机械原理平面机构自由度计算-例题

机械原理平面机构自由度计算-例题

机械原理平面机构自由度计算-例题

机械原理平面机构的运动简图及自由度习题答案

1. 计算齿轮机构的自由度. 解:由于B. C 副中之一为虚约束,计算机构自由度时,应将 C 副去除。即如下 图所示: 该机构的自由度1213233231=?-?-?=--=h p p n F 2. .机构具有确定运动的条件是什么如果不能满足这一条件,将会产生什么结果 机构在滚子B 处有一个局部自由度,应去除。 该机构的自由度017253231=-?-?=--=h p p n F 定轴轮系 A B C 1 2 3 4 图2-22 A B C D G E H F

当自由度F=1时,该机构才能运动, 如果不能满足这一条件,该机构无法运动。 该机构当修改为下图机构,则机构可动: N=4, PL=5, Ph=1; F=?-?-= 自由度342511 3. 计算机构的自由度. 1)由于机构具有虚约束, 机构可转化为下图机构。 F=?-?-= 自由度342511

2)由于机构具有虚约束, 机构可转化为下图机构。 F=?-?= 自由度31211 3)由于机构具有虚约束, 机构可转化为下图机构。 F=?-?= 自由度33241 第一章平面机构的运动简图及自由度 一、判断题(认为正确的,在括号内画√,反之画×) 1.机构是由两个以上构件组成的。() 2.运动副的主要特征是两个构件以点、线、面的形式相接触。() 3.机构具有确定相对运动的条件是机构的自由度大于零。() 4.转动副限制了构件的转动自由度。() 5.固定构件(机架)是机构不可缺少的组成部分。() 个构件在一处铰接,则构成4个转动副。() 7.机构的运动不确定,就是指机构不能具有相对运动。() 8.虚约束对机构的运动不起作用。() 二、选择题 1.为使机构运动简图能够完全反映机构的运动特性,则运动简图相对于与实际机构的()应相同。 A.构件数、运动副的类型及数目 B.构件的运动尺寸 C.机架和原动件 D. A 和B 和C 2.下面对机构虚约束的描述中,不正确的是()。 A.机构中对运动不起独立限制作用的重复约束称为虚约束,在计算机构自由度时应除去虚约束。 B.虚约束可提高构件的强度、刚度、平稳性和机构工作的可靠性等。 C.虚约束应满足某些特殊的凡何条件,否则虚约束会变成实约束而影响机构的正常运动。为此应规定相应的制造精度要求。虚约束还使机器的结构复杂,成本增加。 D.设计机器时,在满足使用要求的情况卜,含有的虚约束越多越好。 三、综合题

机械原理

一、计算下列图示运动链的自由度,并说明运动链具有确定运动的条件。若运动链中存在复合铰链、局部自由度及虚约束,应予以明确指出(?分)。 1. 1. 解: n =6, p l =8, p h =1(?分) 11826323=-?-?=--=h l p p n F (?分) 原动件数=自由度 (?分) 2. 2. 解: n =6, p l =8, p h =1(?分) 11826323=-?-?=--=h l p p n F (?分) 原动件数=自由度 (?分) 解 局部自由度 F D C O B G A E F D C O B G A E 局部自由度 复合铰链

A B C E E' O D F 3. 3. 解: n =7, p l =9, p h =1(?分) 21927323=-?-?=--=h l p p n F (?分) 原动件数=自由度 (?分) 4. 4. 解: n =4, p l =5, p h =1(?分) 11524323=-?-?=--=h l p p n F (?分) 原动件数=自由度 (?分) 5. 5. 解: n =7, p l =10, p h =0(?分) 11027323=?-?=--=h l p p n F (?分) 原动件数=自由度 (?分) B E' F' D F E A B C B E' F' D F E A B C 局部自由度 复合铰链 局部自由度 复合铰链 A B C E E' O D F

6. 解: n =7, p l =9, p h =1(?分) 21927323=-?-?=--=h l p p n F (?分) 原动件数=自由度 (?分) 7. B D E F A C 7. 解: n =5, p l =7, p h =0(?分) 10725323=-?-?=--=h l p p n F (?分) 原动件数=自由度 (?分) 8计算下列图示运动链的自由度,并说明运动链具有确定运动的条件。若运动链中存在复合铰链、局部自由度及虚约束,应予以明确指出(?分)。 8. 解: n =7, p l =9, p h =2(?分) 12927323=-?-?=--=h l p p n F (?分) 原动件数=自由度 (?分) 等宽凸轮 等宽凸轮 复合铰链 B D E F A C 复合铰链 局部自由度 复合铰链

教案平面机构的自由度

平面机构的自由度 【教学目的】 1、掌握运动链成为机构的条件。 2、熟练掌握机构自由度的计算方法。能自如地运用自由度计算公式计算机构自由度,尤其是平面机构的自由度。 【教学内容】 1、引出自由度的概念,明确自由度和约束的关系; 2、推导自由度计算公式,并加以举例说明; 3、学会利用公式计算平面机构的自由度。 【教学重点和难点】 1、机构自由度的计算 【教学方法】 1、课堂以讲授为主,结合实物文件进行分析讲解。 2、注重师生交流,提倡师生互动,上课时细心观察学生的反应,课间与学生交谈,了解学生的掌握情况,根据反馈的信息,适当地调整授课内容和方法等。【教学内容】 1、概念:平面机构的自由度——机构具有确定运动的独立运动参数称为机构的 自由度。 2、自由度的引入 构件的独立运动称为自由度。一个作平面运动的自由构件具有3个独立的运动,见图1。 图1 平面自由度 即沿x轴、y轴移动及绕垂直于xoy面的轴线的转动。 构件组成运动副后,其运动就受到了约束,其自由度数随之减少,不同类型的运动副带来的约束不同。 如图2移动副中,限制了2相对1沿垂直于导路的移动及相对限制转动,引入两个约束。 如图3中转动副限制了2相限制1沿x轴y轴移动,引入两个约束。

如图4高副中,限制了2相对1沿法线轴的移动,引入一个约束。 图4 高副及表示符号 3 自由度公式的推导 如设平面机构共有n 个活动构件(不包括机架),当此机构的各构件尚未通过运动副联接时,显然它们共有3n 个自由度。 当两构件构成运动副之后,它们的运动就将受到约束,其自由度将减少,假设各构件间共构成了L p 个低副和H p 个高副,自由度减少的数目等于运动副引入的约束(H L p p +2)。于是,该机构的自由度应为 ()H L H L p p n p p n F --=+-=2323 (1) 4 自由度的计算 图5 平面四连杆机构 图6 平面五连杆机构 (1)三个活动构件,四个低副,零个高副。 104233=-?-?=F (2)四个活动构件,五个低副,零个高副 342502F =??= 总结: 平面机构自由度的计算是教学中的重点和难点,计算自由度时需要找准活动构件的个数,注意低副和高副的约束,然后进行计算。

第一章平面机构运动简图与自由度计算(精品文档)

本课程是测控专业一门近机类课程,上课之前尤其要作专业引导工作,以树立对本课程的正确认识。课程安排:课堂教学60学时,实验教学12学时,共计72学时。 第一章平面机构运动简图与自由度计算 学时8 知识要点:运动副概念和分类、平面机构低副和高副、平面机构运动简图、平面机构自由度计算 难点:自由度计算和虚约束判断,结合多媒体重点讲解。 §1 概述 机构是按一定方式联接的构件组合,是用来转递运动和力或改变运动的形式。 研究机构的目的: ⑴探讨机构运动的可能性、具有确定运动的条件; ⑵将机构按特点分类,建立运动分析和动力分析的一般方法; ⑶学会关于运动简图的绘制。 (4)熟悉构件组成机构的规律,以合理设计和创新机构。 §2运动副及其分类 运动副:两构件直接接触,而又能产生一定相对运动的联接(可动联接)。?? 例如:滚珠轴承的滚珠与内外座圈之间为点接触;互相啮合的轮齿之间为点或线接触;而轴颈与

轴承或滑块与导槽之间为面接触。 运动副要素:构成运动副的点、线、面。 按运动情况可把运动副分为平面运动副和空间运动副。本节将主要讨论平面运动副。 构件作运动时,可分为三个独立的运动。当X或Y值变化时,构件将沿X或Y轴移动;当α值变化 。 2只能绕垂直于XOY平面的轴相对运动。 图4-1b,构件2沿Y轴相对移动和垂直于XOY平面的轴相对移动受约束,构件2相对于构件1只能 2沿公法线n-n A独立转

沿接触点公法线相对移动的可能性即被取消。因此,从相对运动来看,平面运动副有三种型式: ⑴具有一个独立相对转动的运动副(转动副);F=1 ⑵具有沿一个方向独立相对移动的运动副(移动副);F=1 ⑶具有一个独立移动和一个独立转动的运动副。F=2 按照接触的特性,通常把运动副分为高副和低副。 点接触或线接触的运动副称为高副;平面高副具有一个约束。F=2 面接触的运动副称为低副。平面低副具有两个约束。F=1 §3 平面机构的运动简图 机构运动简图:表明各机构间相对运动关系的简单图形。仅仅用简单的线条和符号来代表机构和运动副,并按照一定的比例表示各运动副间的相对位置,不考虑与运动无关的因素。 表4-1 绘制运动简图时,首先要搞清楚所要绘制机械的结构和运动原理,然后从原动件开始,按照运动传递的顺序,分析各构件相对运动的性质,确定运动副的类型和数目;并合理选择视图平面。选取适当的长度比例尺,按一定的顺序进行绘图,并将比例尺标注在图上。 例题4-1 试画出图4-4a所示油泵机构的运动简图。 解此机构主要由圆盘1、导杆2、摇块3和机架4等四个机构组成,其中构件1为原动件,构件4为机架。该机构的工作情况是:当回转副B在AC中心线的左边时,从机架4的右孔道吸油;当B在AC 中心线的右边时,经机架4的左孔道排油。 构件1与构件4和构件2、构件3与构件4分别在A、B、C点构成转动副,构件2与构件3组成移动副它们的导路沿BC方向。 现在选择适当的投影面和比例尺,定出各转动副的位置即可绘制出机构运动简图,如图4-4b所示。

平面机构自由度计算例题及答案

1. 2. 3. 4. 5. 6.

1.构件数n为7,低副p为9,高副pn为1,局部自由度为1,虚约束为0. E处为局部自由度,C处为复合铰链. F=3n-2p-pn=3*7-2*9-1=2(与原动件数目一致,运动确定) 2. B处有复合铰链,有2个转动副。 无局部自由度。 B点左侧所有构件和运动副带入的约束为虚约束,属于与运动无关的对称部分。n=5, PL=7, PH=0, F= 3n-2PL -PH=3×5-2×7-1×0=1。 运动链有确定运动,因为原动件数= 自由度数。 3.A处为复合铰链,因为有3个构件在此处组成成转动副,所以应算2个转动副。B处为局部自由度,假设将滚子同构件CB固结。 无虚约束。 n=6, PL=8, PH=1, F= 3n-2PL -PH=3×6-2×8-1=1。 运动链有确定运动,因为原动件数= 自由度数。 4. 没有复合铰链、局部自由度、虚约束。 n=4, PL=5, PH=1, F= 3n-2PL -PH=3×4-2×5-1=1。 运动链有确定运动,因为原动件数= 自由度数。 5. 计算自由度:n=4, P L=6, P H=0, F= 3n-2P L -P H=3×4-2×6-1×0=0,运动链不能动。修改参考方案如图所示。

6. F处为复合铰链,因为有3个构件在此处组成成转动副,所以应算2个转动副。 B处为局部自由度,假设将滚子同构件CB固结。 移动副M、N中有一个为虚约束,属于两构件在多处组成运动副。 n=7, PL=9, PH=1, F= 3n-2PL -PH=3×7-2×9-1=2。 运动链没有确定运动,因为原动件数< 自由度数。

平面机构自由度的计算

平面机构自由度的计算 1、单个自由构件的自由度为 3 如所示,作平面运动的刚体在空间的位置需要三个独立的参数(x ,y, θ)才能唯一确定。 2、构成运动副构件的自由度 图2—19运动副自由度 运动副 自由度数 约束数 回转副 1(θ) + 2(x ,y ) =3 移动副 1(x ) + 2(y ,θ) =3 高 副 2(x,θ) + 1(y ) =3 结论:构件自由度=3-约束数 3、平面机构的自由度 1)机构的自由度:机构中活动构件相对于机架所具有的独立运动的数目。 2).机构自由度计算公式 H P -=L 2P -3n F 式中: n-------活动构件数目(不包含机架) L P -----低副数目(回转副、移动副) H P ------高副数目(点或线接触的) 移动副 高副(点或线接触) 约束数为2 约束数为1

例题1: 计算曲柄滑块机构的自由度。 解:活动构件数n=3 低副数 PL=4 高副数 PH=0 H P -=L 2P -3n F 图 曲柄滑块机构 =3×3 - 2×4 =1 例题2:计算五杆铰链机构的自由度。 解:活动构件数n=4 低副数 PL=5 高副数 PH=0 H P -=L 2P -3n F 图 五杆铰链机构 =3×4 - 2×4 =2 例题3: 计算凸轮机构的自由度 解:活动构件数n=2 低副数 PL=2 高副数 PH=1 H P -=L 2P -3n F =3×2 -2×2-1 =1 图 凸轮机构 4.机构具有确定运动的条件 原动件的数目=机构的自由度数F (F >0或F≥1)。 若 原动件数<自由度数,机构无确定运动; 原动件数>自由度数,机构在薄弱处损坏。 (a)两个自由度 (b)一个自由度 (c)0个自由度 图3-11 不同自由度机构的运动

平面机构自由度的计算

平面机构自由度的计算 1、单个自由构件的自由度为 3 如所示,作平面运动的刚体在空间的位置需要三个独立的参 数(x ,y, θ)才能唯一确定。 2、构成运动副构件的自由度 图2—19运动副自由度 运动副 自由度数 约束数 回转副 1(θ) + 2(x ,y ) =3 移动副 1(x ) + 2(y ,θ) =3 高 副 2(x,θ) + 1(y ) =3 构件自由度=3-约束数 3、平面机构的自由度 1)机构的自由度:机构中活动构件相对于机架所具有的独立运动的数目。 2).机构自由度计算公式 H P -=L 2P -3n F 式中: n-------活动构件数目(不包含机架) L P -----低副数目(回转副、移动副) H P ------高副数目(点或线接 触的) 例题1: 计算曲柄滑块机构的自由度。 解:活动构件数n=3 低副数 PL=4 高副数 PH=0 H P -=L 2P -3n F 图 曲柄滑块机构 =3×3 - 2×4 =1 例题2:计算五杆铰链机构的自由度。 解:活动构件数n=4 低副数 PL=5 高副数 PH=0 H P -=L 2P -3n F 图 五杆铰链机构 =3×4 - 2×4 =2 例题3: 计算凸轮机构的自由度 解:活动构件数n=2 低副数 PL=2 高副数 PH=1 =3×2 -2×2-1 =1 图 运动 副 低副(面接触) 移动副 高副(点或线接触) 约束数为2 约束数为1

凸轮机构 4.机构具有确定运动的条件 原动件的数目=机构的自由度数F(F>0或F≥1)。 若原动件数<自由度数,机构无确定运动; 原动件数>自由度数,机构在薄弱处损坏。 (a)两个自由度(b)一个自由度 (c)0个自由度 图3-11 不同自由度机构的运动 5.计算机构自由度时应注意的事项 1)复合铰链:两个以上个构件在同一条轴线上形成的转动副。 由m个构件组成的复合铰链,共有(m-1)个转动副。 2)局部自由度:在某些机构中,不影响其他构件运动的自由度称为局部自由度局部自由度处理:将滚子看成与从动杆焊死为一体。 注意:在去除滚子的 同时,回转副也应同 时去除,这就相当于 使机构的自由度数减 少了一个,即消除了 局部自由度。 3)虚约束:重复而不起独立限制作用的约束称为虚约束 计算机构的自由度时,虚约束应除去不计。 几种常见虚约束可以归纳为三类: 第一类虚约束:两构件之间形成多个运动副,它们可以是移动副(图2-17)或转动副(图2-18),这类虚约束的几何条件比较明显,计算自由度的处理也较简单,两个构件之间只按形成一个运动副计算即可。 图3-14 导路重合的虚约束图3-15 轴线重合的虚约束第二类虚约束:机构中两构件上某两点的距离始终保持不变。如用一个附加杆件把这两点铰接,即形成虚约束。这两个点可以是某动点对某固定点的关系(如2-15中的E、F),也可以是两个动点之间的关系。这类虚约束常见于平行四边形机构,计算自由度时应撤去附加杆及其回转副。 第三类虚约束:机构中对运动不起作用的对称部分可产生虚约束(图2-19)。这类虚约束常见于多个行星齿轮的周转轮系,计算自由度时应只保留一个行星轮而撤去所有多余的行星轮及其有关运动副。 最后必须说明,虚约束是人们在工程实际中为改善机构或构件受力状况,在一定条件下所采取的

机械原理机构的结构分析复习题

第2章机构的结构分析 1.判断题 (1)机构能够运动的基本条件是其自由度必须大于零。 (错误 ) (2)在平面机构中,一个高副引入两个约束。 (错误 ) (3)移动副和转动副所引入的约束数目相等。 (正确 ) (4)一切自由度不为一的机构都不可能有确定的运动。 (错误 ) (5)一个作平面运动的自由构件有六个自由度。 (错误 ) 2.选择题 (1) 两构件构成运动副的主要特征是( D )。 A .两构件以点线面相接触 B .两构件能作相对运动 C .两构件相连接 D .两构件既连接又能作一定的相对运动 (2) 机构的运动简图与( D )无关。 A .构件数目 B .运动副的类型 C .运动副的相对位置 D .构件和运动副的结构 (3) 有一构件的实际长度0.5m L =,画在机构运动简图中的长度为20mm ,则画此机 构运动简图时所取的长度比例尺l μ是( D )。 A .25 B .25mm/m C .1:25 D .0.025m/mm (4) 用一个平面低副连接两个做平面运动的构件所形成的运动链共有(B )个自由度。 A .3 B .4 C .5 D .6 (5) 在机构中,某些不影响机构运动传递的重复部分所带入的约束为(A )。 A .虚约束 B .局部自由度 C .复合铰链 D .真约束 (6) 机构具有确定运动的条件是( D )。 A .机构的自由度0≥F B .机构的构件数4≥N C .原动件数W >1 D .机构的自由度F >0, 并且=F 原动件数W (7) 如图2-34所示的三种机构运动简图中,运动不确定是( C )。 A .(a )和(b ) B .(b )和(c ) C .(a )和(c ) D .(a )、(b )和(c ) (8) Ⅲ级杆组应由( B )组成。 (a) (c) (b) 图2-34

机械原理试题及答案

第2章机构的组成原理与结构分析 第3章平面机构的运动分析 一、填空题 1、在平面机构中具有一个约束的运动副是副。 2、使两构件直接接触并能产生一定相对运动的联接称为。 3、平面机构中的低副有转动副和副两种。 4、平面机构中的低副有副和移动副两种。 5、机构中的构件可分为三类:固定构件(机架)、原动件(主动件)、件。 6、机构中的构件可分为三类:固定构件(机架)、从动件。 7、机构中的构件可分为三类:、原动件(主动件)、从动件。 8、在平面机构中若引入一个高副将引入个约束。 9、在平面机构中若引入一个低副将引入个约束。 10、在平面机构中具有两个约束的运动副是副。 11、速度瞬心是两刚体上为零的重合点。 12、当两构件组成回转副时,其相对速度瞬心在。 13、当两构件不直接组成运动副时,其瞬心位置用确定。 二、判断题 1、具有局部自由度的机构,在计算机构的自由度时,应当首先除去局部自由度。() 2、具有虚约束的机构,在计算机构的自由度时,应当首先除去虚约束。() 3、虚约束对运动不起作用,也不能增加构件的刚性。() 4、若两个构件之间组成两个导路平行的移动副,在计算自由度时应算作两个移动副。() 5、若两个构件之间组成两个轴线重合的转动副,在计算自由度时应算作两个转动副。() 6、六个构件组成同一回转轴线的转动副,则该处共有三个转动副。() 7、当机构的自由度F>0,且等于原动件数,则该机构具有确定的相对运动。() 8、虚约束对机构的运动有限制作用。() 9、瞬心是两构件上瞬时相对速度为零的重合点。() 10、利用瞬心既可以求机构的速度,又可以求加速度。() 三、选择题 1、机构中的构件是由一个或多个零件所组成,这些零件间产生相对运动。 A、可以 B、不能 C、不一定能 2、原动件的自由度应为。 A、0 B、1 C、2 3、在机构中原动件数目机构的自由度时,该机构具有确定的运动。 A、大于 B、等于 C、小于 4、机构具有确定运动的条件是。 A、自由度大于零 B、自由度等于原动件数 C、自由度大于1 5、由K 个构件汇交而成的复合铰链应具有个转动副。 A、K-1 B、K C、K+1

平面机构自由度计算思考题和习题

平面机构自由度计算思考题和习题 1、思考题 什么是构件、运动副、运动链自由度?它们有何异同点? 什么是运动副约束?平面运动副中最多约束数为多少?为什么? 试写出计算平面运动链自由度公式,并从物理概念简述其推演过程。 计算运动链自由度的目的何在? 机构具有确定运动的条件是什么?如果不满足该条件可能会出现哪些情况? 什么是虚约束?总结归纳出现虚约束的几种情 况。 2、习题 1)通过自由度计算判断图示运动链是否有确定运动 (图中箭头所示构件为原动件)。如果不满足有确 定运动的条件,请提出修改意见并画出运动简图。 2)计算下列各运动链的自由度,并指出其中是否有复合铰链、局部自由度、虚约束。最后判断该机构是否有确定运动(图中箭头所示构件为原动件),为什么? (A) (B) (C) (D)

3、习题答案 1)计算自由度:n=4, P L=6, P H=0, F= 3n-2P L -P H=3×4-2×6-1×0=0,运动链不能动。修改参考方案如图所示。 2)答案 (A)没有复合铰链、局部自由度、虚约束。 n=4, PL=5, PH=1, F= 3n-2PL -PH=3×4-2×5-1=1。 运动链有确定运动,因为原动件数= 自由度数。 (B)A处为复合铰链,因为有3个构件在此处组成成转动副,所以应算2个转动副。 B处为局部自由度,假设将滚子同构件CB固结。 无虚约束。 n=6, PL=8, PH=1, F= 3n-2PL -PH=3×6-2×8-1=1。 运动链有确定运动,因为原动件数= 自由度数。 (C) F处为复合铰链,因为有3个构件在此处组成成转动副,所以应算2个转动副。 B处为局部自由度,假设将滚子同构件CB固结。 移动副M、N中有一个为虚约束,属于两构件在多处组成运动副。 n=7, PL=9, PH=1, F= 3n-2PL -PH=3×7-2×9-1=2。 运动链没有确定运动,因为原动件数< 自由度数。 (D) B处有复合铰链,有2个转动副。 无局部自由度。 B点左侧所有构件和运动副带入的约束为虚约束,属于与运动无关的对称部分。n=5, PL=7, PH=0, F= 3n-2PL -PH=3×5-2×7-1×0=1。 运动链有确定运动,因为原动件数= 自由度数。

机械原理计算题

五. 计算题 (每小题10 分, 共20分) 1.计算下图示机构的自由度,指出复合铰链、局部自由度和虚约束,并判断机构是否具有确定运动。 C处是复合铰链;无局部自由度和虚约束;(3分) 自由度:F=3n-2P L-P h (2分)n=5 P L =7 P h=0 (3分) =3*5-2*7-0=1 (1分) 机构具有确定运动(1分) 2.计算下图示机构的自由度,指出复合铰链、局部自由度和虚约束,并判断机构是否具有确定运动。 C处是复合铰链;F是局部自由度;E、E′互为虚约束;(3分) 自由度:F=3n-2P L-P h (2分)n=7 P L =9 P h=1 (1分) =3*7-2*9-1=2 (1分) 机构具有确定运动(1分) 有确定的运动(2分) 3.计算下图示机构的自由度,指出复合铰链、局部自由度和虚约束,并判断机构是否具有确定运动。

无复合铰链和虚约束;有局部自由度;(3分) 自由度:F=3n-2P L-P h (2分)n=4 P L =4 P h=2 (3分) =3*4-2*4-2=2 (1分) 有确定的运动(1分) 4.计算下图示机构的自由度,指出复合铰链、局部自由度和虚约束,并判断机构是否具有确定运动。 E处是复合铰链;无局部自由度和虚约束;(3分) 自由度:F=3n-2P L-P h (2分)n=7 P L =10 P h=0 (3分) =3*7-2*10=1 (1分) 机构具有确定运动(1分) 5.计算图示机构的自由度,指出复合铰链、局部自由度和虚约束,并判断机构是否具有确定运动。

机构有复合铰链、局部自由度、虚约束;(3分) 自由度:F=3n-2P L -P h (2分)n=8 P L =11 P h =1 (3分) F=3*8-2*11-1=1(1分) 机构具有确定运动 (1分) 6.在图示的车床变速箱中,移动三联齿轮a 使齿轮3’和4’啮合。又移动双联齿轮b 使齿轮5’和6’啮合。已知各轮的齿数为48',50',42',38',58,42654321======z z z z z z ,电动机的转速m in /14451r n =,求带轮转速的大小和方向。 47.150 3842484258''''53164261'16-≈????-='-==z z z z z z n n i min /98347.11445''1616r i n n -≈-== 其运动方向与1相反

平面机构自由度计算 (1)

百度文库- 让每个人平等地提升自我! 1 平面机构虚约束的分析 机构是由若干构件组成的,是实现机械预期运动的装置,这些“预期运动”都是在原动 件的驱动下实现的,而其原动件的数目必须等于它的自由度。由此可见,准确计算机构的自由度对于正确分析和设计机构至关重要。在各种实际机构中,为了改善构件的受力情况,增加机构的刚度,或保证机构运动的顺利,往往要多增加一些构件与运动副(1)这些运动副中往往包括虚约束。 在计算平面机构自由度时,最常用的公式是契贝舍夫公式,简称契氏公式(2): W=3n-2P L-P H 现计算下图所示机构的自由度: 可知,n=4, P L=6, P H=0,所以W=3*4-2*6=0 显然答案是错误的,原动件个数是1。这是因为该机构中出现了虚约束。所谓虚约束,笔者认为就是指不产生约束的约束,也即是所引入的构件由于几何尺寸满足一定的规律,不会对所在机构产生约束。 在机构自由度计算中.产生虚约束的情况有4种情况(3): (1)如果将机构的某个运动副拆开,机构被拆开的两部分在原联接点的运动轨迹仍相互重合,则产生虚约束。 (2)在机构运动过程中,如果某两构件上两点之间的距离始终保持不变.那么,若将此两点以构件相连,则因此而引入的约束必为虚约束。 (3)如果两构件在几处接触而构成移动副,且各接触处两构件的相对运动方向一致;或者两构件在几处配合而构成转动副,且各配合处的轴线重合,则只应考患一处运动副引入的约束,其他各处为虚约束。 (4)机构中对运动不起作用的对称部分亦是虚约束。 笔者认为,在分析机构是否含有虚约束时,最好的方法是先分析该构件的功能,特别是“可疑”构件的作用,然后试着去掉该构件,看该机构还能否实现所期待的功能,因为引入虚约束的目的是为了改善构件的受力情况,增加机构的刚度,或保证机构运动的顺利,且不影响机构的运动规律。例如以上机构的虚约束的作用是约束下面的导杆在水平方向运动,如果去掉E,,该机构的运动规律并没有发生改变,就可以断定E,是虚约束。 在机械设计中,虚约束往往是“点睛之笔”,它能够使机械变得更加科学、实用。学会分析虚约束的最终目的是在自己设计机械机构的时候能够“因地适宜”、灵活地运用虚约束。能否熟练实用虚约束是判断机械设计者是否合格的重要标准。—————————————————————————————————————— 参考文献 (1)徐锦康.机械原理[M].北京:机械工业出版社 (2)李学荣.四连杆机构综合概论(第一册)[M].北京:机械工业出版 社。1985. (3)孙桓,陈作模机械原理(第5版)[MJ北京:高等教育出 版社,1996. 电气工程及自动学院 胡佳男

相关文档
最新文档