低低温电除尘提效改造研究

低低温电除尘技术

低低温电除尘技术 我国大气环境形势日益严峻,环保要求日趋严格。2014年9月12日,国家发展改革委、环境保护部、国家能源局联合发布《煤电节能减排升级与改造行动计划(2014~2020年)》,要求东部十一省新建燃煤发电机组大气污染物排放浓度基本达到燃气轮机组排放限值。 这表明通过新技术、新工艺、新路线达到超低排放的要求,是火电行业迫在眉睫的一道课题。在此背景下,低低温电除尘技术的研发及推广得到了政府部门的高度重视,国家科技部、环保部等部门在政策、项目和资金上给予大力支持,国内环保企业联合大专院校与燃煤电厂,也加大了对这些技术的研发、推广力度。 国内现已通过自主研发、技术引进或成立合资公司的方式在该技术上取得了较大突破,掌握了其核心技术,并在华能长兴电厂等工程项目中成功应用。 1低低温电除尘器的的原理及技术特点 1.1除尘效率 高低低温电除尘技术是指通过热回收器降低电除尘器低低温电除尘技术的工程应用入口烟气温度至酸露点以下(一般在90℃左右),使烟气中的大部分SO3在热回收器中冷凝成硫酸雾并黏附在粉尘表面,粉尘性质发生很大变化,比电阻大幅下降,从而避免了反电晕现象,同时由于烟气温度降低致使烟气量下降,电除尘器电场内烟气流速降低,增加了粉尘在电场的停留时间,比集尘面积提高,除尘效率得以较大幅度的提高。 1.2去除烟气中大部分SO3 由于入口烟气温度降至酸露点以下,气态的SO3将转化为液态的硫酸雾,因烟气含尘浓度高,粉尘总表面积很大,为硫酸雾的凝结附着提供了良好的条件。相关研究表明低低温电除尘技术对于SO3的去除率至少在80%以上,最高可达95%以上,是目前SO3去除率最高的烟气处理设备。 1.3提高湿法脱硫装置协同除尘效果 日立公司对低低温电除尘器与常规电除尘器出口粉尘粒径、电除尘器出口烟尘浓度与脱硫系统出口烟尘浓度关系作了研究,研究表明低低温电除尘器出口粉尘平均粒径在3μm左右,明显大于常规电除尘器,当采用低低温电除尘技术时,可有效提高湿法脱硫装置协同除尘效果,脱硫出口烟尘浓度明显降低。 1.4节能效果明显 低低温电除尘技术节能效果明显,有研究表明,以1台1000MW机组低低温系统为例,烟气温度降低30℃,可回收热量1.64×108kJ/h(相当于1.2t标煤/h);可节约湿法脱硫系统水耗量;烟气温度降低后,实际烟气量大大减少,可降低下游设备规格,风机的电耗减小,脱硫系统用电量减小。 1.5二次扬尘有所增加 由于粉尘比电阻的降低会削弱捕集到阳极板上的粉尘的静电黏附力,从而导致低低温电除尘器的二次扬尘现象比常规电除尘技术有所增加,使得除尘性能有所下降。二次扬尘形成原因如图1所示。 2华能长兴电厂660MW机组超低排放的技术方案

电除尘器说明

第二章 电式除尘器仿真设计的数学模型 2.1 电除尘器除尘机理 在电除尘技术中,粉尘的捕集主要是利用在电晕电场中粉尘荷电后移向异性电极而从气流中分离出来的原理,涉及悬浮粒子荷电,带电粒子在电场内迁移和捕集,以及将捕集物从集尘表面上清除等三个基本过程,它主要分为四个阶段[2]: (1)施加电场 在一对电极之间施加电压,就可以建立起电场,它的作用是:(a)在高压放电极附近的场强很强,造成气体的电离,产生大量离子,形成电晕放电的必要条件;(b)电场促使离子与尘粒碰撞,使尘粒荷电;(c)驱动荷电尘粒向收尘极移动。 (2)气体的电离(电晕放电) 电除尘器中能够形成电晕放电的基本条件是,在正负电极间的电位差,应保证形成使气体电离发生电晕放电的非均匀电场。在放电极表面电场强度最大,距放电极愈远电场强度愈小。电晕放电原理如图2-1所示。电子和阴离子是电场中粒子荷电的来源。实验证实电场中离子的迁移速度与电场强度成正比,可用下式表示: 0i u K E = (2-1) 式中 0u ——离子的迁移速度,m s ; E ——电场强度,V m ; i K ——离子迁移率,2 m (V m )?。 图2-1电晕放电原理图

(3)尘粒荷电 尘粒荷电荷电量的大小与尘粒粒径、电场强度及停留时间等因素有关,通常认为尘粒荷电有两个主要机理:电场荷电和扩散荷电。电场荷电是在电场中气体离子沿电力线运动时与粉尘粒子碰撞使其荷电。对半径大于0.5μm的尘粒,电场荷电起主导作用。扩散荷电是扩散荷电是由离子的热运动引起的。对半径小于0.2μm的尘粒,则为扩散荷电起主导作用。而半径在0.2-0.5μm之间的尘粒,两者均起作用。 图2-2 板式电除尘器工作原理图 (4)收尘 板式电除尘器的工作原理如图2-2所示。粉尘荷电后,在电场作用下,各自按其所带电荷的极性不同,向极性相反的电极运动,并沉积于其上[1]。 2.2 电除尘器仿真设计模型 2.2.1电除尘器主要部件 目前新设计的电除尘器多为卧式电除尘器,所以下面主要介绍卧式电除尘器主要部件的选择。 2.2.1.1 集尘板及电晕线[2] 卧式电除尘器的集尘极目前多采用板式电极,且多采用Z型或C型断面的长条形板,名义宽度为400mm或500mm。 第一第二电场的电晕线多选用芒刺线,第三第四电场的电晕线选用管状芒刺线,有时为便于制造,减少备件品种,也可都采用芒刺线。 2.2.1.2 集尘极及电晕线的振打 目前集尘极多采用下部绕臂捶打装置,为保证正确的振打制度,均应采用单边振打。电晕极振打可选用中部绕臂振打装置,但每个电场、每个框架最好两侧都装

湿式电除尘器在国内火电厂的应用

2016年3月5日上午,李克强总理代表国务院作政府工作报告。本次政府报告由2015年工作回顾、"十三五"时期主要目标任务和重大举措和2016年重点工作三部分构成。大气污染治理,是唯一在三个部分中均有提及的环保命题。谈到大气污染治理,不得不说的是火电环保,而火电厂除尘又是火电环保的重要组成部分之一,本文论述了湿式电除尘器在国内火电厂的应用。 摘要:随着国家新环保政策的出台,新的火电厂大气污染物排放标准(GB13223-2011)自2014年7月1日起全面实行,新排放标准对烟尘、二氧化硫、氮氧化物排放控制要求都有大幅的提高,现有火电厂如想满足该排放要求,都迫切需要采用与之配套的先进的环保设施。 湿式电除尘器作为一种先进的环保设施,能够有效地减少吸收塔后烟尘排放量,并对石膏雨、PM2.5、SO3等均有良好的脱除效果。 1 引言 随着国民经济的快速发展,污染物排放的增加对大气环境造成了很大的影响。最近几年,国内雾霾天气增加,引起了广大民众对环境的关注。为落实国家的科学发展观和节能减排的要求,新颁布的火电厂大气污染物排放标准(GB13223-2011)于2012年1月1日正式实施,要求自2012年1月1日起,新建火力发电锅炉及燃汽轮机组的烟尘、二氧化硫、氮氧化物需满足本标准规定限值;自2014年7月1日起,现有的火力发电锅炉及燃汽轮机组的烟尘、二氧化硫、氮氧化物需满足本标准规定限值。虽然火电厂已经在积极改进生产工艺以提升对大气污染物的排放控制措施,但原有的工艺及传统的排放控制措施,仍然无法满足现行的国家标准,急需采用更加高效环保的环保技术,而湿式电除尘器在工程中的广泛应用,为火电厂执行国家标准,提供了重要的技术支撑。 2 湿式电除尘器工作原理及设备类型介绍 2.1 湿式电除尘器工作原理 湿式电除尘器的主要工作原理与干式电除尘基本相同,即含尘气体在通过高压电场电离,尘粒荷电在电场力的作用下向收尘极运动并被吸附在收尘极上。与干式电除尘通过振打将极板上的灰振落至灰斗不同的是,湿式电除尘器是通过极板冲刷方式使极板上的收集的粉尘随水排出,因为没有振打极板产生的二次扬尘,湿式电除尘器可以达到很低的排放浓度。 2.2 湿式电除尘器的类型 湿式电除尘器安装在吸收塔之后,烟囱之前,对脱硫后烟气进行进一步的粉尘的脱除,并对石膏雨、PM2.5、SO3等均有良好的脱除效果。目前湿式电除尘器按阳极板材质分,有柔性极板、导电玻璃钢、金属极板三种类型。按布置位置分,可分为塔上式及塔外式两种类型,按布置方式分,可分为立式和卧式两种类型。 3 现有湿式电除尘器介绍

电除尘器的选型计算参数精

电除尘器的选型计算电除尘器应用成功与否,是与设计、设备质量、加工和安装水平、操作条件、气体和粉尘性质等多种因素相关联的综合效果。要取得理想的除尘效果,必须了解各有关环节与除尘机理的联系,考虑各种影响因素,正确设计计算。 1.影响除尘器性能的因素 影响电除尘器性能有诸多因素,可大致归纳为3个方面:烟尘性质、设备状况和操作条件。这些因素之间的相互联系如图4-71所示,由图可知,各种因素的影响直接关系到电晕电流、粉尘比电阻、除尘器内的粉尘收集和二次飞扬这3个环节,而最后结果表现为除尘效率的高低。 1)烟尘性质的影响粉尘的比电阻,适用于电除尘器的比电阻为104~1011·㎝。比电阻低于104·㎝的粉尘,其导电性能强,在电除尘器电场内被收集时,到达沉降极板后会快速释放其电荷,而变为与沉淀极同性,然后又相互排斥,重新返回气流,可能在往返跳跃中被气流带出,所以除尘效果差;相反,比电阻高于1011·㎝以上的粉尘,在到达沉降极以后不易释放其电荷,使粉尘层与电极板之间可能形成电场,产生反电晕放电。 对于高比电阻粉尘,可以通过特殊方法进行电除尘器除尘,以达到气体净化,这些方法包括气体调质、采用脉冲供电、改变除尘器本体结构、拉宽电极间距并结合变更电气条件。 2)烟气湿度烟气湿度能改变粉尘的比电阻,在同样湿度条件下,烟气 中所含水分 越大,其比电阻越小。粉尘颗粒吸附了水分子,粉尘的导电性增大,由于湿

度增大,击穿电压上长,这就允许在更高的电场电压下运行。击穿电压与空气含湿量有关,随着空气中含湿量的上升,电场击穿电压相应提高,火花放电较难出现,这种作用对电除尘器来说,是有实用价值的,它可使除尘器能够在提高电压的条件下稳定地运行,电场强度的增高会使降尘效果显着改善。 3)烟气温度气体温度也能改变粉尘的比电阻,而改变的方向却有几种可能:表面比电阻随温度上升而增加(这只在低温度交接处有一段)过渡区,表面和体积比电阻的共同作用区。电除尘工作温度可由粉尘比电阻与气体温度关系曲线来选定。 烟气温度的影响还表现在对气体黏滞性影响,气体黏滞性随着温度的上升而增大,这样影响其驱进速度的下降。气体温度越高队电除尘器的影响是负面的,如果有可能,还是在较低温度条件下运行较好,所以,通常在烟气进入电除尘器之前先要进行气体冷却,降温既能提高净化效率,又可利用烟气余热。然而,对于含湿量较高和有SO3之类成分的烟气,其温度一定要保持在露点温度20~30℃以上作为安全余量,以避免冷凝结露,发生糊板、腐蚀和破坏绝缘。 4)烟气成分烟气成分对负电晕放电特性影响很大,烟气成分不同,在电晕放电中电荷载体的迁移不同。在电场中,电子与中性气体分子相撞而形成负离子的概率在很大程度上取决于烟气成分,据统计,其差别是很大的,氦、氢分子不产生负电晕,氯与二氧化硫分子能产生较强的负电晕,其他气体互有区别;不同的气体成分对电除尘器的伏安特性及火花放电电压影响甚大,尤其是在含有硫酐时,气体对电除尘器运行效果有很大影响。

电除尘器简介

一种高压静电除尘器系统简介 电除尘器在额定二次电压下运行时,除尘效果很好。但实际情况往往是,当二次电压升高到额定电压时,能耗很大,二次电流超出额定电流值,因此不能达到额定二次电压运行。针对这一问题,北京交通大学电气工程学院经过科研攻关,研制出电除尘器高效节能高压控制柜,对现有电除尘器进行改造,达到了提高除尘效率、节约电能、延长电除尘器使用寿命等目标。 近年来,由于排放标准的逐步提高,电厂广泛使用低硫煤,导致高压静电除尘器的性能不太理想:除尘效率低,能耗大幅度提高。主要原因是高粉尘比电阻导致的反电晕的特性,电气特性主要表现为电除尘器的高压电源的二次电流非常大,二次电压不高。当二次电压接近额定电压运行时,二次电流急剧上升,而且运行不稳定,严重的导致极板变形,变压器烧坏。电除尘器的极板和变压器维修很不方便,而停产检修也造成较大的经济损失。 针对这种特殊工况条件,我们采用最新的控制 技术,实时检测电除尘器的粉尘比电阻以及反电晕 情况,创造性的解决了反电晕特性,可以使电场电 压足够高,使收尘极上粉尘不易释放的电荷尽量少 来减少反电晕。 我们研制的新型高压电源控制柜(见图片所 示),更换原来的控制柜后,能有效地减少二次电 流,并使二次电压稳定地工作在电场能够接受的最 高电压点附近,且大大减少了反电晕的产生。在提 高除尘效率的同时,节电率可高达50%以上。 如果一个发电厂的电除尘器有20个高压电源: 如果电除尘器一个高压电源的平均功率为50kw,改造后节电率为50%,厂用电按0.25元/度电计算,一年可省电438万度电,价值约110万元,还没有包括由于除尘效率提高而少交的排污费及多收集的粉尘的销售收入。同时,除尘器运行功率降低后,一次电流、二次电流相应降低,高压线路及高压硅整流变压器温升降低,降低了设备的故障率和检修次数,延长了设备的使用寿命。 高压静电除尘器还广泛应用于钢铁、水泥、化工等行业,由于这些行业的电价为0.4~0.8

电除尘器的选型计算参数(精)分析

电除尘器的选型计算 电除尘器应用成功与否,是与设计、设备质量、加工和安装水平、操作条件、气体和粉尘性质等多种因素相关联的综合效果。要取得理想的除尘效果,必须了解各有关环节与除尘机理的联系,考虑各种影响因素,正确设计计算。 1.影响除尘器性能的因素 影响电除尘器性能有诸多因素,可大致归纳为3个方面:烟尘性质、设备状况和操作条件。这些因素之间的相互联系如图4-71所示,由图可知,各种因素的影响直接关系到电晕电流、粉尘比电阻、除尘器内的粉尘收集和二次飞扬这3个环节,而最后结果表现为除尘效率的高低。 1)烟尘性质的影响粉尘的比电阻,适用于电除尘器的比电阻为104~1011?·㎝。比电阻低于104?·㎝的粉尘,其导电性能强,在电除尘器电场内被收集时,到达沉降极板后会快速释放其电荷,而变为与沉淀极同性,然后又相互排斥,重新返回气流,可能在往返跳跃中被气流带出,所以除尘效果差;相反,比电阻高于1011?·㎝以上的粉尘,在到达沉降极以后不易释放其电荷,使粉尘层与电极板之间可能形成电场,产生反电晕放电。 对于高比电阻粉尘,可以通过特殊方法进行电除尘器除尘,以达到气体净化,这些方法包括气体调质、采用脉冲供电、改变除尘器本体结构、拉宽电极间距并结合变更电气条件。 2)烟气湿度烟气湿度能改变粉尘的比电阻,在同样湿度条件下,烟气中所含水分越大,其比电阻越小。粉尘颗粒吸附了水分子,粉尘的导电性增大,由于湿度增大,击穿电压上长,这就允许在更高的电场电压下运行。击穿电压与空气含湿量有关,随着空气中含湿量的上升,电场击穿电压相应提高,火花放电较难出现,这种作用对电除尘器来说,是有实用价值的,它可使除尘器能够在提高电压的条件下稳定地运行,电场强度的增高会使降尘效果显著改善。 3)烟气温度气体温度也能改变粉尘的比电阻,而改变的方向却有几种可能:表面比电阻随温度上升而增加(这只在低温度交接处有一段)过渡区,表面和体积比电阻的共同作用区。电除尘工作温度可由粉尘比电阻与气体温度关系曲线来选定。 烟气温度的影响还表现在对气体黏滞性影响,气体黏滞性随着温度的上升而增大,这样影响其驱进速度的下降。气体温度越高队电除尘器的影响是负面的,如果有可能,还是在较低温度条件下运行较好,所以,通常在烟气进入电除尘器之前先要进行气体冷却,降温既能提高净化效率,又可利用烟气余热。然而,对于含湿量较高和有SO3之类成分的烟气,其温度一定要保持在露点温度20~30℃以上作为安全余量,以避免冷凝结露,发生糊板、腐蚀和破坏绝缘。 4)烟气成分烟气成分对负电晕放电特性影响很大,烟气成分不同,在电晕放电中电荷载体的迁移不同。在电场中,电子与中性气体分子相撞而形成负离子的概率在很大程度上取决于烟气成分,据统计,其差别是很大的,氦、氢分子不产生负电晕,氯与二氧化硫分子能产生较强的负电晕,其他气体互有区别;不同的气体成分对电除尘器的伏安特性及火花放电电压影响甚大,尤其是在含有硫酐时,气体对电除尘器运行效果有很大影响。 5)烟气压力有经验公式表明,当其他条件确定后,起晕电压随烟气密度而变化,烟气的温度和压力是影响烟气密度的主要因素。烟气密度对除尘器放电特性和除尘性能都有一定影响,如果只考虑烟气压力的影响,则放电电压和气体压力保持一次(正比)关系。在其他条件相同的情况下,净化高压煤气时电除尘器的压力比净化高压煤气时要高,电压高,其除尘效率也高。 6)粉尘浓度电除尘器对所净化的气体的含尘浓度有一定的适应范围,如果超过一定范围,除尘效果会降低,甚至中止除尘过程,因为在除尘器正常运行时,电晕电流是由气体离子和荷电尘粒(离子)两部分组成的,但前者的趋进速度约为后者的数百倍(气体离子

湿式电除尘技术详解

研究生课程期末作业 课程名称燃烧与污染物控制 论文题目湿式电除尘技术及火电厂超低排放技术学院能源与机械工程学院 专业热能工程 姓名周瑞兴 学号14101052

摘要 目前电厂粉尘等污染物排放量日益增多,产生的颗粒物特别是细颗粒物对环境及人类健康危害巨大,而燃煤电厂是细颗粒物的主要排放源,湿式静电除尘器作为大气多污染控制系统的终端精处理装备,具有捕集烟气中超细颗粒物和雾滴的功能,因此在电力领域获得了较多应用,本本论文介绍了湿式静电除尘器的工作原理,除尘遇到的问题以及处理方法,以及试试静电除尘器在燃煤电厂的应用情况好今后的研究发展方向。并介绍了目前超低排放技术。 关键词:湿式静电除尘器细颗粒物控制燃煤电厂超低排放技术 一、湿式电除尘技术 1 引言 1.1 背景及研究意义 目前,国际上总颗粒物控制技术虽然已经达到很高的水平,但对于微细颗粒物的捕集效率却很低,造成大量的微细颗粒物排入大气环境中。我国PM2.5排放量大幅度增加。严重影响人们的身体健康和出行活动。细颗粒物污染已成为我国突出的大气环境问题,是引起大气能见度、雾霾天气、气候变化等重大环境问题的重要因素。燃煤电厂是我国大气环境中PM2.5含量增加的主要污染来源,利用现有的燃煤烟气污染控制设备,通过增强其对PM2.5的脱除性能,是控制 PM2.5的重要技术发展方向。我国燃煤电厂中干式电除尘技术应用最为广泛,但是电除尘器(ESP)对直径 0.1~2μm 粉尘的除尘效率较差,原有的电除尘器大部分不能满足排放要求。尤其在火电厂,普遍采用低硫煤以满足二氧化硫的排放要求,而低硫煤燃烧产生的烟尘中粉尘比电阻较高,易发生反电晕现象,使收尘效率下降,导致电除尘器更加无法达标[1]。而要使电除尘器适应新的排放标准,必须对其进行机理性提效改造。湿式电除尘器(简称WESP)不需要振打清灰,而是利用连续水膜清灰,喷水对烟气可以起到调质作用,不会产生二次扬尘现象并且除尘效率比其它烟气净化装置高,已经得到了广泛的应用。 湿式电除尘器作为高效精除尘设备,它可以实现多种污染物的协同脱除,特别是对微细粉尘及烟气中含有酸雾、气溶胶、汞等重金属的收集有理想的效果。目前大部分燃煤电厂都采用湿式烟气脱硫系统,其烟气温度符合WESP的要求,安装在湿法脱硫后的湿式电除尘器仅在日本等国家有少量应用,但其对PM2.5酸雾等污染物的捕集效果十分明显[2][3]。研究湿式电除尘技术,微细粉尘和SO 3

电除尘器介绍

电除尘器介绍 前言 电除尘器是含尘气体在通过高压电场电离,尘粒荷电在电场力作用下,尘粒沉积于电极上,从而使尘粒与含尘气体分离的一种除尘设备。它能有效地回收气体中的粉尘,以净化气体。使用条件合适,其除尘效率可达99%甚至更高。目前在化工、火力发电、水泥、冶金、造纸和电子等工业部门已得到广泛应用。 一、安全 参考说明书P1-P2. 1、高处坠落; 2、有毒气体; 3、进入电场内部所采取的措施。* 二、工作原理 电除尘器也称“静电除尘器”,它是一种利用高压静电使固体和液体悬浮粒子与气体分离的一个电气系统。电除尘器的收尘区内设计有线状的放电极(阴极线)和板状的收尘极(阳极板),当在两极间施加高压直流电源后,由于放电极和收尘极形状的不同,使两电极间产生一个不均匀电场。当施加的直流电压达到一定值时,在放电极周围局部区域的电场强度足以使气体发生电离,生成大量的电子和正负离子。其中正离子很快到达放电极中和,而电子和负离子在电场力的作用下向收尘极方向移动,这就是电晕放电和电晕电流。 当含尘气体通过两电极间的通道时,电晕电流中的电子和正负离子就会以极快的速度吸附到粉尘颗粒上,使粉尘颗粒荷电。荷电的粉尘颗粒在电场力的作用下迅速向其极性相反的方向运动,最后吸附到电极上并放出电荷。当粉尘沉积到一定的厚度时,通过振打装置的敲击使沉积的粉尘层脱落到下部灰斗中,而净化了的气体则通过出气口排入大气,完成了气体的净化,其除尘过程可表示为:①电晕放电→②粉尘荷电→③粉尘运动→④沉积、释放→⑤清灰(见图1)。 电除尘工作原理 在整个气体净化过程中,由于电场力直接作用于粉尘粒子,所以与机械除尘设备(袋除

尘或其它除尘)相比,具有动力消耗少,除尘效率高,可捕获极细粉尘,运行维护费用低和适应高温烟气等特点,与袋除尘器一样被称为高效除尘器,除尘效率可达99.99%以上,因而在各行各业得到了广泛的应用。 根据电除尘器的工作原理,可知其工作的好坏与粉尘的电化学性能有很大的关系,这种电化学性能决定了粉尘的荷放电特性,对于新型干法水泥生产线来说,由于粉尘的成份基本相同,主要反映在电性能上,这种电性能通常用粉尘比电阻来表示。根据实验,当粉尘的比电阻在104-1011Ω-cm之间时有很好的除尘效率,大于或低于这个值则除尘效率就会降低甚至恶化。 新型干法水泥生产线窑尾的粉尘比电阻一般都在1011Ω-cm以上,直接利用电除尘器进行除尘效果很差,为了解决这一问题就要对这些粉尘进行预处理,这就是窑尾电除尘器必须配套使用增湿塔的原因。利用增湿塔将烟气和粉尘进行增湿就可以很容易的使粉尘的比电阻降到104-1011Ω-cm之间。或者将窑尾烟气用于原料烘干也能使粉尘比电阻降到要求的范围,现在新型干法水泥生产线窑尾与原料磨共用一台除尘器就能解决这一问题,而且是一举两得。 对于窑头来说,其粉尘的比电阻与温度有相应的关系,通过实验,当温度在200-260℃之间时,粉尘的性质比较适合电除尘,而窑头的烟气温度恰好在这个范围内。 (窑尾、窑头粉尘比电阻曲线) 综上所述,对于新型干法水泥生产线来说,窑尾和窑头选用电除尘器不但是可行的,而且技术也是成熟的,不但可以达到国家新的排放标准,甚至可以达到更低(如10 mg/Nm3)的排放要求。 二、电除尘器的结构 电除尘器的结构可分为五大部分: 进、出气口烟箱;

低低温电除尘技术的研究及应用

中国环保产业2014.3 郦建国,郦祝海,何毓忠,赵海宝,余顺利(浙江菲达环保科技股份有限公司,浙江 诸暨 311800) 摘 要:低低温电除尘技术是实现燃煤电厂节能减排的有效技术之一,可进一步扩大电除尘器的适用范围,满足新环保标准要求,并可去除烟气中大部分的SO 3 ,此技术在国外得到了工程实践的考验,国内也正进行有益的探索和尝试,已有600MW机组的投运业绩。文章归纳了低低温电除尘技术的发展及技术特点,分析了该技术的研究现状,列举了国内外工程应用案例,对该技术的核心问题及对策措施进行了探讨,为我国燃煤电厂低低温电除尘技术的应用和发展提供了借鉴。 关键词:低低温电除尘技术;除尘效率;燃煤电厂;节能减排;对策 中图分类号:X701.2 文献标志码:A 文章编号:1006-5377(2014)03-0028-07 低低温电除尘技术的研究及应用 引言 我国以煤炭为主的能源供应格局在未来相当长的时间内不会发生根本性改变,因此燃煤电厂污染物排放问题一直是人们关注的热点。《火电厂大气污染物排放标准》(GB 13223-2011)的出台,将烟尘排放浓度限值由50mg/Nm3降至30mg/Nm3,重点地区降至20mg/Nm3,达到了与欧美发达国家同样严格的标准要求。《环境空气质量标准》(GB 3095-2012)增设了PM 2.5 排放浓度限值,并给出了监测实施的时间表。鉴于中国煤种多变等特殊国情,新环保标准的实施,对电除尘技术来说,既是挑战更是机遇。 电除尘器因其具有除尘效率高、设备阻力低、处理烟气量大、运行费用低、维护工作量少且无二次污染等优点,长期以来在电力行业除尘领域占据着绝对的优势地位。国内电除尘领域的众多专家在对国内煤种的适应性进行了研究后,认为在满足新排放标准并保证经济性的前提下,电除尘器仍有广泛的适应性。但电除尘器的除尘效率与粉尘比电阻有很大的关系,低低温电除尘技术可大幅度降低粉尘的比电阻,避免反电晕现象,从而 提高除尘效率,不但能实现低排放,当采用低温省煤器时,还可节省能耗,同时去除烟气中大部分的SO 3 。该技术在日本已得到工程实践的考验。随着我国节能减排政策执行力度的进一步加大,国内对该技术的关注度也日益增加。 1 低低温电除尘技术概述 1.1 低低温电除尘技术发展历史 低低温电除尘技术是从电除尘器及湿法烟气脱硫工艺演变而来[1-2]。在日本已有近20年的应用历史。三菱重工于1997年开始在大型燃煤火电机组中推广应用基于MGGH管式气气换热装置使烟气温度在90℃左右运行的低低温电除尘技术,已有超6500MW的业绩,在三菱重工的烟气处理系统中,低低温电除尘器出口烟尘浓度均 小于30mg/Nm3,SO 3 浓度大部分低于3.57mg/Nm3,湿法脱硫出口烟尘浓度可达5mg/Nm3,湿式电除尘器出口烟尘浓度可达1mg/Nm3[3,20]以下。目前日本多家电除尘器制造厂家均拥有低低温电除尘技术的工程应用案例,据不

电除尘器的计算效率

除尘器的除尘效率计算除尘器效率是评价除尘器性能的重要指标之一。它是指除尘器从气流中兵捕集粉尘的能力,常用除尘器全效率、分级效率和穿透率表示。 1.全效率计算 (1)质量算法 含尘气体通过除尘器时所捕集的粉尘量占进入除尘器的粉尘总量的百分数称为除尘器全效率,以η表示。如图5-2-1所示,全效率η的定义式为: η=G G 13?100%=G G G 1 21-?100% (5-2-1) 式中 G1——进入除尘器的粉尘量,g/s ; G2——从除尘器排风口排出的粉尘量,g/s ; G3——除尘器所捕集的粉尘量,g/s 。 (2)浓度算法 如果除尘器结构严密,没有漏风,除尘器入口风量与排气口风量相等,均为L ,则式(5-2-1)可改写为: η=Ly Ly Ly 1 21-?100% (5-2-2) 式中 L ——除尘器处理的空气量,m3/s ; y1——除尘器进口的空气含尘浓度,g/m3; y2——除尘器出口的空气含尘浓度,g/m3。 公式(5-2-1)要通过称重求得全效率,称为质量法,用这种方法测出的结果比较准确,主要用于实验室。在现场测定除尘器效率 时,通常先同时测出除尘器前后的空气含尘浓度,再按公式 图5-2-1 除尘器粉尘量之间的关系 (5-2-2)求得全效率,这种方法称为浓度法。含尘空气管道内的浓度分布既不均匀又不稳定,要测得准确的结果是比较困难的。

(3)多台除尘器串联总效率 在除尘系统中为提高除尘效率常把两个除尘器串联使用(如图5-2-2所示),两个除尘器串联时的总除尘效率为: η =η1+η2(1-η1)=1-(1-η1)(1-η2) (5-2-3) 式中 η0——除尘系统的除尘总效率; η1——第一级除尘器效率; η2——第二级除尘器效率。 应当注意,两个型号相同的除尘器串联运行时,由于它们处理粉尘的粒径不同,η1和η2是不相同的。 n个除尘器串联时其总效率为 η0=(1-η1)(1-η2) (1-η n ) (5-2-4) 图5-2-2 两级除尘器除尘系统 2.穿透率 有时两台除尘器的全效率分别为99%或99.5%,两者非常接近,似乎两者的降尘效果差别不大。但是从大气污染的角度去分析,两者的差别是很大的,前者排入大气的粉尘量要比后者高出一倍。因此,对于高效除尘器,除了用除尘器效率外,还用穿透率P表示除尘器的性能。其计算式为: P=(1-η)?100% (5-2-5) 3.除尘器的分级效率 除尘器全效率的大小与处理粉尘的粒径有很大关系,例如有的旋风除尘器处理40ηm以上的粉尘时,效率接近100%,处理5ηm以下的粉尘时,效率会下降到40%左右。因此,只给出除尘器的全效率对工程设计是没有意义的,必须同时说明试验粉尘的真密度和粒径分布或该除尘器的应用场合。要正确评价除尘器的除尘效果,必须按粒径标定除尘器效率,这种效率称为分级效率。 如果除尘器进口处粉尘的粒径分布为f1(dc) 、空气含尘浓度为y1,那末进入除尘器的粒径

电除尘器说明书

电除尘运行操作

目录 第一节前言 (1) 第二节设备机械本体部分 (1) 第三节电除尘器运行操作规程 (7) 第四节电除尘器的维护、保养与检修 (13) 第五节电除尘器运行中的故障处理 (14) 第六节电除尘器在运行、维护中应注意的事项 (18)

第一节前言 电除尘器是一种适应性强、用途广泛,处理能力大,可靠性好,效率高的除尘设备。 它可以捕集到1微米以下的粉尘,这是机械式除尘器望尘莫及的。 它一般的大修为十年,服役年限可长达三、四十年。 它的除尘效率均在98%以上。 由于它有以上这们明显的优势,且具有阻力损耗小,维修量小、运行费用低,所以尽管它的耗钢量较大,一次投资较大。从长远的观点看电除尘器仍然是一种防止大气污染的理想设备。 第二节设备机械本体部分 一、壳体 电除尘器的外壳是一个有一定气密性要求,能够承受一定压力和在一定温度条件下工作的容器。由钢结构组成。 1、主要功能: a.保证所处理烟气从其间通过,外部空气尽可能少的进入电除尘器内部。 b.承受阳极部分、阴极部分、卸灰系统和进出口变径管的重力载荷以及振打过程中产生的较小的冲击载荷。 c.能够承受一定的风荷载,雪荷!经受一定的地震裂度。 2、结构形式 为满足其功能,外壳主要由支座、底部梁、立柱、顶部梁、侧板、顶部盖板、柱间支撑等部件组成。

2.1支座 支座是连接设备基础和设备本体的部体。根据下部支柱的数量确定支座的个数。在诸多支座中除一个为固定支座外,其余均为多向或单向活动支座。两种支座都必须能够承受设备自重和各种附加载荷作用于其上的重力。活动支座的活动必须满足由于温度变化而引起的设备物件在水平方向的伸缩量。 a.固定支座是上下两部分为一整体的,不可以产生相对运动的支座,是使电除尘器和基础牢固连接在一起的部件。 b.活动支座是上下两部份分开,中间夹以磨擦板或滚珠的平面轴承。根据安装位置又分为多向和单向活动支座。多向活动支座可在平面内任意方向活动;单向活动支座只能在平面内一个方向左右活动。 2.2底部梁 底部梁通过梁座或直接与支座连接在一起,一般由焊接“H”型钢或箱型梁组成。 它的主要作用是承受灰斗和其中存灰的重量,因此也称灰斗梁。同时相当于建筑结构的底部圈梁,增加了整个构筑物的整体性。横向底梁还起到支撑内部检修平台和阴极振打装置的作用。 2.3 立柱 立柱垂直安装于底梁之上,可分为单立柱和双立柱两种,型式上分为焊接“H”型钢或格构式。主要承受顶部压力和侧面的推力。顶部梁自重、阴极部分、阳极部分、顶部盖板等及其上所载荷全部通过顶部梁加之在立柱上。

高温电除尘器在玻璃行业中应用(最终版)

高温电除尘器在玻璃行业中应用 张士凯 徐志海 江苏科行环保科技有限公司 江苏 盐城224051 摘 要:介绍玻璃窑炉烟气特点,针对玻璃窑炉的烟气粉尘细、浓度低、具有粘性的特点,高温电除尘采取针对性措施满足平板玻璃的排放新标准,并介绍了高温电除尘器在脱硝(SCR)、电除 尘和余热发电一体化工程中的应用情况。 Abstract: This paper elaborates the flue gas features of glass kiln, in order to counter this condition of the features of dust finess, low concentation and stickiness of fuel gas, however the use of high-temperature electrostatic precipitator can satisfy the new emissions standards for flat glass with this specific measures, meanwhile it introduces the application of integration project of high-temperature high-temperature electrostatic precipitator in de-NOx(SCR), electrostatic precipitator and cogeneration. 关键词:玻璃窑炉,烟气特性,高温电除尘器,平板玻璃的新标准 Keywords: glass kiln, features of flue gas, high temperature electrostatic precipitator, new standards for flat glass 引 言 玻璃行业作为我国工业污染控制领域的重点行业之一,目前仅平板玻璃行业年颗粒物排放总量约1.2万吨,污染物排放已成为迫切需要解决的问题。随着国家对烟尘和氮氧化物控制的日益严格以及平板玻璃行业新标准颁布,势必对玻璃污染物治理提出新的更高的要求。由于氮氧化物脱除主流技术SCR脱硝技术需要在320~420℃才能有效脱除烟气中的氮氧化物,而且SCR脱硝装置中的催化剂不易有过多的粉尘通过,玻璃窑的烟气中含有碱金属,会降低催化剂的寿命,除尘器最好布置在脱硝装置的前端。在耐温450℃的滤料还没有真正市场化的情况下,电除尘器也就成为目前最佳选择。电除尘器如何长期在320~450℃温度下稳定达标运行,这也给众多除尘工作者提出了新的课题。 1、玻璃窑炉烟气特点 当前,绝大多数的平板玻璃行业熔窑采用重油、天燃气、石油焦粉等作为燃料,粉尘排放浓度一般在150~1000mg/Nm3;同时玻璃窑炉生成的烟气颗粒小,粉尘细,具有粘性,含有部分碱金属,也给烟气中的粉尘收集带来一定难度。 2011年4月2日颁布的平板玻璃排放标准中,要求粉尘的排放浓度必须小于50 mg/Nm3,湿法脱硫除尘一体化已不能达标排放,而电除尘器作为一种高效的的除尘设备,只要选型合理,结构设计科学,完全可以满足50mg/Nm3的排放要求。 因电除尘器长期在320~450℃温度下运行,需要克服因高温热膨胀而导致除尘器壳体及内部阴阳极的变形的困难,需要克服在烟气温度高的情况下粉尘比电阻的变化的现象。 2、电除尘器的技术和特点

电除尘器前端预荷电技术

电除尘器前端预荷电技术研究及应用 解标王强李泓廖瑜方艳 (1.合肥工业大学安徽合肥屯溪路193号230009; 2.南京国电环保设备有限公司江苏南京浦口210044; 3.国电宣威发电有限责任公司云南宣威电厂路1号655400 4。安徽意义 环保工程有限公司蚌埠市解放路233000) 摘要电除尘器前端是一个可以增加收尘面积、提高除尘器效率待开发的处女地。通过分析前人在此方面开展研究的技术成果基础上,进行工业化应用实践,并取得比较好的应用效果。 关键词电除尘器预荷电前置电场高频电源 1 前言 电除尘器的前端主要是指进气喇叭及进气烟道。在烟气系统中其构造性的作用是使烟气系统密封并使烟气从一次风机出口过渡到电场,进气喇叭功能性的作用是使进入电场的气流分布均匀。 进气烟道短的有几米长则数十米,进口喇叭长度一般也有四米左右,两者的内部空间为、布置荷电极及收尘极等装置并开发其功能提供了可能。 粉尘预荷电是指在粉尘进入电除尘器之前通过预加电场使粉尘颗粒先带上一部分电荷,能有效增加粉尘的荷电量,特别适用于微小粉尘的捕集。同时预荷电还可以使粉尘颗粒发生碰撞、接触而粘附和聚合成较大颗粒的粒子,从而进一步增加粒子的荷电量,这样有利于电除尘器除尘效率的提高。 2相关技术研究 2.1INDIGO-烟道凝聚器技术[1] 2.1.1原理 Indigo凝聚器含有两项专利技术,能使细尘附着到粗尘上而为电除尘器所扑集。第一项是“流动凝聚”(FAP).,第二项是“双极静电凝聚”(BEAP)。 流动凝聚(FAP)是基于强化流动使太小不同的粒子有选择性地混合,增强粗细粒子之间的物理作用.从而促使其相互碰撞,形成聚合的粒团,减少细粒子的数目。 双极静电凝聚过程(BEAP),有两个关键作用。第一,双极荷电器有一组正、负相间的平行通道,气体和灰尘通过时,按其通道的正或负,分别获得正电荷或负电荷。这样,粉尘一半荷正电,一半荷负电。第二,对粒径有选择性的混合系统(SSMS),既能使气体中荷正电的细粒子与从相邻负极性通道流出的荷负电的粗粒子混合,又能使荷负电的细粒子与荷正电的粗粒子混台。 图表1双极静电凝聚过程 2.1.2结构及安装 Indigo凝聚器装在电除尘器前面边长5m的进口烟道处,其中气体流速常达10 m/s以上。高流速能使其极板不需要振打就能保持洁净。对于100NW的发电机组,Indigo凝聚器只需要5 kW左右的电力。对于引风机,增

电除尘行业推出燃煤电厂电除尘器选型设计指导书(第二版)

电除尘行业推出燃煤电厂电除尘器选型设计指导书(第二版)编者按 为应对《火电厂大气污染物排放标准》(GB 13223-2011)和《环境空气质量标准》(GB 3095-2012),更好地实现《国家环境保护“十二五”规划》目标,中国环境保护产业协会电除尘委员会(以下简称电委会)在推动和引导电除尘技术进步与创新、规范行业市场、提升行业整体技术水平方面采取了一些积极的应对措施,同时对《燃煤电厂电除尘器选型设计指导书》进行了修订,历时一年,于2013年6月形成了《燃煤电厂电除尘器选型设计指导书》(第二版)(以下简称第二版指导书),其内容更加科学、翔实,可操作性更强,将更好地发挥行业指导作用。 第二版指导书是电除尘行业集体智慧的结晶,是30多年电除尘选型技术全面系统的总结,值得再次向环境保护部、中电联、各大电力集团、电力规划院、电力设计院、电除尘器供货商、各相关研究机构等部门、组织和企业推荐。 国内电除尘企业坚信,即使在达到特别排放限值和PM2.5治理的需求背景下,电除尘器仍将是烟气除尘的主流设备。 引言 电除尘器具有高效率、低能耗、使用简单、维护费用低且无二次污染等优点,对国内大部分煤种具有良好的适应性,在国内外工业烟尘治理领域,特别在电力行业一直占据着主导地位,是国际公认的高效除尘设备。然而,2010年,在《火电厂大气污染物排放标准》(征求意见稿)出台之际,电除尘器能否满足新标准的低排放要求,受到了部分业内外人士的种种质疑与猜测,其在除尘领域的作用一度被扭曲和误解。 鉴于此,电委会联合行业内骨干企业,通过调查研究,撰写了大量关于电除尘器如何满足环保新标准、低排放研究的论文和资料,进行了一系列全方位的宣传和释疑工作,同时电力集团公司、中电联、中国电力工程顾问集团公司等单位也组织过多次燃煤电厂除尘技术研讨会。时至今日,《火电厂大气污染物排放标准》(GB13223-2011)执行已超过一年半时间,大量工程案例强有力地证明了:电除尘器完全能满足低排放要求,并仍是我国烟气除尘的主流设备。电除尘行业已发展成为我国环保产业中能与国际厂商相媲美且最具竞争力的一个行业。 随着这两年对电除尘技术研究的不断深入,电除尘新技术、新工艺已取得了突飞猛进的发展。电委会组织修订指导书,第二版指导书对“国内煤、飞灰样ω

电除尘器技术发展现状及新技术简介

电除尘器技术发展现状及新技术简介 环境卓越班王勇勤学号5802114031 摘要:随着国家对污染控制要求的不断提高,特别是对粉尘排放浓度的控 制越来越严格,进一步促进了电除尘器技术的不断发展。简要介绍了我国电除尘器技术的发展现状、已成功运行的几种新型电除尘器技术及目前的重点,指出了电除尘器技术在理论层面上将有更大的突破。 关键词电除尘器;技术发展;新技术;现状;介绍 1电除尘器技术发展现状 电除尘器作为工业设备投入使用至今已有近百年的历史。我国在20世纪70 年代初期才开始生产系列化电除尘器产品,30年时间的发展,如今电除尘器在 我国的环保产业中,已成为技术力量较为雄厚、装备水平较高、开发能力较强 的行业之一,电除尘行业的产值在我国环保设备总产值中占有举足轻重的份量。同时,当今世界上最大的工业窑配套所需的电除尘器,我国均能自行设计、加工制造,能达到用户提出的排放要求。近年来,我国电除尘器在满足国内大气污染治理需要的同时,还有部分设备出口到20多个国家和地区。据统计,1998年我国电除尘器出口产值超过千万美元。但同时我们也应该看到,当制造业趋于饱和,特别是烟尘排放的环保标准相当严格时,电除尘器的发展既受到本身技术 的瓶颈限制,同时又面临袋式除尘器的严峻挑战,近几年来电除尘器的发展相 对较为缓慢,突破创新的技术进展较难取得,现将国内外静电除尘新理论和新 技术简要介绍如下,供同行学者参考。 2 新型电除尘器技术 2.1 电-袋混合除尘技术 目前,火力发电已成为电除尘器应用的最大行业。在以河南高密煤和内蒙古 准葛尔煤为原料的火电企业,其尾气排放浓度经常发生难以达标的情况。原因 是该煤种燃烧后的烟气中飞尘比电阻比较高,且粉尘颗粒比较细,增加了电除 尘器的捕集难度。而众所周知,电除尘器的除尘效率受粉尘性状的影响比较敏感。部分企业转而采用袋式除尘器取代电除尘器。但是袋式除尘器占地面积大、不能处理高温烟气,制约了它在更大工业规模上的应用。因此电-袋混合除尘技术应运而生。电-袋混合除尘技术是将电除尘器与袋式除尘器进行有机地组合 布置,采用袋式除尘器改善电除尘器性能的组合式装置。这种新组合式装置综 合了传统的电除尘和袋式除尘技术的优点。电除尘器作为捕集烟气粉尘的前道工序,发挥除尘效率高、能处理高温的大烟气量、占地面积小、工艺上阻力小 等优点,通过前级电场将烟气中的大部分粉尘先除掉;而剩下的比电阻比较高、颗粒比较细而难以捕集的粉尘将进入袋式除尘器,此时粉尘的含量已大大降低,使得袋式除尘器的气布比增大,因此袋式除尘器的尺寸可以设计得比较小。综 合而言,电-袋混合除尘技术实现了用比较小的经济投入得到满足高标准排放 要求的环境、社会效益。目前该技术已在上海浦东和金山水泥厂得到成功应用。 2.2 高频高压电源技术

热电厂低低温电除尘及湿式电除尘改造研究

热电厂低低温电除尘及湿式电除尘改造研究 本文就现阶段热电厂中烟尘排放情况进行研究,基于此开展了对热电厂中相除尘设备的优化探析,经由对相关除尘设备内部构造的一定探究后,从而介绍了对热电厂低低温电除尘及湿式电除尘的改造方案。在改造方案中引用了现阶段应用较广的两类电除尘技术,并通过对现代常用电除尘设备的探究,从而为研究准确性打下保障,以期为相关人士提供借鉴。 标签:热电厂;低低温电除尘;湿式电除尘;改造 现阶段社会发展的逐渐加速,环境问题也接踵而至,由此就需要社会各界重视起现代环境问题,并通过采取一定的环保、节能措施,从而将可持续发展战略真正落实,以促进我国经济与国力的提高。而针对现阶段热电厂中烟尘排放污染较为严重的情况,本文就以相关除尘设备的优化作为论述核心,以期通过对除尘设备的性能强化,由此实现对热电厂中排放量的控制。 一、现阶段热电厂中的排放情况 现阶段热电厂中电除尘器设备已拥有了较发达的研究情况,且在除尘效率方面现阶段的电除尘器更是基本达到了99%以上,但由于运行过程过于繁琐、相关设备繁多,在运行时电除尘器对电力能源的消耗也逐渐提升,故现阶段的研究人员逐渐探寻其他工作方式的电除尘器,从而实现对电除尘器所需能源的变更或是对其所消耗电力能源的降低。同时,经由现阶段电力部门与环保部门对热电厂中出口烟尘浓度的监测数据来看,即便电除尘器的除尘效率较高,但鉴于热电厂中烟尘总排放量较大,故现阶段热电厂中除尘机组的整体烟尘排放浓度均在20mg/Nm3以上。同时现阶段的热电厂运行中还会面对燃煤煤质缺乏保障的情况,这就导致除尘机组的负荷波动常会随着其煤质变化而出现强度较大且次数频繁的情况,故现阶段烟尘排放的波动范围已逐渐超出相关标准。 二、热电厂低低温电除尘及湿式电除尘的改造方案探析 (一)低低温除尘 2.1.1改造内容 低低温电除尘改造主要是基于原有的传统静电除尘器新增低温省煤器,从而在除尘过程中能够经由低温省煤器实现烟气换热后将凝结水流回至低价出口。而低温省煤器的装载位置通常在空预器与除尘器间,并经由在除尘器入口支管上安装低温省煤器,从而将一定的凝结水转入到低温省煤器中,由此将除尘器低加入口中引出的水相混合,以在一定程度上降低冷却水的温度,再由烟气换号热后,引入其他的低加入口处[1]。经由该项改造后,一般能够有约94.07%的凝结水流向低温省煤器,其余5.93%的凝结水则可流向其他低价入口。然为保障低温省煤器的良好运行,故在实际改造时,通常会先将机组内除尘器之前烟道的各个管道

相关文档
最新文档