农业用水水质标准比较

农业用水水质标准比较
农业用水水质标准比较

农业用水水质标准比较标准化管理部编码-[99968T-6889628-J68568-1689N]

中国农业用水水质标准与发达国家之比较

摘要:通过概述我国农业及渔业用水水质标准及其发展历程;美国,欧盟及世界其他国家和地区的农业相关水质标准的总体状况;对中、美

两国农业相关水质标准和基准在制定方法及程序、指标限值、监测

及评价方法等方面进行了总体比较。针对我国农业水质标准存在的

问题,提出一些建议,为我国形成完整的农业用水水质标准体系提

供参考。

关键词:农业用水水质标准比较

我国是水资源短缺的国家,2012年全国水资源总量为29526.9亿立方米,比常年值偏多6.6%,比上年增加27%[1],但人均水资源占有量仅为世界平均水平的三分之一,是世界上13个贫水国家之一。同时,有限的水资源在时空分布上很不均匀,南多北少,东多西少,夏秋多,冬春少,农业的季节性、区域性干旱缺水问题十分突出。据2012年水利发展统计公报,2012年全国总用水量6131.2亿立方米,其中:农业用水3902.5亿立方米,占总用水量的63.6%,农业仍是我国第一用水大户[1]。我国的农业相关水质标准分别由国家、行业及地方制订,其级别不同,制订的意义不同,但它们也相互协调、相互补充。因此,讨论农业用水及其水质标准很有现实意义,了解和掌握这些标准是较好地开展农业环境管理、进行农业生产和水域生态环境评价的基础。

1 我国农业用水水质标准体系

农业用水狭义上指用于灌溉农田的水;广义上也包括养殖牲畜和渔业所需用水,本文提到农业用水应包括农田灌溉和渔业用水。

1.1 农田灌溉水质标准体系

我国农田灌溉用水水质标准主要由以下标准予以规定:《地表水环境质量标准》(GB 3838-2002)、《地下水质量标准》(GB/T 14848-93)、《农田灌溉水质标准》(GB 5084-2005)、《绿色食品产地环境技术条件》(NY/T 391-2000)中农田灌溉水质要求、《有机食品技术规范》(HJ/80-2001)中对灌溉水质要求。

《地表水环境质量标准》按照地表水的功能分类和保护目标,规定了水环境质量应控制的项目、限值,以及水质评价、水质项目的分析方法。该标准适用于江河、湖泊、运河、渠道等具有使用功能的地表水水域,并且依据水域功能,将地表水划分为5类,其中的Ⅴ类适用于农业用水水域。采用地表水为农业用水水源时应符合地表水环境质量标准(GB 3838-2002)Ⅴ类水质标准。

《地下水质量标准》根据我国地下水水质现状、人体健康基准值及下水质量保护目标,将地下水质量划分为5类。采用地下水为农业用水水源时应符合地下水质量标准(GB/T 14848-93)规定:Ⅰ类主要反映地下水化学组分的天然低背景含量。适用于各种用途。Ⅱ类主要反映地下水化学组分的天然背景含量。适用于各种用途。Ⅲ类以人体健康基准值为依据。主要适用于集中式生活饮用水水源及工、农业用水。Ⅳ类以农业和工业用水要求为依据。除适用于农业和部分工业用水外,适当处理后可作生活饮用水。Ⅴ类不宜饮用,其他用水可根据使用目的选用。从以上分类要求看出地下水规定的水体用途比较笼统,可以说地下水Ⅰ~Ⅴ类都可适用于农业用水。

《农田灌溉水质标准》规定了农田灌溉水质要求、监测和分析方法,适用于全国以地表水、地下水和水处理后的养殖业废水及农产品为原料加工的工业废水作为水源的农田灌溉用水。该标准于1985年首次发布,1992年第一次修订,2005年第二次修订。现行的农田灌溉水质标准(GB 5084-2005)。1985年,国家正式发布了农田灌溉水质标准(GB 5084—1985),适用于全国以地面水、地下水、工业废水以及城市污水作水源的农田灌溉用水。该标准根据灌溉水的用途,将农业灌溉水水质要求分为两类,共22项。值得注意的是,该标准规定各项标准值均指单次测定最高值,而非多次测定的平均值[2]。1992年,国家对GB 5084—1985 标准进了第一次修订,发布了农田灌溉水质标准(GB 5084—1992),适用于全国以地面水、地下水和处理后的城市废水及城市污水水质相近的工业废水作水源的灌溉用水。该标准对水质的分类方法做了修订,改为根据农作物的需求状况,将灌溉水质按灌溉作物分为3类:水作、旱作和蔬菜。该标准有29项指标,与GB 5084—1985相比,增加了7个指标,其中有机污染物综合指标6项、卫生学指标1项,分别为:生化需氧量、化学需氧量、悬浮物、阴离子表面活性剂、凯氏氮、总磷、蛔虫卵数[3]。2005年,国家对农田灌溉水质标准进行了第二次修订,发布了农田灌溉水质标准(GB 5084—2005)。该标准共27项,将控制项目分为基本控制项目(16 项)和选择性控制项目(11 项)。基本控制项目适用于全国以地表水、地下水和水处理后的养殖业废水及农产品为原料加工的工业废水作为水源的农田灌溉用水;选择性控制项目由县级以上人民政府环境保护和农业行政主管部门,根据本地区农业水源水质特点和环境、农产品管理的需要进行选择控制,所选择的的指标作为基本控制项目的补充指标。与GB 5084—1992标准相比,减少了凯氏氮、总磷两项指标,修订了五日生化需氧量、化学需氧量、悬浮物、氯化物、总镉、总铅、总铜、粪大肠菌群数和蛔虫卵数共9项指标[4]。

1.2 渔业用水水质标准体系

我国的水环境质量是按照水域功能分区管理的。因此,综合性水环境质量标准都是分功能区制订浓度限值的,例如,《地表水环境质量标准(GB 3838 - 2002)》依据地表水使用功能和保护目标将其划分为5类,其中的Ⅱ类水适用于鱼虾产卵场等,Ⅲ类水适用于水产养殖区等渔业水域。而《渔业水质标准(GB 11607- 1989)》等专门渔业保护标准则制订单一的限制浓度值用于渔业水域的监督管理。表1列出了目前我国部分渔业相关水质标准。

表1 渔业相关水质标准

编号名称标准类别

GB 11607–1989 渔业水质标准国家标准

GB 3838-2002 地表水环境质量标准国家标准

GB 3097-1997 海水水质标准国家标准

GB /T 18407.4-2001 无公害水产品产地环境标准国家标准

SL 63-1994 地表水资源质量标准水利部行业标准

NY 5051-2001 无公害食品淡水养殖用水水质农业部行业标准

NY 5052-2001 无公害食品海水养殖用水水质农业部行业标准

NY /T 391-2000 绿色食品产地环境质量标准农业部行业标准《地表水环境质量标准》依据水域功能,将地表水划分为5类,其中的Ⅱ和Ⅲ类适用于农业用水水域。类适用于渔业资源水域。同时该标准取代GB 3838-88和GHZB 1-1999,修订后的标准加强了对有机污染物的检测,增加了总氮项目,这都是考虑到了我国的水域中水体的有机物污染和富营养化问题加重等因素。另外,修订后的标准删除了非离子氨项目,而非离子氨对于水生生物可能构成较大的危害,因此在渔业水质评价中必须从其他标准中参考并规定该项目的浓度限值。作为综合性水质标准,目前该标准除含有地表水环境质量标准基本项目(24项)外,还包括集中式生活饮用水地表水源地补充项目(5项)及特定项目(80项)。

《海水水质标准》适用于我国管辖的海域,该标准规定了不同使用功能的水质要求。现行的《海水水质标准》替代原有的GB 3097- 82,增加了有关海水水质监测样品的采集、运输和预处理等方面的规定,并且将海水水质的分类由3类改为4类,其中的第一类和第二类适用于海洋渔业水域,监测项目共35项。

《渔业水质标准》主要应用于渔业水域的监督管理,是渔业部门经常使用的标准,对实施渔业资源评价、渔业污染事故评价以及养殖用水的评价,都起到了很好的指导作用[5]。但是由于该标准制订于1989年,监测仅包括水体自然性状项目4项、富营养化类生态项目3项、理化毒性项目25项和微生物项目1项,而近年来随着工农业的快速发展,新的污染物的出现以及对新污染物的科学认识的提高,对该标准在监测项目、浓度限值方面都需要作出修订和增改,才能

继续较好地服务于渔业环境管理工作。目前农业部正开展相关修订工作,不少科研工作者和渔业管理人员都提出了自己的见解,主要集中于增加有关热污染、水体富营养化污染指标以及某些有机毒性污染物质指标[6,7]。

1.3 主要的农业用水水质标准比较

表2 农田灌溉用水主要标准对照单位:mg/L

从表2中可以看出,农田灌溉水质(水作、旱作、蔬菜)中五日生化需氧量标准限值分别是地表Ⅴ类水标准限值的6、10、4和1.5倍;农田灌溉水质(水作、旱作、蔬菜)中阴离子表面活性剂标准限值分别是地表Ⅴ类水标准限值的17、27、17倍;地表Ⅴ类中粪大肠菌群数标准限值分别是农田灌溉水质标准限值的10、10、20和40倍。两个标准中汞、镉、铬(六价)、锌、硒标准限值一样。

由表2可以得出结论如下:农田灌溉水质标准中铜(水作)和粪大肠菌群数两项指标限值限值比地表Ⅴ类水标准相应指标限值低;其他指标限都等于或高于地表Ⅴ类水标准相应指标限值。

表3 灌溉用水标准比较

对表2中农田灌溉用水水质标准和地表Ⅴ类水标准分别从指标数目、相同名称指标数目、化学指标数量、细菌学指标数量、物理及感官指标数量几个方面进行比较见表3。

《农田灌溉水质标准》的目的是为了保护农作物及土壤生态环境,而《地表水环境质量标准》中的Ⅴ类水域不仅考虑了保护农作物,同时还考虑了地面水水环境基本生态保护要求。因此,这两个标准的管理对象和适用范围不同。《农田灌溉水质标准》只能用来评价用作农灌的水是否符合要求,并对其进行监督管理,而《地表水环境质量标准》用来评价和管理标准中规定的农业用水水区[8]。

从表4可以看出,渔业水质标准只有一个限值,渔业水质标准与地表水(Ⅲ类水)的标准限值差异比较大,地表水Ⅲ类水中Cu、zn的标准限值分别是渔业水质标准限值的100和10倍;Hg的渔业水质标准限值分别是地表水(Ⅱ、Ⅲ类水)标准限值的10倍和5倍,是海洋水质标准(Ⅱ、Ⅲ类水)标准限值的10倍和2.5。由表4比较总结得出,渔业水质标准汞指标限值要高于地表水Ⅱ、Ⅲ类水标准;其它指标项,渔业水质标准要比地表水Ⅱ、Ⅲ类标准要求更严格。渔业指标项目总体上大于或等于海水水质Ⅰ、Ⅱ类标准相应指标,渔业水质标准要比海水水质Ⅰ、Ⅱ类标准要求更宽松。

这里值得提出是,在对渔业水域相应项目的监测中则应考虑以《地表水环境质量标准》作为评价依据,《地表水环境质量标准》规定Ⅱ类、Ⅲ类水体的铜的限制值为1.0 mg/L,这种浓度值对渔业资源保护的可行性有必要进行讨论。有资料显示[9],铜对白鲢和枝角类的TLm(90)分别为0.062mg/L、0.06mg/L,相应的安全浓度则应为0.006mg/L。总体上说,水生生物对铜是比较敏感的。《渔业水质标准》中规定铜不能超过0.01mg/L,作为渔业资源的保护《地表水环境质量标准》中铜的限值显得过于宽松。

渔业水质标准与地表水(Ⅱ、Ⅲ类)的标准限值差异比较大,使得评价的指标结果不统一。如2003年某地渔业水质监测结果Cu、Hg、zn的检测值分别是0.21、0.0004、0.5 mg/L,用地表水(Ⅲ类)评价分别是未检出、超标4倍、未检出;用渔业水质标准评价结果是超标21倍、未检出、超标5倍[10]。同样的监测数据,不同的标准,评价结果差别很大,给执行带来不便。从评价结果看,该地渔业水质不符合渔业用水标准。在所检测的三种重金属中不能确污染最严重的污染物,无法为采取更进一步污染治理提供依据,也使检测结果不能更好的为渔业服务。

表5 3个标准检测项目比较

标准特有检测项目

渔业水质标准凯氏氮、丙烯腈、丙烯醛、乐果、

甲胺磷、呋喃丹

地表水环境质量标准高锰酸盐指数、总磷、总氮、硒、

粪大肠菌群、六价铬

海水水质标准无机氮、病原体、粪大肠群、

活性磷酸盐、六价铬

以上三个标准均有 pH、五日生化需氧量、溶解氧、

汞、镉、铜、锌等

制订《渔业水质标准》的目的是防止和控制渔业水域水质污染,保证鱼、虾、贝、藻类的正常生长,因此比较重视对有毒金属离子、农药和渔药等污染物的检测。《地表水环境质量标准》则考虑到有机物污染,设定有高锰酸盐指数和化学需氧量,另外还设定有总磷和总氮项目,目的是反映湖泊或水库等水体的富营养化程度在水体中,铬的化合物有2价、3价和6价三种,其中的6价铬易溶于水且毒性最大,对水生生物影响最大,这个项目的浓度限值也在《地表水环境质量标准》中有所体现。《海水水质标准》中设定有无机氮和活性磷酸盐两个指标,目的是反映海水中营养盐类污染物的浓度,这两类污染物的浓度过高容易引起水中藻类大量繁殖,形成海湾等水域富营养化污染。另外,病原体和粪大肠菌群检测项目的设定用于控制供人生食贝类的养殖水体质量。

2 国外相关水质标准体系

2.1 美国相关水质基准概述

美国没有全国统一的水质标准,只是由国家颁布的《国家推荐水质基准》,各州依据当地的条件和水体功能参照水质基准制定不同区域的水质标准。各个州的水质标准包括3个部分:水体指定用途,保护水体用途的定量和定性指标,以及防止水质恶化条款。美国《清洁水法》对水体指定用途的规定包括了水体目前用途,自1975年11月28日颁布反退化政策时达到的曾经用途,以及水体水质可以支持的其他用途。主要水体用途包括“饮用水源(处理/未处理),娱乐用水(长期/短期皮肤接触),渔业用水,农业用水,工业用水等。几乎所有的水体都有多项指定用途,所有水体都应满足基本的可钓鱼和可游泳(fishable / swimmable)的功能,除非有证据表明这是不切实际的[11]。重新划定水体指定用途要进行用途可行性分析(use attainability analysis),通过公众评议,并得到批准。

美国水质基准的基础和应用研究工作始于20世纪60年代,相继出台了《绿皮书》(1968年)、《蓝皮书》(1973年)、《红皮书》(1976年)和《金皮书》(1986年)等一批水质基准文献,并进行了多次修订和补充完善。现行的美国国家水质基准修订于2009年,主要由保护水生生物的水质基准和保护人体健康的水质基准组成。共有190 项基准值,其中包括120 项优先控制污染物(priority pollutant)、47 项非优先控制污染物(non-priority pollutant)和23项人体感官基准值[12]。污染物的基准值分为保护水生生物的淡水急性、淡水慢性、海水急性、海水慢性和保护人体健康的人体健康-同时消费水生生物和水、人体健康-只消费水生物等六类基准值。

美国2006年基准共有190项基准值,包括120项优先控制基准、47项非优先控制污染物基准和23项感官基准。对于保护水生生物基准,120个优控污染物,给出完整基准值的19种,给出部分基准值的6种,未给出基准值的95种;47个非优控污染物,给出完整基准值的5种,给出部分基准值的13种,未给出基准值的29种。对于保护人体健康的基准,120个优控污染物,给出完整基准值的92,给出部分基准值的3种,未给出基准值的25种;47个非种优控污染物,给出完整基准值的11种,给出部分基准值的8种,未给出基准值的28种。保护水生生物的基准包括暴露的浓度、时间和频次等,是针对淡水水生生物和海水水生生物2种情形计算出来的。

淡水(或海水)水生生物基准对于每个污染物都制定了2个限值,即基准连续浓度(CCC)和基准最大浓度(CMC),目前这种双值基准已成为美国水质基准普遍的表现形式。其中,CCC是为了防止在低浓度的污染物长期作用下对水生生物造成的慢性毒性效应而设定的,在该浓度下水生生物群落可以被无限期暴露而不产生不可接受的影响;CMC是为了防止在高浓度的污染物短期作用下对水生生物造成的急性毒性效应而设定的,一般认为在该浓度下,水生生物群落可以被短期暴露而不产生不可接受的影响。美国制定水质基准充分考虑了生物多样性,用于推导CMC的急性毒性数据至少涉及3门8科的生物,有较好的代表性,能为大多数生物(95%以上)提供适当的保护[13]。

2.2 欧盟相关水质基准概述

欧盟水框架指令(Water Framework Directive ,WFD),主要目标是在2015 年以前实现欧洲“良好的水状态”,整个欧洲将采用统一的水质标准。WFD重要特色是它的综合性,或称“一体化”的思维方法。按水的自然属性,WFD强调地表水-地下水-湿地-近海水体的一体化管理,以及水量-水质-水生态系统的一体化管理;按照水的社会属性,WFD强调各行业的用水户和各个利益相关者的综合管理。

关于水的功能,有关渔业用淡水的78/659/EEC指令规定了淡水渔业养殖用水的质量标准(包括限值和指导值)、抽样次数、监测方法、达标措施和条件。有关贝类养殖水质标准的79/923/EEC指令同样规定了贝类养殖用水的质量标准(包括限值和指导值)、抽样次数、监测方法、达标措施和条件[14]。这些指令在转化为各国法律条文或者质量标准时,并非要求各国将指令中的内容一字不差照搬,但是转化后的国内条文必须全面且充分地实施指令所规定的环境目标。欧洲共同体在1973年和1977年的第一和第二环境计划中均涉及并提出了农业相关的环境指令,包括上述的淡水渔业和贝类养殖水质标准,充分体现欧盟的水环境质量标准注重对人类健康和水产养殖的保护。

欧盟主要采取以慢性效应为基础的预测无效应浓度(predicted environmental concentration, PNEC)作为污染物水质基准的主要依据,保护水生生物。水质基准与风险评估密不可分,欧盟2003年颁布了《风险评价技术导则》。在水质基准计算的“最小毒性数据需求”方面,欧盟对物种毒性数据的要求比较全面,物种的选择代表性岁水生生态系统的代表性也较强,要求5~6科水生动物,8个类群水生生物,10个慢性数据[15]。

2.3 其他国家相关标准概述

水质基准和标准在各国水环境管理中发挥了重要作用,不同国家和国际组织对水质基准有不同的描述和分级,也分别提出了一些具有等同性或相似性的概念。如澳大利亚和新西兰的触发浓度。加拿大的水质指导值、荷兰的环境风险限值、欧盟用于化学品管理的预测无观测效应浓度以及OECD的最大可接受浓度等。

加拿大最早在1987年由环境部发布了《加拿大水质指南》,提供了关于水质参数对加拿大水体用途(包括为净化的饮用水、水生生物生存用水、农业用水、休闲用水、美学用水和工业用水)影响的基础科学信息。1999年加拿大环境部发布了《推导保护水生生物基准草案》,详细论述了使用评价因子法推导水质基准值。2007年加拿大环境部将水质基准分为短期暴露基准和长期暴露基准,短期暴露基准主要防止在突发性事件大多数物种发生的致死效应;长期暴露效应主要防止在慢性暴露中所产生的有害效应[16]。目前,加拿大环境部颁发的最新指南文件有《加拿大包补水生生物水质指南》、《休闲用水水质指南和感官性质》和《加拿大保护农业用水水质指南》等技术文件。

澳大利亚和新西兰于2000年颁布的《淡水河海洋水质指南》中,采用了慢性暴露的指导性触发值对水生生物进行保护。荷兰提出了基于风险评估制定水质基准的技术方法,按照保护水平将环境风险限值分为4个等级:无效应浓度、最大允许浓度、严重风险浓度和生态系统最大允许浓度。无效应浓度表示某一浓度对生态系统的效应可忽略不计;最大允许浓度指能够保护生态系统中所以物种免受有害效应的浓度;当污染物超过严重风险浓度,生态系统将受到严重影响;生态系统最大允许浓度主要保护生态系统免受短期浓度暴露导致的急性毒性效应[17]。

3 中美农业用水相关标准和基准比较

从限值制定本身,我国水质标准中的许多限值直接参考美国、世界卫生组织和欧盟等国家和组织的水质基准或水质标准的限值。从标准的制订角度看,我国农业相关水质标准主要建立在《农田灌溉水质标准》、《渔业水质标准》、《地表水环境质量标准》和《海水水质标准》的基础之上,其他的相关

国家标准、行业标准及地方标准立足于各自的标准设定目的上,对检测项目的选取和浓度限值的设定基本上以上述四个标准为依据,并且通过增加个别项目或者降低浓度限值来加强水质管理。

美国水质基准制定始于20世纪初,现在已经形成比较系统的水质基准推导的理论和方法。以水生生物基准为例,美国EPA《推导保护水生生物水质基准及其用途的定量化国家水质基准的指南》要求在制定基准时收集大量的毒性试验数据,其中包括:①动物极性和慢性毒性数据,至少涉及3门8科的可接受急、慢性试验结果;②生物富集性数据,至少选用一种淡水(或海水)物种来确定生物富集系数。然后再有得到的数据计算出一系列值。

表6 中美水质标准和基准指标项目比较

从表6可以看出美国有保护水生生物的淡水急性、淡水慢性、海水急性、海水慢性和保护人体健康的人体健康-同时消费水生生物和水、人体健康-只消费水生物等6类基准值,淡水(或海水)水生生物基准对于每个污染物都制定了2个限值,即基准连续浓度(CCC)和基准最大浓度(CMC),从理论上说基准连续浓度应该小于基准最大浓度,但也有例外,淡水锌和海水氰化物的基准连续浓度等于基准最大浓度。

中美两国农业相关标准限值差异比较大,以铜为例,我国地表水(Ⅱ、Ⅲ、Ⅴ)铜的限值是美国淡水连续浓度、淡水最大浓度的76倍、111倍;我国地表水(Ⅱ、Ⅲ)中铬(六价)的限值是美国淡水连续浓度、淡水最大浓度的3倍、5倍。当然,也有些指标,我国比美国更严格,如汞的限值,美国基准中汞的淡水连续浓度是我国地表水(Ⅱ)汞限值的28倍,美国基准中汞的限值已经很严格,我国更严格,在实施中能否达标有待考究。美国基准中砷的淡水连续浓度、淡水最大浓度限值是我国地表水(Ⅱ、Ⅲ)砷限值的3倍和6.8倍。总体来说,美国的基准制定的更系统,在指标限值方面较严格,我国相关标准制定的较笼统,只有一个限值。相比于我国的水环境质量标准,当前美国的水质标准缺少一些综合性指标,如化学需氧量等,这是美国现阶段水环境管理成果和进展的一个表现,即已经在污染排放节点完成对有机污染的控制目标,但是它强调对单项污染指标进行控制,确保略微超过污染物最高浓度值限量时对公众健康不产生显着风险[15]。

从标准监测及评价方法看,进行一般性的农业和渔业生态环境水质评价时,我国主要依据《农田灌溉水质标准》、《渔业水质标准》,选取其中的项目和浓度限值,上述2个标准中没有规定的项目,则参考其他相应标准,一般按照水域类别和不同功能区划选择《地表水环境质量标准》和《海水水质标准》中的项目及相应级别的浓度限值。通常是进行单因子评价,评价结果应该说明水质达标的情况,并且说明超标项目的超标比例和超标倍数。《农田灌溉水质标准》检测项目和频率应符合农用水源环境质量监测技术规范NY/T 396-2000 的要求。《渔业水质标准》有具体渔业水质分析方法,各项标准数值系指单项测定最高允许值。标准值单项超标,即表明不能保证鱼虾、贝正常生长繁殖,

并产生危害,危害程度参考背景值、渔业环境的调查数据及有关渔业水质基准资料进行综合评价。

美国水质基准两个值:基准最大浓度和基准连续浓度,其中基准最大浓度是1h内不得超过的值,而基准连续浓度是96h内不得超过的值,并且规定了超标浓度发生的频率是不多于平均每三年一次。美国水质基准除采用数值型外,还采用描述性指标和感官指标,如美国要求所有水体都应满足基本的可钓鱼和可游泳;美国感官指标(23项)是为了控制污染物产生令人不快的味道和气味,某些污染物的感官质量基准可能比基于毒理学的基准更加严格。

4 对构建我国农业用水相关标准思考

我国现行的农业水质标准体系比较完善,以《农田灌溉水质标准》和《渔业水质标准》为基础的相关农业水质标准基本能够涵盖农业生态环境评价的各类水域。通过对国内相关农业水质标准的比较,我认为,有几个问题尚需思考。一是对我国水质标准制定体系的思考。美国等发达国家制定水质基准的目的侧重保护人体健康和水生生态系统的安全。而我国水质标准以水化学和物理标准为主,而更偏重于对水体资源用途的保护。二是对标准值的设定。美国现行的水质基准有两个推荐限值,而我国的量值只有一个。就我国渔业水质标准而言,只有一个标准值,一个项目只有一个标准值的状况在实际应用中存在两方面问题:一方面,淡水生物和海水生物对污染物的耐受力总体上是有区别的,得到的安全浓度值应该是不同的,在《渔业水质标准》中,采取一个标准值既用于评价淡水生物的水质状况,又用来评价海水生物的水质状况,是有局限性的;另一方面,由于现有的水质标准值是指水生生物的安全浓度,超过标准值只是表示现有水质可能对水生生物造成一定的不良影响,不能表示一定会出现大规模的死鱼现象,因此,在渔业污染事故的评价中,单单依靠水质标准不能得到肯定的结论。建议在将来的水质标准中,为充分发挥标准的作用和增强其实用性,标准中每个项目应具有淡水生物和海水生物的标准值、急性和慢性的标准值。这些方面可以参考现有的美国地表水水质标准。三是对《渔业水质标准》中的监测项目需要扩充,包括热污染类、水体富营养化类指标、有机毒性污染物等,原因是国内渔业污染出现新的污染类型以及对污染物科学认识的提高。四是开展水生态毒理学研究的思考。我国缺乏水生态基准数据,以至还没有制定出许多重要有毒化学品的标准值,随着保护生物多样性和环境管理的强化,开展相应的渔业生态毒理学基础研究,制定符合我国国情的渔业生态基准势在必行。五是开展水质标准与水质基准转化关系的研究。我国水质标准主要参考国外其他国家的水质基准数据。由于水生生物具有地域性,代表物种也不同,其他国家的基准不能完全反映我国水生生物保护的要求,直接参考其他国

家的水质基准来制定我国的水质标准,势必降低我国水质标准的科学性,导致保护不够或保护不够[18]。

参考文献:

[1] 国家水利部.2012年全国水利发展统计公报.

[2] 国家环境保护局.农田灌溉水质标准(GB5084-85).1985

[3] 国家环境保护局.农田灌溉水质标准(GB5084-92).1992

[4] 国家环境保护局.农田灌溉水质标准(GB5084-2005).2005

[5] 曾智超,金沁.渔业相关水质标准及其比较.水产科技情报,2007,34(4).

[6] 徐忠法,于东祥.水产养殖标准汇编.北京:中国标准出版社,1997,21-25.

[7] 赵庆,查金苗,许宜平,等.中国水质标准之间的衔接与差异性思考.环境污染与防治,2009,31(6):104-108.

[8] 刘征涛,孟伟.水环境质量基准方法与应用.科学出版社,2012,60-61.

[9] 何力,徐忠法,周瑞琼.内陆渔业水质环境相关标准的应用和分析,水利渔业,2004年第一卷第一期.

[10] 王绿洲,等.渔业水质评价中标准限值差异及建议,中国渔业经济,2007(4):52-53.

[11] USEPA.Water Quality Standards Handbook.

[12]USEPA.National Recommended Water Quality Criteria [R].Washington:Office of Water,Off'tee of Science and Technology,2006.

[13] 我国水质标准与国外水质标准/基准的对比分析,中国给水排水,2012(28):15-18.

[14] 顾勇国.水环境质量标准的发展探讨.上海环境科学,2003,22(6):411-413

[15] 胡必彬.欧盟水环境标准体系.环境科学研究,2005,18(1):45-48.

[16] CCMC. A protocol for the derivation of water quality guidelines for the protection of aquatic life.Winnipeg,Manitoba,Canadian Council of Ministers of the Environment,2007..

[17] 张瑞卿,吴丰昌,等.中外水质基准发展趋势和存在的问题.生态学杂

志,2010,29(10):2049-2056.

[18] 中国环境科学院.水质基准的理论与方法学导论,2010.

工业循环水主要分析报告指标及方法

附页1 工业循环水主要分析方法 一、水质分析中标准溶液的配制和标定 (一)盐酸标准溶液的配制和标定 取9mL市售含HCl为37%、密度为1.19g/mL的分析纯盐酸溶液,用水稀释至1000mL,此溶液的浓度约为0.1mol/L。 准确称取于270~300℃灼烧至恒重的基准无水碳酸钠0.15g (准确至0.2mg),置于250mL锥形瓶中,加水约50mL,使之全部溶解。加1—2滴0.1%甲基橙指示剂,用0.lmol/L盐酸溶液滴定至由黄色变为橙色,剧烈振荡片刻,当橙色不变时,读取盐酸溶液消耗的体积。盐酸溶液的浓度为 c(HCl) = m×1000 / (V×53.00) mol/L 式中 m——碳酸钠的质量,g; V——滴定消耗的盐酸体积,ml; 53.00——1/2 Na2C03的摩尔质量,g/mol。 (二)EDTA标准溶液的配制和标定 称取分析纯EDTA(乙二胺四乙酸二钠)3.7g于250mL烧杯中,加水约150mL和两小片氢氧化钠,微热溶解后,转移至试剂瓶中,用水稀释至1000mL,摇匀。此溶液的浓度约为0.015mol/L。 (1)用碳酸钙标定EDTA溶液的浓度准确称取于110℃干燥至恒重的高纯碳酸钙0.6g(准确至0.2mg),置于250mL烧杯中,加水100mL,盖上表面皿,沿杯嘴加入l+1盐酸溶液10mL。加热煮沸至不再冒小气泡。冷至室温,用水冲洗表面皿和烧杯内壁,定量转移至250mL容量瓶中,用水稀释至刻度,摇匀。 移取上述溶液25.00mL于400mL烧杯中,加水约150mL,在搅拌下加入10mL 20%氢氧化钾溶液。使其pH>l2,加约10mg钙黄绿素—酚酞混合指示剂①,溶液呈现绿色荧光。立即用EDTA标准溶液滴定至绿色荧光消失并突变为紫红色时即为终点。记下消耗的EDTA溶液的体积。 (2)用锌或氧化锌标定EDTA溶液的浓度准确称取纯金属锌0.3g (或已于800℃灼烧至恒重的氧化锌0.38g),称准至0.2mg,放入250mL烧杯中,加水50mL,盖上表面皿,沿杯嘴加入10mL l+1盐酸溶液,微热。待全部溶解后,用水冲洗表面皿与烧杯内壁,冷却。转移入250mL容量瓶中,用水稀释至刻度,摇匀,备用。 用移液管移取上述溶液25.00mL于250mL锥形瓶中,加水100mL,加0.2%二甲酚橙指示剂溶液1~2滴,滴加20%六次甲基四胺溶液至呈现稳定红色,再过量5mL,加热至60℃左右,用EDTA溶液滴定至由红色突变为黄色时即为终点。记下EDTA溶液消耗的体积。 EDTA溶液的浓度用下式计算: c(EDTA) = m×1000 / (M×V×10) mol/L 式中 m——基准物质的质量,mg; M——基准物质的摩尔质量,g/mol,选用碳酸钙时为100.08,选用金属锌(或氧化锌)时为65.39(或81.39); V——滴定消耗的EDTA溶液体积,mL。 用EDTA滴定法测定水硬度时,习惯使用c (1/2 EDTA),这时 c(1/2 EDTA)=2c (EDTA) (三)硝酸银标准溶液的配制和标定 称取1.6g分析纯硝酸银,加水溶解并稀释至1000mL,贮于棕色瓶中。此溶液的浓度约为0.01mol/L。 准确称取0.6g已于500~600℃灼烧至恒重的优级纯氯化钠(准确至0.2mg)。加水溶解后,移至250mL 容量瓶中并稀释至刻度,摇匀。用移液管移取氯化钠溶液10.00mL于250mL锥形瓶中加水约100mL5%铬酸钾溶液lmL,用硝酸银溶液滴定至砖红色出现时即为终点。 记下硝酸银溶液的体积。 用100mL水作空白,记录空白消耗硝酸银溶液的体积。硝酸银溶液的浓度为 c(AgNO3) = m×1000 / [58.44×(V—V0 ) ×25] mol/L 式中 m——氯化钠的质量,g; 58.44——NaCl的摩尔质量,g/mol; V——滴定氯化钠溶液时消耗硝酸银的体积,mL; V0——滴定空白时消耗硝酸银的体积,mL。 ①1g钙黄绿素和1g酚酞与50g分析纯干燥的硝酸钾混合,磨细混匀。 (四)硝酸汞标准溶液的配制和标定

工业锅炉水质__GBl576—2001

中华人民共和国国家标准 工业锅炉水质GBl576—2001 代替GBl576—1996 一、范围 本标准规定了工业锅炉运行时的水质要求。 本标准适用于额定出口蒸汽压力小于等于2.5MPa,以水为介质的固定式蒸汽锅炉和汽水两用锅炉也适用于以水为介质的固定式承压热水锅炉和常压热水锅炉。 二、水质标准 1、蒸汽锅炉和汽水两用锅炉的给水一般应采用锅外化学水处理,水质应符合表1规定 表1

国家质量技术监督局2001-01-10批准 2001-10-01实施 表1(完) 1) 硬度mmol/L的基本单元为c(1/2Ca2+、1/2Mg2+),下同。 2) 碱度mmo1/L的基本单元为c(OH-、1/2CO2-3、HC03-),下同。 对蒸汽品质要求不高,且不带过热器的锅炉,使用单位在报当地锅炉压力容器安全监察机 构同意后,碱度指标上限值可适当放宽。 3) 当锅炉额定蒸发量大于等于6t/h时应除氧,额定蒸发量小于6t/h的锅炉如发现局部腐蚀 时,给水应采取除氧措施,对于供汽轮机用汽的锅炉给水含氧量应小于等于 0.05mg/L。 4) 如测定溶解固形物有困难时,可采用测定电导率或氯离子(C1-)的方法来间接控制,但溶 解固形物与电导率或与氯离子(Cl-)的比值关系应根据试验确定。并应定期复试和修正此 比值关系。

表2 3 、承压热水锅炉给水应进行锅外水处理,对于额定功率小于等于4.2MW非管架式承压的热水锅炉和常压热水锅炉,可采用锅内加药处理,但必须对锅炉的结垢、腐蚀和水质加强监督,认真做好加药工作,其水质应符合表3的规定。 表3

1)通过补加药剂使锅水pH值控制在10一12。 2)额定功率大于等于4.2MW的承压热水锅炉给水应除氧,额定功率小于 4.2MW的承压热水锅炉 和常压热水锅炉给水应尽量除氧。 4、直流(贯流)锅炉给水应采用锅外化学水处理,其水质按表1中额定蒸汽压力为大于1.6Mpa、小 于等于2.5Mpa的标准执行。 5、余热锅炉及电热锅炉的水质指标应符合同类型、同参数锅炉的要求。 6、水质检验方法应按附录A(标准的附录)执行。

循环水控制指标及解释

循环水水质控制指标及注释 1、PH:7.0-9.2 在25℃时pH=7.0的水为中性,故pH=7.0-9.2的水大体上属于中性或微碱性的范围;冷却水的腐蚀性随pH值的上升而下降;循环水的pH值低于这一范围时,水的腐蚀性将增加,造成设备的腐蚀;循环水的pH值高于这一范围时,则水的结垢倾向增大,容易引起换热器的结垢。 2、悬浮物:≤10mg/L 悬浮物会吸附水中的锌离子,降低锌离子在水中的浓度;一般情况下,循环冷却水的悬浮物浓度或浊度不应大于20mg/L,当使用板式、翅片管式或螺旋板式换热器时,悬浮物浓度或浊度不宜大于10mg/L。 3、含盐量:≤2500mg/L 含盐量也可通过电导率来间接表示,天然淡水的电导率通常在50-500μS/cm;电导率与含盐量大致成正比关系,其比值1μS/cm的电导率相当于0.55-0.90mg/L的含盐量;在含盐量高的水中,Cl-和SO42-的含量往往较高,因而水的腐蚀性较强;含盐量高的水中,如果Ca2+、Mg2+和HCO3-的含量较高,则水的结垢倾向较大;投加缓蚀剂、阻垢剂时,循环冷却水的含盐量一般不宜大于2500mg/L。 4、Ca2+离子:30≤X≤200 mg/L 从腐蚀的角度看,软水虽不易结垢,但其腐蚀性较强,因此循环水中钙离子浓度不宜小于30mg/L;从结垢的角度看,钙离子是循环水中最主要的成垢阳离子,因此循环水中钙离子浓度也不宜过高;在投加阻垢分散剂的情况下,钙离子浓度的高限不宜大于200mg/L。 5、Mg2+离子: 镁离子也是冷却水中一种主要的成垢阳离子,循环水中镁离子浓度不宜大于60mg/L或2.5mmol/L(以Mg2+计);由于镁离子易与循环水中的硅酸根生成类似于蛇纹石组成的不易用酸除去的硅酸镁垢,故要求循环水中镁离子浓度遵从以下关系:[Mg2+](mg/L)*[SiO2](mg/L)<15000,式中[Mg2+]以CaCO3计,[SiO2]以SiO2计。

低压工业锅炉水质主要检测以下指标

: 1、给水硬度 2、给水氯根 3、给水pH 4、给水氧含量(小于6吨锅炉不用) 5、锅水总碱度 6、锅水pH 7、锅水氯根 8、锅水磷酸根 9、锅水亚硫酸根 具体指标如下: 中华人民共和国国家标准GBl576—2001代替GBl576—1996 工业锅炉水质 一、范围 本标准规定了工业锅炉运行时的水质要求。本标准适用于额定出口蒸汽压力小于等于 2.5MPa,以水为介质的固定式蒸汽锅炉和汽水两用锅炉也适用于以水为介质的固定式承压热水锅炉和常压热水锅炉。 二、水质标准 1、蒸汽锅炉和汽水两用锅炉的给水一般应采用锅外化学水处理,水质应符合表1规定表1 项目给水锅水

额定蒸汽压力, MPa ≤ 1.0> 1.0> 1.6 ≤ 1.0> 1.0> 1.6≤1.6≤ 2.5≤ 1.6 ≤ 2.5 悬浮物,mg/L ≤5 ≤5 ≤5 总硬度,mmol/L1) ≤ 0.03 ≤ 0.03 ≤ 0.03 总碱度,mmol/L2)无过热器6-26 6-24 6-16 有过热器≤14 ≤12 pH(25℃)≥7 ≥7 ≥7 10-12 10-12 10-12 溶解氧,mg/L3)≤ 0.1 ≤ 0.1 ≤

0.05 溶解固形物,mg/L4)无过热器<4000<3500<3000 有过热器<3000<2500 SO2-3,mg/L4)10-30 10-30 PO3-4,mg/L 10-30 10-30 相对碱度游离NaOH/溶解固形物)5)< 0.2< 0.2 含油量,mg/L ≤2 ≤2 ≤2 含铁量,mg/L6) ≤ 0.3 ≤ 0.3 ≤ 0.3 国家质量技术监督局2001-01-10批准2001-10-01实施 表1(完) 1)硬度mmol/L的基本单元为、,下同。 2)碱度mmo1/L的基本单元为c(OH-、、HC03-),下同。对蒸汽品质要求不高,且不带过热器的锅炉,使用单位在报当地锅炉压力容器安全监察机构同意后,碱度指标上限值可适当放宽。 3)当锅炉额定蒸发量大于等于6t/h时应除氧,额定蒸发量小于6t/h的锅炉如发现局部腐蚀时,给水应采取除氧措施,对于供汽轮机用汽的锅炉给水含氧量应小于等于

工业循环水水质标准 2

循环冷却水的水质标准表 项目 单位 要求和使用条件 允许值 悬浮物 Mg/L 根据生产工艺要求确定 <20 换热设备为板式,翅片管式, 螺旋板式 <10 PH 值 根据药剂配方确定 7-9.2 甲基橙碱度 Mg/L 根据药剂配方及工况条件确 定 <500 钙离子 Mg/L 根据药剂配方及工况条件确定 30-200 亚铁离子 Mg/L <0.5 氯离子 Mg/L 碳钢换热设备 <1000 不锈钢换热设备 <300 硫酸根离子 Mg/L 对系统中混凝土材质的要求 按现行的<岩土工程勘察规范>GB50021 94的规定执行 硫酸根离子与氯离子之和 <1500 硅酸 Mg/L <175 镁离子与二氧化硅的乘积 <15000 游离氯 Mg/L 在回水总管处 0.5-1.0 石油类 Mg/L <5 炼油企业 <10 注: 甲基橙碱度以碳酸钙计; 硅酸以二氧化硅计; 镁离子以碳酸钙计。 3.1.8密闭式系统循环冷却水的水质标准应根据生产工艺条件确定; 3.1.9敞开式系统循环冷却水的设计浓缩倍数不宜小于3.0.浓缩倍数可按下式计算: N=Q M /Q H +Q W (3.1.9) 式中 N 浓缩倍数; Q M 补充水量((M 3 /H); Q H 排污水量((M 3/H);

Q W 风吹损失水量(M 3 /H). 3.1.10敞开式系统循环冷却水中的异养菌数宜小于5×105个/ML 粘泥量宜小于4ML/M 3 ; 表10-3锅炉加药水处理时的水质标准 表10-4蒸汽锅炉采用锅外化学水处理时的 水质标准 项目 给水 锅水 额定蒸汽压力,MPA 《1 》1 《1.6 >1.6 <2.5 <1 >1 <1.6 >1.6 <2.5 悬浮物, <5 <5 <5 总硬度 <0.03 <0.03 <0.03 总碱度 无过热器 6-26 6-24 6-16 有过热器 <14 <12 PH >7 >7 >7 10-12 10-12 10-12 含油量 <2 <2 <2 溶解氧 <0.1 <0.1 <0.05 溶解固形物 无过热器 <4000 <3500 <3000 有过热器 <3000 <2500 亚硫酸根 10-30 10-30 磷酸根 10-30 10-30 相对碱度(游离氢氧化钠 <0.2 <0.2 <0.2 项目 单位 给水 锅水 悬浮物 Mg/L <20 PH 值 》7 10-12 总硬度 Mg/L <4 溶解固形物 Mg/L <5000 相对碱度 Mg/L 总碱度 Mg/L 8-26

锅炉水处理解读

165m3/h锅炉补给水处理系统技术方案 一、总则 根据用户提出的低压锅炉补给水的用水要求,本技术方案就165m3/h低压锅炉补给水系统的工艺设计、设备结构、性能等方面的要求做出了详细说明,我方保证提供符合本技术方案和最新工业标准要求的优质产品。 1.采用的规范和标准 1.1国产设备的制造和材料符合下列标准、规范、规定的最新版本要求。 1)DL5000-94《火力发电厂设计技术规程》 2)DL/T 5068-96《火力发电厂化学水处理设计技术规程》 2)DL5028-93《电力工程制图标准》 3)GB150-98《钢制压力容器》 4)劳锅字(1990)8号《压力容器安全技术监察规程》 5)劳锅字(1992)12号《压力容器设计单位资格管理与监督规则》 6)JB/T2982-99《水处理设备技术条件》 7)HGJ32-90《橡胶衬里化工设备》 8)DLJ58-81《电力建设施工及验收技术规范(火力发电厂化学 篇)》 9)DL5007-92《电力建设施工及验收技术规范(火力发电厂焊接 篇)》 10)DL5031-94《电力建设施工及验收技术规范(管道篇)》

11)GB12145-89《火力发电机组及蒸汽动力设备水汽质量标准》 12)HGJ34-90《化工设备、管道外防腐设计规定》 13)DL5009.1-2002《电力建设安全工作规程》 1.2进口设备或部件的制造工艺和材料应符合美国机械工程师协会 (ASME)和美国材料试验学会(ASTM)的工业法规中所涉及的标准。 1.3对外接口法兰符合下列要求 1)87GB《火力发电厂汽水管道零件及部件典型设计手册》 2)JB/T74-94《管路法兰技术条件》 3)JB/T75-94《管路法兰类型》 1.4衬里钢管及管件符合下列标准的最新版本的规定要求: 1)HG21501《衬胶钢管及管件》 1.5设备外部管路的设计符合下列标准最新版本的要求: 1)DL/T5054-1997《火力发电厂热力设备和管道保温油漆设计技 术规定》 2)HGJ34-90《化工设备、管道外防腐设计规定》 1.6 当上述规定和标准对某些专用设备和材料不适用时,则采用材料生 产厂的标准。 1.7 供方提供反渗透膜所遵循的设计导则及设计和运行标准软件计算书。 2.系统概述 2.1 系统要求 2.1.1产水用途:锅炉补给水

工业用水标准

GB1576-2001《工业锅炉水质》 2009.3.23

《工业锅炉水质》 一、修订概况 《工业锅炉水质》标准是根据国家标准化管理委员会2006年的国家标准修订计划(项目计划编号:20064862-T-469),对GB1576-2001《工业锅炉水质》进行的修订。 1、修订原则 工业锅炉水质标准修订遵循以下原则:(1)规范性 按GB/T1.1-2000《标准化工作导则第1部分:标准的结构和编写规则》和GB/T1.2-2002《标准化工作导则第2部分:标准中规范性技术要素内容的确定方法》的要求进行修订。 (2)连续性 GB1576自1979年颁布以来,经历了1985年、1996年和2001年三次修订,是一个比较成熟的标准,具有较好的适用性。近三十多年的实践证明,该标准为确保我国工业锅炉安全运行发挥了很大的作用。鉴于此,凡是实践证明符合我国国情,且能确保锅炉安

全运行、执行有效的内容,在新标准中均予以保留。GB/T1576-2008是在GB1576-2001基础上进行修改、充实、完善的。 (3)适用性 随着我国国民经济的迅速发展和技术的不断进步,对节能降耗和环境保护提出了更高要求。根据工业锅炉产品发展趋势,JB/T10094-2002《工业锅炉通用技术条件》的适用范围在2002年修订时已将工业锅炉额定压力扩大至小于3.8MPa,本标准在修订时适用范围随之扩大到小于3.8MPa。为适应社会需求的变化,近几年贯流锅炉、直流锅炉得到广泛应用,这种锅炉对水质提出了更高的要求,原标准已不适用于这类锅炉的要求;再则,用于工业锅炉的阻垢剂和除氧剂的种类日渐增多,效果也比原标准规定的药剂有所提高,新标准应适应发展的要求;另外,在保证锅炉安全运行的前提下,为了促进工业锅炉节能减排,修订标准时,对有关指标作出相应的规定。 (4)可操作性 充分考虑我国锅炉水处理现状和现有的

工业锅炉水水质标准

工业锅炉水质标准 一、范围 本标准规定了工业锅炉运行时的水质要求。 本标准适用于额定出口蒸汽压力小于等于2.5MPa,以水为介质的固定式蒸汽锅炉和汽水两用锅炉也适用于以水为介质的固定式承压热水锅炉和常压热水锅炉。 二、水质标准 1、蒸汽锅炉和汽水两用锅炉的给水一般应采用锅外化学水处理,水质应符合下表规定: 项目给水锅水 额定蒸汽压力, MPa ≤1.0>1.0 >1.6 ≤1.0>1.0>1.6 ≤1.6 ≤2.5 ≤1.6≤2.5 悬浮物,mg/L≤5≤5 ≤5 总硬度,mmol/L1 ≤0.03≤0.03≤0.03 总碱度,mmol/L无过热器 6-26 6-24 6-16 有过热器≤14≤12 pH25℃≥7≥7≥710-1210-1210-12 溶解氧,mg/L3)≤0.1≤0.1≤0.05 溶解固形物,mg/L无过热器<4000<3500<3000 有过热器<3000<2500 SO2-3,mg/L 10-3010-30 PO3-4,mg/L 10-3010-30 相对碱度游离NaOH/溶解固形物<0.2<0.2 含油量,mg/L ≤2 ≤2≤2 含铁量,mg/L6≤0.3≤0.3≤0.3 1 硬度mmol/L的基本单元为c1/2Ca2+、1/2Mg2+,下同。 2 碱度mmo1/L的基本单元为cOH-、1/2CO2-3、HC03-,下同。 对蒸汽品质要求不高,且不带过热器的锅炉,使用单位在报当地锅炉压力容器安全监察机构同意后,碱度指标上限值可适当放宽。 3 当锅炉额定蒸发量大于等于6t/h时应除氧,额定蒸发量小于6t/h的锅炉如发现局部腐蚀时,给水应采取除氧措施,对于供汽轮机用汽的锅炉给水含氧量应小于等于0.05mg/L。 4 如测定溶解固形物有困难时,可采用测定电导率或氯离子C1-的方法来间接控制,但溶解固形物与电导率或与氯离子Cl-的比值关系应根据试验确定。并应定期复试和修正比值关系。 5 全焊接结构锅炉相对碱度可不控制。 6 仅限燃油、燃气锅炉 2、额定蒸发量小于等于2t/h,且额定蒸汽压力小于等于1.0MPa的蒸汽锅炉和汽水两用锅炉(如对汽、水品质无特殊要求)也可采用锅内加药处理。但必须对锅炉的结垢、腐蚀和水质加强监督,认真做好加药、排污和清洗工作,其水质应符合下表规定。 项目给水锅炉水悬浮物,mg/L≤20 总硬度,mmol/l≤4 总碱度,mmol/l 8-26

GB1576-2008工业锅炉水质

给水:送进锅炉的水。主要由汽轮机的凝结水、补给水、生产返回水和各种热力设备的疏水等组成。 锅水:指在锅炉本体的蒸发系统中流动着受热沸腾而产生蒸汽的水。 GB1576-2008《工业锅炉水质》 2009.3.23

《工业锅炉水质》 一、修订概况 《工业锅炉水质》标准是根据国家标准化管理委员会2006年的国家标准修订计划(项目计划编号:20064862-T-469),对GB1576-2001《工业锅炉水质》进行的修订。 1、修订原则 工业锅炉水质标准修订遵循以下原则: (1)规范性 按GB/T1.1-2000《标准化工作导则第1部分:标准的结构和编写规则》和GB/T1.2-2002《标准化工作导则第2部分:标准中规范性技术要素内容的确定方法》的要求进行修订。 (2)连续性 GB1576自1979年颁布以来,经历了1985年、1996年和2001年三次修订,是一个比较成熟的标准,具有较好的适用性。近三十多年的实践证明,该标准为确保我国工业锅炉安全运行发挥了很大的作用。鉴于此,凡是实践证明符合我国国情,且能确保锅炉安全运行、执行有效的内容,在新标准中均予以保留。GB/T1576-2008是在GB1576-2001基础上进行修改、充实、完善的。 (3)适用性 随着我国国民经济的迅速发展和技术的不断进步,对节能降耗和环境保护提出了更高要求。根据工业锅炉产品发展趋势,JB/T10094-2002《工业锅炉通用技术条件》的适用范围在2002年修订时已将工业锅炉额定压力扩大至小于3.8MPa,本标准在修订时适用范围随之扩大到小于3.8MPa。为适应社会需求的变化,近几年贯流锅炉、直流锅炉得到广泛应用,这种锅炉对水质提出了更高的要求,原标准已不适用于这类锅炉的要求;再则,用于工业锅炉的阻垢剂和除氧剂的种类日渐增多,效果也比原标准规定的药剂有所提高,新标准应适应发展的要求;另外,在保证锅炉安全运行的前提下,为了促进工业锅炉节能减排,修订标准时,对有关指标作出相应的规定。 (4)可操作性 充分考虑我国锅炉水处理现状和现有的分析条件、技术水平、可能达到的程度进行修订。针对原标准中个别水质指标的测试方法难度较大,例如悬浮物测定,不少单位不具备测试条件,为此参照了国外和国内同类标准作了修改,以便使标准更具有可操作性。 (5)先进性 参考国际标准和先进国家的标准,在原标准的基础上,使修订后标准的技术性、科学性、先进性有所提高。在修订本标准时,充分参考了ISO(国际标准)、JIS(日本标准) 、BS(英国标准)、美国ASME的锅炉水质导则等。 (6)针对原标准在执行过程中存在的问题和标准本身的不足进行修订。 (7)根据试验结果和锅炉用户的实践经验修订水质控制项目的具体指标。 2、本标准与GB1576-2001的主要差异 ——根据我国政府入世时的承诺,使标准符合《贸易技术壁垒协议(TBT)》的规定,本标准性质由强制标准修订为推荐标准; ——按GB/T1.1-2000《标准化工作导则第1部分:标准的结构和编写规则》要求进行编写,增加了目次、规范性引用文件、术语和定义章节; ——适用范围扩大到额定压力小于3.8MPa的锅炉,并规定了本标准不适用

GBT1576-2007 工业锅炉水质

GBT1576-2007 工业锅炉水质 ICS 13. 060. 25 Z 50 GB 中华人民共和国国家标准 GB/T 1576-2007 代替GB 1576-2001 ——————————————————————————————————————————————————————————————————————————————-————————————————— 工业锅炉水质(征求意见稿) Water quality for industrial boilers

20××—××—××公布20××—××—××实施 ——————————————————————————————————————————————————————————————————————————————-—————————————————××××××××××××××公布 前言 本标准是对GBl576—2001《工业锅炉水质》的修订。与GBl576—2001版标准相比,本版修订要紧对以下内容进行了修改和调整: ——将悬浮物指标修改为浊度; ——增加了蒸汽锅炉和汽水两用锅炉给水电导率指标; ——修改了直流锅炉和贯流式锅炉的水质指标; ——锅水指标中增加了酚酞碱度; ——调整了磷酸盐和亚硫酸盐的操纵指标; ——修改了给水含铁量的操纵指标; ——增加了停(备)用锅炉启动时的水质要求; ——修改了给水pH指标; ——增加了除盐水作为补给水的有关操纵指标; ——修改了锅水碱度指标上限值的放宽条件; ——增加了锅水溶解固形物指标上限值的放宽条件; ——修改了热水锅炉水质指标; ——修改了附录的内容; ——增加了引用标准的条文。 本标准自实施之日起代替GBl576—2001。 本标准由国家质量技术监督局锅炉压力容器标准化委员会提出并归口。 本标准由中国锅炉水处理协会负责起草。

工业循环水水质化验项目及方法

循环冷却水PH 值的测定方法 方法:PH 计直接测定 1. 开机前准备 a 、 电极梗旋入电极梗插座,调节电极夹到适当位置。 b 、 复合电极夹在电极夹上拉下电极前端的电极套。 C 、用蒸水清洗电极,清洗后用滤纸吸干。 2. 开机 电源线插入电源插座。 按下电源开关,电源接通后,预热 30min,接着进行标定。 3. 标定 仪器使用前,先要标定,一般来说,仪器在连续使用时,每天要标定一次。 a) b) c) d) e) f) g) (如用混合磷酸定位温度为100C 时,PH=6.92 ); h) 用蒸馏水清洗过的电极,再插入 PH = 4.0 0 (或PH = 9.18)的标准溶液中,调节 斜率旋钮使仪器显示读数与该缓冲溶液中当时温度下的 PH 值一致。 i) 重复(f ) -- (h )直至不用再调节定位或斜率两调节旋钮为止。 j) 仪器完成标定。 4. 测量PH 值 经标定过的PH 计仪器,即可用来测定被测溶液,被测溶液与标定溶液温度相同与否, 测 量步骤也有所不同。 (1) 被测溶液与定位溶液温度相同时,测量步骤如下: ① 用馏水洗电极头部,用被测溶液清洗一次; ② 把电极浸入被测溶液中,用玻璃棒搅拌溶液,使溶液均匀,在显示屏上读出溶液的 PH 值。 (2) 被测溶液和定位溶液温度不相同时,测量步骤如下: ① 电极头部,用被测溶液清洗一次; ② 用温度计测出被测溶液的温度值 ③ 调节 温度”调节旋钮(8),使白线对准补测溶液的温度值。 ④ 把电极插入被测溶液内,用玻璃棒搅溶液,使溶液均匀后读出该溶液的 循环冷却水电导率的测定方法 测定方法:电导率仪直接测量 1. 开机:按下电源开关,预热 30min 。 2. 校准:将“量程”开关旋钮指向“检查”,“常数”补偿调节旋钮指向 “温度” 补偿调节旋钮指向“ 25”刻度线,调节“校准”调节旋钮,使仪器显示 3. 测量: 在测量电极插座处拨去短路插座; 在测量电极插座处插上复合电极; 把选择开关旋 钮调到PH 档; 调节温度补偿旋钮,使旋钮白线对准溶液温度值; 把斜率调节旋钮顺时针旋到底(即调到 100%位置); 把清洗过的电极插入PH = 6.8 6的缓冲溶液中; 调节定位调节旋,使仪器显示读数与该缓冲溶液当时温定下降时的 PH 值相一致 PH 值。 1”刻度线, 100.0 S ? cm -1 0

冷却水的水质要求内容

冷却水的水质要求 介绍 为了确保冷却水系统不过早堵塞,推荐使用闭路循环的散热器用冷却水,其水质符合下述水质(A)要求。如果取自其他水源,冷却水应定期检查,确保其符合水质(A)的要求。 国内一般要求:

*这里水质(A)是用于循环水,水质(B)是用于补充水。水质会逐渐变差,应定期检查循环水确认其符合水质(A)要求。 对于悬浮机械杂质应≤25 mg/L。 答:空分设备一般用江河湖泊或地下水作为冷却水。这种水中通常都含有悬浮物(泥沙及其他污物)以及钙、镁等重碳酸盐[-Ca(HCO3)2和Mg(HCO3)2],称为硬水。悬浮物较多时,易堵塞冷却器的通道、过滤网及阀门等。钙、镁等重碳酸盐在水温升高时易生成碳酸钙(CaCO3)、碳酸镁(MgCO3)沉淀物,即形成一般所说的水垢。一般水温在45℃以上就要开始形成水垢,水温越高越易结垢。水垢附着在冷却器的管壁、氮水预冷器的填料、喷头或筛孔等处,不仅影响换热,降低冷却效果,而且有碍冷却水或空气的流通,严重时会造成设备故障,例如氮水预冷器带水,使蓄冷器(或切换式换热器)冻结。水垢比较坚硬,附在器壁上不易清除。因此,冷却水最好是经过软化处理。采用磁水器进行软化处理较为简便,效果尚可。清除悬浮物应设置沉淀池。如果冷却水循环使用,有利于水质的软化,但占地面积较多,基建投资较大。 对压缩机冷却水,温度一般要求不高于28℃,排水温度小于40℃。对水质要求为:pH值 6.5~8.0 悬浮物含量不大于50mg/L 暂时硬度不大于17°dH 含油量小于5mg/L 氯离子(C1-) (质量分数) 小于50×10-6 硫酸根(SO4-2) (质量分数) 小于50×10-6 氮水预冷系统供排水为独立循环系统。因为冷却水在塔内温升大,排水温度高,结垢严重,所以要求该系统的补充水尽可能采用低硬度水或软水,其暂时硬度一般应不大于8.5°dH,其他要求与压缩机冷却水相同。 充瓶用高压氧压机气缸的润滑水,应采用蒸馏水或软水。 循环冷却水的水质标准表 循环冷却水的水质标准表

工业锅炉水质标准GB1576

?工业锅炉水质(标准GB1576-2008)测定方法 1.1 水样的采集 水样的采集是保证水质分析准确性的第一个重要环节.采样的基本要求是:样品要有代表性;在采出后不被污染;在分析之前不发生变化. 取样装置 对取样装置一般有以下要求: (1) 取样器的安装和取样点的布置应根据锅炉的类型,参数,水质监督的要求(或试验要求)进行设计.制造,安装和布置,以保证采集的水样有充分代表性. (2) 除氧水,给水的取样管,应尽量采用不锈钢的制造. (3) 除氧水,给水,锅炉水和疏水的取样装置,必须安装冷却器.取样冷却器应有足够的冷却面积,并接在连续供给冷却水量的 水源上,以保证水样流量为500~700ml/min ,水样温度为30~40℃. (4) 取样冷却器应定期检修和清除水垢,锅炉大修时,应同时检修取样器和所属阀门. (5) 取样管应定期冲洗(至少每周一次).作系统检查定取样 前要冲洗有关取样管道,并适当延长冲洗时间,冲洗后应隔1~2 小时方可取样.以确保水样有充分的代表性. 水样的采集方法

(1) 采集有取样冷却器的水样时,应调节取样阀门,使水样 流量控制在500~700ml/min,温度为30~40℃的范围内,且流速稳定. (2) 采集给水,锅炉水样时,原则上是连续流动之水.采集其 它水样时,应先将管道中的积水放尽. (3) 盛水样的容器,采样瓶必须是硬质玻璃或塑料制品(测定微量或分析的样品必须使用塑料容器).采前,应先将采样容器彻 底清洗干净,采样时再用水样冲洗三次(方法中另有规定的除外),才能采集水样.采集后应尽快加盖封存. Mu(4) 采样现场 监督控制试样的水样,一般应用固定的水瓶.采集供全分析用的水样应粘贴标签,并注明水样名称, 采样人姓名,采样地点,时间,温度. 1.2 氯化物的测定(硝酸银容量法) (一)试剂 1、硝酸银标准溶液(1ml相当于1mgCl-):称5g硝酸银溶于1000ml蒸馏水,以氯化钠标准溶液标定; 2、10%铬酸钾指示剂; 3、1%酚酞指示剂; 4、0.1mol/LNaOH溶液 5、0.01mol/L(1/2H2SO4)溶液 (二)测定方法: 1、量取100ml水样于锥形瓶中,加2~3滴1%酚酞指示剂,

循环水水质控制指标及注释

序号项目控制指标注释 1 PH 7.0-9.2 在25℃时pH=7.0的水为中性,故pH=7.0-9.2的水大体上属于中性或微碱性的范围;冷却水的腐蚀性随pH 值的上升而下降;循环水的pH值低于这一范围时,水的腐蚀性将增加,造成设备的腐蚀;循环水的pH值高 于这一范围时,则水的结垢倾向增大,容易引起换热器的结垢。 2 悬浮物≤10mg/L 悬浮物会吸附水中的锌离子,降低锌离子在水中的浓度;一般情况下,循环冷却水的悬浮物浓度或浊度不应大 于20mg/L,当使用板式、翅片管式或螺旋板式换热器时,悬浮物浓度或浊度不宜大于10mg/L。 3 含盐量≤2500mg/L 含盐量也可通过电导率来间接表示,天然淡水的电导率通常在50-500μS/cm;电导率与含盐量大致成正比关 系,其比值1μS/cm的电导率相当于0.55-0.90mg/L的 含盐量;在含盐量高的水中,Cl-和SO42-的含量往往较高,因而水的腐蚀性较强;含盐量高的水中,如果Ca2+、 Mg2+和HCO3-的含量较高,则水的结垢倾向较大;投加缓蚀剂、阻垢剂时,循环冷却水的含盐量一般不宜大

于2500mg/L。 4 Ca2+离 子30≤X≤200mg/L 从腐蚀的角度看,软水虽不易结垢,但其腐蚀性较强,因此循环水中钙离子浓度不宜小于30mg/L;从结垢的角度看,钙离子是循环水中最主要的成垢阳离子,因此循环水中钙离子浓度也不宜过高;在投加阻垢分散剂的 情况下,钙离子浓度的高限不宜大于200mg/L。 5 Mg2+离 子镁离子也是冷却水中一种主要的成垢阳离子,循环水中镁离子浓度不宜大于60mg/L或2.5mmol/L(以Mg2+计);由于镁离子易与循环水中的硅酸根生成类似于蛇纹石组成的不易用酸除去的硅酸镁垢,故要求循环水中镁离子浓度遵从以下关 系:[Mg2+](mg/L)*[SiO2](mg/L)<15000式中[Mg2+ ]以CaCO3计,[SiO2]以SiO2计 6 铜离子浓 度 0.1mg/L 循环水中的铜离子会引起钢和铝的局部腐蚀,因此循环水中的铜离子浓度不宜大于0.1mg/L。 7 铝离子浓≤0.5mg/L 天然水中铝离子的含量较低,循环水中的铝离子往往是由于补充水在澄清过程中添加铝盐作混凝剂而带入的;

(一)工业锅炉水质标准及主要水质指标

工业锅炉水质标准及主要水质指标 一、工业锅炉水质标准 为了保证低压锅炉的安全运行,2001年,国家将原GB1576《低压锅炉水质》标准修改为《工业锅炉水质》标准。 1、适用范围 GB1756适用于额定出口蒸汽压力≤2.5MPa,以水为介质的固定式蒸汽锅炉和汽水两用锅炉,也适用于以水为介质的固定式承压热水锅炉和常压热水锅炉。 2、标准要求 (1)蒸汽锅炉和汽水两用锅炉的给水一般采用锅外化学水处理额定蒸发量≤2t/h,额定出口蒸汽压力≤1.0MPa的蒸汽和汽水两用锅炉可采用锅内加药处理,但必须对锅炉的结垢、腐蚀和水质加强监督,认真做好加药、排污和清洗工作。但不管是采用锅外水处理还是锅内加药处理,要想保证锅炉在运行中不结垢不腐蚀,就必须保证锅水达到标准的要求。这是保证锅炉安全运行的关键。 (2)承压热水锅炉应进行锅外水处理,对于额定功率小于等于 4.2MW的非管架式承压热水锅炉和常压热水锅炉,可采用锅 内加药处理。但必须对锅炉的结垢、腐蚀和水质加强监督,认真做好加药工作。

二、锅炉用水主要评价指标 1、悬浮物 因为水中悬浮物会影响锅内加药处理的防垢效果,又因原水经澄清后,一般悬浮物含量约在20mg/L以下,所以规定锅内加药处理时,悬浮物含量<20mg/L。锅外化学处理时,因悬浮物会影响离子交换器的正常运行,而原水经澄清过滤后,其悬浮物含量在5 mg/L左右,所以,锅外化学处理时,规定悬浮物含量<5mg/L。 2、硬度(YD) 锅内加药处理时,限制给水硬度≤4mmol/L。这要求锅炉定期清洗,保证热强度最大的受热面上每年可结水垢厚度不超过1.5mm。如果硬度再大,锅炉的安全经济运行就很难保证。 采用锅外处理时,限制给水总硬度≤0.03mmol/L。一方面考虑到在离子交换工艺上能够达到,另一方面,在锅炉定期清洗的情况下,能保证热强度最大的受热面上每年积水垢不超过0.5mm。这样基本上可以保证锅炉的安全经济运行。 水中所含的总硬度可根据水中钙、镁与不同阴离子的结合而定。一般分碳酸盐硬度和非碳酸盐两类。 碳酸盐硬度是指水中钙、镁的碳酸盐和重碳酸盐含量之和。由于天然水中碳酸根的含量很少,大部分都是重碳酸根,所以,一般碳酸盐硬度都是指钙、镁的重碳酸盐硬度。重碳酸盐硬度又具有一经加热马上会分析的特性,所以,又称它为暂时硬度,简

最新大型发电机内冷却水质及系统技术要求

大型发电机内冷却水质及系统技术要求

大型发电机内冷却水质及系统技术要求 [ 日期:2005-04-15 ] [ 来自:网友&网络 ] 前言 DL/T801-2002《大型发电机内冷却水质及系统技术要求》由四部分组成。 —水质的六项限值及内冷却水系统的运行监督, —限值的测量方法, —内冷却水系统的配置, —内冷却水系统的水冲洗和化学清洗。 本标准根据国家经济贸易委员会电力司《关于确认1998年度电力行业标准制、修订计划项目的通知》[1999]40号文中第23项 "发电机内冷水水质监督导则"下达了编制任务。 引言 发电机内冷却水系统及水质的完好情况,是直接影响大型水内冷发电机安全运行和经济 运行的重要环节,迄今尚无独立的发电机内冷却水的专用监督标准或规程,长期以来只有 GB12145《火力发电机组及燕汽动力设备水汽质量》和DL561《火力发电厂水汽化学监督导则》中仅有pH值、电导率和硬度三项限值的一个相同的表格作监督依据,显然无法满足 当前大型发电机组关于保证安全运行的技术要求。 本标准纳入了六项水质监督标准,限值的取值更接近大型发电机的运行实际,规范、统 一了测量方法,标准明确了内冷却水系统的配置及其运行监督要求,对监督超标发现的问题提供了处理措施。目的在于促进大型发电机组安全运行的水平。 大型发电机内冷却水质及系统技术要求DL/T801-2002 1 范围 本标准规定了额定容量为200MW及以上水内冷绕组汽轮发电机的内冷却水水质标准及系统的清洗处理措施。 本标准适用于额定容量为200MW及以上水内冷绕组的汽轮发电机。 其他水内冷电机可参照执行。 2规范性引用文件 下列文件的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修改版均不适用于本标准,然而鼓励根据本标准达 成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。

工业锅炉水质标准GBl

工业锅炉水质标准G B l576—2001工业锅炉水质代替GBl576—1996 一、范围 本标准规定了工业锅炉运行时的水质要求。 本标准适用于额定出口蒸汽压力小于等于2.5MPa,以水为介质的固定式蒸汽锅炉和汽水两用锅炉也适用于以水为介质的固定式承压热水锅炉和常压热水锅炉。 二、水质标准 1、蒸汽锅炉和汽水两用锅炉的给水一般应采用锅外化学水处理,水质应符合表1规定 表1 项目给水锅水 额定蒸汽压力, MPa ≤1.0 >1.0 >1.6 ≤1.0 >1.0 >1.6 ≤1.6 ≤2.5 ≤1.6 ≤2.5 悬浮物,mg/L ≤5 ≤5 ≤5 总硬度,mmol/L1)≤0.03 ≤0.03 ≤0.03 总碱度,mmol/L2)无过热器6-26 6-24 6-16 有过热器≤14 ≤12 pH(25℃) ≥7 ≥7 ≥7 10-12 10-12 10-12 溶解氧,mg/L3)≤0.1 ≤0.1 ≤0.05 溶解固形物,mg/L4)无过热器<4000 <3500 <3000 有过热器<3000 <2500 SO2-3,mg/L4)10-30 10-30 PO3-4,mg/L 10-30 10-30 相对碱度游离NaOH/溶解固形 物)5) <0.2 <0.2 含油量,mg/L ≤2 ≤2 ≤2 含铁量,mg/L6) ≤0.3 ≤0.3 ≤0.3 国家质量技术监督局2001-01-10批准 2001-10-01实施 表1(完)

对蒸汽品质要求不高,且不带过热器的锅炉,使用单位在报当地锅炉压力容器安全监察机 构同意后,碱度指标上限值可适当放宽。 3) 当锅炉额定蒸发量大于等于6t/h时应除氧,额定蒸发量小于6t/h的锅炉如发现局部腐蚀 时,给水应采取除氧措施,对于供汽轮机用汽的锅炉给水含氧量应小于等于0.05mg/L。 4) 如测定溶解固形物有困难时,可采用测定电导率或氯离子(C1-)的方法来间接控制,但溶 解固形物与电导率或与氯离子(Cl-)的比值关系应根据试验确定。并应定期复试和修正此 比值关系。 5) 全焊接结构锅炉相对碱度可不控制。 6) 仅限燃油、燃气锅炉 2、额定蒸发量小于等于2t/h,且额定蒸汽压力小于等于1.0MPa的蒸汽锅炉和汽水两用锅炉(如 对汽、水品质无特殊要求)也可采用锅内加药处理。但必须对锅炉的结垢、腐蚀和水质加强监 督,认真做好加药、排污和清洗工作,其水质应符合表2规定。 表2 3 、承压热水锅炉给水应进行锅外水处理,对于额定功率小于等于4.2MW非管架式承压的热水锅炉和常压热水锅炉,可采用锅内加药处理,但必须对锅炉的结垢、腐蚀和水质加强监督,认真做好加药工作,其水质应符合表3的规定。 表3

工业循环水冷却设计规范

工业循环水冷却设计规范(2009-05-16) 目录 第一章总则 第二章冷却塔 第三章喷水池 第四章水面冷却 附录本规范用词说明 附加说明 第一章总则 第1.0.1条本规范适用于新建和扩建的敞开式工业循环水冷却设施的设计。 第1.0.2条工业循环水冷却设施的设计应符合安全生产、经济合理、保护环境、节约能源、节约用水和节约用地,以及便于施工、运行和维修等方面的要求。 第1.0.3条工业循环水冷却设施的设计应在不断总结生产实践经验和科学试验的基础上,积极开发和认真采用先进技术。 第1.0.4条工业循环水冷却设施的类型选择,应根据生产工艺对循环水的水量、水温、水质和供水系统的运行方式等使用要求,并结合下列因素,通过技术经济比较确定: 一、当地的水文、气象、地形和地质等自然条件; 二、材料、设备、电能和补给水的供应情况; 三、场地布置和施工条件; 四、工业循环水冷却设施与周围环境的相互影响。 第1.0.5条工业循环水冷却设施应靠近主要用水车间;并应避免修建过长的给水排水管、沟和复杂的水工建筑物。 第1.0.6条工业循环水冷却设施的设计除应执行本规范外,尚应符合现行有关的国家标准、规范的规定。 第二章冷却塔 第一节一般规定 第2.1.1条冷却塔在厂区总平面布置中的位置应符合下列规定:

一、冷却塔宜布置在厂区主要建筑物及露天配电装置的冬季主导风向的下风侧; 二、冷却塔应布置在贮煤场等粉尘污染源的全年主导风向的上风侧; 三、冷却塔应远离厂内露天热源; 四、冷却塔之间或冷却塔与其他建筑物之间的距离除应满足冷却塔的通风要求外,还应满足管、沟、道路、建筑物的防火和防爆要求,以及冷却塔和其他建筑物的施工和检修场地要求; 五、冷却塔的位置不应妨碍工业企业的扩建。 第2.1.2条当环境对冷却塔的噪声有限制时,宜采取下列措施: 一、机械通风冷却塔应选用低噪声型的风机设备; 二、冷却塔周围宜设置消声设施; 三、冷却塔的位置宜远离对噪声敏感的区域。 第2.1.3条冷却塔的集中或分散布置方案的选择,应根据使用循环水的车间数量、分布位置及各车间的用水要求,通过技术经济比较后确定。第2.1.4条冷却塔一般可不设备用。冷却塔检修时应有不影响生产的措施。 第2.1.5条冷却塔的热力计算宜采用焓差法或经验方法。 第2.1.6条冷却塔的热交换特性宜采用原型塔的实测数据。 当缺乏原型塔的实测数据时,可采用模拟塔的试验数据,并应根据模拟塔的试验条件与设计的冷却塔的运行条件之间的差异,对模拟塔的试验数据进行修正。 第2.1.7条冷却塔的通风阻力系数宜采用原型塔的实测数据。当缺乏实测数据时,可按经验方法计算。 第2.1.8条冷却塔的最高冷却水温不应超过生产工艺允许的最高值;计算冷却塔的最高冷却水温的气象条件应符合下列规定: 一、根据生产工艺的要求,宜采用按湿球温度频率统计方法计算的频率为5%~10%的日平均气象条件; 二、气象资料应采用近期连续不少于五年,每年最热时期三个月的日平均值。 第2.1.9条计算冷却塔的各月的月平均冷却水温时,应采用近期连续不少于五年的相应各月的月平均气象条件。

相关文档
最新文档