基于神经网络理论的系统安全评价模型

基于神经网络理论的系统安全评价模型
基于神经网络理论的系统安全评价模型

(神经网络,安全评价)

基于神经网络理论的系统安全评价模型

王三明 蒋军成

(南京化工大学,南京,210009)

摘要 本文阐述了人工神经网络基本原理,研究分析了BP神经网络模型的缺陷并提出了优化策略。在此基础上,将神经网络理论应用于系统安全评价之中,提出了基于此理论的系统安全评价模型、实现方法和优点;评价实例证明此方法的可行性。

关键词 神经网络 网络优化 安全评价

 1. 引言

人工神经网络模拟人的大脑活动,具有极强的非线形逼近、大规模并行处理、自训练学习、自组织和容错能力等优点,将神经网络理论应用于系统安全评价之中,能克服传统安全评价方法的一些缺陷,能快速、准确地得到安全评价结果。这将为企业安全生产管理与控制提供快捷和科学的决策信息,从而及时预测、控制事故,减少事故损失。

 

2. 神经网络理论及其典型网络模型

人工神经网络是由大量简单的基本元件-神经元相互联结,模拟人的大脑神经处理信息的方式,进行信息并行处理和非线形转换的复杂网络系统。人工神经网络处理信息是通过信息样本对神经网络的训练,使其具有人的大脑的记忆、辨识能力,完成各种信息处理功能。人工神经网络具有良好的自学习、自适应、联想记忆、并行处理和非线形转换的能力,避免了复杂数学推导,在样本缺损和参数漂移的情况下,仍能保证稳定的输出。人工神经网络这种模拟人脑智力的特性,受到学术界的高度重视和广泛研究,已经成功地应用于众多领域,如模式识别、图象处理、语音识别、智能控制、虚拟现实、优化计算、人工智能等领域。 按照网络的拓扑结构和运行方式,神经网络模型分为前馈多层式网络模型、反馈递归式网络模型、随机型网络模型等。目前在模式识别中应用成熟较多的模型是前馈多层式网络中的BP反向传播模型,其模型结构如图1。

2.1 BP神经网络基本原理

BP网络模型处理信息的基本原理是:输入信号X i通过中间节点(隐层点)作用于输出节点,经过非线形变换,产生输出信号Y k,网络训练的每个样本包括输入向量X和期望输出量t,网络输出值Y与期望输出值t之间的偏差,通过调整输入节点与隐层节点的联接强度取值W ij和隐层节点与输出节点之间的联接强度T jk以及阈值,使误差沿梯度方向下降,经过反复学习训练,确定与最小误差相对应的网络参数(权值和

阈值),训练即告停止。此时经过训练的神经网络即能对类似样本的输入信息,自行处理输出误差最小的经过非线形转换的信息。

2.2 BP神经网络模型

BP网络模型包括其输入输出模型、作用函数模型、误差计算模型和自学习模型。

(1)节点输出模型

隐节点输出模型:O j=f(∑W ij×X i-θ j) (1)

输出节点输出模型:Y k=f(∑T jk×O j-θ k) (2)

f-非线形作用函数;θ -神经单元阈值。

图1 典型BP网络结构模型

 

(2)作用函数模型

作用函数是反映下层输入对上层节点刺激脉冲强度的函数又称刺激函数,一般取为(0,1)内连续取值Sigmoid函

数: f(x)=1/(1+e-x) (3)

(3)误差计算模型

误差计算模型是反映神经网络期望输出与计算输出之间误差大小的函数:

E p=1/2×∑(t pi-O pi)2 (4)

t pi- i节点的期望输出值;O pi-i节点计算输出值。

(4)自学习模型

神经网络的学习过程,即连接下层节点和上层节点之间的权重拒阵W ij的设定和误差修正过程。BP网络有师学习方式-需要设定期望值和无师学习方式-只需输入模式之分。自学习模型为

△W ij(n+1)= η ×Фi×O j+a×△W ij(n)

(5)

η -学习因子;Фi-输出节点i的计算误差;O j-输出节点j的计算输出;a-动量因子。

2.3 BP网络模型的缺陷分析及优化策略

(1)学习因子η 的优化

采用变步长法根据输出误差大小自动调整学习因子,来减少迭代次数和加快收敛速度。

η =η +a×(E p(n)- E p(n-1))/ E p(n) a为调整步长,0~1之间取值 (6)(2)隐层节点数的优化

隐节点数的多少对网络性能的影响较大,当隐节点数太多时,会导致网络学习时间过长,甚至不能收敛;而当隐节点数过小时,网络的容错能力差。利用逐步回归分析法并进行参数的显著性检验来动态删除一些线形相关的隐节点,节点删除标准:当由该节点出发指向下一层节点的所有权值和阈值均落于死区(通常取±0.1、±0.05等区间)之中,则该节点可删除。最佳隐节点数L可参考下面公式计算:

L=(m+n)1/2+c (7)

m-输入节点数;n-输出节点数;c-介于1~10的常数。

(3)输入和输出神经元的确定

利用多元回归分析法对神经网络的输入参数进行处理,删除相关性强的输入参数,来减少输入节点数。

(4)算法优化

由于BP算法采用的是剃度下降法,因而易陷于局部最小并且训练时间较长。用基于生物免疫机制地既能全局搜索又能避免未成熟收敛的免疫遗传算法IGA取代传统BP算法来克服此缺点。

 3. 优化BP神经网络在系统安全评价中的应用

系统安全评价包括系统固有危险性评价、系统安全管理现状评价和系统现实危险性评价三方面内容。其中固有危险性评价指标有物质火灾爆炸危险性、工艺危险性、设备装置危险性、环境危险性以及人的不可靠性。

3.1 基于优化BP神经网络的系统安全评价模型

图-2 基于优化BP神经网络的系统安全评价模型

3.2 BP神经网络在系统安全评价中的应用实现

(1)确定网络的拓扑结构,包括中间隐层的层数,输入层、输出层和隐层的节点数。

(2)确定被评价系统的指标体系包括特征参数和状态参数

运用神经网络进行安全评价时,首先必须确定评价系统的内部构成和外部环境,确定能够正确反映被评价对象安全状态的主要特征参数(输入节点数,各节点实际含义及其表达形式等),以及这些参数下系统的状态(输出节点数,各节点实际含义及其表达方式等)。

(3)选择学习样本,供神经网络学习

选取多组对应系统不同状态参数值时的特征参数值作为学习样本,供网络系统学习。这些样本应尽可能地反映各种安全状态。其中对系统特征参数进行(-∞,∞)区间地预处理,对系统参数应进行(0,1)区间地预处理。神经网络的学习过程即根据样本确定网络的联接权值和误差反复修正的过程。

(4)确定作用函数,通常选择非线形S型函数

(5) 建立系统安全评价知识库

通过网络学习确认的网络结构包括:输入、输出和隐节点数以及反映其间关联度的网络权值的组合;即为具有推理机制的被评价系统的安全评价知识库。

(6) 进行实际系统的安全评价

经过训练的神经网络将实际评价系统的特征值转换后输入到已具有推理功能的神经网络中,运用系统安全评价知识库处理后得到评价实际系统的安全状态的评价结果。实际系统的评价结果又作为新的学习样本输入神经网络,使系统安全评价知识库进一步充实。

3.3 BP神经网络理论应用于系统安全评价中的优点

(1)利用神经网络并行结构和并行处理的特征,通过适当选择评价项

目,能克服安全评价的片面性,可以全面评价系统的安全状况和多因数共同作用下的安全状态。

(2)运用神经网络知识存储和自适应特征,通过适应补充学习样本,可以实现历史经验与新知识完满结合,在发展过程中动态地评价系统的安全状态。

(3)利用神经网络理论的容错特征,通过选取适当的作用函数和数据结构,可以处理各种非数值性指标,实现对系统安全状态的模糊评价。 

4. 安全评价实例

(1)安全评价参数的确定(略)

(2)网络学习样本的选择

选择了5个企业的反映企业安全状态和安全条件的6个安全评

价参数作为学习样本,见表1

 

表1 企业安全评价学习样本

 

 

(3)评价结果

当学习因子η =4.07,动量因子a=0.2,预设误差为0.00001,单隐层,其隐节点数为L=9,模型迭代29254次,所得到的网络评价的结果见表2

表2 企业神经网络安全评价结果

 

 

5. 总 结

本文将优化后的BP神经网络应用于系统安全评价中,能对系统进行准确、动态的安全评价。同时由于优化后的BP网络还存在一些缺陷,比如对矛盾样本的处理问题等,因而将其应用于系统安全评价时应与模糊数学相结合更佳,这方面将有待进一步探讨和研究。

 

参考文献

1. 王俊普.智能控制.中国科学技术大学出版社.1996 135-177.

2. 丛爽,赵何.反向转播网络的不足与改进.自动化博览.1999.No1 25-26.

3. 陆系群,余英林.前馈神经网络隐节点的动态删除.控制理论及应用.1997.Vol1

4.No1 101-104.

4. 周伟良等.基于一种免疫遗传算法的BP网络设计.安徽大学学报.1999.Vol23.No1.

5. 施式亮,刘宝琛.基于神经网络的煤矿安全性预测模型及应用.中国安全科学学

报.1999.Vol9.No3.

 

SAFETY ASSESSMENT OF THE

SYSTEM BASED ON THE ARTIFICAL

NEURAL NETWORK

Wang Sanming Jiang Juncheng

Abstract In the article the theory of ANN has been introduced. At the same time some limitations of BP neural network have been analyzed and optimized methods have been supposed. Based on that, BP neural network is implied in the safety assessment of the system. Safety assessment model and its merits based on BP neural network have been put forward. The assessment example proves that the way is workable and right .

Key words Neural Network Network Optimization Safety Assessment

人工神经网络原理及实际应用

人工神经网络原理及实际应用 摘要:本文就主要讲述一下神经网络的基本原理,特别是BP神经网络原理,以及它在实际工程中的应用。 关键词:神经网络、BP算法、鲁棒自适应控制、Smith-PID 本世纪初,科学家们就一直探究大脑构筑函数和思维运行机理。特别是近二十年来。对大脑有关的感觉器官的仿生做了不少工作,人脑含有数亿个神经元,并以特殊的复杂形式组成在一起,它能够在“计算"某些问题(如难以用数学描述或非确定性问题等)时,比目前最快的计算机还要快许多倍。大脑的信号传导速度要比电子元件的信号传导要慢百万倍,然而,大脑的信息处理速度比电子元件的处理速度快许多倍,因此科学家推测大脑的信息处理方式和思维方式是非常复杂的,是一个复杂并行信息处理系统。1943年Macullocu和Pitts融合了生物物理学和数学提出了第一个神经元模型。从这以后,人工神经网络经历了发展,停滞,再发展的过程,时至今日发展正走向成熟,在广泛领域得到了令人鼓舞的应用成果。本文就主要讲述一下神经网络的原理,特别是BP神经网络原理,以及它在实际中的应用。 1.神经网络的基本原理 因为人工神经网络是模拟人和动物的神经网络的某种结构和功能的模拟,所以要了解神经网络的工作原理,所以我们首先要了解生物神经元。其结构如下图所示: 从上图可看出生物神经元它包括,细胞体:由细胞核、细胞质与细胞膜组成;

轴突:是从细胞体向外伸出的细长部分,也就是神经纤维。轴突是神经细胞的输出端,通过它向外传出神经冲动;树突:是细胞体向外伸出的许多较短的树枝状分支。它们是细胞的输入端,接受来自其它神经元的冲动;突触:神经元之间相互连接的地方,既是神经末梢与树突相接触的交界面。 对于从同一树突先后传入的神经冲动,以及同一时间从不同树突输入的神经冲动,神经细胞均可加以综合处理,处理的结果可使细胞膜电位升高;当膜电位升高到一阀值(约40mV),细胞进入兴奋状态,产生神经冲动,并由轴突输出神经冲动;当输入的冲动减小,综合处理的结果使膜电位下降,当下降到阀值时。细胞进入抑制状态,此时无神经冲动输出。“兴奋”和“抑制”,神经细胞必呈其一。 突触界面具有脉冲/电位信号转换功能,即类似于D/A转换功能。沿轴突和树突传递的是等幅、恒宽、编码的离散电脉冲信号。细胞中膜电位是连续的模拟量。 神经冲动信号的传导速度在1~150m/s之间,随纤维的粗细,髓鞘的有无而不同。 神经细胞的重要特点是具有学习功能并有遗忘和疲劳效应。总之,随着对生物神经元的深入研究,揭示出神经元不是简单的双稳逻辑元件而是微型生物信息处理机制和控制机。 而神经网络的基本原理也就是对生物神经元进行尽可能的模拟,当然,以目前的理论水平,制造水平,和应用水平,还与人脑神经网络的有着很大的差别,它只是对人脑神经网络有选择的,单一的,简化的构造和性能模拟,从而形成了不同功能的,多种类型的,不同层次的神经网络模型。 2.BP神经网络 目前,再这一基本原理上已发展了几十种神经网络,例如Hopficld模型,Feldmann等的连接型网络模型,Hinton等的玻尔茨曼机模型,以及Rumelhart 等的多层感知机模型和Kohonen的自组织网络模型等等。在这众多神经网络模型中,应用最广泛的是多层感知机神经网络。 这里我们重点的讲述一下BP神经网络。多层感知机神经网络的研究始于50年代,但一直进展不大。直到1985年,Rumelhart等人提出了误差反向传递学习算法(即BP算),实现了Minsky的多层网络设想,其网络模型如下图所示。它可以分为输入层,影层(也叫中间层),和输出层,其中中间层可以是一层,也可以多层,看实际情况而定。

数学建模神经网络预测模型及程序

年份 (年) 1(1988) 2(1989) 3(1990) 4(1991) 5(1992) 6(1993) 7(1994) 8(1995) 实际值 (ERI) 年份 (年) 9(1996) 10(1997) 11(1998) 12(1999) 13(2000) 14(2001) 15(2002) 16(2003) 实际值 (ERI) BP 神经网络的训练过程为: 先用1988 年到2002 年的指标历史数据作为网络的输入,用1989 年到2003 年的指标历史数据作为网络的输出,组成训练集对网络进行训练,使之误差达到满意的程度,用这样训练好的网络进行预测. 采用滚动预测方法进行预测:滚动预测方法是通过一组历史数据预测未来某一时刻的值,然后把这一预测数据再视为历史数据继续预测下去,依次循环进行,逐步预测未来一段时期的值. 用1989 年到2003 年数据作为网络的输入,2004 年的预测值作为网络的输出. 接着用1990 年到2004 年的数据作为网络的输入,2005 年的预测值作为网络的输出.依次类推,这样就得到2010 年的预测值。 目前在BP 网络的应用中,多采用三层结构. 根据人工神经网络定理可知,只要用三层的BP 网络就可实现任意函数的逼近. 所以训练结果采用三层BP模型进行模拟预测. 模型训练误差为,隐层单元数选取8个,学习速率为,动态参数,Sigmoid参数,最大迭代次数3000.运行3000次后,样本拟合误差等于。 P=[。。。];输入T=[。。。];输出 % 创建一个新的前向神经网络 net_1=newff(minmax(P),[10,1],{'tansig','purelin'},'traingdm') % 当前输入层权值和阈值 inputWeights={1,1} inputbias={1} % 当前网络层权值和阈值 layerWeights={2,1} layerbias={2} % 设置训练参数 = 50; = ; = ; = 10000; = 1e-3;

心得体会 安全评价技术的心得体会

安全评价技术的心得体会 系统的学习了安全评价技术,让我了解了危险危害因素的分析、安全评价的原理与模型、安全评价的方法、评价单元的划分和评价方法的选择、安全对策的措施、安全评价与评价报告、安全评价实例等内容。随着社会的不断发展,安全的问题更是不容忽视,然而安全评价是实现安全生产的重要手段和基本程序,是有效提高企业本质安全程度的一项基础工作,是为安全生产监督管理部门提供决策和技术监督支撑的有力手段;是消除隐患、防范事故的一项重要举措;是现代先进安全生产管理的重中之重。 首先,我们共同来探讨下安全评价的目的,安全评价促进实现本质安全化生产、实现全过程安全控制、建立系统安全的最优方案,为决策者提供依据、为实现安全技术、安全管理的标准化和科学化创造条件。有效的预防和减少事故的发生,减少财产损失和人员伤亡。“安全第一,预防为主”是我国安全生产的基本方针,而作为预测、预防事故重要的安全评价,在贯彻安全生产方针中有十分重要的作用,通过安全评价可确认生产经营单位是否具备安全生产条件。安全评价不仅能确认系统中存在的危险性,而且还能进一步考虑危险性发展为事故的可能性及事故造成的损失的严重程度,进而计算事故造成的危害,以便合理的选择控制、消除事故发生的措施增加安全投入。然而安全评价是一个利用安全系统工程原理和方法,识别和评价系统及工程中存在的风险的过程是:1.危险危害因素及重大危险源辨识;2.重

大危险源危害后果分析;3.定性及定量评价;4.提出安全的对策。总的来说不外乎8个字“识别、定量、比较(与行业标准、国家标准相比较)、措施”。根据事前预防、事中管理、事后救援为目的以可靠、安全性为基础,作出相应的决策措施。在安全评价时,应根据安全评价的对象和要实现的安全评价目标,选择适用的安全评价方法。常用的安全评价方法分别有安全检查方法(Safety Review,SR)、安全检查表法(Safety Checklist SCA)、预先危险分析法(Preliminary Hazard Analysis, PHA)、故障假设分析方法(What...If,WI)、危险克操作性研究法(Hazard and Operability study , HAZOP)、故障类型和影响分析(Faliure Mode Effects Analysis,FMEA)、故障树分析法(Fault Tree Analysis, FTA)、事故树分析法(Event Tree Analysis, ETA)、危险指数方法(Risk Rank, RR)、人员可靠性分析(Human Rcliability Analysis, HRA)、作业条件危险性评价法(LEC)、定量风险评价法(QRA)等。 其次,任何一种安全评价方法都有其应用的条件和适用范围,在安全评价中如果适用了不合适的安全评价方法,不仅浪费了工作时间还影响评价工作的正常进行,而且还可能导致评价结果严重失真,使安全评价失败。因此,我们要合理选择好安全评价方法是十分重要的。在选择安全评价方法时,应首先详细分析被评价的系统,明确通过安全评价要达到的目标,即通过安全评价需要给出哪些安全评价结果,然后应了解尽量多的安全评价方法,将安全评价方法进行分类整理,明确被评价的系统能够提供的基础数据、工艺参数和其他资料,然后再结合安全评价要达到的目标,选择合适的安全评价方法。

基于BP神经网络预测模型指南

基于BP神经网络的国际黄金价格预测模型 公文易文秘资源网顾孟钧张志和陈友2009-1-2 13:35:26我要投稿添加到百度搜藏 [摘要] 为了寻找国际黄金价格与道琼斯工业指数、美国消费者指数,国际黄金储备等因素之间的内在关系,本文对1972年~2006年间的各项数据首先进行归一化处理,利用MATLAB神经网络工具箱进行模拟训练,建立了基于BP神经网络的国际黄金价格预测模型 [摘要] 为了寻找国际黄金价格与道琼斯工业指数、美国消费者指数,国际黄金储备等因素之间的内在关系,本文对1972年~2006年间的各项数据首先进行归一化处理,利用MATLAB神经网络工具箱进行模拟训练,建立了基于BP神经网络的国际黄金价格预测模型。 [关键词] MATLAB BP神经网络预测模型数据归一化 一、引言 自20世纪70年代初以来的30多年里,世界黄金价格出现了令人瞠目的剧烈变动。20 世纪70年代初,每盎司黄金价格仅为30多美元。80年代初,黄金暴涨到每盎司近700美元。本世纪初,黄金价格处于每盎司270美元左右,此后逐年攀升,到2006年5月12日达到了26年高点,每盎司730美元,此后又暴跌,仅一个月时间内就下跌了约160美元,跌幅高达21.9%。最近两年,黄金价格一度冲高到每盎司900多美元。黄金价格起伏如此之大,本文根据国际黄金价格的影响因素,通过BP神经网络预测模型来预测长期黄金价格。 二、影响因素 刘曙光和胡再勇证实将观察期延长为1972年~2006年时,则影响黄金价格的主要因素扩展至包含道琼斯指数、美国消费者价格指数、美元名义有效汇率、美国联邦基金利率和世界黄金储备5个因素。本文利用此观点,根据1972年~2006年各因素的值来建立神经网络预测模型。 三、模型构建

神经网络模型预测控制器

神经网络模型预测控制器 摘要:本文将神经网络控制器应用于受限非线性系统的优化模型预测控制中,控制规则用一个神经网络函数逼近器来表示,该网络是通过最小化一个与控制相关的代价函数来训练的。本文提出的方法可以用于构造任意结构的控制器,如减速优化控制器和分散控制器。 关键字:模型预测控制、神经网络、非线性控制 1.介绍 由于非线性控制问题的复杂性,通常用逼近方法来获得近似解。在本文中,提出了一种广泛应用的方法即模型预测控制(MPC),这可用于解决在线优化问题,另一种方法是函数逼近器,如人工神经网络,这可用于离线的优化控制规则。 在模型预测控制中,控制信号取决于在每个采样时刻时的想要在线最小化的代价函数,它已经广泛地应用于受限的多变量系统和非线性过程等工业控制中[3,11,22]。MPC方法一个潜在的弱点是优化问题必须能严格地按要求推算,尤其是在非线性系统中。模型预测控制已经广泛地应用于线性MPC问题中[5],但为了减小在线计算时的计算量,该部分的计算为离线。一个非常强大的函数逼近器为神经网络,它能很好地用于表示非线性模型或控制器,如文献[4,13,14]。基于模型跟踪控制的方法已经普遍地应用在神经网络控制,这种方法的一个局限性是它不适合于不稳定地逆系统,基此本文研究了基于优化控制技术的方法。 许多基于神经网络的方法已经提出了应用在优化控制问题方面,该优化控制的目标是最小化一个与控制相关的代价函数。一个方法是用一个神经网络来逼近与优化控制问题相关联的动态程式方程的解[6]。一个更直接地方法是模仿MPC方法,用通过最小化预测代价函数来训练神经网络控制器。为了达到精确的MPC技术,用神经网络来逼近模型预测控制策略,且通过离线计算[1,7.9,19]。用一个交替且更直接的方法即直接最小化代价函数训练网络控制器代替通过训练一个神经网络来逼近一个优化模型预测控制策略。这种方法目前已有许多版本,Parisini[20]和Zoppoli[24]等人研究了随机优化控制问题,其中控制器作为神经网络逼近器的输入输出的一个函数。Seong和Widrow[23]研究了一个初始状态为随机分配的优化控制问题,控制器为反馈状态,用一个神经网络来表示。在以上的研究中,应用了一个随机逼近器算法来训练网络。Al-dajani[2]和Nayeri等人[15]提出了一种相似的方法,即用最速下降法来训练神经网络控制器。 在许多应用中,设计一个控制器都涉及到一个特殊的结构。对于复杂的系统如减速控制器或分散控制系统,都需要许多输入与输出。在模型预测控制中,模型是用于预测系统未来的运动轨迹,优化控制信号是系统模型的系统的函数。因此,模型预测控制不能用于定结构控制问题。不同的是,基于神经网络函数逼近器的控制器可以应用于优化定结构控制问题。 在本文中,主要研究的是应用于非线性优化控制问题的结构受限的MPC类型[20,2,24,23,15]。控制规则用神经网络逼近器表示,最小化一个与控制相关的代价函数来离线训练神经网络。通过将神经网络控制的输入适当特殊化来完成优化低阶控制器的设计,分散和其它定结构神经网络控制器是通过对网络结构加入合适的限制构成的。通过一个数据例子来评价神经网络控制器的性能并与优化模型预测控制器进行比较。 2.问题表述 考虑一个离散非线性控制系统: 其中为控制器的输出,为输入,为状态矢量。控制

基于神经网络理论的系统安全评价模型

(神经网络,安全评价) 基于神经网络理论的系统安全评价模型 王三明 蒋军成 (南京化工大学,南京,210009) 摘要 本文阐述了人工神经网络基本原理,研究分析了BP神经网络模型的缺陷并提出了优化策略。在此基础上,将神经网络理论应用于系统安全评价之中,提出了基于此理论的系统安全评价模型、实现方法和优点;评价实例证明此方法的可行性。 关键词 神经网络 网络优化 安全评价  1. 引言 人工神经网络模拟人的大脑活动,具有极强的非线形逼近、大规模并行处理、自训练学习、自组织和容错能力等优点,将神经网络理论应用于系统安全评价之中,能克服传统安全评价方法的一些缺陷,能快速、准确地得到安全评价结果。这将为企业安全生产管理与控制提供快捷和科学的决策信息,从而及时预测、控制事故,减少事故损失。   2. 神经网络理论及其典型网络模型 人工神经网络是由大量简单的基本元件-神经元相互联结,模拟人的大脑神经处理信息的方式,进行信息并行处理和非线形转换的复杂网络系统。人工神经网络处理信息是通过信息样本对神经网络的训练,使其具有人的大脑的记忆、辨识能力,完成各种信息处理功能。人工神经网络具有良好的自学习、自适应、联想记忆、并行处理和非线形转换的能力,避免了复杂数学推导,在样本缺损和参数漂移的情况下,仍能保证稳定的输出。人工神经网络这种模拟人脑智力的特性,受到学术界的高度重视和广泛研究,已经成功地应用于众多领域,如模式识别、图象处理、语音识别、智能控制、虚拟现实、优化计算、人工智能等领域。 按照网络的拓扑结构和运行方式,神经网络模型分为前馈多层式网络模型、反馈递归式网络模型、随机型网络模型等。目前在模式识别中应用成熟较多的模型是前馈多层式网络中的BP反向传播模型,其模型结构如图1。 2.1 BP神经网络基本原理 BP网络模型处理信息的基本原理是:输入信号X i通过中间节点(隐层点)作用于输出节点,经过非线形变换,产生输出信号Y k,网络训练的每个样本包括输入向量X和期望输出量t,网络输出值Y与期望输出值t之间的偏差,通过调整输入节点与隐层节点的联接强度取值W ij和隐层节点与输出节点之间的联接强度T jk以及阈值,使误差沿梯度方向下降,经过反复学习训练,确定与最小误差相对应的网络参数(权值和

安全评价的内容及分类

安全评价的内容及分类集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

安全评价的内容及分类1.安全评价内容 安全评价是一个利用安全系统工程原理和方法识别和评价系统、工程存在的风险的过程,这一过程包括危险、有害因素识别及危险和危害程度评价两部分。危险、有害因素识别的目的在于识别危险来源;危险和危害程度评价的目的在于确定来自危险源的危险性、危险程度,应采取的控制措施,以及采取控制措施后仍然存在的危险性是否可以被接受。在实际的安全评价过程中,这两个方面是不能截然分开、孤立进行的,而是相互交叉、相互重叠于整个评价工作中。安全评价的基本内容如图1—1所示。 随着现代科学技术的发展,在安全技术领域里,已由以往主要研究、处理那些已经发生和必然发生的事件,发展为主要研究、处理那些还没有发生,但有可能发生的事件,并把这种事件发生的可能性具体化

为一个数量指标,计算事故发生的概率,划分危险等级,制定安全标准和对策措施,并对其进行综合比较和评价,从中选择最佳的方案,预防事故的发生。 安全评价通过危险性识别及危险度评价,客观地描述系统的危险程度,指导人们预先采取相应措施,来降低系统的危险性。 2.安全评价分类 目前国内将安全评价通常根据工程、系统生命周期和评价的目的分为安全预评价、安全验收评价、安全现状评价和专项安全评价4类。(实际它是3大类,即安全预评价、安全验收评价、安全现状评价,专项评价应属现状评价的一种,属于政府在特定的时期内进行专项整治时开展的评价。) 1)安全预评价

安全预评价是根据建设项目可行性研究报告的内容,分析和预测该建设项目可能存在的危险、有害因素的种类和程度,提出合理可行的安全对策措施及建议。 安全预评价实际上就是在项目建设前应用安全评价的原理和方法对系统(工程、项目)的危险性、危害性进行预测性评价。 安全预评价以拟建建设项目作为研究对象,根据建设项目可行性研究报告提供的生产工艺过程、使用和产出的物质、主要设备和操作条件等,研究系统固有的危险及有害因素,应用系统安全工程的方法,对系统的危险陛和危害性进行定性、定量分析,确定系统的危险、有害因素及其危险、危害程度;针对主要危险、有害因素及其可能产生的危险、危害后果提出消除、预防和降低的对策措施;评价采取措施后的系统是否能满足规定的安全要求,从而得出建设项目应如何设计、管理才能达到安全指标要求的结论。总之,对安全预评价可概括为以下4点。 (1)安全预评价是一种有目的的行为,它是在研究事故和危害为什么会发生、是怎样发生的和如何防止发生等问题的基础上,回答建设项目依据设计方案建成后的安全性如何、是否能达到安全标准的要求及如何达到安全标准、安全保障体系的可靠性如何等至关重要的问题。

BP神经网络的基本原理+很清楚

5.4 BP神经网络的基本原理 BP(Back Propagation)网络是1986年由Rinehart和 McClelland为首的科学家小组提出,是一种按误差逆传播算 法训练的多层前馈网络,是目前应用最广泛的神经网络模型 之一。BP网络能学习和存贮大量的输入-输出模式映射关系, 而无需事前揭示描述这种映射关系的数学方程。它的学习规 则是使用最速下降法,通过反向传播来不断调整网络的权值 和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结 构包括输入层(input)、隐层(hide layer)和输出层(output layer)(如图5.2所示)。 5.4.1 BP神经元 图5.3给出了第j个基本BP神经元(节点),它只模仿了生物神经元所具有的三个最基本 也是最重要的功能:加权、求和与转移。其中x 1、x 2 …x i …x n 分别代表来自神经元1、2…i…n 的输入;w j1、w j2 …w ji …w jn 则分别表示神经元1、2…i…n与第j个神经元的连接强度,即权 值;b j 为阈值;f(·)为传递函数;y j 为第j个神经元的输出。 第j个神经元的净输入值为: (5.12) 其中: 若视,,即令及包括及,则

于是节点j的净输入可表示为: (5.13)净输入通过传递函数(Transfer Function)f (·)后,便得到第j个神经元的输出 : (5.14) 式中f(·)是单调上升函数,而且必须是有界函数,因为细胞传递的信号不可能无限增加,必有一最大值。 5.4.2 BP网络 BP算法由数据流的前向计算(正向传播)和误差信号的反向传播两个过程构成。正向传播时,传播方向为输入层→隐层→输出层,每层神经元的状态只影响下一层神经元。若在输出层得不到期望的输出,则转向误差信号的反向传播流程。通过这两个过程的交替进行,在权向量空间执行误差函数梯度下降策略,动态迭代搜索一组权向量,使网络误差函数达到最小值,从而完成信息提取和记忆过程。 5.4.2.1 正向传播 设 BP网络的输入层有n个节点,隐层有q个节点,输出层有m个节点,输入层与隐层之间的权值为,隐层与输出层之间的权值为,如图5.4所示。隐层的传递函数为f (·), 1 (·),则隐层节点的输出为(将阈值写入求和项中): 输出层的传递函数为f 2

安全评价是一个利用安全系统工程原理和方法识别和评价系统

安全评价是一个利用安全系统工程原理和方法识别和评价系统、工程存在的风险的过程,这一过程包括危险、有害因素识别及危险和危害程度评价两部分。危险、有害因素识别的目的在于识别危险来源;危险和危害程度评价的目的在于确定来自危险源的危险性、危险程度,应采取的控制措施,以及采取控制措施后仍然存在的危险性是否可以被接受。在实际的安全评价过程中,这两个方面是不能截然分开、孤立进行的,而是相互交叉、相互重叠于整个评价工作中。安全评价的基本内容如下图所示。 随着现代科学技术的发展,在安全技术领域里,已由以往主要研究、处理那些已经发生和必然发生的事件,发展为主要研究、处理那些还没有发生,但有可能发生的事件,并把这种事件发生的可能性具体化为一个数量指标,计算事故发生的概率,划分危险等级,制定安全标准和对策措施,并对其进行综合比较和评价,从中选择最佳的方案,预防事故的发生。安全评价通过危险性识别及危险度评价,客观地描述系统的危险程度,指导人们预先采取相应措施,来降低系统的危险性。 目前国内将安全评价通常根据工程、系统生命周期和评价的目的分为安全预评价、安全验收评价、安全现状评价和专项安全评价4类。 安全预评价 安全预评价是根据建设项目可行性研究报告的内容,分析和预测该建设项目可能存在的危险、有害因素的种类和程度,提出合理可行的安全对策措施及建议。

安全预评价实际上就是在项目建设前应用安全评价的原理和方法对系统(工程、项目)的危险性、危害性进行预测性评价。 安全预评价以拟建建设项目作为研究对象,根据建设项目可行性研究报告提供的生产工艺过程、使用和产出的物质、主要设备和操作条件等,研究系统固有的危险及有害因素,应用系统安全工程的方法,对系统的危险陛和危害性进行定性、定量分析,确定系统的危险、有害因素及其危险、危害程度;针对主要危险、有害因素及其可能产生的危险、危害后果提出消除、预防和降低的对策措施;评价采取措施后的系统是否能满足规定的安全要求,从而得出建设项目应如何设计、管理才能达到安全指标要求的结论。总之,对安全预评价可概括为以下4点。 1、安全预评价是一种有目的的行为,它是在研究事故和危害为什么会发生、是怎样发生的和如何防止发生等问题的基础上,回答建设项目依据设计方案建成后的安全性如何、是否能达到安全标准的要求及如何达到安全标准、安全保障体系的可靠性如何等至关重要的问题。 2、安全预评价的核心是对系统存在的危险、有害因素进行定性、定量分析,即针对特定的系统范围,对发生事故、危害的可能性及其危险、危害的严重程度进行评价。 3、安全预评价用有关标准(安全评价标准)对系统进行衡量,分析、说明系统的安全性。 4、安全预评价的最终目的是确定采取哪些优化的技术、管理措施,使各子系统及建设项目整体达到安全标准的要求。 经过安全预评价形成的安全预评价报告,将作为项目报批的文件之一,同时也是项目最终设计的重要依据文件之一。(具体地说,安全预评价报告主要提供给建设单位、设计单位、业主、政府管理部门。在设计阶段,必须落实安全预评价所提出的各项措施,切实做到建设项目在设计中的“三同时”。) 安全验收评价 安全验收评价是在建设项目竣工验收之前、试生产运行正常之后,通过对建设项目的设施、设备、装置实际运行状况及管理状况的安全评价,查找该建设项目投产后存在的危险、有害因素,确定其程度,提出合理可行的安全对策措施及建议。 安全验收评价是运用系统安全工程原理和方法,在项目建成试生产正常运行后,在正式投产前进行的一种检查性安全评价。它通过对系统存在的危险和有害因素进行定性和定量的评价,判断

基于Bp神经网络的股票预测

基于神经网络的股票预测 【摘要】: 股票分析和预测是一个复杂的研究领域,本论文将股票技术分析理论与人工神经网络相结合,针对股票市场这一非线性系统,运用BP神经网络,研究基于历史数据分析的股票预测模型,同时,对单只股票短期收盘价格的预测进行深入的理论分析和实证研究。本文探讨了BP神经网络的模型与结构、BP算法的学习规则、权值和阈值等,构建了基于BP神经网络的股票短期预测模型,研究了神经网络的模式、泛化能力等问题。并且,利用搭建起的BP神经网络预测模型,采用多输入单输出、单隐含层的系统,用前五天的价格来预测第六天的价格。对于网络的训练,选用学习率可变的动量BP算法,同时,对网络结构进行了隐含层节点的优化,多次尝试,确定最为合理、可行的隐含层节点数,从而有效地解决了神经网络隐含层节点的选取问题。 【abstract] Stock analysis and forecasting is a complex field of study. The paper will make research on stock prediction model based on the analysis of historical data, using BP neural network and technical analysis theory. At the same time, making in-depth theoretical analysis and empirical studies on the short-term closing price forecasts of single stock. Secondly, making research on the model and structure of BP neural network, learning rules, weights of BP algorithm and so on, building a stock short-term forecasting model based on the BP neural network, related with the model of neural network and the ability of generalization. Moreover, using system of multiple-input single-output and single hidden layer, to forecast the sixth day price by BP neural network forecasting model structured. The network of training is chosen BP algorithm of traingdx, while making optimization on the node numbers of the hidden layer by several attempts. Thereby resolve effectively the problem of it. 【关键词】BP神经网络股票预测分析 1.引言 股票市场是一个不稳定的非线性动态变化的复杂系统,股价的变动受众多因素的影响。影响股价的因素可简单地分为两类,一类是公司基本面的因素,另一类是股票技术面的因素,虽然股票的价值是公司未来现金流的折现,由公司的基本面所决定,但是由于公司基本面的数据更新时间慢,且很多时候并不能客观反映公司的实际状况,采用适当数学模型就能在一定

安全文化评价模型构建原则(新编版)

Advocating a safety culture is to make human life and work safer and healthier under the existing technology and management conditions. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 安全文化评价模型构建原则(新 编版)

安全文化评价模型构建原则(新编版)导语:倡导安全文化的目的是在现有的技术和管理条件下,使人类生活、工作地更加安全和健康。而安全和健康的实现离不开人们对安全健康的珍惜与重视,并使自己的一举一动,符合安全健康的行为规范要求。 安全文化评价模型要想准确的反映企业安全生产活动的本质,应遵循以下原则要求: (1)层次性与系统性安全文化本身是具有一定层次结构的系统,因此,安全文化评价指标体系也要具有与之相适应的层次结构和系统性。 (2)全面性评价方法与指标体系要力求反映安全文化的所有方面,反映各个层次与唯独方面的属性,做到既能反映其定量属性,也能反映其定性属性;既能反映其可明言的成分,也能反映其缄默成分。 (3)细分性为了深入、全面反映安全文化的内在本质,指标体系要细分到适当程度,太粗就不能揭示其本质,太细则综合困难,会引起失真。 (4)数据可获性安全文化指标体系所包括的指标应具有数据可获 得性,如果是纯定量的,就要能获得真实可靠的系列数据;如果是半定量的,就要力求有等级分明的评价标准,并能找到合适的人员进行评价。

安全评价的基本原理

仅供参考[整理] 安全管理文书 安全评价的基本原理 日期:__________________ 单位:__________________ 第1 页共4 页

安全评价的基本原理 安全评价、安全预评价、安全验收评价、安全现状评价和专项安全评价的概念及要求: 安全评价: 是以实现工程、系统安全为目的, 应用安全系统工程原理和方法, 对工程、系统中存在的危险、有害因素进行辨识与分析, 判断工程、系统发生事故和职业危害的可能性及其严重程度, 从而为制定防范措施和管理决策提供科学依据。 安全预评价: 是根据建设项目可行性研究报告的内容, 分析和预测该建设项目可能存在的危险、有害因素的种类和程度,提出合理可行的安全对策措施及建议。 安全验收评价: 是在建设项目竣工、试运行正常后, 通过对建设项目的设施、设备、装置实际运行状况及管理状况的安全评价, 查找该建设项目投产后存在的危险、有害因素,确定其程度并 提出合理可行的安全对策措施及建议。 安全现状综合评价: 是针对某一个生产经营单位总体或局部的生产经营活动的安全现状进行安全评价, 查找其存在的危险、有害因素并确定其程度, 提出合理可行的安全对策措施及建议。 第 2 页共 4 页

专项安全评价: 是针对某一项活动或场所,以及一个特定的行业、产品、生产方式、生产工艺或生产装置等存在的危险、有害因素进行的安全评价,查找其存在的危险、有害因素,确定其程度并 提出合理可行的安全对策措施及建议。 事故、事件、事故隐患、危险、风险、重大危险源、系统、系统安全、安全系统工程的概念; 事故:是指造成人员死亡、伤害、职业病、财产损失或其他损失的意外事件。 危险:指系统中存在导致发生不期望后果的可能性超过了人们的承受程度。 风险:危险、危害事故发生的可能性和严重程度的综合度量。它有两个特性,即可能性和严重程度。 系统:是指由若干相互联系的、为了达到一定目标而具有独立功能的要素构成的有机整体。 系统安全:是指系统寿命期间内应用系统安全工程和管理方法,识别系统中存在的危险源,定性或定量表征其危险性,采取控制措施使其危险性最小化,从而使系统在规定的性能、时间和成本范围内达到最佳的可接受安全程度。 安全系统工程:是以预测和防止事故为中心,以识别、分析评价和控制安全风险为重点,开发、研究出来的安全理论和方法体系。 第 3 页共 4 页

神经网络模型原理

2 BP 神经网络模型原理 2.1 BP 模型概述 BP(Back-Propagation)神经网络是一类前馈型神经网络,它由输入层、中间层和输出层组成,中间层也就是隐含层,可以是一个或多个。每层包含若干互不连接的神经元节点,相邻层之间各神经元通过不断变化的连接强度或权值进行全连接。图1 所示为BP 神经网络拓扑结构。其中:输入层有n 个节点,对应输入x1~xn;输出层有m 个节点,对应输出y1~ym;隐含层有q个节点,对应的输出z1~zq;输入层与隐含层之间的权值vik,隐含层与输出层之间的权值为wkj。 BP 网络中隐含层激活函数通常采用S 型的对数或正切函数和线性函数。由于激活函数是连续可微的,不仅使得网络的容错性较好,而且可以严格利用剃度法进行推算,权值修正的解析式十分明确[7]。 BP 网络中隐含层激活函数通常采用S 型的对数或正切函数和线性函数。由于激活函数是连续可微的,不仅使得网络的容错性较好,而且可以严格利用剃度法进行推算,权值修正的解析式十分明确[7]。 2.2 BP 学习算法 BP 学习算法是一种有监督的学习过程,它是根据给定的(输入、输出)样本数据来进行学习,并通过调整网络连接权值来体现学习的效果。就整个神经网络来说,一次学习过程由输入数据的正向传播和误差的反向传播两个子过程构成。设有N 个学习样本(Xk,Y*k ),k=1,2,…,N,对样本(Xk,Y*k),在正向传播过程中,样本k的输入向量Xk=(x1k,x2k,…,xnk)从输入层的n 个节点输入,经隐含层逐层处理,在输出层的m 个节点的输出端得到样本k 的网络计算输出向量Yk=(y1k,y2k,ymk)。比较Yk 和样本k 的期望输出向量Y*k =(y *1k ,y *2k ,…,y *mk ),若N个学习样本的计算输出都达到期望的结果,则学习过程结束;否则,进入误差反向传播过程,把Yk 与Y*k的误差由网络输出层向输入层反向传播,在反向传播过程中,修改各层神经元的连接权值[8]。 BP 反向传播算法的具体步骤可归纳如下: (1)输入N 个学习样本(Xk,Y*k ),k=1,2,…,N。 (2)建立BP 网络结构。确定网络层数L≥3 和各层节点数,由学习样本输入向量Xk 的长度n 确定网络输入层节点数为n;由学习样本输出向量Y*k的长度m确定网络输出节点数为m;第l 层的节点数为n(l)。定义各层间连接权矩阵,第l 层连接第l+1 层的连接权矩

安全评价原理及原则

安全评价原理及原则 (1) 安全评价的原理可归纳为以下四个基本原理,即:相关性原理,类推原理,惯性原理和量变到质变原理。 相关性原理:相关性是指一个系统,其属性、特征与事故和职业危害存在着因果的相关性。这是系统因果评价方法的理论基础。 类推原理:它是根据两个或两类对象之间存在着某些相同或相似的属性,从一个已知对象具有某个属性来推出另一个对象具有此种属性的一种推理过程。常用的类推方法有:1)平推推算法,平推推算法是根据相互依存的平衡关系来推算所缺的有关指标的方法。2)代替推算法,代替推算法是利用具有密切联系(或相似)的有关资料、数据,来代替所缺资料、数据的方法。3)因素推算法,因素推算法是根据指标之间的联系,从已知的数据推算有关未知指标数据的方法。4)抽样推算法,抽样推算法是根据抽样或典型调查资料推算总体特征的方法。5)比例推算法,比例推算法是根据社会经济现象的内在联系,用某一时期、地区、部门或单位的实际比例,推算另一个类似的时期、地区、部门或单位有关指标的方法。6)概率推算法,根据有限的实际统计资料,采用概率论和数理统计方法可求出随机事件出现各种状态的概率。 惯性原理:任何事物在其发展过程中,从过去到现在以及延伸至将来,都具有一定的延续性,这种延续性就叫惯性。利用惯性原理进行评价时注意惯性的大小,惯性的趋势。

量变到质变原理:任何一个事物在发展变化过程中都存在着从量变到质变的规律,同样,在一个系统中许多有关安全的因素也都存在着从量变到质变的过程。 (2) 安全评价原则,在安全评价工作中必须自始至终遵循科学性、公正性、合法性和针对性原则。 (3) 安全评价的程序 安全评价程序主要包括:准备阶段;危险、有害因素辨识与分析;定性定量评价;提出安全对策措施;形成安全评价结论及建议;编制安全评价报告。 准备阶段,明确被评价对象和范围,收集国内外相关法律法规、技术标准及工程、系统的技术资料; 危险、有害因素识别与分析,根据被评价工程、系统的情况,识别和分析危险、有害因素,确定危险、有害因素存在的部位、存在的方式,事故发生的途径及变化规律; 定性定量评价,在对危险、有害因素识别和分析的基础上,划分评价单元,选择合理的评价方法,对工程、系统发生事故的可能性和严重程度进行定性、定量评价; 提出安全对策措施,根据定性定量的评价结果,提出消除或减弱危险、有害因素的技术和管理措施及建议; 形成安全评价结论及建议,简要的列出主要危险、有害因素、指出工程、系统应重点防范的重大危险因素,明确生产经营单位应重视的重要安全措施;

基于神经网络的预测控制模型仿真

基于神经网络的预测控制模型仿真 摘要:本文利用一种权值可以在线调整的动态BP神经网络对模型预测误差进行拟合并与预测模型一起构成动态组合预测器,在此基础上形成对模型误差具有动态补偿能力的预测控制算法。该算法显著提高了预测精度,增强了预测控制算法的鲁棒性。 关键词:预测控制神经网络动态矩阵误差补偿 1.引言 动态矩阵控制(DMC)是一种适用于渐近稳定的线性或弱非线性对象的预测控制算法,目前已广泛应用于工业过程控制。它基于对象阶跃响应系数建立预测模型,因此建模简单,同时采用多步滚动优化与反馈校正相结合,能直接处理大时滞对象,并具有良好的跟踪性能和较强的鲁棒性。 但是,DMC算法在实际控制中存在一系列问题,模型失配是其中普遍存在的一个问题,并会不同程度地影响系统性能。DMC在实际控制中产生模型失配的原因主要有2个,一是诸如建模误差、环境干扰等因素,它会在实际控制的全程范围内引起DMC的模型失配;二是实际系统的非线性特性,这一特性使得被控对象的模型发生变化,此时若用一组固定的阶跃响应数据设计控制器进行全程范围的控制,必然会使实际控制在对象的非建模区段内出现模型失配。针对DMC模型失配问题,已有学者进行了大量的研究,并取得了丰富的研究成果,其中有基于DMC控制参数在线辨识的智能控制算法,基于模型在线辨识的自校正控制算法以及用神经元网络进行模型辨识、在辨识的基础上再进行动态矩阵控制等。这些算法尽管进行在线辨识修正对象模型参数,仍对对象降阶建模误差(结构性建模误差)的鲁棒性不好,并对随机噪声干扰较敏感。针对以上问题,出现了基于误差校正的动态矩阵控制算法。这些文献用基于时间序列预测的数学模型误差代替原模型误差,得到对未来误差的预测。有人还将这种误差预测方法引入动态矩阵控制,并应用于实际。这种方法虽然使系统表现出良好的稳定性,但建立精确的误差数学模型还存在一定的困难。 本文利用神经网络通过训练学习能逼近任意连续有界函数的特点,建立了一种采用BP 神经网络进行预测误差补偿的DMC预测控制模型。其中神经网络预测误差描述了在预测模型中未能包含的一切不确定性信息,可以归结为用BP神经网络基于一系列过去的误差信息预测未来的误差,它作为模型预测的重要补充,不仅降低建立数学模型的负担,而且还可以弥补在对象模型中已简化或无法加以考虑的一切其他因素。 本文通过进行仿真,验证了基于神经网络误差补偿的预测控制算法的有效性及优越性,

神经网络典型模型的比较研究

神经网络典型模型的比较研究 杜华英1,赵跃龙2 (中南大学信息科学与工程学院,湖南长沙 410083) 摘要神经网络是近年来发展起来的一门新兴学科,具有较高的研究价值,本文介绍了神经网络的基本概念,针对神经网络在不同的应用领域如何选取问题,对感知器、BP网络、Hopfield网络和ART网络四种神经网络模型在优缺点、有无教师方式、学习规则、正反向传播、应用领域等方面进行了比较研究。可利用其特点有针对性地将神经网络应用于计算机视觉、图像处理、模式识别、信号处理、智能监控、机器人等不同领域。 关键词神经网络;感知器;BP网络;Hopfield网络;ART网络 1 引言 人工神经网络(Artificial Neural Network, ANN)是模仿生物神经网络功能的一种经验模型。生物神经元受到传入的刺激,其作出的反应又从输出端传到相连的其它神经元,输入和输出之间的变换关系一般是非线性的。神经网络是由若干简单元件及其层次组织,以大规模并行连接方式构造而成的网络,按照生物神经网络类似的方式处理输入的信息。模仿生物神经网络而建立的人工神经网络,对输入信号有功能强大的反应和处理能力。 若干神经元连接成网络,其中的一个神经元可以接受多个输入信号,按照一定的规则转换为输出信号。由于神经网络中神经元间复杂的连接关系和各神经元传递信号的非线性方式,输入和输出信号间可以构建出各种各样的关系,因此在运行网络时,可视为一个“黑箱”模型,不必考虑其内部具体情况。人工神经网络模拟人类部分形象思维的能力,是模拟人工智能的一条途径,特别是可以利用人工神经网络解决人工智能研究中所遇到的一些难题。目前,人工神经网络理论的应用已经渗透到多个领域,在计算机视觉、图像处理、模式识别、信号处理、智能监控、机器人等方面取得了可喜的进展。 2 神经网络的典型模型 在人们提出的几十种神经网络模型中,人们用得较多的是感知器、BP网络、Hopfield 网络和ART网络。 2.1 感知器[2] 罗森勃拉特(Rosenblatt)于1957年提出的感知器模型是一组可训练的分类器,为最古老的ANN之一,现已很少使用。然而,它把神经网络的研究从纯理论探讨引向了工程上的实现,在神经网络的发展史上占有重要的地位。尽管它有较大的局限性,甚至连简单的异或(XOR)逻辑运算都不能实现,但它毕竟是最先提出来的网络模型,而且它提出的自组织、自学习思想及收敛算法对后来发展起来的网络模型都产生了重要的影响,甚至可以说,后来发展的网络模型都是对它的改进与推广。 最初的感知器是一个只有单层计算单元的前向神经网络,由线性阈值单元组成,称为单层感知器,后来针对其局限性进行了改进,提出了多层感知器。 1杜华英(1975—),女,江西樟树人,惠州学院成教处计算机工程师,主研人工智能,中南大学信息科学与工程学院在读工程硕士。 2赵跃龙(1958—),男,湖南湘潭人,中南大学信息科学与工程学院计算机系教授,主要从事计算机体系结构、磁盘阵列、计算机控制、神经网络应用等方面的研究。

相关文档
最新文档