数学建模- 图与网络模型及方法

数学建模- 图与网络模型及方法
数学建模- 图与网络模型及方法

第五章 图与网络模型及方法

§1 概论

图论起源于18世纪。第一篇图论论文是瑞士数学家欧拉于1736 年发表的“哥尼斯堡的七座桥”。1847年,克希霍夫为了给出电网络方程而引进了“树”的概念。1857年,凯莱在计数烷22 n n H C 的同分异构物时,也发现了“树”。哈密尔顿于1859年提出“周游世界”游戏,用图论的术语,就是如何找出一个连通图中的生成圈,近几十年来,由于计算机技术和科学的飞速发展,大大地促进了图论研究和应用,图论的理论和方法已经渗透到物理、化学、通讯科学、建筑学、生物遗传学、心理学、经济学、社会学等学科中。

图论中所谓的“图”是指某类具体事物和这些事物之间的联系。如果我们用点表示这些具体事物,用连接两点的线段(直的或曲的)表示两个事物的特定的联系,就得到了描述这个“图”的几何形象。图论为任何一个包含了一种二元关系的离散系统提供了一个数学模型,借助于图论的概念、理论和方法,可以对该模型求解。哥尼斯堡七桥问题就是一个典型的例子。在哥尼斯堡有七座桥将普莱格尔河中的两个岛及岛与河岸联结起来问题是要从这四块陆地中的任何一块开始通过每一座桥正好一次,再回到起点。当

然可以通过试验去尝试解决这个问题,但该城居民的任何尝试均未成功。欧拉为了解决

这个问题,采用了建立数学模型的方法。他将每一块陆地用一个点来代替,将每一座桥用连接相应两点的一条线来代替,从而得到一个有四个“点”,七条“线”的“图”。问题成为从任一点出发一笔画出七条线再回到起点。欧拉考察了一般一笔画的结构特点,给出了一笔画的一个判定法则:这个图是连通的,且每个点都与偶数线相关联,将这个判定法则应用于七桥问题,得到了“不可能走通”的结果,不但彻底解决了这个问题,而且开创了图论研究的先河。

图与网络是运筹学(Operations Research )中的一个经典和重要的分支,所研究的问题涉及经济管理、工业工程、交通运输、计算机科学与信息技术、通讯与网络技术等诸多领域。下面将要讨论的最短路问题、最大流问题、最小费用流问题和匹配问题等都是图与网络的基本问题。

我们首先通过一些例子来了解网络优化问题。

例1 最短路问题(SPP -shortest path problem )

一名货柜车司机奉命在最短的时间内将一车货物从甲地运往乙地。从甲地到乙地的公路网纵横交错,因此有多种行车路线,这名司机应选择哪条线路呢?假设货柜车的运行速度是恒定的,那么这一问题相当于需要找到一条从甲地到乙地的最短路。 例2 公路连接问题

某一地区有若干个主要城市,现准备修建高速公路把这些城市连接起来,使得从其中任何一个城市都可以经高速公路直接或间接到达另一个城市。假定已经知道了任意两个城市之间修建高速公路的成本,那么应如何决定在哪些城市间修建高速公路,使得总

成本最小?

例3 指派问题(assignment problem )

一家公司经理准备安排N 名员工去完成N 项任务,每人一项。由于各员工的特点不同,不同的员工去完成同一项任务时所获得的回报是不同的。如何分配工作方案可以使总回报最大?

例4 中国邮递员问题(CPP -chinese postman problem )

一名邮递员负责投递某个街区的邮件。如何为他(她)设计一条最短的投递路线(从邮局出发,经过投递区内每条街道至少一次,最后返回邮局)?由于这一问题是我国管梅谷教授1960年首先提出的,所以国际上称之为中国邮递员问题。

例5 旅行商问题(TSP -traveling salesman problem )

一名推销员准备前往若干城市推销产品。如何为他(她)设计一条最短的旅行路线(从驻地出发,经过每个城市恰好一次,最后返回驻地)?这一问题的研究历史十分悠久,通常称之为旅行商问题。

例6 运输问题(transportation problem )

某种原材料有M 个产地,现在需要将原材料从产地运往N 个使用这些原材料的工厂。假定M 个产地的产量和N 家工厂的需要量已知,单位产品从任一产地到任一工厂的运费已知,那么如何安排运输方案可以使总运输成本最低?

上述问题有两个共同的特点:一是它们的目的都是从若干可能的安排或方案中寻求某种意义下的最优安排或方案,数学上把这种问题称为最优化或优化(optimization )问题;二是它们都易于用图形的形式直观地描述和表达,数学上把这种与图相关的结构称为网络(network )。与图和网络相关的最优化问题就是网络最优化或称网络优化 (netwok optimization )问题。所以上面例子中介绍的问题都是网络优化问题。由于多数网络优化问题是以网络上的流(flow )为研究的对象,因此网络优化又常常被称为网络流(network flows )或网络流规划等。

下面首先简要介绍图与网络的一些基本概念。

§2 图与网络的基本概念

2.1 无向图

一个无向图(undirected graph)G 是由一个非空有限集合)(G V 和)(G V 中某些元素的无序对集合)(G E 构成的二元组,记为))(),((G E G V G =。其中},,,{)(21n v v v G V Λ=称为图G 的顶点集(vertex set )或节点集(node set ), )(G V 中的每一个元素),,2,1(n i v i Λ=称为该图的一个顶点(vertex )或节点(node );},,,{)(21m e e e G E Λ=称为图G 的边集(edge set ),)(G E 中的每一个元素k e (即)(G V 中某两个元素j i v v ,的无序对) 记为),(j i k v v e =或i j j i k v v v v e == ),,2,1(m k Λ=,被称为该图的一条从i v 到j v 的边(edge )。

当边j i k v v e =时,称j i v v ,为边k e 的端点,并称j v 与i v 相邻(adjacent );边k e 称为与顶点j i v v ,关联(incident )。如果某两条边至少有一个公共端点,则称这两条边在图G 中相邻。

边上赋权的无向图称为赋权无向图或无向网络(undirected network )。我们对图和

网络不作严格区分,因为任何图总是可以赋权的。

一个图称为有限图,如果它的顶点集和边集都有限。图G 的顶点数用符号||V 或)(G ν表示,边数用||E 或)(G ε表示。

当讨论的图只有一个时,总是用G 来表示这个图。从而在图论符号中我们常略去字母G ,例如,分别用ν,,E V 和ε代替)(),(),(G G E G V ν和)(G ε。

端点重合为一点的边称为环(loop)。

一个图称为简单图(simple graph),如果它既没有环也没有两条边连接同一对顶点。

2.2 有向图

定义 一个有向图(directed graph 或 digraph )G 是由一个非空有限集合V 和V 中某些元素的有序对集合A 构成的二元组,记为),(A V G =。其中},,,{21n v v v V Λ=称为图G 的顶点集或节点集, V 中的每一个元素),,2,1(n i v i Λ=称为该图的一个顶点或节点;},,,{21m a a a A Λ=称为图G 的弧集(arc set ),A 中的每一个元素k a (即V 中某两个元素j i v v ,的有序对) 记为),(j i k v v a =或),,2,1(n k v v a j i k Λ==,被称为该图的一条从i v 到j v 的弧(arc )。

当弧j i k v v a =时,称i v 为k a 的尾(tail ),j v 为k a 的头(head ),并称弧k a 为i v 的出弧(outgoing arc ),为j v 的入弧(incoming arc )。

对应于每个有向图D ,可以在相同顶点集上作一个图G ,使得对于D 的每条弧,

G 有一条有相同端点的边与之相对应。

这个图称为D 的基础图。反之,给定任意图G ,对于它的每个边,给其端点指定一个顺序,从而确定一条弧,由此得到一个有向图,这样的有向图称为G 的一个定向图。

以下若未指明“有向图”三字,“图”字皆指无向图。

2.3 完全图、二分图

每一对不同的顶点都有一条边相连的简单图称为完全图(complete graph)。n 个顶点的完全图记为n K 。

若Y X G V Y =)(,Φ=Y X I ,0||||≠Y X (这里||X 表示集合X 中的元素个数),X 中无相邻顶点对,Y 中亦然,则称G 为二分图(bipartite graph);特别地,若Y y X x ∈?∈?,,则)(G E xy ∈,则称G 为完全二分图,记成|||,|Y X K 。

2.4 子图

图H 叫做图G 的子图(subgraph ),记作G H ?,如果)()(G V H V ?,)()(G E H E ?。若H 是G 的子图,则G 称为H 的母图。

G 的支撑子图(spanning subgraph ,又成生成子图)是指满足)()(G V H V =的子图H 。

2.5 顶点的度

设)(G V v ∈,G 中与v 关联的边数(每个环算作两条边)称为v 的度(degree),记作)(v d 。若)(v d 是奇数,称v 是奇顶点(odd point);)(v d 是偶数,称v 是偶顶点(even point)。关于顶点的度,我们有如下结果:

(i) ∑∈=V

v v d ε2)(

(ii) 任意一个图的奇顶点的个数是偶数。

2.6 图与网络的数据结构

网络优化研究的是网络上的各种优化模型与算法.为了在计算机上实现网络优化的算法,首先我们必须有一种方法(即数据结构)在计算机上来描述图与网络。一般来说,算法的好坏与网络的具体表示方法,以及中间结果的操作方案是有关系的。这里我们介绍计算机上用来描述图与网络的5种常用表示方法:邻接矩阵表示法、关联矩阵表示法、弧表表示法、邻接表表示法和星形表示法。在下面数据结构的讨论中,我们首先假设

),(A V G =是一个简单有向图,m A n V ==||,||,

并假设V 中的顶点用自然数n ,,2,1Λ表示或编号,A 中的弧用自然数m ,,2,1Λ表示或编号。对于有多重边或无向网络的情况,我们只是在讨论完简单有向图的表示方法之后,给出一些说明。

(i )邻接矩阵表示法

邻接矩阵表示法是将图以邻接矩阵(adjacency matrix )的形式存储在计算机中。图),(A V G =的邻接矩阵是如下定义的:C 是一个n n ?的10-矩阵,即

n n n n ij c C ??∈=}1,0{)(,

????∈=.

),(,0,),(,1A j i A j i c ij 也就是说,如果两节点之间有一条弧,则邻接矩阵中对应的元素为1;否则为0。可以看出,这种表示法非常简单、直接。但是,在邻接矩阵的所有2n 个元素中,只有m

个为非零元。如果网络比较稀疏,这种表示法浪费大量的存储空间,从而增加了在网络中查找弧的时间。

例7 对于右图所示的图,可以用邻接矩阵表示为

???????

?????????0110010100

000100100000110 同样,对于网络中的权,也可以用类似邻接矩阵的n n ?矩阵表示。只是此时一条弧所对应的元素不再是1,而是相应的权而已。如果网络中每条弧赋有多种权,则可以用多个矩阵表示这些权。

(ii )关联矩阵表示法

关联矩阵表示法是将图以关联矩阵(incidence matrix )的形式存储在计算机中.图),(A V G =的关联矩阵B 是如下定义的:B 是一个m n ?的矩阵,即

m n m n ik b B ??-∈=}1,0,1{)(,

?????∈=∈?-∈=∈?=.,0,

),(, ,1,),(,,1其它A i j k V j A j i k V j b ik

也就是说,在关联矩阵中,每行对应于图的一个节点,每列对应于图的一条弧。如果一个节点是一条弧的起点,则关联矩阵中对应的元素为1;如果一个节点是一条弧的终点,则关联矩阵中对应的元素为1-;如果一个节点与一条弧不关联,则关联矩阵中

对应的元素为0。对于简单图,关联矩阵每列只含有两个非零元(一个1+,一个1-)。可以看出,这种表示法也非常简单、直接。但是,在关联矩阵的所有nm 个元素中,只有m 2个为非零元。如果网络比较稀疏,这种表示法也会浪费大量的存储空间。但由于关联矩阵有许多特别重要的理论性质,因此它在网络优化中是非常重要的概念。

例8 对于例7所示的图,如果关联矩阵中每列对应弧的顺序为(1,2),(1,3),(2,4),(3,2),(4,3),(4,5),(5,3)和(5,4),则关联矩阵表示为

???????

?????????--------1110000010110100010110100000110100000011 同样,对于网络中的权,也可以通过对关联矩阵的扩展来表示。例如,如果网络中每条弧有一个权,我们可以把关联矩阵增加一行,把每一条弧所对应的权存储在增加的行中。如果网络中每条弧赋有多个权,我们可以把关联矩阵增加相应的行数,把每一条弧所对应的权存储在增加的行中。

(iii )弧表示法

弧表表示法将图以弧表(arc list )的形式存储在计算机中。所谓图的弧表,也就是图的弧集合中的所有有序对。弧表表示法直接列出所有弧的起点和终点,共需m 2个存储单元,因此当网络比较稀疏时比较方便。此外,对于网络图中每条弧上的权,也要对应地用额外的存储单元表示。例如,例7所示的图,假设弧(1,2),(1,3),(2,4),(3,2),(4,3)

,(4,5),(5,3)和(5,4)上的权分别为8,9,6,4,0,3,6和7,则弧表表示如下:

起点

1 1

2

3

4 4

5 5 终点

2 3 4 2 3 5 3 4 权

8 9 6 4 0 3 6 7 为了便于检索,一般按照起点、终点的字典序顺序存储弧表,如上面的弧表就是按照这样的顺序存储的。

(iv )邻接表表示法

邻接表表示法将图以邻接表(adjacency lists )的形式存储在计算机中。所谓图的邻接表,也就是图的所有节点的邻接表的集合;而对每个节点,它的邻接表就是它的所有出弧。邻接表表示法就是对图的每个节点,用一个单向链表列出从该节点出发的所有弧,链表中每个单元对应于一条出弧。为了记录弧上的权,链表中每个单元除列出弧的另一个端点外,还可以包含弧上的权等作为数据域。图的整个邻接表可以用一个指针数组表示。例如,例7所示的图,邻接表表示为

这是一个5维指针数组,每一维(上面表示法中的每一行)对应于一个节点的邻接

表,如第1行对应于第1个节点的邻接表(即第1个节点的所有出弧)。每个指针单元

建立数学模型的方法、步骤、特点及分类

建立数学模型的方法、步骤、特点及分类 [学习目标] 1.能表述建立数学模型的方法、步骤; 2.能表述建立数学模型的逼真性、可行性、渐进性、强健性、可转移性、非 预制性、条理性、技艺性和局限性等特点;; 3.能表述数学建模的分类; 4.会采用灵活的表述方法建立数学模型; 5.培养建模的想象力和洞察力。 一、建立数学模型的方法和步骤 —般说来建立数学模型的方法大体上可分为两大类、一类是机理分析方法,一类是测试分析方法.机理分析是根据对现实对象特性的认识、分析其因果关系,找出反映内部机理的规律,建立的模型常有明确的物理或现实意义.测试分折将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,可以测量系统的输人输出数据、并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个与数据拟合得最好的模型。这种方法称为系统辨识(System Identification).将这两种方法结合起来也是常用的建模方法。即用机理分析建立模型的结构,用系统辨识确定模型的参数. 可以看出,用上面的哪一类方法建模主要是根据我们对研究对象的了解程度和建模目的决定的.如果掌握了机理方面的一定知识,模型也要求具有反映内部特性的物理意义。那么应该以机理分析方法为主.当然,若需要模型参数的具体数值,还可以用系统辨识或其他统计方法得到.如果对象的内部机理基本上没掌握,模型也不用于分析内部特性,譬如仅用来做输出预报,则可以系统辩识方法为主.系统辨识是一门专门学科,需要一定的控制理论和随机过程方面的知识.以下所谓建模方法只指机理分析。 建模要经过哪些步骤并没有一定的模式,通常与实际问题的性质、建模的目的等有关,从 §16.2节的几个例子也可以看出这点.下面给出建模的—般步骤,如图16-5所示. 图16-5 建模步骤示意图 模型准备首先要了解问题的实际背景,明确建模的目的搜集建模必需的各种信息如现象、数据等,尽量弄清对象的特征,由此初步确定用哪一类模型,总之是做好建模的准备工作.情况明才能方法对,这一步一定不能忽视,碰到问题要虚心向从事实际工作的同志请教,尽量掌握第一手资料. 模型假设根据对象的特征和建模的目的,对问题进行必要的、合理的简化,用精确的语言做出假设,可以说是建模的关键一步.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理、化学、生物、经济等方面的知识,又要充分发挥想象力、洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化、均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样.

数学建模- 图与网络模型及方法

第五章 图与网络模型及方法 §1 概论 图论起源于18世纪。第一篇图论论文是瑞士数学家欧拉于1736 年发表的“哥尼斯堡的七座桥”。1847年,克希霍夫为了给出电网络方程而引进了“树”的概念。1857年,凯莱在计数烷22 n n H C 的同分异构物时,也发现了“树”。哈密尔顿于1859年提出“周游世界”游戏,用图论的术语,就是如何找出一个连通图中的生成圈,近几十年来,由于计算机技术和科学的飞速发展,大大地促进了图论研究和应用,图论的理论和方法已经渗透到物理、化学、通讯科学、建筑学、生物遗传学、心理学、经济学、社会学等学科中。 图论中所谓的“图”是指某类具体事物和这些事物之间的联系。如果我们用点表示这些具体事物,用连接两点的线段(直的或曲的)表示两个事物的特定的联系,就得到了描述这个“图”的几何形象。图论为任何一个包含了一种二元关系的离散系统提供了一个数学模型,借助于图论的概念、理论和方法,可以对该模型求解。哥尼斯堡七桥问题就是一个典型的例子。在哥尼斯堡有七座桥将普莱格尔河中的两个岛及岛与河岸联结起来问题是要从这四块陆地中的任何一块开始通过每一座桥正好一次,再回到起点。当 然可以通过试验去尝试解决这个问题,但该城居民的任何尝试均未成功。欧拉为了解决 这个问题,采用了建立数学模型的方法。他将每一块陆地用一个点来代替,将每一座桥用连接相应两点的一条线来代替,从而得到一个有四个“点”,七条“线”的“图”。问题成为从任一点出发一笔画出七条线再回到起点。欧拉考察了一般一笔画的结构特点,给出了一笔画的一个判定法则:这个图是连通的,且每个点都与偶数线相关联,将这个判定法则应用于七桥问题,得到了“不可能走通”的结果,不但彻底解决了这个问题,而且开创了图论研究的先河。 图与网络是运筹学(Operations Research )中的一个经典和重要的分支,所研究的问题涉及经济管理、工业工程、交通运输、计算机科学与信息技术、通讯与网络技术等诸多领域。下面将要讨论的最短路问题、最大流问题、最小费用流问题和匹配问题等都是图与网络的基本问题。 我们首先通过一些例子来了解网络优化问题。 例1 最短路问题(SPP -shortest path problem ) 一名货柜车司机奉命在最短的时间内将一车货物从甲地运往乙地。从甲地到乙地的公路网纵横交错,因此有多种行车路线,这名司机应选择哪条线路呢?假设货柜车的运行速度是恒定的,那么这一问题相当于需要找到一条从甲地到乙地的最短路。 例2 公路连接问题 某一地区有若干个主要城市,现准备修建高速公路把这些城市连接起来,使得从其中任何一个城市都可以经高速公路直接或间接到达另一个城市。假定已经知道了任意两个城市之间修建高速公路的成本,那么应如何决定在哪些城市间修建高速公路,使得总

第七章 图与网络优化练习题答案

第八章 图与网络优化练习题答案 一、判断下列说法是否正确 1.在任一图G 中,当点集V 确定后,树图是G 中边数最少的连通图。( ) 2.若图中某点v i 有若干个相邻点,与其距离最远的相邻点为v j ,则边[v i ,v j ]必不包含在最小支撑树内。( ) 3.若图中从v 1至各点均有惟一的最短路,则连接v 1至其他各点的最短路在去掉重复部分后,恰好构成该图的最小支撑树。( ) 4.求网络最大流的问题可归结为求解一个线性规划模型。( ) 二、有一项工程,要埋设电缆将中央控制室与15个控制点连通。下图中标出了允许挖电缆沟的地点和距离(单位:hm )。若电缆线100元/m ,挖电缆沟(深1m ,宽0.6m )土方30元/m 3,其它材料和施工费用50元/m ,请作出该项工程预算的最少费用。 中央控制室 1 2 4 3 6 5 8 7 9 10 11 15 12 13 14 7 2 4 6 6 12 4 3 11 9 5 8 5 9 8 8 12 10 5 5 2 5 4 10 5 4 6 9 6 8 4 6 7 3 答案: 求出其最小支撑树为: 中央控制室 1 2 4 3 6 5 8 7 9 10 11 15 12 13 14 7 2 4 4 3 5 5 5 5 2 4 5 4 4 3 埋设电缆的最优方案为总长6200m 所以最少工程预算费为6200×(100+0.6×30+50)=元

三、用Dijkstra 标号法求出下图中v 1到各点的最短距离与最短路径。 v 1 v 3 v 6 v 9 v 11 v 2 v 5 v 8 v 4 v 10 v 7 2 8 1 6 1 2 9 1 1 6 7 3 4 7 1 2 9 6 1 5 3 2 答案: 图中的粗线即为v 1到各点的最短路径;v 1到各点的最短距离为图中带 的数字。 四、所给网络中弧旁数字为该弧容量,求网络最大流与最小截集。 v s v 1 v 2 v 3 v 4 v t 13 2 6 6 3 3 4 4 7 15 答案: 第一次迭代: 得增广链:(v s , v 1, v t );按θ=7调整,如上图。 第二次迭代: v s v 1 v 2 v 3 v 4 v t (13,7) 2 6 6 3 3 4 4 (7,7) 15 (0,+∞) (v s ,13) (v s ,6) (v s ,2) (v 1,4) (v 1,7)

运筹学图与网络

第二节 最大流和最小割 一、割 若S 为V 的一个子集,S y S V S S x ∈-=∈,,,记),(S S K =为起点在S 中,终点在S 中的全体有向边的集合,即 {} S v S u v u K ∈∈=,),( (11-4) 我们称边集),(S S K =为网络G 的一个割,称∑∈K e e C )(为K 的容量,记为 Cap K 。 例5 给运输网络如图11-8所示,试 求与给定的j S (j =1,2,3)相对应的 Cap j K 。 解取{}11,v x S =, {}),(),,(),,(221311v x v v v v K =, Cap 1K =10+6+9=25。 图11-8 取 {}4212,,,v v v x S =, {}),(),,(),,(5254312v v v v v v K =, Cap 2K =10+6+13=29。 取 {}54213,,,,v v v v x S =, {}),(),,(5313y v v v K =, Cap 3K =10+10=20。 可见,若把割K 的边全从G 中移去,G -K 不一定分离成两部份(如例5中,3K G -仍为一个连通图),但是它一定把G 的全部自源x 到汇y 的路断开,也就是说此时流不能在G 上发生。故从直观上不难理解,G 的任一流f 的流值Val f 不能超过任一割的容量。 二、最大流与最小割 若?f 为满足下列条件的流: Val ?f ={}的一个流 为G f Valf max , (11-5)

则称?f 为G 的最大流。 若?K 为满足下列条件的割。 Cap ?K ={}的一个割 为G K K Cap min , (11-6) 则称?K 为G 的最小割。 例1 这个运输问题,就是一个在图11-6中求x 至y 的最大流问题。对此,我们不难建立线性规划模型来求出最优解。但由于网络模型结构的特殊性,我们可以建立有效的求最大流的算法,且求出的最优解是一个整数解。 定理1 对于G 中任一流f 和任一割),(S S K =,有 Val )()(s f S f f -+-= 其中,∑∈+= ),()()(S S e e f S f ,∑∈-=),()()(S S e e f S f 例如,在图11-7中,取{}11,,v x x S =,则 {}),(),,(),,(),,(),,(),(221412121x x x x v v v v v x S S = {}),(),(12v x S S = 4815510315)(=++++=+S f 8)(=-S f 可见,Val )()(40S f S f f -+-== 定理1说明,通过G 的任一横截面的净流值都为Val f ,亦即Val f 为任一横截面的输出量与输入量的代数和。 若f 为G 上一个流,对任E e ∈,若)()(e C e f =,称边e 为f 饱和边;若)(e f <)(e C ,称边e 为f 不饱和边;若)(e f >0,称边e 为f 正边;若)(e f =0,称e 为f 零边。 定理2 对于G 上任一流f 和任一割),(S S K =,有 1.Val f ≤Cap K ; 2.Val f =Cap K 的充要条件为:任),(S S e ∈,边e 为f 饱和边;任),(S S e ∈,边e 为f 零边。 证 1.∑∈+= ),()()(S S e e f S f ≤∑∈=K e CapK e C )( 又 )(S f -≥0,

数学建模常用的十种解题方法

数学建模常用的十种解题方法 摘要 当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。这个建立数学模型的全过程就称为数学建模。数学建模的十种常用方法有蒙特卡罗算法;数据拟合、参数估计、插值等数据处理算法;解决线性规划、整数规划、多元规划、二次规划等规划类问题的数学规划算法;图论算法;动态规划、回溯搜索、分治算法、分支定界等计算机算法;最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法;网格算法和穷举法;一些连续离散化方法;数值分析算法;图象处理算法。 关键词:数学建模;蒙特卡罗算法;数据处理算法;数学规划算法;图论算法 一、蒙特卡罗算法 蒙特卡罗算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法。在工程、通讯、金融等技术问题中, 实验数据很难获取, 或实验数据的获取需耗费很多的人力、物力, 对此, 用计算机随机模拟就是最简单、经济、实用的方法; 此外, 对一些复杂的计算问题, 如非线性议程组求解、最优化、积分微分方程及一些偏微分方程的解⑿, 蒙特卡罗方法也是非常有效的。 一般情况下, 蒙特卜罗算法在二重积分中用均匀随机数计算积分比较简单, 但精度不太理想。通过方差分析, 论证了利用有利随机数, 可以使积分计算的精度达到最优。本文给出算例, 并用MA TA LA B 实现。 1蒙特卡罗计算重积分的最简算法-------均匀随机数法 二重积分的蒙特卡罗方法(均匀随机数) 实际计算中常常要遇到如()dxdy y x f D ??,的二重积分, 也常常发现许多时候被积函数的原函数很难求出, 或者原函数根本就不是初等函数, 对于这样的重积分, 可以设计一种蒙特卡罗的方法计算。 定理 1 )1( 设式()y x f ,区域 D 上的有界函数, 用均匀随机数计算()??D dxdy y x f ,的方法: (l) 取一个包含D 的矩形区域Ω,a ≦x ≦b, c ≦y ≦d , 其面积A =(b 一a) (d 一c) ; ()j i y x ,,i=1,…,n 在Ω上的均匀分布随机数列,不妨设()j i y x ,, j=1,…k 为落在D 中的k 个随机数, 则n 充分大时, 有

什么是数学模型与数学建模

1. 什么是数学模型与数学建模 简单地说:数学模型就是对实际问题的一种数学表述。 具体一点说:数学模型是关于部分现实世界为某种目的的一个抽象的简化的数学结构。 更确切地说:数学模型就是对于一个特定的对象为了一个特定目标,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。数学结构可以是数学公式,算法、表格、图示等。 数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程(见数学建模过程流程图)。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻划并"解决"实际问题的一种强有力的数学手段。 2.美国大学生数学建模竞赛的由来: 1985年在美国出现了一种叫做MCM的一年一度大大学生数学模型(1987年全称为Mathematical Competition in Modeling,1988年改全称为Mathematical Contest in Modeling,其所写均为MCM)。这并不是偶然的。在1985年以前美国只有一种大学生数学竞赛(The william Lowell Putnam mathematial Competition,简称Putman(普特南)数学竞赛),这是由美国数学协会(MAA--即Mathematical Association of America的缩写)主持,于每年12月的第一个星期六分两试进行,每年一次。在国际上产生很大影响,现已成为国际性的大学生的一项著名赛事。该竞赛每年2月或3月进行。 我国自1989年首次参加这一竞赛,历届均取得优异成绩。经过数年参加美国赛表明,中国大学生在数学建模方面是有竞争力和创新联想能力的。为使这一赛事更广泛地展开,1990年先由中国工业与应用数学学会后与国家教委联合主办全国大学生数学建模竞赛(简称CMCM),该项赛事每年9月进行。

数学建模常用方法

数学建模常用方法 建模常用算法,仅供参考: 1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必 用的方法) 2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用M a t l a b作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通 常使用L i n d o、L i n g o软件实现) 4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种 暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计 算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用) 10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文 中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用M a t l a b进行处理) 一、在数学建模中常用的方法: 1.类比法 2.二分法 3.量纲分析法 4.差分法 5.变分法 6.图论法 7.层次分析法 8.数据拟合法 9.回归分析法 10.数学规划(线性规划、非线性规划、整数规划、动态规划、目标规划) 11.机理分析 12.排队方法

数学建模的基本步骤

数学建模的基本步骤 一、数学建模题目 1)以社会,经济,管理,环境,自然现象等现代科学中出现的新问题为背景,一般都有一个比较确切的现实问题。 2)给出若干假设条件: 1. 只有过程、规则等定性假设; 2. 给出若干实测或统计数据; 3. 给出若干参数或图形等。 根据问题要求给出问题的优化解决方案或预测结果等。根据问题要求题目一般可分为优化问题、统计问题或者二者结合的统计优化问题,优化问题一般需要对问题进行优化求解找出最优或近似最优方案,统计问题一般具有大量的数据需要处理,寻找一个好的处理方法非常重要。 二、建模思路方法 1、机理分析根据问题的要求、限制条件、规则假设建立规划模型,寻找合适的寻优算法进行求解或利用比例分析、代数方法、微分方程等分析方法从基本物理规律以及给出的资料数据来推导出变量之间函数关系。 2、数据分析法对大量的观测数据进行统计分析,寻求规律建立数学模型,采用的分析方法一般有: 1). 回归分析法(数理统计方法)-用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式。 2). 时序分析法--处理的是动态的时间序列相关数据,又称为过程统计方法。 3)、多元统计分析(聚类分析、判别分析、因子分析、主成分分析、生存数据分析)。 3、计算机仿真(又称统计估计方法):根据实际问题的要求由计算机产生随机变量对动态行为进行比较逼真的模仿,观察在某种规则限制下的仿真结果(如蒙特卡罗模拟)。 三、模型求解: 模型建好了,模型的求解也是一个重要的方面,一个好的求解算法与一个合

适的求解软件的选择至关重要,常用求解软件有matlab,mathematica,lingo,lindo,spss,sas等数学软件以及c/c++等编程工具。 Lingo、lindo一般用于优化问题的求解,spss,sas一般用于统计问题的求解,matlab,mathematica功能较为综合,分别擅长数值运算与符号运算。 常用算法有:数据拟合、参数估计、插值等数据处理算法,通常使用spss、sas、Matlab作为工具. 线性规划、整数规划、多元规划、二次规划、动态规划等通常使用Lindo、Lingo,Matlab软件。 图论算法,、回溯搜索、分治算法、分支定界等计算机算法, 模拟退火法、神经网络、遗传算法。 四、自学能力和查找资料文献的能力: 建模过程中资料的查找也具有相当重要的作用,在现行方案不令人满意或难以进展时,一个合适的资料往往会令人豁然开朗。常用文献资料查找中文网站:CNKI、VIP、万方。 五、论文结构: 0、摘要 1、问题的重述,背景分析 2、问题的分析 3、模型的假设,符号说明 4、模型的建立(局部问题分析,公式推导,基本模型,最终模型等) 5、模型的求解 6、模型检验:模型的结果分析与检验,误差分析 7、模型评价:优缺点,模型的推广与改进 8、参考文献 9、附录 六、需要重视的问题 数学建模的所有工作最终都要通过论文来体现,因此论文的写法至关重要:

数学建模方法模型

数学建模方法模型 一、统计学方法 1 多元回归 1、方法概述: 在研究变量之间的相互影响关系模型时候用到。具体地说:其可以定量地描述某一现象和某些因素之间的函数关系,将各变量的已知值带入回归方程可以求出因变量的估计值,从而可以进行预测等相关研究。 2、分类 分为两类:多元线性回归和非线性线性回归;其中非线性回归可以通过一定的变化转化为线性回归,比如:y=lnx 可以转化为 y=u u=lnx 来解决;所以这里主要说明多元线性回归应该注意的问题。 3、注意事项 在做回归的时候,一定要注意两件事: (1) 回归方程的显著性检验(可以通过 sas 和 spss 来解决) (2) 回归系数的显著性检验(可以通过 sas 和 spss 来解决) 检验是很多学生在建模中不注意的地方,好的检验结果可以体现出你模型的优劣,是完整论文的体现,所以这点大家一定要注意。 4、使用步骤: (1)根据已知条件的数据,通过预处理得出图像的大致趋势或者数据之间的大致关系; (2)选取适当的回归方程; (3)拟合回归参数; (4)回归方程显著性检验及回归系数显著性检验 (5)进行后继研究(如:预测等)

2 聚类分析 1、方法概述 该方法说的通俗一点就是,将 n个样本,通过适当的方法(选取方法很多,大家可以自行查找,可以在数据挖掘类的书籍中查找到,这里不再阐述)选取 m 聚类中心,通过研究各样本和各个聚类中心的距离 Xij,选择适当的聚类标准,通常利用最小距离法(一个样本归于一个类也就意味着,该样本距离该类对应的中心距离最近)来聚类,从而可以得到聚类结果,如果利用sas 软件或者 spss 软件来做聚类分析,就可以得到相应的动态聚类图。这种模型的的特点是直观,容易理解。 2、分类 聚类有两种类型: (1) Q型聚类:即对样本聚类; (2) R型聚类:即对变量聚类; 通常聚类中衡量标准的选取有两种: (1) 相似系数法 (2) 距离法 聚类方法: (1) 最短距离法 (2) 最长距离法 (3) 中间距离法 (4) 重心法 (5) 类平均法 (6) 可变类平均法 (7) 可变法

数学建模中常见的十大模型

数学建模常用的十大算法==转 (2011-07-24 16:13:14) 转载▼ 1. 蒙特卡罗算法。该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。 2. 数据拟合、参数估计、插值等数据处理算法。比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MA TLAB 作为工具。 3. 线性规划、整数规划、多元规划、二次规划等规划类算法。建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。 4. 图论算法。这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。 5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。 6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7. 网格算法和穷举法。两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。 8. 一些连续数据离散化方法。很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9. 数值分析算法。如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 10. 图象处理算法。赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MA TLAB 进行处理。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 2 十类算法的详细说明 2.1 蒙特卡罗算法 大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。 举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢?随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。 2.2 数据拟合、参数估计、插值等算法 数据拟合在很多赛题中有应用,与图形处理有关的问题很多与拟合有关系,一个例子就是98 年美国赛A 题,生物组织切片的三维插值处理,94 年A 题逢山开路,山体海拔高度的插值计算,还有吵的沸沸扬扬可能会考的“非典”问题也要用到数据拟合算法,观察数据的

数学建模图与网络模型及方法

第五章 图与网络模型及方法 §1 概论 图论起源于18世纪。第一篇图论论文是瑞士数学家欧拉于1736 年发表的“哥尼斯堡的七座桥”。1847年,克希霍夫为了给出电网络方程而引进了“树”的概念。1857年,凯莱在计数烷22 n n H C 的同分异构物时,也发现了“树”。哈密尔顿于1859年提出“周游世界”游戏,用图论的术语,就是如何找出一个连通图中的生成圈,近几十年来,由于计算机技术和科学的飞速发展,大大地促进了图论研究和应用,图论的理论和方法已经渗透到物理、化学、通讯科学、建筑学、生物遗传学、心理学、经济学、社会学等学科中。 图论中所谓的“图”是指某类具体事物和这些事物之间的联系。如果我们用点表示这些具体事物,用连接两点的线段(直的或曲的)表示两个事物的特定的联系,就得到了描述这个“图”的几何形象。图论为任何一个包含了一种二元关系的离散系统提供了一个数学模型,借助于图论的概念、理论和方法,可以对该模型求解。哥尼斯堡七桥问题就是一个典型的例子。在哥尼斯堡有七座桥将普莱格尔河中的两个岛及岛与河岸联结起来问题是要从这四块陆地中的任何一块开始通过每一座桥正好一次,再回到起点。当 然可以通过试验去尝试解决这个问题,但该城居民的任何尝试均未成功。欧拉为了解决这个问题,采用了建立数学模型的方法。他将每一块陆地用一个点来代替,将每一座桥用连接相应两点的一条线来代替,从而得到一个有四个“点”,七条“线”的“图”。问题成为从任一点出发一笔画出七条线再回到起点。欧拉考察了一般一笔画的结构特点,给出了一笔画的一个判定法则:这个图是连通的,且每个点都与偶数线相关联,将这个判定法则应用于七桥问题,得到了“不可能走通”的结果,不但彻底解决了这个问题,而且开创了图论研究的先河。 图与网络是运筹学(Operations Research )中的一个经典和重要的分支,所研究的问题涉及经济管理、工业工程、交通运输、计算机科学与信息技术、通讯与网络技术等诸多领域。下面将要讨论的最短路问题、最大流问题、最小费用流问题和匹配问题等都是图与网络的基本问题。 我们首先通过一些例子来了解网络优化问题。 例1 最短路问题(SPP -shortest path problem ) 一名货柜车司机奉命在最短的时间内将一车货物从甲地运往乙地。从甲地到乙地的公路网纵横交错,因此有多种行车路线,这名司机应选择哪条线路呢假设货柜车的运行速度是恒定的,那么这一问题相当于需要找到一条从甲地到乙地的最短路。 例2 公路连接问题 某一地区有若干个主要城市,现准备修建高速公路把这些城市连接起来,使得从其中任何一个城市都可以经高速公路直接或间接到达另一个城市。假定已经知道了任意两

数学建模 运筹学模型(一)

运筹学模型(一) 本章重点: 线性规划基础模型、目标规划模型、运输模型及其应用、图论模型、最小树问题、最短路问题 复习要求: 1.进一步理解基本建模过程,掌握类比法、图示法以及问题分析、合理假设的内涵. 2.进一步理解数学模型的作用与特点. 本章复习重点是线性规划基础模型、运输问题模型和目标规划模型.具体说来,要求大家会建立简单的线性规划模型,把实际问题转化为线性规划模型的方法要掌握,当然比较简单.运输问题模型主要要求善于将非线性规划模型转化为运输规化模型,这种转化后求解相当简单.你至少把一个很实际的问题转化为用表格形式写出的模型,至于求解是另外一回事,一般不要求.目标模型一般是比较简单的线性规模模型在提出新的要求之后转化为目标规划模型.另外,关于图论模型的问题涉及到最短路问题,具体说来用双标号法来求解一个最短路模型.这之前恐怕要善于将一个实际问题转化为图论模型.还有一个最小数的问题,该如何把一个网络中的最小数找到.另外在个别场合可能会涉及一笔划问题. 1.营养配餐问题的数学模型 n n x C x C x C Z ++=211m i n ????? ?? ??=≥≥+++≥+++≥+++??) ,,2,1(0, ,, 22112222212111212111n j x b x a x a x a b x a x a x a b x a x a x a t s j m n mn m m n n n n 或更简洁地表为 ∑== n j j j x C Z 1 m i n ??? ??? ?==≥≥??∑=),,2,1,,2,1(01 n j m i x b x a t s j n j i j ij 其中的常数C j 表示第j 种食品的市场价格,a ij 表示第j 种食品含第i 种营养的数量,b i 表示人或动物对第i 种营养的最低需求量. 2.合理配料问题的数学模型 有m 种资源B 1,B 2,…,B m ,可用于生产n 种代号为A 1,A 2,…,A n 的产品.单位产品A j 需用资源B i 的数量为a ij ,获利为C j 单位,第i 种资源可供给总量为b i 个单位.问如何安排生产,使总利润达到最大? 设生产第j 种产品x j 个单位(j =1,2,…,n ),则有 n n x C x C x C Z +++= 2211m a x

建立数学模型的方法、步骤、特点及分类 ()

薅§16.3建立数学模型的方法、步骤、特点及分类 螁[学习目标] 蚀1.能表述建立数学模型的方法、步骤; 蒆2.能表述建立数学模型的逼真性、可行性、渐进性、强健性、可转移性、非预制性、条理性、技艺性和局限性等特点;; 羆3.能表述数学建模的分类; 蒃4.会采用灵活的表述方法建立数学模型; 葿5.培养建模的想象力和洞察力。 薆一、建立数学模型的方法和步骤 膃—般说来建立数学模型的方法大体上可分为两大类、一类是机理分析方法,一类是测试分析方法.机理分析是根据对现实对象特性的认识、分析其因果关系,找出反映内部机理的规律,建立的模型常有明确的物理或现实意义.§16.2节的示例都属于机理分析方法。测试分折将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,可以测量系统的输人输出数据、并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个与数据拟合得最好的模型。这种方法称为系统辨识(SystemIdentification).将这两种方法结合起来也是常用的建模方法。即用机理分析建立模型的结构,用系统辨识确定模型的参数. 袁可以看出,用上面的哪一类方法建模主要是根据我们对研究对象的了解程度和建模目的决定的.如果掌握了机理方面的一定知识,模型也要求具有反映内部特性的物理意义。那么应该以机理分析方法为主.当然,若需要模型参数的具体数值,还可以用系统辨识或其他统计方法得到.如果对象的内部机理基本上没掌握,模型也不用于分析内部特性,譬如仅用来做输出预报,则可以系统辩识方法为主.系统辨识是一门专门学科,需要一定的控制理论和随机过程方面的知识.以下所谓建模方法只指机理分析。 膈建模要经过哪些步骤并没有一定的模式,通常与实际问题的性质、建模的目的等有关,从 薆§16.2节的几个例子也可以看出这点.下面给出建模的—般步骤,如图16-5所示. 薄图16-5建模步骤示意图 蚃模型准备首先要了解问题的实际背景,明确建模的目的搜集建模必需的各种信息如现象、数据等,尽量弄清对象的特征,由此初步确定用哪一类模型,总之是做好建模的准备工作.情况明才能方法对,这一步一定不能忽视,碰到问题要虚心向从事实际工作的同志请教,尽量掌握第一手资料. 芁模型假设根据对象的特征和建模的目的,对问题进行必要的、合理的简化,用精确的语言做出假设,可以说是建模的关键一步.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理、化学、生物、经济等方面的知识,又要充分发挥想象力、洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化、均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样.

数学建模方法和步骤

数学建模的主要步骤: 第一、模型准备 首先要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征. 第二、模型假设 根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步.如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化. 第三、模型构成 根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构.这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天.不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值. 第四、模型求解 可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术.一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重. 第五、模型分析 对模型解答进行数学上的分析."横看成岭侧成峰,远近高低各不?quot;,能否对模型结果作出细致精当的分析,决定了你的模型能否达到更高的档次.还要记住,不论那种情况都需进行误差分析,数据稳定性分析. 数学建模采用的主要方法有: (一)、机理分析法:根据对客观事物特性的认识从基本物理定律以及系统的结构数据来推导出模 型. 1、比例分析法:建立变量之间函数关系的最基本最常用的方法. 2、代数方法:求解离散问题(离散的数据、符号、图形)的主要方法. 3、逻辑方法:是数学理论研究的重要方法,对社会学和经济学等领域的实际问题,在决策,对策等学科中得到广泛应用. 4、常微分方程:解决两个变量之间的变化规律,关键是建立“瞬时变化率”的表达式. 5、偏微分方程:解决因变量与两个以上自变量之间的变化规律. (二)、数据分析法:通过对量测数据的统计分析,找出与数据拟合最好的模型 1、回归分析法:用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法. 2、时序分析法:处理的是动态的相关数据,又称为过程统计方法. 3、回归分析法:用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法.

数学建模常用模型方法总结

数学建模常用模型方法总结 无约束优化 线性规划连续优化 非线性规划 整数规划离散优化 组合优化 数学规划模型多目标规划 目标规划 动态规划从其他角度分类 网络规划 多层规划等… 运筹学模型 (优化模型) 图论模型存 储论模型排 队论模型博 弈论模型 可靠性理论模型等… 运筹学应用重点:①市场销售②生产计划③库存管理④运输问题⑤财政和会计⑥人事管理⑦设备维修、更新和可靠度、项目选择和评价⑧工程的最佳化设计⑨计算器和讯息系统⑩城市管理 优化模型四要素:①目标函数②决策变量③约束条件 ④求解方法(MATLAB--通用软件LINGO--专业软件) 聚类分析、 主成分分析 因子分析 多元分析模型判别分析 典型相关性分 析 对应分析 多维标度法 概率论与数理统计模型 假设检验模型 相关分析 回归分析 方差分析 贝叶斯统计模型 时间序列分析模型 决策树 逻辑回归

传染病模型马尔萨斯人口预测模型微分方程模型人口预 测控制模型 经济增长模型Logistic 人口预测模型 战争模型等等。。 灰色预测模型 回归分析预测模型 预测分析模型差分方程模型 马尔可夫预测 模型 时间序列模型 插值拟合模型 神经网络模型 系统动力学模型(SD) 模糊综合评判法模型 数据包络分析 综合评价与决策方法灰色关联度 主成分分析 秩和比综合评价法 理想解读法等 旅行商(TSP)问题模型 背包问题模型车辆路 径问题模型 物流中心选址问题模型 经典NP问题模型路径规划问题模型 着色图问题模型多目 标优化问题模型 车间生产调度问题模型 最优树问题模型二次分 配问题模型 模拟退火算法(SA) 遗传算法(GA) 智能算法 蚁群算法(ACA) (启发式) 常用算法模型神经网络算法 蒙特卡罗算法元 胞自动机算法穷 举搜索算法小波 分析算法 确定性数学模型 三类数学模型随机性数学模型

数学建模常用算法模型

按模型的数学方法分: 几何模型、图论模型、微分方程模型、概率模型、最优控制模型、规划论模型、马氏链模型等 按模型的特征分: 静态模型和动态模型,确定性模型和随机模型,离散模型和连续性模型,线性模型和非线性模型等 按模型的应用领域分: 人口模型、交通模型、经济模型、生态模型、资源模型、环境模型等。 按建模的目的分: 预测模型、优化模型、决策模型、控制模型等 一般研究数学建模论文的时候,是按照建模的目的去分类的,并且是算法往往也和建模的目的对应 按对模型结构的了解程度分: 有白箱模型、灰箱模型、黑箱模型等 比赛尽量避免使用,黑箱模型、灰箱模型,以及一些主观性模型。 按比赛命题方向分: 国赛一般是离散模型和连续模型各一个,2016美赛六个题目(离散、连续、运筹学/复杂网络、大数据、环境科学、政策) 数学建模十大算法 1、蒙特卡罗算法 (该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,比较好用的算法) 2、数据拟合、参数估计、插值等数据处理算法 (比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)

3、线性规划、整数规划、多元规划、二次规划等规划类问题 (建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现) 4、图论算法 (这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法 (这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法 (这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7、网格算法和穷举法 (当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法 (很多问题都是从实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法 (如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法 (赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的这些图形如何展示,以及如何处理就是需要解决的问题,通常使用Matlab进行处理) 算法简介 1、灰色预测模型(必掌握)

建立数学模型的一般方法

建立数学模型的一般方法 —般说来建立数学模型的方法大体上可分为两大类、一类是机理分析方法,一类是测试分析方法.机理分析是根据对现实对象特性的认识、分析其因果关系,找出反映内部机理的规律,建立的模型常有明确的物理或现实意义. 模型准备首先要了解问题的实际背景,明确建模的目的搜集建模必需的各种信息如现象、数据等,尽量弄清对象的特征,由此初步确定用哪一类模型,总之是做好建模的准备工作.情况明才能方法对,这一步一定不能忽视,碰到问题要虚心向从事实际工作的同志请教,尽量掌握第一手资料. 模型假设根据对象的特征和建模的目的,对问题进行必要的、合理的简化,用精确的语言做出假设,可以说是建模的关键一步.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理、化学、生物、经济等方面的知识,又要充分发挥想象力、洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化、均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样. 模型构成根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量(常量和变量)之间的等式(或不等式)关系或其他数学结构.这里除需要一些相关学科的专门知识外,还常常需要较广阔的应用数学方面的知识,以开拓思路.当然不能要求对数学学科门门精通,而是要知道这些学科能解决哪一类问题以及大体上怎样解决.相似类比法,即根据不同对象的某些相似性,借用已知领域的数学模型,也是构造模型的一种方法.建模时还应遵循的一个原则是,尽量采用简单的数学工具,因为你建立的模型总是希望能有更多的人了解和使用,而不是只供少数专家欣赏. 模型求解可以采用解方程、画图形、证明定理、逻辑运算、数值计算等各种

相关文档
最新文档