LED封装材料基础知识

LED封装材料基础知识
LED封装材料基础知识

LED封装材料基础知识

LED封装材料主要有环氧树脂,聚碳酸脂,聚甲基丙烯酸甲脂,玻瑪,有机硅材料等高透明材料。其中聚碳酸脂,聚甲基丙烯酸甲脂,玻璃等用作外层透鏡材料;环氧树脂,改性环氧树脂,有机硅材料等,主要作为

封装材料,亦可作为透镜材料。而高性能有机硅材料将成为高端LED封装材料的封装方向之一。下面将主要介绍有机硅封装材料。

提高LED封装材料折射率可有效减少折射率物理屏障带来的光子损失,提高光量子效率,封装材料的折射率是一个重要指标,越高越好。提高折射率可采用向封装材料中引入硫元素,引入形式多为硫瞇键、硫脂键等,以环硫形式将硫元素引入聚合物单体,并以环硫基团为反应杀团进行聚合则是一种较新的方法。最新的研发动态,也有将纳米无机材料与聚合物体系复合制备封装材料,还有将金属络合物引入到封装材料,折射率可以达到,甚至,这样不仅可以提高折射率和耐紫外辐射性,还可提高封装材料的综合性能。

一、胶水基础特性

有机硅化合物一聚硅氧烷简介

有机硅封装材料主要成分是有机硅化合物。有机硅化合物是指含有Si-0键、且至少有一个有机基是直接与硅原子相连的化合物,习惯上也常把那些通过氧、硫、氮等使有机基与硅原子相连接的化合物也当作有机硅化合物。其中,以硅氣键(-Si-O-Si-)为骨架组成的聚硅氧烷,是有机硅化合物中为数最多,研究最深、应用最广的一类,约占总用量的90%以上。

结构

其结构是一类以重复的Si-0键为主链,硅原子上直接连接有机基团的聚合物,其通式为R' ---(Si R R' ---0) n-一R”,其中,R、R'、R”代表基团,如甲基,苯基,痉基,H,乙烯基等;n 为重复的Si-0键个数(n不小于2)。

有机硅材料结构的独特性:

(1) Si原子上充圧的基团将高能量的聚硅氧烷主链屏蔽起来:

(2) C-H无极性,使分子间相互作用力十分微弱;

(3) Si-0键长较长,Si-0-Si键键角大。

(4) Si-0键是具有50%离子键特征的共价键(共价键具有方向性,离子键无方向性)。

性能由于有机硅独特的结构,兼备了无机材料与有机材料的性能,具有表面张力低、粘温系数小、压缩性高、气体渗透性高等基本性质,并具有耐高低温、电气绝缘、耐氧化稳定性、耐候性、难燃、憎水、耐腐

蚀、无毒无味以及生理惰性等优异特性。

耐温特性:有机硅产品是以硅一氧(Si—o)键为主链结构的,C-C键的键能为347k J/mo I, Si-0 键的键能在有机硅中为462kJ/moI,所以有机硅产品的热稳定性高,高温下(或辐射照射)分子的化学键不断裂、不分解。有机硅不但可耐高温,而且也耐低温,可在一个很宽的温度范围內使用。无论是化学性能还是物理机械性能,随温度的变化都很小。

耐候性:有机硅产品的主链为一Si-0-,无双键存在,因此不易被紫外光和臭氧所分解。有机硅具有比其他高分子材料更好的热稳定性以及耐辐照和耐候能力。有机硅中自然环境下的使用寿命可达几十年。

电气绝缘性能:有机硅产品都具有良好的电绝缘性能,其介电损耗、耐电压、耐电弧、耐电晕、体积电阻系数和表面电阻系数等均在绝缘材料中名列前茅,而且它们的电气性能受温度和频率的影响很小。因此,它们是一种稳定的电绝缘材料,被广泛应用于电子、电气工业上。有机硅除了具有优良的耐热性外,还具有优异的拒水性,这是电气设备在湿态条件下使用具有高可靠性的保障。

生理惰性:聚硅氧烷类化合物是已知的最无活性的化合物中的一种。它们十分耐生物老化,与动物体无排异反应,并具有较好的抗凝血性能。

低表面张力和低表面能:有机硅的主链十分柔顺,其分子间的作用力比碳氢化合物要弱得多,因此,比同分子量的碳氢化合物粘度低,表而张力弱,表而能小,成膜能力企。这种低表而张力和低表面能是它获得多方面应用的主要原因:疏水、消泡、泡沬稳定、防粘、润滑、上光等各项优异性能。

有机硅化合物的用途

由于有机硅具有上述这些优异的性能,因此它的应用范围非常广泛。它不仅作为航空、尖端技术、军事技术部门的特种材料使用,而且也用于国民经济各行业,其应用范囲已扩到:建筑、电子电气、半导体、纺织、汽车、机械、皮革造纸、化工轻工、金属和油漆、医药医疗等行业。

其中有机硅主要起到密封、粘合、润滑、绝缘、脱模、消泡、抑泡、防水、防潮、惰性填充等功能。

随着有机硅数量和品种的持续増长,应用领域不斷拓宽,形成化工新材料界独树一帜的重要产品体系,许多品种是其他化学品无法替代而又必不可少的。

LED封装用有机硅材料特性简介

LED封装用有机硅材料的要求:光学应用材料具有透光率高,热稳定性好,应力小,吸湿性低等特殊要求,一般甲基类型的硅树脂25"C时折射率为左右,而苯基类型的硅树脂折射率要高,可以做到以上,450 nm波长的透光率要求大于95%。在固化前有适当的流动性,成形好;固化后透明、硬度、企度高,在高湿环境下加热后能保持透明性。

主要技术指标有:折射率、粘度、透光率、无机离子含量、固化后硬度、线性膨胀系数等等。

材料光学透过率特性

石英玻璃、硅树脂和环氧树脂的透过率如图1所示。硅树脂和环氧树脂先注入模具,高温固化后脱模,形成厚度均匀为5mm的样品。可以看到,环氧树脂在可见光范囲具有很高的透过率,某些波长的透过率甚至超过

了95% ,但环氧树脂在紫外光范围的吸收损耗较大,波长小于380 nm时,透过率迅速下降。硅树脂在可见光范围透过率接近92%,在紫外光范围内要稍低一些,但在320 nm 时仍然高于88%,表现出很好的紫外光透射性质;石英玻璃在可见光和紫外

图1 5种不同封装材料的光透过率

光范围的透过率都接近95%,是所有材料里面紫外光透过率最高的。对于紫外LED封装,石英玻璃具有最高的透过率,有机硅树脂次之,环氧树脂较差。然而尽管石英玻璃紫外光透过率高,但是其热加工温度高,并不适用于LED芯区的密封,因此在LED封装工艺中石英玻璃一般仅作为透镜材料使用。由于石英玻璃的耐紫外光辐射和耐热性能已经有很多报道,仅对常用于密封LED芯区的环氧树脂和有机硅树脂的耐紫外光辐射和耐热性能进行研究。

耐紫外光特性

研究了环氧树脂A和B以及有机硅树脂A和B在封装波长为395 nm和375 nm的LED芯片时的老化情况,如图2所示。实验中,每个LED的树脂涂层厚度均为2 mmo可以看到,环氧树脂材料耐紫外光辐射性能都较差,连续工作时,紫外LED输出光功率迅速衰减,100hE输出光功率均下降到初始的50%以下;200 h后,LED的输出光功率已经非常微弱。对于脂环族的环氧树脂B,在375 nm的紫外光照射下衰减比395 nm时要快,说明对紫外光波长较为敏感,由于375 nm的紫外光光子能量较大,破坏也更为严重。双酚类的环氧树脂A在375 nm 和395 nm的紫外光照射下都迅速衰减,衰减速度基本一致。尽管双酚类的环氧树脂A在375 nm和395 nm时的光透过率要略高于脂环族类的环氧树脂B,但是由于环氧树脂A含有苯环结构,因此在紫外光持续照射时,衰减要比环氧树脂B要快。

图2环氧树脂和硅树脂的紫外老化

尽管双酚类的环氧树脂A在375 nm和395 nm时的光透过率要略高于脂环族类的环氧树脂B,但是由于环氧树脂A含有苯环结构,因此在紫外光持续照射吋,衰减要比环氧树脂B要快。测量老化前后LED芯片的光功率,发现老化后LED的光功率基本上没有衰减。这说明,光功率的衰减主要是由紫外光对环氧树脂的破坏引起的。环氧树脂是高分子材料,在紫外线的照射下,高分子吸收紫外光子,紫外光子光子能量较大,能够打开高分子间的键链。因此,在持续的紫外光照射下,环氧树脂的主链慢慢被破坏,导致主链降解,发生了光降解反应,性质发生了变化。实验表明,环氧树脂不适合用于波长小于380 nm的紫外LED芯片的封装。相对环氧树脂,硅树脂表现出了良好的耐紫外光特性。经过近1 500 h老化后,LED输出光功率虽然有不同程度的衰减,但是仍维持在85%以上,衰减低于15%。这可能与硅树脂和环氧树脂间的结构差异有关。硅树脂的主要结构包括Si和0,主链Si-0-Si是无机的,而且具有较高的键能;而环氧树脂的主链主要是C-C或C-0,键能低于Si-0o由于键能较高,硅树脂的性能相对要稳定。因此,硅树脂具有良好的耐紫外光特性。

耐热性

LED封装对材料的耐热性提出了更高的要求。从图3可以看出,环氧树脂和硅树脂具有较好的承受紫外光辐照的能力。因此,对其热稳定性进行了研究。图3表示这两种材料在高温老化后mm- 1 厚度时透过率随时间的变化情况。可以看到,环氧树脂的耐热性较差,经过连续6天的高温老化后,各个波长的透过率都发生了较大的衰减,紫外光范围的衰减尤其严重,环氧树脂样品颜色从最初的清澈透明变成了黄褐色。

图3环氧树脂和硅树脂的150 e高温老化

硅树脂表现出了优异的耐热性能。在150 e的高温环境下,经过14 days的老化后,可见光范围的样品mm-1厚度时透过率只有稍微的衰减,在紫外光范囲也仅有少量的衰减,颜色仍然保持着最初的清澈透明。与环氧树脂不同,硅树脂以Si-0-Si键为主链,由于Si-0键具有较高的键能和离子化倾向,因此具有优良的耐热性。

光衰特性

传统封装的超高亮度白光L ED,配粉胶一般采用环氧树脂或有机硅材料。如图4所示,分别用环氧树脂和有机硅材料配粉进行光衰实验的结果。可以看出,用有机硅材料配粉的白光L ED的寿命明显比环氧树脂的长很多。原因之一是用有机硅材料和环氧树脂配粉的封装工艺不一样,有机硅材料烘烤温度较低,时间较短,对芯片的损伤也小;另外,有机硅材料比环氧树脂更具有弹性,更能对芯片起到保护作用。

图4环氧树脂与有机硅材料配粉的白光L ED光衰特性

苯基含量的影响

提高LED封装材料折射率可有效减少折射率物理屏障带来的光子损失,提高光量子效率,封装材料的折射率是一个重要指标,越高越好。硅树脂中苯基含量越大,就越硬,折射率越高(合成的几乎全苯基的硅树脂折射率可达),但因热塑性太大,无实际使用价值,苯基含量一般以20犷50% (质量分数)为宜。实验发现苯基含量为40%吋(质量分数)硅树脂的折射率约,苯基含量为50%时硅树脂的折射率大于,如图5所示。所合成的都是高苯基硅树脂,苯基含量都在45%以上,其折射率都在以上,其中一些可以达到以上。

图5 硅树脂的苯基含量(质量分数)与折射率

有机硅封装材料应用原理及分析

有机硅封装材料一般是双组分无色透明的液体状物质,使用时按A: B=1: 1的比例称量准确,使用专用设备行星式重力搅拌机搅拌,混合均匀,脱除气泡即可用于点胶封装,然后将封装后的部件按产品要求加热固化即可。

? ??

有机硅封装材料的固化原理一般是以含乙烯基的硅树脂做基础聚合物,含SiH基硅烷低聚物作交联剂,钧配合物作催化剂配成封装料,利用有机硅聚合物的Si—CH = CH2与Si—H在催化剂的作用下, 发生硅氢化加成反应而交联固化。我们可以用仪器设备来分析表征一些技术指标有如折射率、粘度、透光率、无机离子含量、固化后硬度、线性膨胀系数等等。

红外光谱分析

有机硅聚合物的Si—CH = CH2与Si—H在催化剂的作用下,发生硅氢化加成反应而交联。随着及应的进行,乙烯基含量和硅氢基的浓度会逐渐减少,直到稳定于一定的量,甚至消失。

可采用红外光谱仪测量其固化前后不同阶段的乙烯基和硅氢基的红外光谱吸收变化情况⑵。我们只列举合成的高苯基乙烯基氢基硅树脂固化前和固化后的红外光谱为例:如图6所示,固化前:3071, 3050 crrT'是苯环和CH2=CH-不饱和氢的伸缩振动,2960 crrT'是一Cf的C-H伸缩振动,2130 cm-' 是Si—H的吸收峰,1590 cm-'是一CH = CH2不饱和碳的吸收峰,1488 cm一‘是苯环的骨架振动,1430, 1120 crrT'是Si-Ph的吸收峰,1250 cnT'是Si-CH3的吸收峰,1060 cm^是S i -0-S i的吸收峰;固化后:2130 crrT'处的Si—H的吸收峰和1590 cnT处的—CH = CH2不饱和碳的吸收峰均消失。

图6 高苯基乙烯基氢基硅树脂的红外图谱

热失重分析

有机硅主链si-0-si属于“无机结构”,si-0键的键能为462kJ/moI,远远高于C-C键的键能347kJ/moI,单纯的热运动很难使si-0键均裂,因而有机硅聚合物具有良好的热稳定性,同时对所连怪基起到了屏蔽作用,提高了氧化稳定性。有机硅聚合物在燃烧时会生成不燃的二氧化硅灰烬而自熄。为了分析封装材料的耐热性,及硅树脂对体系耐热性的影响,我们进行了热失重分析,如图7图8所示,样品起始分解温度大约在400°C, 800°C的残留量在65%以上。封装材料在4009范围内不降解耐热性好,非常适用于大功率LED器件的封装。

图7 硅树脂树脂体的热失重曲线

图8 硅树脂弹性体的热失重曲线

DSC分析

我们采用DSC (差示热量扫描法)分析了硅树脂固化后的玻璃化转变温度Tg。一般,Tg的大小取决于分子链的柔性及化学结构中的自由体积,即交联密度,Tg随交联密度的增加而升高,可以提供一个表征固化程度的参数。我们采用DSC分析了所制备的凝胶体、弹性体、树脂体的Tg,如表1 所示,显然随着凝胶体、弹性体、树脂体的交联密度的增加,玻璃化转变温度Tg升高。同样也列举合成的高苯基乙烯基氢基硅树脂固化后的差示热量扫描分析图谱,如图9所示,玻璃化转变温度Tg约72°Co封装应用应根据封装实际的需求,选用不同的形态。

表1 有机硅树脂的玻璃化转变温度Tg

4

针对LED封装行业的不同部位的具体要求开发五个应用系列的有机硅材料,不同的封装要求,在封装材料的粘度,固化条件,固化后的硬度(或弹性),外观,折光率等方而有差异。具体分类介绍如下:混荧光粉有机硅系列

传统封装的超高亮度白光L ED,配粉胶一般釆用环氧树脂或有机硅材料。如图9所示,分别用环氧树脂和有机硅材料配粉进行光衰实验的结果。可以看出,用有机硅材料配粉的白光L ED的寿命明显比环氧树脂的长很多。原因之一是用有机硅材料和环氧树脂配粉的封装工艺不一样,有机硅材料烘烤温度较低,时间较短,对芯片的损伤也小;另外,有机硅材料比环氧树脂更具有弹性,更能对芯片起到保护作用。

MOD I NG封装材料有机硅系列

贴片封装材料有机硅系列

透镜填充有机硅系列

集成大功率LED有机硅系列

二.胶水与其它材料之间的关联性(含固晶胶)

有机硅材料对其他材料没有腐蚀性,但某些材料会影响封装材料的固化。固晶胶一般为环氧树脂材料,它的固化剂种类很多,如果其中含有N, P, S等元素,会导致封装材料与固晶胶接触部分不固化。如果对某一种基材或材料是否会抑制固化存在疑问,建议先做一个相容性实验来测试某一种特定应用的合适性。如果在有疑问的基材和固化了的弹性体材料界而之间存在未固化的封装料,说明不相容,会抑制固化。

这些最值得注意的物质包括:

1>有机锡和其它有机金属化合物

2、硫.聚硫化物、聚矶类物或其它含硫物品

3、胺、聚氨酯橡胶或者含氨的物品

4、亚磷或者含亚磷的物品

5、某些助焊剂残留物

有机硅封装材料有很好的耐湿气,耐水性及耐油性,但对浓硫酸,浓硝酸等企酸,氨水,氢氧化钠等强碱,以及甲苯等芳香怪溶剂的抵抗能力差。下表定性的列出有机硅封装材料耐化学品性。

有机硅封装材料耐化学品性表

序号化学品抵抗能力

1醋酸(5%)( 良

2醋酸(浓)

3盐酸(浓)尚可4硝酸(10%)良5硝酸(浓)

6硫酸(30%)良7硫酸(浓)差8磷酸(浓)良J

9柠檬酸(浓)良10硬脂酸良11氨水差12氢氧化钠(10%)良13氢氧化钠(50%)差14礦酸钠水溶液(2%)良

三、胶水的应用与风险防范使用:

A、B两组分1: 1称量,用行星式重力搅拌机(自公转搅拌脱泡机)搅拌均匀即可点胶。或者在一定温度下,于10mmHg的真空度下脱除气泡即可使用。建议在干燥无尘环境中操作生产。

注意事项:

A、有机硅封装材料在称量,混合,转移,点胶,封装,固化过程中使用专用设备,避免与其他物质混杂带来不确定的影响。

B、某些材料、化学制剂、固化剂和增塑剂可以抑制弹性体材料的固化。这些最值得注意的物质包括:

B-1.有机锡和其它有机金属化合物

B-2、硫、聚硫化物、聚矶类物或其它含硫物品

B-3、胺、聚氨酯橡胶或者含氨的物品

B-4、亚磷或者含亚磷的物品

B-5、某些助焊剂残留物

如呆对某一种基材或材料是否会抑制固化存在疑问,建议先做一个相容性实验来测试某一种特定应用的合适性。如果在有疑问的基材和固化了的弹性体材料界而之间存在未固化的封装料,说明不相容,会抑制固化。

C、在使用封装材料时避免进入口眼等部位;接触封装材料后进食前需要清洗手;封装材料不会腐蚀皮肤,因个人的生理特征有差异,如呆感觉不适应暂停相关工作或就医。

D、在LED生产中很可能会产生的问题是芯片封装时,杯內汽泡占有很大的不良比重,但是产品在制作过程中如果汽泡问题没有得到很好的解决或防治,就会造成产品衰减加快的一个因素。影响气泡产生的因素比较多,但是多做一些工程评估,即可逐步解决。一般情况下,工艺成熟后,气泡的不良比重不会太高。以下是相关因素:

(1) 环境的温度和湿度对气泡产生有较大的影响。

(2) 模条的温度也是产生气泡的一个因素。

(3) 气泡的产生与工艺的调整有很大关系。

例如,有些工厂没有抽真空也没有气泡,而有些即使抽了真空也有气泡,从这一点看不是抽不抽真空的问题,而是操作速度的快慢、熟练程度的问题。同吋与环境温度也是分不开的。环境温度变化了,可以采取相应的措施加以控制。若常温是15'C,如让胶水的温度达到60°C,这样做杯内气泡就不会出现。同时要注意很

多细节问题,如在滚筒预沾胶时产生微小气泡,肉眼和细微镜下看不到,但一进入烤箱体内,热胀气泡扩涨。如果此时温度太高,气体还没有跃出就固化所以产生气泡现象。LED表而有乞泡但没碇,此为打胶时产生气泡。LED表面有气泡已破,原因是温度太高。手工预灌胶前,支架必须预热。预热预灌的AB组分进行2小时调换一次。只要你保持AB 料、支架都是热的,气泡问题不难解。因为AB组分冷吋流动性差,遇到冷支架容易把气泡带入。操作时要注意以下问题:

(1) 操作人员的操作技巧不熟练(整条里面有一边出现气泡);

(2) 点胶机的快慢和胶量没有控制好(很容易出现气泡的地方);

(3) 机器是否清洁(此点不一定会引起气泡,但很容易产生类似冰块一样的东西,尤其是环已酮);

(4) 往支架点胶时,速度不能快,太快带入的空气将难以排出;

(5) 胶要常换、胶筒清洗干净,一次混胶量不能太多,A, B组分混合就会开始反应,时间越长胶越稠,气泡越难排出;

E、大多数封装客户都发现做好的产品在初期做点亮测试老化之后都有不错的表现,但是随着时间的推移,明明在抽检都不错的产品,到了应用客户开始应用的时候致者不久之后,就发现有胶层和PPA支架剥离、LED变色(镀银层变黃发黑)的情况发生。那这到底是什么原因引起的是在制程的过程中工艺把握不好导致封装胶固化不好吗当然有可能,但是随着客户工艺的不斷成熟,这种情况发生的机率会越来越少。有以下因素供大家参考:

(1) PPA与支架剥离的原因是:PPA中所添加的二氧化钛因晶片所发出的蓝光造成其引起的光触媒作用、PPA本身慢慢老化所造成的,硅胶本身没老化的情况下,由于PPA老化也会导致剥离想象的发生;二氧化钛吸收太阳光或照明光中的紫外线,产生光触媒作用,会产生分解力与亲水性的能力。特別具有分解有机物的能力。

(2) 以LED变色问题为例、现阶段大致分三类:

硫磺造成镀银层生硫化银而变色

卤素造成镀银层生卤化银而変色

镀银层附近存在无机碳。

有机硅封装材料、固晶材料并不含有S化合物、卤素化合物,硫化及卤化物的发生取决于使用的环境。

无机碳的存在为环氧树脂等的有机物因热及光的分解后的残渣。在镀银层以环氧等固晶胶作为蓝光晶片接合的场合频繁发生。

有机硅封装材料即使被热及光分解也不会变成黑色的碳。

若是沒有使用环氧等的有几物的场合有发现无机碳存在的话有可能是由外部所带入。

上述的3种变色现象是因蓝光、镀银、氧气及湿气使其加速催化所造成

综上所述,我们发现,以上的主要原因是由于有氧气,湿气侵入到LED内部以及有无机碳的存在而

带来的一系列的问题,那么我们应该如何解决呢。

(1) 在封装过程中避免使用环氧类的有机物,比如固晶胶;

(2) 选择低透气性的封装材料,尽量避免使用橡胶系的硅材料,尽量选用树脂型的硅材料;

(3) 在制程的过程中尽量采用清洗支架,尽可能的增加烘烤流程。

如何解决隔层问题出现隔层,一般是胶水沾接性能不好,先膨胀后收缩所致。也有粉胶与外封胶膨胀系数差异太大产生较大内应力,在金线部位撕裂。故升温太快有裂层或固化不好,而分段固化, 反应没那么剧烈,消除一些内应力。

贮存及运输:

3-1.阴凉干燥处贮存,贮存期为6个月(25°C)。

3-2、此类产品属于非危险品,可按一般化学品运输。

3-3、胶体的A、B组分均须密封保存,在运输,贮存过程中防止泄漏。

封装工艺

的封装的任务

封装形式

封装工艺流程

大功率有很多种封装的啊,有填充的,有模顶mod i ng的,还有COB封装的

LED封装小知识

一、LED封装类型

(一)插入式(ThroughHole)

1>相线两侧垂直引出:陶进双列陶进熔封双列塑料双列金属双列塑料缩小型双列塑料缩体型双列

2、引线两面平伸引出:陶瓷扃平陶蛙熔封扁平塑料扁平金属扁平

3、引线底面垂直引出:塑料单列塑料“Z”形引线金属四列金属圆形金属菱形金属四边引线圆形陶送针栅阵形塑料针栅阵形

4、引线单面垂直引出:金属引线单面引出爲平塑料弯引线单列

(二)表面安装式(SurfaceMount)

R引线侧面翼形引出:塑料小外形塑料翼形引线片式载体陶瓷翼形引线片式载体

2、引线侧面“J”形引出:塑料小外形塑料“J”形引线片式载体陶冕“J”形引线片式载体塑料反“J”形引线片式載体陶冕反“J”形引线片式载体

3、引线四面平伸引出:塑料四面引线扁平陶瓷四面引线扃平

4、陶瓷无引线片式载体

(三)直接粘结式(DirectBonding)

1、倒装芯片封裝

2、芯片板式封装

3、载带自动封装

二、封装名称

国家现有集成电路封装名称及其代表字母1、陶瓷扁平封装F型:2、陶冕熔封扁平封装H型;3、陶冕双列封装D型;

4、陶冕熔封双列封裝J型;

5、塑料双列封裟P型;

6、金属圆形封装T型:

7、金属菱形封装K型;

8、塑料小外形封装0型:

9、塑料片式載体封装E型;10、塑料四面引线扃平封装N型:11、陶瓷片式载体封装C型:12、陶进针栅阵形封装G型:13、陶瓷四面引线扁平封装Q型;14、陶瓷玻璃扁平封装W型;15、金属双列封装M型;16、金属四列封装Ms型;17、金属扃平封裝Mb型;18、金属四边引线圆形封装Ts型:19、单列敷形涂覆封装Ft型;20、双列滚注封装Gf型;

注:(1)第14项陶冕玻瑪扁平封装未列入国家标准;

(2)第15~20项封装仅用于混合集成电路和膜集成电路。

三、封装代号

封裟代号由四个或五个部分组成。第一部分为字母,表示封装材料及结构形式,即上述封装名称;第二部分为阿拉伯数字,表示引出端数(引线数小于10,应在个位前加0):第三部分用字母或数字组成,表示同类产品封装主要尺寸或形状的差异;第四部分用数字组成,表示次要尺寸差异;第五部分用字母组成,表示结构上的差异。

LED封装步骤

LED的大致封装步骤一、生产工艺

1. 工艺:

a)清洗:采用超声波清洗PCB或LED支架,并烘干。

b)装架:在LED管芯(大圆片)底部电极备上银胶后进行扩张,将扩张后的管芯(大圆片)安置在刺晶台上,在显微镜下用刺晶笔将管芯一个一个安装在PCB或.LED支架相应的焊盘上,随后进行烧结使银胶固化。

c)压焊:用铝丝或金丝焊机将电极连接到LED管芯上,以作电流注入的引线。LED直接安装在PCB 上的,一般釆用铝丝焊机。(制作白光TOP-LED需要金线焊机)

d)封装:通过点胶,用环氧将LED管芯和焊线保护起来。在PCB板上点胶,对固化后胶体形状有严格要求,这直接关系到背光源成品的出光亮度。这道工序还将承担点荧光粉(白光LED)的任务。

e)焊接:如果背光源是采用SMD-LED或其它已封装的LED,则在装配工艺之前,需要将LED 焊接到PCB板上。

f)切膜:用冲床模切背光源所需的各种扩散膜、反光膜等。

g)装配:根据图纸要求,将背光源的各种材料手工安装正确的位置。

h)测试:检查背光源光电参数及出光均匀性是否良好。

包装:将成品按要求包装、入库。

二、封装工艺

1. LED的封装的任务

是将外引线连接到LED芯片的电极上,同时保护好LED芯片,并且起到提高光取出效率的作用。关键工序有装架、压焊、封装。

2. LED封装形式

LED封装形式可以说是五花八门,主要根据不同的应用场合釆用相应的外形尺寸,散热对策和出光效果。LED 按封装形式分类有Lamp-LED、TOP-LED, Side-LED. SMD-LED、High-Power-LED 等。

3. LED封装工艺流程

4. 封装工艺说明

1. 芯片检验

镜检:材料表面是否有机械损伤及麻点麻坑(lockhill)

芯片尺寸及电极大小是否符合工艺要求

电极图案是否完整

2. 扩片

由于LED芯片在划片E依然排列紧密间距很小(约),不利于后工序的操作。我们采用扩片机对黏结芯片的膜进行扩张,是LED芯片的间距拉伸到约。也可以采用手工扩张,但很容易造成芯片掉落浪费等不良问题。

3. 点胶

在LED支架的相应位置点上银胶致绝缘胶。(对于GaAs、SiC导电衬底,具有背而电极的红光、黄光、黄绿芯片,采用银胶。对于蓝宝石绝缘衬底的蓝光、绿光LED芯片,采用绝缘胶来固定芯片。)工艺难点在于点胶量的控制,在胶体高度、点胶位置均有详细的工艺要求。

由于银胶和绝缘胶在贮存和使用均有严格的要求,银胶的醒料、搅拌、使用时间都是工艺上必须注意的事项。

4. 备胶

和点胶相反,备胶是用备胶机先把银胶涂在LED背面电极上,然后把背部带银胶的LED安装在LED 支架上。备胶的效率远高于点胶,但不是所有产品均适用备胶工艺。

5. 手工刺片

将扩张后LED芯片(备胶或未备胶)安置在刺片台的夹具上,LED支架放在夹具底下,在显微镜下用针将LED芯片一个一个刺到相应的位置上。手工刺片和自动装架相比有一个好处,便于随时更换不同的芯片,适用于需要安装多种芯片的产品.

6. 自动装架

自动装架其实是结合了沾胶(点胶)和安装芯片两大步骤,先在LED支架上点上银胶(绝缘胶),然后用真空吸嘴将LED芯片吸起移动位置,再安置在相应的支架位置上。

自动装架在工艺上主要要熟悉设备操作编程,同时对设备的沾胶及安装精度进行调整。在吸嘴的选用上尽量选用胶木吸嘴,防止对LED芯片表面的损伤,特别是兰、绿色芯片必须用胶木的。因为钢嘴会划伤芯片表面的电流扩散层。

7. 烧结

烧结的目的是使银胶固化,烧结要求对温度进行监控,防止批次性不良。

银胶烧结的温度一般控制在150 C,烧结时间2小时。根据实际情况可以调整到170°C, 1小吋。绝缘胶一般150°C, 1小时。

银胶烧结烘箱的必须按工艺要求隔2小时(或1小时)打开更换烧结的产品,中间不得随意打开。烧结烘箱不得再其他用途,防止污染。

8. 压焊

压焊的目的将电极引到LED芯片上,完成产品内外引线的连接工作。

LED的压焊工艺有金丝球焊和铝丝压焊两种。右图是铝丝压焊的过程,先在LED芯片电极上压上第一点,再将铝丝拉到相应的支架上方,压上第二点后扯断铝丝。金丝球焊过程则在压第一点前先烧个球,其余过程类似。压焊是LED封装技术中的关键环节,工艺上主要需要监控的是压焊金丝(铝丝)拱丝形状,焊点形状,拉力。对压焊工艺的深入研究涉及到多方面的问题,如金(铝)丝材料、超声功率、压焊压力、劈刀(钢嘴)选用、劈刀(钢嘴)运动轨迹等等。(下图是同等条件下,两种不同的劈刀压出的焊点微观照片,两者在微观结构上存在差别,从而影响着产品质量。)我们在这里不再累述。

9. 点胶封装

LED的封装主要有点胶、灌封、模压三种。基本上工艺控制的难点是气泡、多缺料、黑点。设计上主要是对

材料的选型,选用结合良好的环氧和支架。(一般的LED无法通过气密性试验)如右图所示的TOP-LED和Side-LED适用点胶封装。手动点胶封装对操作水平要求很高(特别是白光LED), 主要难点是对点胶量的控制,因为环氧在使用过程中会变稠。白光LED的点胶还存在荧光粉沉淀字致出光色差的问题。

10. 灌胶封装

Lamp-LED的封装采用灌封的形式。灌封的过程是先在LED成型模腔内注入液态环氧,然后插入压焊好的LED支架,放入烘箱让环氧固化后,将LED从模腔中脱出即成型。

行.模压封装

将压焊好的LED支架放入模具中,将上下两副模具用液压机合模并抽真空,将固态环氧放入注胶道的入口加热用液压顶杆压入模具胶道中,环氧顺着胶道进入各个LED成型槽中并固化。

12. 固化与后固化

固化是指封装环氧的固化,一般环氧固化条件在135°C, 1小时。模压封装一般在150"C, 4分钟。

13. 后固化

后固化是为了让环氧充分固化,同时对LED进行热老化。E固化对于提高环氧与支架(PCB)的粘接強度非常重要。一般条件为120"C, 4小时。

14. 切筋和划片

由于LED在生产中是连在一起的(不是单个),Lamp 装LED采用切筋切斷LED支架的连筋oSMD-LED 则是在一片PCB板上,需要划片机来完成分离工作。

15. 測试

测试LED的光电参数、检验外形尺寸,同时根据客户要求对LED产品进行分选。

16. 包装将成品进行计数包装。超高亮LED需要防静电包装。

2011年最新大功率LED封装技术

现有的AC LED光源的工作原理如图2所示,将一堆LED微小晶粒采用交错的矩阵式排列工艺均分为五串,AC LED晶粒串组成类似一个整流桥,整流桥的两端分别联接交流源,另两端联接一串LED 晶粒,交流的正半周沿间斷线通路流动,3串LED晶粒发光,负半周沿虚线通路流动,又有3串LED 晶粒发光,四个桥臂上的LED晶粒轮番发光,相对桥臂上的LED晶粒同时发光,中间一串LED晶粒因共用而一直在发光。在60Hz的交流中会以每秒60次的频率轮替点亮。整流桥取得的直流是脉动直流,LED的发光也是闪动的,LED有断电余辉续光的特性,余辉可保持几十微秒,因人眼对流动光点记忆是有惰性的,结呆人眼对LED光源的发光+余辉的工作模式解读是连续在发光。LED有一半时间在工作,有一半时间在休息,因而发热得以减少40%?20%,因此AC LED的使用寿命较DC LED 长。但是这种AC LED的发光模式存在两个缺陷:一是可以应用电压范围在产品标准电压幅度的士10%范围內;二是照明亮度、电流等跟随电压波动。

实用新型內容恒流式AC LED照明装置

本实用新型的目的在于克服现有技术的不足,提出一种恒流式AC LED照明装置,由普通的LED外加AC交流电,同时配合整流模块、集成电路组成,能宽电压驱动,具有恒定的照明亮度,以克服现有的AC LED灯驱动电压太窄,照明亮度不稳定,高温工作不稳定等缺陷。

LED封装材料基础知识

LED封装材料基础知识 LED封装材料主要有环氧树脂,聚碳酸脂,聚甲基丙烯酸甲脂,玻瑪,有机硅材料等高透明材料。其中聚碳酸脂,聚甲基丙烯酸甲脂,玻璃等用作外层透鏡材料;环氧树脂,改性环氧树脂,有机硅材料等,主要作为 封装材料,亦可作为透镜材料。而高性能有机硅材料将成为高端LED封装材料的封装方向之一。下面将主要介绍有机硅封装材料。 提高LED封装材料折射率可有效减少折射率物理屏障带来的光子损失,提高光量子效率,封装材料的折射率是一个重要指标,越高越好。提高折射率可采用向封装材料中引入硫元素,引入形式多为硫瞇键、硫脂键等,以环硫形式将硫元素引入聚合物单体,并以环硫基团为反应杀团进行聚合则是一种较新的方法。最新的研发动态,也有将纳米无机材料与聚合物体系复合制备封装材料,还有将金属络合物引入到封装材料,折射率可以达到,甚至,这样不仅可以提高折射率和耐紫外辐射性,还可提高封装材料的综合性能。 一、胶水基础特性 有机硅化合物一聚硅氧烷简介 有机硅封装材料主要成分是有机硅化合物。有机硅化合物是指含有Si-0键、且至少有一个有机基是直接与硅原子相连的化合物,习惯上也常把那些通过氧、硫、氮等使有机基与硅原子相连接的化合物也当作有机硅化合物。其中,以硅氣键(-Si-O-Si-)为骨架组成的聚硅氧烷,是有机硅化合物中为数最多,研究最深、应用最广的一类,约占总用量的90%以上。 结构 其结构是一类以重复的Si-0键为主链,硅原子上直接连接有机基团的聚合物,其通式为R' ---(Si R R' ---0) n-一R”,其中,R、R'、R”代表基团,如甲基,苯基,痉基,H,乙烯基等;n 为重复的Si-0键个数(n不小于2)。 有机硅材料结构的独特性: (1) Si原子上充圧的基团将高能量的聚硅氧烷主链屏蔽起来: (2) C-H无极性,使分子间相互作用力十分微弱; (3) Si-0键长较长,Si-0-Si键键角大。 (4) Si-0键是具有50%离子键特征的共价键(共价键具有方向性,离子键无方向性)。 性能由于有机硅独特的结构,兼备了无机材料与有机材料的性能,具有表面张力低、粘温系数小、压缩性高、气体渗透性高等基本性质,并具有耐高低温、电气绝缘、耐氧化稳定性、耐候性、难燃、憎水、耐腐 蚀、无毒无味以及生理惰性等优异特性。

LED封装材料基础知识

封装材料基础知识 封装材料主要有环氧树脂,聚碳酸脂,聚甲基丙烯酸甲脂,玻璃,有机硅材料等高透明材料。其中聚碳酸脂,聚甲基丙烯酸甲脂,玻璃等用作外层透镜材料;环氧树脂,改性环氧树脂,有机硅材料等,主要作为封装材料,亦可作为透镜材料。而高性能有机硅材料将成为高端封装材料的封装方向之一。下面将主要介绍有机硅封装材料。 提高封装材料折射率可有效减少折射率物理屏障带来的光子损失,提高光量子效率,封装材料的折射率是一个重要指标,越高越好。提高折射率可采用向封装材料中引入硫元素,引入形式多为硫醚键、硫脂键等,以环硫形式将硫元素引入聚合物单体,并以环硫基团为反应基团进行聚合则是一种较新的方法。最新的研发动态,也有将纳米无机材料与聚合物体系复合制备封装材料,还有将金属络合物引入到封装材料,折射率可以达到1.6-1.8,甚至2.0,这样不仅可以提高折射率和耐紫外辐射性,还可提高封装材料的综合性能。 一、胶水基础特性 1.1有机硅化合物聚硅氧烷简介 有机硅封装材料主要成分是有机硅化合物。有机硅化合物是指含有键、且至少有一个有机基是直接与硅原子相连的化合物,习惯上也常把那些通过氧、硫、氮等使有机基与硅原子相连接的化合物也当作有机硅化合物。其中,以硅氧键(0)为骨架组成的聚硅氧烷,是有机硅化合物中为数最多,研究最深、应用最广的一类,约占总用量的90%以上。 1.1.1结构 其结构是一类以重复的键为主链,硅原子上直接连接有机基团的聚合物,其通式为R ’(R R ’ )n R ”,其中,R 、R ’、R ”代表基团,如甲基,苯基,羟基,H ,乙烯基等;n

为重复的键个数(n 不小于2)。 有机硅材料结构的独特性: (1)原子上充足的基团将高能量的聚硅氧烷主链屏蔽起来; (2)无极性,使分子间相互作用力十分微弱; (3)键长较长,键键角大。 (4)键是具有50%离子键特征的共价键(共价键具有方向性,离子键无方向性)。 1.1.2性能 由于有机硅独特的结构,兼备了无机材料与有机材料的性能,具有表面张力低、粘温系数小、压缩性高、气体渗透性高等基本性质,并具有耐高低温、电气绝缘、耐氧化稳定性、耐候性、难燃、憎水、耐腐蚀、无毒无味以及生理惰性等优异特性。 耐温特性:有机硅产品是以硅-氧(-O )键为主链结构的,C -C 键的键能为347,-O 键的键能在有机硅中为462,所以有机硅产品的热稳定性高,高温下(或辐射照射)分子的化学键不断裂、不分解。有机硅不但可耐高温,而且也耐低温,可在一个很宽的温度范围内使用。无论是化学性能还是物理机械性能,随温度的变化都很小。 耐候性:有机硅产品的主链为--O -,无双键存在,因此不易被紫外光和臭氧所分解。有机硅具有比其他高分子材料更好的热稳定性以及耐辐照和耐候能力。有机硅中自然环境下的使用寿命可达几十年。 电气绝缘性能:有机硅产品都具有良好的电绝缘性能,其介电损耗、耐电压、耐电弧、耐电晕、体积电阻系数和表面电阻系数等均在绝缘材料中名列前茅,而且它们的电气性能受温度和频率的影响很小。因此,它们是一种

LED封装材料基础知识(精)

LED 封装材料基础知识 LED 封装材料主要有环氧树脂,聚碳酸脂,聚甲基丙烯酸甲脂,玻璃,有机硅材料等高透明材料。其中聚碳酸脂,聚甲基丙烯酸甲脂,玻璃等用作外层透镜材料;环氧树脂,改性环氧树脂,有机硅材料等,主要作为封装材料,亦可作为透镜材料。而高性能有机硅材料将成为高端LED 封装材料的封装方向之一。下面将主要介绍有机硅封装材料。 提高LED 封装材料折射率可有效减少折射率物理屏障带来的光子损失,提高光量子效率,封装材料的折射率是一个重要指标,越高越好。提高折射率可采用向封装材料中引入硫元素,引入形式多为硫醚键、硫脂键等,以环硫形式将硫元素引入聚合物单体,并以环硫基团为反应基团进行聚合则是一种较新的方法。最新的研发动态,也有将纳米无机材料与聚合物体系复合制备封装材料,还有将金属络合物引入到封装材料,折射率可以达到1.6-1.8,甚至2.0,这样不仅可以提高折射率和耐紫外辐射性,还可提高封装材料的综合性能。 一、胶水基础特性 1.1有机硅化合物--聚硅氧烷简介 有机硅封装材料主要成分是有机硅化合物。有机硅化合物是指含有Si-O 键、且至少有一个有机基是直接与硅原子相连的化合物,习惯上也常把那些通过氧、硫、氮等使有机基与硅原子相连接的化合物也当作有机硅化合物。其中,以硅氧键(-Si-0-Si-)为骨架组成的聚硅氧烷,是有机硅化合物中为数最多,研究最深、应用最广的一类,约占总用量的90%以上。 1.1.1结构 其结构是一类以重复的Si-O 键为主链,硅原子上直接连接有机基团的聚合物,其通式为R ’---(Si R R ’ ---O)n --- R ”,其中,R 、R ’、R ”代表基团,如甲基,苯基,羟基,H ,乙烯基等;n

LED封装基础知识(精)

LED封装的一些介绍如下: 一导电胶、导电银胶 导电胶是IED生产封装中不可或缺的一种胶水, 其对导电银浆要求导电、导热性能要好,剪切强度一定要大,且粘结力要强。 二LED封装工艺 1. LED的封装的任务 是将外引线连接到LED芯片的电极上,同时保护好LED芯片, 并且起到提高光输出效率的作用。关键工序有装架、压焊、封装。 2. LED封装形式 LED封装形式可以说是五花八门,主要根据不同的应用场合采用相应的外形尺寸, LED按封装形式分类有Lamp-LED、TOP-LED、Side-LED、SMD-LED、High-Power-LED 等。 三LED封装工艺流程 1LED芯片检验? 镜检:材料表面是否有机械损伤及麻点麻坑 芯片尺寸及电极大小是否符合工艺要求,电极图案是否完整等等

2扩片 由于LED芯片在划片后依然排列紧密间距很小(约0.1mm,不利于后工序的操作。 我们采用扩片机对黏结芯片的膜进行扩张,是LED芯片的间距拉伸到约 0.6mm。 也可以采用手工扩张,但很容易造成芯片掉落浪费等不良问题。 3点胶 在LED支架的相应位置点上银胶或绝缘胶。(对于GaAs、SiC导电衬底,具有背面电极的红光、 黄光、黄绿芯片,采用银胶。对于蓝宝石绝缘衬底的蓝光、 绿光LED芯片,采用绝缘胶来固定芯片。 工艺难点在于点胶量的控制,在胶体高度、点胶位置均有详细的工艺要求。? 由于银胶和绝缘胶在贮存和使用均有严格的要求, 银胶的醒料、搅拌、使用时间都是工艺上必须注意的事项。 4备胶 和点胶相反,备胶是用备胶机先把银胶涂在LED背面电极上, 然后把背部带银胶的LED安装在LED支架上。 备胶的效率远高于点胶,但不是所有产品均适用备胶工艺。 5手工刺片

LED封装基本知识

LED封装基本知识 LED(发光二极管)封装是指发光芯片的封装,相比集成电路封装有较大不同。LED的封装不仅要求能够保护灯芯,而且还要能够透光,所以LED的封装对封装材料有特殊的要求。 封装简介 LED封装技术大都是在分立器件封装技术基础上发展与演变而来的,但却有很大的特殊性。一般情况下,分立器件的管芯被密封在封装体内,封装的作用主要是保护管芯和完成电气互连。而LED封装则是完成输出电信号,保护管芯正常工作,输出:可见光的功,既有电参数,又有光参数的设计及技术要求,无法简单地将分立器件的封装用于LED。 自上世纪九十年代以来,LED芯片及材料制作技术的研发取得多项突破,透明衬底梯形结构、纹理表面结构、芯片倒装结构,商品化的超高亮度(1cd以上)红、橙、黄、绿、蓝的LED产品相继问市,2000年开始在低、中光通量的特殊照明中获得应用。LED的上、中游产业受到前所未有的重视,进一步推动下游的封装技术及产业发展,采用不同封装结构形式与尺寸,不同发光颜色的管芯及其双色、或三色组合方式,可生产出多种系列,品种、规格的产品。 技术原理 大功率LED封装由于结构和工艺复杂,并直接影响到LED的使用性能和寿命,特别是大功率白光LED封装更是研究热点中的热点。LED封装的功能主要包括:1.机械保护,以提高可靠性;2.加强散热,以降低芯片结温,提高LED性能;3.光学控制,提高出光效率,优化光束分布;4.供电管理,包括交流/直流转变,以及电源控制等。 LED封装方法、材料、结构和工艺的选择主要由芯片结构、光电/机械特性、具体应用和成本等因素决定。经过40多年的发展,LED封装先后经历了支架式(Lamp LED)、贴片式(SMD LED)、功率型LED(Power LED)等发展阶段。随着芯片功率的增大,特别是固态照明技术发展的需求,对LED封装的光学、热学、电学和机械结构等提出了新的、更高的要求。为了有效地降低封装热阻,提高出光效率,必须采用全新的技术思路来进行封装设计。 关于LED封装结构说明 LED的核心发光部分是由p型和n型半导体构成的pn结管芯,当注入pn结的少数载流子与多数载流子复合时,就会发出可见光,紫外光或近红外光。但pn结区发出的光子是非定向的,即向各个方向发射有相同的几率,因此,并不是管芯产生的所有光都可以释放出来,这主要取决于半导体材料质量、管芯结构及几何形状、封装内部结构与包封材料,应用要求提高LED的内、外部量子效率。常规Φ5mm型LED封装是将边长0.25mm的正方形管芯粘结或烧结在引线架上,管芯的正极通过球形接触点与金丝,键合为内引线与一条管脚相连,负极通过反射杯和引线架的另一管脚相连,然后其顶部用环氧树脂包封。反射杯的作用是收集管芯侧面、界面发出的光,向期望的方向角内发射。顶部包封的环氧树脂做成一定形

LED基础知识-LED光源的封装讲义

本文由wugaojun119贡献 ppt文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 XX伯乐达光电科技XX LED基础知识/白光LED封装 陈志忠2007/8/31 XX伯乐达光电科技XX 伯乐达做的LED是A级! XX伯乐达光电科技XX JIangsu Bright Optoelectronic Technology Co.Ltd 伯乐达-Bright! XX伯乐达光电科技XX 提纲 LED基础知识 LED的概念,LED的发光原理LED的历史LED的基本参数,LED的结构,LED的产品分类,LED的产业链, 白光LED封装 白光LED的概念,白光LED的优点白光LED基本参数白光LED封装的基本工艺白光LED的封装技术 XX伯乐达光电科技XX 1.1 LED基本概念 LED是发光二极管LIGHT EMISSION DIODE ; LIGHT EMITTING DIODE . ? LED是通过半导体PN结把电能转化成光能的器件 + - XX伯乐达光电科技XX 1.2 LED的基础知识:基本原理 其核心是PN结。因此它具有一般P-N结的I-N特性,即正向导通,反向截止、击穿特性。在正向电压下,电子由N区注入P区,空穴由P 区注入N区。进入对方区域N 的少数载流子(少子)一部分与多数载流子(多子)复合而发光。量子阱把经过结区的电子空穴限制住,提高复合效率。 PN结-》量子阱 XX伯乐达光电科技XX 1.3 LED的基础知识:历史 XX伯乐达光电科技XX 1、1965年,全球第一款商用化发光二极管诞生,效率0.1lm/W,比白炽灯低100倍,售价45$/只。 2、1968年,LED的研发取得了突破性进展,利用氮掺杂工艺使GaAsP器件的效率达到了1流明/瓦,并且能够发出红光、橙光和黄色光。 3、1971年,GaP绿色芯片LED。用途:指示用,长寿命10万小时,可靠 4、80年代AlGaAs技术使得LED效率达到10流明/瓦,90年代的AlGaInP技术使得LED效率达到100流明/瓦。用途:显示,信号用。用于室外的运动信息发布以及汽车的高位刹车灯。 XX伯乐达光电科技XX 5、1994年,中村修二研制出了第一只GaN基高亮度蓝色发光二极管。用途:由于蓝光LED的出现,人们首次实现红黄蓝LED的全色显示,从90年代中期开始,许多广告、体育和娱乐场所开始应用LED大屏幕显示。 6、1997年,中村修二和美国人修博特先后研制出了GaN蓝色发光二极管激发黄光荧光粉得到白光LED,效率不足10lm/W。 7、2000年,

LED基础知识-LED光源的封装(讲义)

LED基础知识-LED光源的封装(讲义).txt我都舍不得欺负的人,哪能让别人欺负?一辈子那么长,等你几年算什么我爱的人我要亲手给她幸福别人我不放心 我想你的时候我一定要找得到你不许你们欺负他!全世界只有我才可以!放弃你,下辈子吧!!本文由wugaojun119贡献 ppt文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 江苏伯乐达光电科技有限公司 LED基础知识/白光LED封装 陈志忠 2007/8/31 江苏伯乐达光电科技有限公司 伯乐达做的LED是A级! 江苏伯乐达光电科技有限公司 JIangsu Bright Optoelectronic Technology Co.Ltd 伯乐达-Bright! 江苏伯乐达光电科技有限公司 提纲 LED基础知识 LED的概念, LED的发光原理 LED的历史 LED的基本参数, LED的结构, LED的产品分类, LED的产业链, 白光LED封装 白光LED的概念,白光LED的优点白光LED基本参数白光LED封装的基本工艺白光LED的封装技术 江苏伯乐达光电科技有限公司 1.1 LED基本概念 LED是发光二极管LIGHT EMISSION DIODE ; LIGHT EMITTING DIODE . ? LED是通过半导体PN结把电能转化成光能的器件 + - 江苏伯乐达光电科技有限公司 1.2 LED的基础知识:基本原理 其核心是PN结。因此它具有一般P-N结的I-N特性,即正向导通,反向截止、击穿特性。在正向电压下,电子由N区注入P区,空穴由P 区注入N区。进入对方区域 N 的少数载流子(少子)一部分与多数载流子(多子)复合而发光。量子阱把经过结区的电子空穴限制住,提高复合效率。 PN结-》量子阱 江苏伯乐达光电科技有限公司 1.3 LED的基础知识:历史 江苏伯乐达光电科技有限公司 1、1965年,全球第一款商用化发光二极管诞生,效率0.1lm/W,比白炽灯低100倍,售价45$/只。 2、1968年,LED的研发取得了突破性进展,利用氮掺杂工艺使GaAsP器件的效率达到了1流明/瓦,并且能够发出红光、橙光和黄色光。 3、1971年,GaP绿色芯片LED。用途:指示用,长寿命10万小时,可靠 4、80年代AlGaAs技术使得LED效率达到10流明/瓦, 90年代的AlGaInP技术使得LED效率达到100流明/瓦。用途:显示,信号用。用于室外的运动信息发布以及汽车的高位刹车灯。 江苏伯乐达光电科技有限公司 5、1994年,中村修二研制出了第一只GaN基高亮度蓝色发光二极管。用途:由于蓝

LED基础知识资料(精)

LED基础知识资料.txt这世界上除了我谁都没资格陪在你身边。听着,我允许你喜欢我。除了白头偕老,我们没别的路可选了什么时候想嫁人了就告诉我,我娶你。本文由ywg820502贡献 ppt文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 LED产品知识介绍目录一,LED简介 LED简介二,LED发展趋势 LED发展趋势三,LED芯片介绍 LED芯片介绍 四,LED封装简介 LED封装简介五,LED基础知识 LED基础知识目录一,LED简介LED简介二,LED发展趋势 LED发展趋势三,LED芯片介绍 LED芯片介绍四,LED 封装简介 LED封装简介五,LED基础知识 LED基础知识 LED简介 1,LED的定义LED的定义 2,LED的特点 LED的特点 3,发光原理什么是LED LED 是取自 Light Emitting Diode 三个字的缩写,中文译为 "发光二极管",顾名思义发光二极管是一种可以将电能转化为光能的电子器件具有二极管的特性. LED光源的特点 LED光源的特点电压:LED使用低压电源,单颗电压在1.9-4V之间,比使用高压电源更安全的电源. 效能:光效高,目前实验室最高光效已达到 161 lm/w(cree,是目前光效最高的照明产品. 抗震性:LED是固态光源,由于它的特殊性,具有其他光源产品不能比拟的抗震性. 稳定性:10万小时,光衰为初始的70% 响应时间:LED灯的响应时间为纳秒级,是目前所有光源中响应时间最快的产品. 环保:无金属汞等对身体有害物质. 颜 色:LED的带快相当窄,所发光颜色纯,无杂色光,覆盖整过可见光的全部波段,且可由R\G\B组合成任何想要可见光. LED色彩丰富由于LED带宽比较窄, 颜色纯度高,因此LED 的色彩比其他光源的色彩丰富得多. 据有关专家计算, LED的色彩比其他光源丰富30%,因此,它能够更准确的反应物体的真实性,当然也更受消费者的青睐! LED发光原理发光二极管的核心部分是由p 型半导体和n型半导体组成的晶片, 在p型半导体和n型半导体之间有一个过渡层,称为p-n结.在某些半导体材料的PN 结中,注入的少数载流子与多数载流子复合时会把多余的能量以光的形式释放出来,从而把电能直接转换为光能. PN结加反向电压,少数载流子难以注入,故不发光. LED发展趋势 1, LED光源的发展趋势 2, LED产业政策和机遇 3,公司在产业链中的位置 LED光源的发展趋势 LED光源技术市场前景: LED光源技术市场前景: 光源技术市场前景 LED理论上每瓦的发光效率高达370 LM/W,在目前芯片结构不做任何改变的情况下良好的工艺让LED每瓦到达150LM没有任何问题, 当达到这种亮度

相关主题
相关文档
最新文档