1 停留在原处,在其它整数点分别以概率3 1 向左、右移动一格或停留在原 处。求质点随机游动的一步和二步转移的概率矩阵。 2.独立地重复抛掷一枚硬币,每次抛掷出现正面的概率为p ,对于2 ≥n 求,令n X =0,1,2或3,这些值分别对应于第1-n 次和第n 次抛掷的结果为(正,正),(正,反),(反,正)或(反,反)。求马尔可夫链},2,1,0,{Λ=n X n 的一步和二步转移的概率矩阵。 3.设}0,{≥n X n 为马尔可夫链,试证: (1)},,,|,,,{11002211n n m n m n n n n n i X i X i X i X i X i X P ======++++++ΛΛ }|,,,{2211n n m n m n n n n n i X i X i X i X P =====++++++Λ (2)}|,,,,,,{11221100++++++======n n m n m n n n n n i X i X i X i X i X i X P ΛΛ }|,,,{111100++=====n n n n i X i X i X i X P Λ==?+++m n n n X i X P ,,{22Λ }|11+++=n n m n i X i 4.设}1,{≥n X n 为有限齐次马尔可夫链,其初始分布和转移概率矩阵为 ==0{X P p i 4,3,2,1,4 1}==i i ,???? ? ? ? ??=4/14/14/14/18/34/18/14/14/14/14/14/14/14/14/14/1P ,试证 }41|4{}41,1|4{12102<<=≠<<==X X P X X X P 5.设}),({T t t X ∈为随机过程,且)(11t X X =,,),(22Λt X X =Λ ),(n n t X X =为独立同分布随机变量序列,令 2,,)(,011110≥=+===-n X cY Y X t Y Y Y n n n ,试证}0,{≥n Y n 是马尔可夫链。 6.已知随机游动的转移概率矩阵为??? ?? ??=5.005.05.05.0005.05.0P ,求三步转移概率矩 阵)3(P 及当初始分布为1}3{,0}2{}1{000======X P X P X P 时经三步转 移后处于状态3的概率。 7.已知本月销售状态的初始分布和转移概率矩阵如下: (1))4.0,2.0,4.0()0(=T P ,???? ? ??=6.02.02.02.07.01.01.08.08.0P ;

课上练习题_离散时间马尔科夫链 423

1、4.23 Trials are performed in sequence. If the last two trials were successes, then the next trial is a success with probability 0.8; otherwise the next trial is a success with probability 0.5. In the long run, what proportion of trials are successes? 2、4.32 Each of two switches is either on or off during a day. On day n, each switch will independently be on with probability [1+#of on switches during day n-1]/4. For instance, if both switches are on during day n-1, then each will independently be on during day n with probability3/4. What fraction of days are both switches on? What fractions are both off?

3、Let ri denote the long-run proportion of time a given irreducible Markov chain is in state i. Explain why ri is also the proportion of transitions that are into state i as well as being the proportion of transition that are from state i. 4、4.44 Suppose that a population consists of a fixed number, say, m, of genes in any generation. Each gene is one of two possible genetic types. If any generation has exactly i (of its m) genes being type 1, then the next generation will have j type 1 genes with probability j m j m i m m i j m- ? ? ? ? ?- ? ? ? ? ? ?? ? ? ? ? . Let Xn denote the number of type 1 genes in the nth generation, and assume that X0 = i. (a) Find E[Xn] (b) What is the probability that eventually all the genes will be type 1?

随机过程报告——马尔可夫链.doc

马尔可夫链 马尔可夫链是一种特殊的随机过程,最初由 A.A .M arkov 所研究。它的直观背景如下 : 设有一随机运动的系统 E ( 例如运动着的质点等 ) ,它可能处的状态记为E 0 , E1 ,..., E n ,.... 总共有可数个或者有穷个。这系统只可能在时刻t=1,2, n, 上改变它的状态。随着的运动进程,定义一列随机变量 Xn,n=0,1, 2, ?其中Xn=k,如在 t=n 时,位于 Ek。 定义 1.1 设有随机过程 X n, n T ,若对任意的整数 n T 和任意的 i 0 , i1 ,...i n 1 I , 条件概率满足 { i n 1 X i ,..., X n i n }{ i n 1 X n i n } P X n 1 0 P X n 1 则称 X n, n T为马尔可夫链,简称为马氏链。 实际中常常碰到具有下列性质的运动系统。如果己知它在t=n 时的状态,则关于它在 n时以前所处的状态的补充知识,对预言在 n时以后所处的状态,不起任何作用。或者说,在己知的“现在”的条件下,“将来”与“过去”是 无关的。这种性质,就是直观意义上的“马尔可夫性”,或者称为“无后效性” 。假设马尔可夫过程 X n, n T 的参数集T是离散时间集合,即T={0,1,2, }, 其相应 Xn可能取值的全体组成的状态空间是离散状态空间I={1,2,..}。 定义 1.2 条件概率 P( n) { j X n i } ij p X n 1 称为马尔可夫链X n, n T 在时刻n的一步转移矩阵,其中i,j I ,简称为转移概率。 一般地,转移概率 P ij( n )不仅与状态 i,j 有关,而且与时刻 n有关。当 P ij( n)不依赖于时刻 n时,表示马尔可夫链具有平稳转移概率。若对任意的 i ,j I,马尔可夫

第章离散时间的马尔可夫链

第1章 离散时间的马尔可夫链 §1 随机过程的基本概念 定义1 设(,,)P ΩF 是概率空间,(, )E E 是可测空间, T 是指标集. 若对任何t T ∈,有 :t X E Ω→,且t X ∈F E ,则称{}(), t X t T ω∈是(, , )P ΩF 上的取值于(,)E E 中的随机过 程,在无混淆的情况下简称{(), }t X t T ω∈为随机过程,称(,)E E 为状态空间或相空间,称E 中的 元素为状态,称T 为时间域. 对每个固定的ω∈Ω,称()t X ω为 {}(), t X t T ω∈对应于ω的轨道或现 实,对每个固定的t T ∈,称()t X ω为E 值随机元. 有时()t X ω也记为 设 T ?R ,{}, t t T ∈F 是F 中的一族单调增的子σ代数(σ代数流),即 ① t t T ?∈??F F ,且t F 是σ代数; ② , , s t s t T s t ?∈

课上练习题_连续时间马尔科夫链 619

6.2 Suppose that a one-celled organism can be in one of two states-either A or B. An individual in state A will change to state B at an exponential rate α; an individual in state B divides into two new individuals of type A at an exponential rate β. Define an appropriate continuous-time Markov chain for a population of such organisms and determine the appropriate parameters for this model. 6.3 Consider two machines that are maintained by a single repairman. Machine i functions for an exponential time with rate μbefore breaking down, i = 1,2. The repair times (for either i machine) are exponential with rate μ. Can we analyze this as a birth and death process? If so, what are the parameters? If not, how can we analyze it?

马尔可夫链

马尔可夫过程 编辑词条 一类随机过程。它的原始模型马尔可夫链,由俄国数学家A.A.马尔可夫于1907年提出。该过程具有如下特性:在已知目前状态(现在)的条件下,它未来的演变(将来)不依赖于它以往的演变 ( 过去 ) 。例如森林中动物头数的变化构成——马尔可夫过程。在现实世界中,有很多过程都是马尔可夫过程,如液体中微粒所作的布朗运动、传染病受感染的人数、车站的候车人数等,都可视为马尔可夫过程。关于该过程的研究,1931年A.H.柯尔莫哥洛夫在《概率论的解析方法》一文中首先将微分方程等分析的方法用于这类过程,奠定了马尔可夫过程的理论基础。 目录 马尔可夫过程 离散时间马尔可夫链 连续时间马尔可夫链 生灭过程 一般马尔可夫过程 强马尔可夫过程 扩散过程 编辑本段马尔可夫过程 Markov process 1951年前后,伊藤清建立的随机微分方程的理论,为马尔可夫过程的研究开辟了新的道路。1954年前后,W.费勒将半群方法引入马尔可夫过程的研究。流形上的马尔可夫过程、马尔可夫向量场等都是正待深入研究的领域。 类重要的随机过程,它的原始模型马尔可夫链,由俄国数学家Α.Α.马尔可夫于1907年提出。人们在实际中常遇到具有下述特性的随机过程:在已知它目前的状态(现在)的条件下,它未来的演变(将来)不依赖于它以往的演变(过去)。这种已知“现在”的条件下,“将来”与“过去”独立的特性称为马尔可夫性,具有这种性质的随机过程叫做马尔可夫过程。荷花池中一只青蛙的跳跃是马尔可夫过程的一个形象化的例子。青蛙依照它瞬间或起的念头从一片荷叶上跳到另一片荷叶上,因为青蛙是没有记忆的,当现在所处的位置已知时,它下一步跳往何处和它以往走过的路径无关。如果将荷叶编号并用X0,X1,X2,…分别表示青蛙最初处的荷叶号码及第一次、第二次、……跳跃后所处的荷叶号码,那么{Xn,n≥0} 就是马尔可夫过程。液体中微粒所作的布朗运动,传染病受感染的人数,原子核中一自由电子在电子层中的跳跃,人口增长过程等等都可视为马尔可夫过程。还有些过程(例如某些遗

马尔可夫链模型讲解

马尔可夫链模型(Markov Chain Model) 目录 [隐藏] 1 马尔可夫链模型概述 2 马尔可夫链模型的性质 3 离散状态空间中的马尔可夫链模 型 4 马尔可夫链模型的应用 o 4.1 科学中的应用 o 4.2 人力资源中的应用 5 马尔可夫模型案例分析[1] o 5.1 马尔可夫模型的建立 o 5.2 马尔可夫模型的应用 6 参考文献 [编辑] 马尔可夫链模型概述 马尔可夫链因安德烈·马尔可夫(Andrey Markov,1856-1922)得名,是数学中具有马尔可夫性质的离散时间随机过程。该过程中,在给定当前知识或信息的情况下,过去(即当期以前的历史状态)对于预测将来(即当期以后的未来状态)是无关的。 时间和状态都是离散的马尔可夫过程称为马尔可夫链, 简记为 。 马尔可夫链是随机变量的一个数列。这些变量的范围,即他们所有可能取值的集合,被称为“状态空间”,而Xn的值则是在时间n的状态。如果Xn + 1对于过去状态的条件概率分布仅是Xn的一个函数,则 这里x为过程中的某个状态。上面这个恒等式可以被看作是马尔可夫性质。

马尔可夫在1906年首先做出了这类过程。而将此一般化到可数无限状态空间是由柯尔莫果洛夫在1936年给出的。 马尔可夫链与布朗运动以及遍历假说这两个二十世纪初期物理学重要课题是相联系的,但马尔可夫寻求的似乎不仅于数学动机,名义上是对于纵属事件大数法则的扩张。 马尔可夫链是满足下面两个假设的一种随机过程: 1、t+l时刻系统状态的概率分布只与t时刻的状态有关,与t时刻以前的状态无关; 2、从t时刻到t+l时刻的状态转移与t的值无关。一个马尔可夫链模型可表示为=(S,P,Q),其中各元的含义如下: 1)S是系统所有可能的状态所组成的非空的状态集,有时也称之为系统的状态空间,它可以是有限的、可列的集合或任意非空集。本文中假定S是可数集(即有限或可列)。用小写字母i,j(或S i,S j)等来表示状态。 2)是系统的状态转移概率矩阵,其中P ij表示系统在时刻t处于状态i,在下一时刻t+l处于状态i的概率,N是系统所有可能的状态 的个数。对于任意i∈s,有。 3)是系统的初始概率分布,q i是系统在初始时刻处 于状态i的概率,满足。 [编辑] 马尔可夫链模型的性质 马尔可夫链是由一个条件分布来表示的 P(X | X n) n+ 1 这被称为是随机过程中的“转移概率”。这有时也被称作是“一步转移概率”。二、三,以及更多步的转移概率可以导自一步转移概率和马尔可夫性质:

连续隐马尔科夫链模型简介

4.1 连续隐马尔科夫链模型(CHMM) 在交通规划和决策的角度估计特定出行者的确切的出行目的没有必要,推测出行者在一定条件下会有某种目的的概率就能够满足要求。因此本文提出一种基于无监督机器学习的连续隐马尔科夫链模型(CHMM)来识别公共自行车出行链借还车出行目的,根据个人属性、出行时间和站点土地利用属性数据,得到每次借还车活动属于某种出行目的的概率,进一步识别公共自行车出行链最可能的出行目的活动链。 4.1.1连续隐马尔科夫链模型概述 隐马尔可夫链模型(Hidden Markov Model,HMM)是一种统计模型,它被用来描述一个含有隐含未知状态的马尔可夫链。隐马尔可夫链模型是马尔可夫链的一种,其隐藏状态不能被直接观察到,但能通过观测向量序列推断出来,每个观测向量都是通过状态成员的概率密度分布表现,每一个观测向量是由一个具有相应概率密度分布的状态序列产生。 本文将隐马尔科夫链和混合高斯融合在一起,形成一个连续的隐马尔科夫链模型(CHMM),并应用该模型来识别公共自行车出行链借还车活动目的。连续隐马尔科夫链模型采用无监督的机器学习技术,用于训练的数据无需是标记的数据,该模型既不需要标记训练数据,也没有后续的样本测试,如提示-回忆调查。相反,该模型仅利用智能卡和总的土地利用数据。后者为隐藏活动提供额外的解释变量。出行链内各活动的时间和空间信息是从IC卡数据获得,相关土地利用数据是根据南京土地利用规划图和百度地图POI数据获得。 在本文的研究中,一个马尔可夫链可以解释为出行者在两个连续活动状态之间的状态转换,确定一个状态只取决于它之前的状态,一个状态对应一个出行者未知的借还车活动[48-50]。本研究坚持传统的马尔可夫过程的假设,将它包含进无监督的机器学习模型。“隐藏马尔可夫”源于一个事实,即一系列出行链的活动是不可观察的。 对于CHMM,高斯混合模型负责的是马尔可夫链的输入端,每一个活动模式下的隐藏状态都有属于一个特征空间的集群输出概率,每个集群是观察不到的,隐藏状态集群的数量必须事先给出。一些研究者称这些集群为二级隐状态[51]。

1140503102450451连续时间马尔可夫链

5 连续时间马尔可夫链 5.1引言 本章中我们考虑与离散时间马尔可夫链类似的连续时间马尔可夫链。如离散情形一样,它们由马尔可夫性刻画,即已知现在的状态时将来与过去独立。 在5.2节中。我们定义连续时间马尔可夫链且把它们与第四章的离散时间马尔可夫链相联系。在5.3节中,我们引入一类重要的连续时间马尔可夫链,即所谓生灭过程。这些过程可用作在任何时刻其总量的变化仅为一个单位的群体的模型。在5.4节中,我们导出两组描述系统的概率规律的微分方程——向前与向后方程。5.5节的内容是确定连续时间马尔可夫链的有关的极限(或长时间后的)概率。在5.6节中,我们考虑时间可逆的问题。其中,我们证明一切生灭过程是时间可逆的,而后阐明这事实对于排队系统的重要性。在这一节中也提供了时间可逆性对随机群体模型的应用。在5.7节中,我们阐明逆向链的重要性,即使过程不是时间可逆的。利用它我们研究排队网络模型。导出爱尔朗消失公式,分析共用加工系统。5.8节中我们表面如何“一致化”马尔可夫链——对于数值计算有用的一种技巧。 5.2连续时间马尔可夫链 考虑取非负整数值的连续时间随机过程(){}t ,0X t 3,与第四章中给出的离散时间马尔可夫链的定义类似,过程(){}t ,0X t 3称为连续时间马尔可夫链,如 果对一切,0s t 3及非负整数,i j ,()x u ,0u s # ,有 ()()()(){}|X ,X ,0P X t s j s i u x u u s +===? ()(){}|P X t s j X s i =+== 换言之,连续时间马尔可夫链是具有马尔可夫性的随机过程,即已知现在s 时是 状态及一切过去的状态的套件下在将来时刻t s +的状态的条件分布只依赖现在的状态而与过去独立。若又有()(){}|P X t s j X s i +==与s 无关则称连续时间马尔可夫链具有平稳的或其次的转移概率。将假定我们所考虑的马尔可夫链都有平稳转移概率。 假设在某时刻,比如说时刻0,马尔可夫链进入状态i ,而且假设在接下来的s 个单位时间中过程未离开状态i (即未发生转移)。在随后的t 个单位时间中过程仍不离开状态i 的概率是多少呢?为了回答这个问题。注意到因为在时间s 过程处于状态i ,从马尔可夫性得在区间[],s s t +中它仍然处于状态i 的概率正是他处于状态i 至少t 个单位时间的(无条件)概率。也即若以i t 记过程在转移到另一状态之前停留在状态i 的时间,则对一切,0s t 3有 {}{}|i i i P s t s P t t t t >+>=>

随机过程报告——马尔可夫链

马尔可夫链 马尔可夫链是一种特殊的随机过程,最初由A.A .M arkov 所研究。它的直观背景如下:设有一随机运动的系统E (例如运动着的质点等),它可能处的状态记为,....E ,...,E ,E n 10总共有可数个或者有穷个。这系统只可能在时刻t=1,2,…n,…上改变它的状态。随着∑的运动进程,定义一列随机变量Xn,n=0,1, 2, ?其中Xn=k ,如在t=n 时,∑位于Ek 。 定义1.1 设有随机过程}{T n X n ∈,,若对任意的整数T n ∈和任意的,,...,110I i i i n ∈+条件概率满足 }i {},...,i X i {1n 100 01n 1n n n n n n i X X P i X X P ======++++ 则称}{T n X n ∈,为马尔可夫链,简称为马氏链。 实际中常常碰到具有下列性质的运动系统∑。如果己知它在t=n 时的状态,则关于它在n 时以前所处的状态的补充知识,对预言∑在n 时以后所处的状态,不起任何作用。或者说,在己知的“现在”的条件下, “将来”与“过去”是无关的。这种性质,就是直观意义上的“马尔可夫性”,或者称为“无后效性”。 假设马尔可夫过程}{T n X n ∈,的参数集T 是离散时间集合,即T={0,1,2,…},其相应Xn 可能取值的全体组成的状态空间是离散状态空间I={1,2,..}。 定义1.2 条件概率 }{P 1)(i X j X p n n n ij ===+ 称为马尔可夫链}{T n X n ∈,在时刻n 的一步转移矩阵,其中i ,j ∈I ,简称为转移概率。 一般地,转移概率)(P n ij 不仅与状态i,j 有关,而且与时刻n 有关。当)(P n ij 不依赖 于时刻n 时,表示马尔可夫链具有平稳转移概率。若对任意的i ,j ∈I ,马尔可夫

相关文档
最新文档