ADF单位根检验_具体操作

ADF单位根检验_具体操作
ADF单位根检验_具体操作

ADF检验:

单位根检验,把数据输入Eviews之后,点击左上角的View--Unit Root Test,(但

好像更好用一些),之后可以选择一阶、二阶差分之后的序列是否存在单位根,同时可以选检验的方程中是否存在存在趋势项、常数项等。

一般进行ADF检验要分3步:

1 对原始时间序列进行检验,此时第二项选level,第三项选None.如果没通过检验,说明原始时间序列不平稳;

2 对原始时间序列进行一阶差分后再检验,即第二项选1st difference,第三

项选intercept,若仍然未通过检验,则需要进行二次差分变换;

3 二次差分序列的检验,即第二项选择2nd difference ,第四项选择Trend and intercept.一般到此时间序列就平稳了!

看结果:

1%,5%,10%指的是显著水平,如果ADF检验值(t值)大于某显著水平值(一般是5%),

则不通过检验,即存在单位根(不平稳),此时,可通过一阶差分再来查看单位根是否平稳,

p值指的是接受原假设的概率。

在报告上的写法:

:r=0

H

: r=1

H

1

,序列有单位根,非平缓。反之……

如果ADF检验值>临界值,则接受H

(注:H

的写法,选中要设置为下标的字母,点击菜单栏格式——字体,选择效

果中的下标,确定。或直接选中的那个红色项进行格式设置)

操作:图/line&symbol

单位根过程和单位根检验

第二章 单位根过程和单位根检验 第一节 单位根过程 从本章开始我们进入时间序列的非平稳分析和建模研究。前面的章节的内容主要考虑的是平稳时间序列的建模和预测问题,但对于非平稳的时间序列,只有先进行差分处理,将其转换为平稳的时间序列模型。这样会损失部分信息。本章从理论上介绍非平稳时间序列的性质,讨论非平稳时间序列数据建模的伪回归问题。 非平稳序列的分析建立在维纳过程(布朗运动)和泛函中心极限定理之上。 一. 若干定义 定义1: (1)白噪声过程(white noise ,如图1)。属于平稳过程。 εε2 t t,t y =~iid(0,σ) 图3是日元兑美元差分序列(收益序列),近似于白噪声序列。 (2)随机游走过程(random walk ,如图2)。属于非平稳过程。 εε+2 t t-1t,t y =y ~iid(0,σ) 随机游走的差分过程是平稳过程(白噪声过程)。?yt =t ε。 -3 -2 -1 012 3 100120140160180200220240260280300 white noise -10 -50 510 20 40 60 80 140160y=y(-1)+u 图 1 白噪声序列(σ2=1) 图2 随机游走序列(σ2=1) 随机游走过程是非平稳的,这是因为: +t 012t y =y +u +u +u +t 012t 0E(y )=E(y +u +u +u )=y →∞22t 012t 12t D(y )=D(y +u +u ++u )=E(u +u ++u )=t σ 定义2:单位根过程

随机过程t,{y t =1,2,} 是一单位根过程,若t t-1t y =y +u t =1,2 t u 为一平稳过程,且t t t-s s E(u )=0,cov(u ,u )=μs =0,1,2 定义3:维纳过程 维纳过程(Wiener Process)也称为布朗运动过程(Brownian Motion Process)。 设W(t)是定义在闭区间[0,1]上一连续变化的随机过程,若该过程满足: (a) W(0)=0; (b) 对闭区间[0,1]上任意一组分割 12k 0≤t

单位根检验内容及标准规定样式分析

第八章 单位根检验 由于非平稳过程可能存在严重的伪回归问题,所以在对序列进行估计之前,需要检验序列的平稳性。本章介绍了严格的平稳性的统计检验方法--单位根检验。在简要介绍四种主要的非平稳随机过程以产输出单位根检验原理之后,文章主要介绍ADF 检验及PP 检验法,以及介结构突变和单位根检验。 8.1 四种典型非平稳过程简介 前面我们知道,若一个时间序列含有某种变动趋势,即该序列的均值或自协方差函数随时间而改变,则称该序列为非平稳序列。下面介绍四种典型的非平稳过程。 8.1.1随机游走过程 t t t y y ξ+=-1,t=1,2,... (8.11) 若}{t ξ为独立随机分布,即()0=t E ξ,()∞<=2σξt D 。则称}{t y 为随机游走过程(Random Walk Process )。随机游动过程是单位根过程的特例。在现实经济社会中,如股票价格的走势便是随机游走序列。下图是t t t y y ξ+=-1, ()1,0∈t ξ生成的序列。

图8.11 随机游走过程t t t y y ξ+=-1,()1,0∈t ξ生成的序列图 8.1.2随机趋势过程 t t t y y ξα++=-1,),0(2 σξIID t ∈, (8.12) 其中α称为漂移项,由于序列一阶差分后便趋于平稳,又称随机趋势过程为差分平稳过程。 图8.12 t t t y y ξ++=-11.0,()1,0∈t ξ生成的序列 8.1.3趋势平稳过程 t t t y ξβα++= ,其中t t t νρξξ+=-1,1<ρ,),0(2σν∈t (8.13) 由于t t t y ξαβ+=-,即当减去退势后为平稳过程,故趋势平稳过程又称为退势平稳过程。 由t t t y ξβα++=,t t t νρξξ+=-1知: 11)1(--+-+=t t t y ξβα (8.14) 将(4)两边同时乘以ρ,与(3)两边同时相减,整理可得: t t t y t y νρβα+++=-1'' , ),0(2σν∈t (8.15) 其中,ρβρααα+-=',ρβρβ-=' 这样便得出趋势平稳过程的另一种形式。

Eviews做单位根检验和格兰杰因果分析

Eviews做单位根检验和格兰杰因果分析 一,首先我根据ADF检验结果,来说明这两组数据对数情况下是否是同阶单整的(同阶单整即说明二者是协整的,这是一种协整检验的方法),我对你的两组数据分别作了单位根检验,结果如下: 1.LNFDI水平下的ADF结果: Null Hypothesis: LNFDI has a unit root Exogenous: Constant Lag Length: 2 (Automatic based on AIC, MAXLAG=3) Augmented Dickey-Fuller test statistic t-Statistic Prob.* -1.45226403166189 0.526994561264069 Test critical values: 1% level -4.00442492401717 5% level -3.09889640532337 10% level -2.69043949557234 *MacKinnon (1996) one-sided p-values. Warning: Probabilities and critical values calculated for 20 observations and may not be accurate for a sample size of 14 从上面的t-Statistic对应的值可以看到,-1.45226403166189大于下面所有的临界值,因此LNFDI在水平情况下是非平稳的。 然后我对该数据作了二阶,再进行ADF检验结果如下: t-Statistic Prob.* - 2.8606168858628 0.0770552989049772 Test critical values: 1% level -4.05790968439663 5% level -3.11990956512408 10% level -2.70110325490427 看到t-Statistic的值小于10% level下的-2.70110325490427,因此可以认为它在二阶时,有90%的可能性,是平稳的。 2.LNEX的结果: 它的水平阶情况与LNFDI类似,T统计值都是大于临界值的。因此水平下非平稳,但是二阶的时候,它的结果如下: t-Statistic Prob.* -4.92297051527175 0.00340857899403409

面板数据的单位根检验

;. 面板数据的单位根检验 1 LLC (Levin-Lin-Chu ,2002)检验(适用于相同根(common root )情形) LLC 检验原理是仍采用ADF 检验式形式。但使用的却是it y ?和it y 的剔出自相关和确定项影响的、标准的代理变量。具体做法是(1)先从? y it 和y it 中剔出自相关和确定项的影响,并使 其标准化,成为代理变量。(2)用代理变量做ADF 回归,*?ij ε=ρ*ij ε% + v it 。LLC 修正的?()t ρ 渐近服从N(0,1)分布。 详细步骤如下: H 0: ρ = 0(有单位根); H 1: ρ < 0。LLC 检验为左单端检验。 LLC 检验以如下ADF 检验式为基础: ? y it = ρ y i t -1 +∑=i k j j i 1γ? y i t -j + Z it 'φ + εit , i = 1, 2, …, N ; t = 1, 2, …, T (38) 其中Z it 表示外生变量(确定性变量)列向量,φ 表示回归系数列向量。 (1)估计代理变量。首先确定附加项个数k i ,然后作如下两个回归式, ? y it = ∑=i k j j i ? 1 γ? y i t -j + Z it '?φ +t i ε?

;. y i t -1 = ∑=i k j j i ~1 γ ? y i t -j + Z it 'φ%+1 ~-it ε 移项得 t i ε ?= ? y it -∑=i k j j i ?1 γ? y i t -j - Z it '?φ 1 ~-it ε= y it -∑=i k j j i ~1 γ? y i t -j - Z it 'φ% 把t i ε?和1 ~-it ε标准化, * ?ij ε= t i ε?/s i *ij ε%= 1~-it ε/s i 其中s i , i = 1, 2, …, N 是用(38)式对每个个体回归时得到的残差的标准差,从而得到? y it 和y it -1 的代理变量*?ij ε和* ij ε%。

单位根与协整检验

一、单位根检验的回顾 1、在实际应用中,何种情况下需要对单位根进行检验? 答:理论上,你在实际应用过程中,如果你遇到的样本是时间序列形式的,都要进行单位根检验。原因是,如果你的时间序列数据是单位根的话,类似于你的数据的变化是很不规则的,好像一个“醉汉”。从计量角度看,它影响了我们假设检验当中的“仪器”的准确性。 2、单位根检验的数学形式,或说你应当用数学方式会表述单位根检验的原假设。 3、学会在eviews上对一个时间序列变量进行单位根检验。 (1)如果一个变量具有单位根的特征,那么表示这个变量经过一次差分,就会变成平稳的。 (2)在eviews中,单位根检验的对象是series object。也就是,你要先打开一个series object,然后,在打开的窗口中点击view来观察这个序列是否具有单位根的特征。(3)要特别注意的是,eviews上如果你不

能拒绝你所检验的变量对象是一个单位根,那么此时并不一定表明你所检验的变量一定是I(1),也可能是I(2)或I(3)等更高阶的单整。要注意的是,只要你检验的变量是非平稳的,都会接受原假设。 (4)在eveiws单位根检验要遵循如下的步骤:第一,先对变量(比如Y)进行水平数据的单位根检验(level);第二,如果水平数据拒绝原假设(即不存在单位根),那么检验停止,说明水平数据是一个平稳的时间序列变量;第三,如果水平数据的检验接受原假设,仅能说明你检验的变量是非平稳的,此时需要继续对这个变量的一阶差分进行单位根检验(1S difference)。如果此时拒绝原假设,那么,检验停止,表明这个变量要经过两次差分才会平稳,否则,继续对二阶差分进行单位根检验(1S difference)。总之,检验的目的是判断,到底你所检验的变量经过几次差分后才会平稳?所以,检验一定要到差分平稳后为止。 (5)对你而言,由于有不同的单位根检验方法,所以一个不错的选择是,你同时用不

单位根过程和单位根检验

第二章单位根过程和单位根检验 第一节单位根过程 从本章开始我们进入时间序列的非平稳分析和建模研究。前面的章 节的内容主要考虑的是平稳时间序列的建模和预测问题,但对于非平 稳的时间序列,只有先进行差分处理,将其转换为平稳的时间序列模 型。这样会损失部分信息。本章从理论上介绍非平稳时间序列的性质, 讨论非平稳时间序列数据建模的伪回归问题。 非平稳序列的分析建立在维纳过程(布朗运动)和泛函中心极限定 理之上。 若干定义 定义1: (1) 白噪声过程(white noise ,如图1 )。属于平稳过程。 2 Y t =也 t ?iid (0,(T ) 图3是日元兑美元差分序列(收益序列),近似于白噪声序列。 (2) 随机游走过程(random walk ,如图2)。属于非平稳过程 2 Y t =Y t-i ;t, i ?iid (0,(T ) 随机游走过程是非平稳的,这是因为: y t =y o + U i + U 2 + W u t E(y t ) = E(y 0 + U 1+ U 2+丨1( u 」= y o 2 2 — D(y t ) = D(y o + U i + U 2 + IH+U t ) = E(u i + U 2 + 1卄+U t ) = t ^一 : 定义2 :单位根过程 随机过程{y t,t = 1,2,|||}是一单位根过程,若y t =y t_i + u t = 1,2||| U t 为一平稳过程,且 E(U t )= 0,cov(U t ,U t-s )= Ms S= 0,1,2||| CT 2 =1 ) 随机游走的差分过程是平稳过程(白噪声过程)。心yt = §

单位根过程

单位根过程 1、为什么进行单位根检验 单位根检验是检验序列中是否存在单位根,因为存在单位根就是非平稳时间序列了。单位根就是指单位根过程,可以证明,序列中存在单位根过程就不平稳,会使回归分析中存在伪回归。但是进行单位根检验的序列需服从I(d)过程。当然从变量的自相关图和偏相关图也可以判断序列是否平稳,但准确度不高。而单位根检验平稳性是比较准确的,主要方法是DF检验以及ADF检验。 2、什么是单位根检验 单位根检验是针对宏观经济数据序列、货币金融数据序列中是否具有某种统计特性而提出的一种平稳性检验的特殊方法,单位根检验的方法有很多种,包括ADF检验、PP检验、NP检验等。单位根检验时间序列的单位跟研究是时间序列分析的一个热点问题。 时间序列矩特性的时变行为实际上反映了时间序列的非平稳性质。对非平稳时间序列的处理方法一般是将其转变为平稳序列,这样就可以应用有关平稳时间序列的方法来进行相应得研究。对时间序列单位根的检验就是对时间序列平稳性的检验,非平稳时间序列如果存在单位根,则一般可以通过差分的方法来消除单位根,得到平稳序列。 对于存在单位根的时间序列,一般都显示出明显的记忆性和波动的持续性,因此单位根检验是本书中有关协整关系存在性检验和序列波动持续性讨论的基础。 3、单位根过程 定义2-1 随机序列{x_t },t=1,2,…是一单位根过程,若x_t=ρx_t-1+ε,t=1,2…(1)其中ρ=1,{ε}为一平稳序列,且 E[ε]=0, V(ε)=σ<∞, Cov(ε,ε)=μ<∞这里τ=1,2…。特别地,若{ε}是独立同分布的,且E[ε]=0,V(ε)=σ<∞,则式(1)就变成一个随机游走序列,因此随机游走序列是一种最简单的单位根过程。将式(1)改写为下列形式:( 1-ρL)x_t=ε,t=1,2,…其中L 为滞后算子,1-ρL为滞后算子多项式,其特征方程为1-ρz=0,有根z= 。当ρ=1时,时间序列存在一个单位根,此时{ }是一个单位根过程。当ρ<1时,{x_t}为平稳序列。而当ρ〉1时,{x_t}为一类具有所谓爆炸根的非平稳过程,它经过差分后仍然为非平稳过程,因此不为单整过程。一般情况下,单整过程可以称作单位根过程。在经济、金融时间序列中,常会遇到ρ非常接近1的情况,成为近似单位根现象。近似单位根是介于平稳序列I(0)和单正序列I(1)之间。一般情况下,单整过程可以称作单位根过程。 4、单位根检验的基础 单位根检验是建立ARMA模型、ARIMA模型、变量间的协整分析、因果关系检验等的基础。自Nelson和Plosser利用ADF检验研究了美国名义GNP等14 个历史经济和金融时间序列的平稳性以后,单位根检验业已成为分析经济和金融时间序列变化规律和预测的重要组成部分。因此,单位根检验作为一种特殊的假设检验,其可靠性的研究以及如何寻求可靠性较高的检验方法或统计量多年来一直是时间序列分析中的重要课题。

用EVIEWS处理时间序列汇总

应用时间序列分析 实验手册

目录 目录 (2) 第二章时间序列的预处理 (3) 一、平稳性检验 (3) 二、纯随机性检验 (9) 第三章平稳时间序列建模实验教程 (10) 一、模型识别 (10) 二、模型参数估计(如何判断拟合的模型以及结果写法) (14) 三、模型的显著性检验 (17) 四、模型优化 (18) 第四章非平稳时间序列的确定性分析 (19) 一、趋势分析 (19) 二、季节效应分析 (34) 三、综合分析 (38) 第五章非平稳序列的随机分析 (44) 一、差分法提取确定性信息 (44) 二、ARIMA模型 (58) 三、季节模型 (62)

第二章时间序列的预处理 一、平稳性检验 时序图检验和自相关图检验 (一)时序图检验 根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常数值附近随机波动,而且波动的范围有界、无明显趋势及周期特征 例2.1 检验1964年——1999年中国纱年产量序列的平稳性 1.在Eviews软件中打开案例数据 图1:打开外来数据 图2:打开数据文件夹中案例数据文件夹中数据

文件中序列的名称可以在打开的时候输入,或者在打开的数据中输入 图3:打开过程中给序列命名 图4:打开数据

2.绘制时序图 可以如下图所示选择序列然后点Quick选择Scatter或者XYline;绘制好后可以双击图片对其进行修饰,如颜色、线条、点等 图1:绘制散点图 图2:年份和产出的散点图

100 200300400 5006001960 1970198019902000 YEAR O U T P U T 图3:年份和产出的散点图 (二)自相关图检验 例2.3 导入数据,方式同上; 在Quick 菜单下选择自相关图,对Qiwen 原列进行分析; 可以看出自相关系数始终在零周围波动,判定该序列为平稳时间序列。 图1:序列的相关分析

eviews各种检验

(一)、ADF是单位根检验,第一列数据y做ADF检验,结果如下 Null Hypothesis: Y has a unit root Exogenous: Constant, Linear Trend 外因的 Lag Length: 0 (Automatic based on SIC, MAXLAG=10) t-Statistic Prob.* Augmented Dickey-Fuller test statistic -3.820038 0.0213 Test critical values: 1% level -4.098741 5% level -3.477275 10% level -3.166190 在1%水平上拒绝原假设,序列y存在单位根,为不平稳序列。但在5%、10%水平上均接受原假设,认为y平稳。 对y进行一阶差分,差分后进行ADF检验: Null Hypothesis: Y has a unit root Exogenous: None Lag Length: 0 (Automatic based on SIC, MAXLAG=10) t-Statistic Prob.* Augmented Dickey-Fuller test statistic -9.328245 0.0000 Test critical values: 1% level -2.599934 5% level -1.945745 10% level -1.613633 可见,在各水平上y都是平稳的。因此,可以把原序列y看做一阶单整。 第二列xADF检验如下: Null Hypothesis: X has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic based on SIC, MAXLAG=10) t-Statistic Prob.* Augmented Dickey-Fuller test statistic -3.216737 0.0898 Test critical values: 1% level -4.098741 5% level -3.477275

(完整版)EViews面板数据模型估计教程

EViews 6.0 beta在面板数据模型估计中的应用 来自免费的minixi 1、进入工作目录cd d:\nklx3,在指定的路径下工作是一个良好的习惯 2、建立面板数据工作文件workfile (1)最好不要选择EViews默认的blanaced panel 类型 Moren_panel (2)按照要求建立简单的满足时期周期和长度要求的时期型工作文件

3、建立pool对象 (1)新建对象 (2)选择新建对象类型并命名 (3)为新建pool对象设置截面单元的表示名称,在此提示下(Cross Section Identifiers: (Enter identifiers below this line )输入截面单元名称。,建议采用汉语拼音,例如29个省市区的汉语拼音,建议在拼音名前加一个下划线“_”,如图

关闭建立的pool对象,它就出现在当前工作文件中。 4、在pool对象中建立面板数据序列 双击pool对象,打开pool对象窗口,在菜单view的下拉项中选择spreedsheet (展开表) 在打开的序列列表窗口中输入你要建立的序列名称,如果是面板数据序列必须在序列名后添加“?”。例如,输入GDP?,在GDP后的?的作用是各个截面单元的占位符,生成了29个省市区的GDP的序列名,即GDP后接截面单元名,再在接时期,就表示出面板数据的3维数据结构(1变量2截面单元3时期)了。

请看工作文件窗口中的序列名。展开表(类似excel)中等待你输入、贴入数据。 (1)打开编辑(edit)窗口

(2)贴入数据 (3)关闭pool窗口,赶快存盘见好就收6、在pool窗口对各个序列进行单位根检验 选择单位根检验 设置单位根检验

单位根检验

平稳性的单位根检验:DF检验、ADF检验、DFGLS检验、PP检验、KPSS检验、ERS检验和NP检验 (2011-12-21 12:13:27) ADF检验 作用 检查序列平稳性的标准方法是单位根检验。有6种单位根检验方法:ADF检验、DFGLS检验、PP检验、KPSS检验、ERS检验和NP检验,本节将介绍DF检验、ADF 检验。 比较 ADF检验和PP检验方法出现的比较早,在实际应用中较为常见,但是,由于这2种方法均需要对被检验序列作可能包含常数项和趋势变量项的假设,因此,应用起来带有一定的不便;其它几种方法克服了前2种方法带来的不便,在剔除原序列趋势的基础上,构造统计量检验序列是否存在单位根,应用起来较为方便。 来源 ADF检验是在Dickey-Fuller检验(DF检验)基础上发展而来的。因为DF检验只有当序列为AR(1)时才有效。如果序列存在高阶滞后相关,这就违背了扰动项是独立同分布的假设。在这种情况下,可以使用增广的DF检验方法(augmented Dickey-Fuller test )来检验含有高阶序列相关的序列的单位根。 步骤 一般进行ADF检验要分3步: 1 对原始时间序列进行检验,此时第二项选level,第三项选None.如果没通过检验,说明原始时间序列不平稳; 2 对原始时间序列进行一阶差分后再检验,即第二项选1st difference,第三项选intercept,若仍然未通过检验,则需要进行二次差分变换; 3 二次差分序列的检验,即第二项选择2nd difference ,第四项选择Trend and intercept.一般到此时间序列就平稳了! 在进行ADF检验时,必须注意以下两个实际问题: (1)必须为回归定义合理的滞后阶数,通常采用AIC准则来确定给定时间序列模型的滞后阶数。在实际应用中,还需要兼顾其他的因素,如系统的稳定性、模型的拟合优度等。 (2)可以选择常数和线性时间趋势,选择哪种形式很重要,因为检验显著性水平的 t 统计量在原假设下的渐近分布依赖于关于这些项的定义。 ①若原序列中不存在单位根,则检验回归形式选择含有常数,意味着所检验的序列的均值不为0;若原序列中存在单位根,则检验回归形式选择含有常数,意味着所检验的序列具有线性趋势,一个简单易行的办法是画出检验序列的曲线

单位根检验详解

第2节 单位根检验 由于虚假回归问题的存在,因此检验变量的平稳性是一个必须解决的问题。在第十二章中介绍用相关图判断时间序列的平稳性。这一章则给出序列平稳性的严格的统计检验方法,即单位根检验。单位根检验有很多方法,这里主要介绍DF 和ADF 检验。 序列均值为0则无C ,序列无时间趋势则无trend 在介绍单位根检验之前,先认识四种典型的非平稳随机过程。 1、四种典型的非平稳随机过程 (1)随机游走过程。 y t = y t -1 + u t , y 0 = 0, u t ~ IID(0, σ 2) 其均值为零,方差无限大(?),但不含有确定性时间趋势。(见图1a )。 -10 -5 5 10 20 40 60 140160y=y(-1)+u 1200 1400 1600 1800 2000 2200 图1a 由y t = y t -1+ u t 生成的序列 图1b 深证成指 (2)随机趋势过程。 y t = α + y t -1 + u t , y 0 = 0, u t ~ IID(0, σ 2) 其中α称作位移项(漂移项)。由上式知,E(y 1)= α(过程初始值的期望)。将上式作如下迭代变换, y t = α + y t -1 + u t = α+ (α+ y t -2 + u t -1) + u t = … = αt +y 0 +∑-t i i u 1

y t 由确定性时间趋势项αt 和y 0 +∑-t i i u 1 组成。可以把y 0 +∑-t i i u 1 看作随机 的截距项。在不存在任何冲击u t 的情况下,截距项为y 0。而每个冲击u t 都表现为截距的移动。每个冲击u t 对截距项的影响都是持久的,导致序列的条件均值发生变化,所以称这样的过程为随机趋势过程(stochastic trend process ),或有漂移项的非平稳过程(non-stationary process with drift ),见图2,虽然总趋势不变,但随机游走过程围绕趋势项上下游动。由上式还可以看出,α是确定性时间趋势项的系数(原序列y t 的增长速度)。α为正时,趋势向上;α为负时,趋势向下。 20 40 60 80 stochastic trend process -100 -80-60-40-20 020 1002003004005006007008009001000 y=-0.1+y(-1)+u 图2a 由y t =0.1+ y t -1+ u t 生成的序列 图2b 由y t =- 0.1+ y t -1+ u t 生成的序列 因为对y t 作一次差分后,序列就平稳了, ? y t = y t - y t -1 = α + u t (平稳过程) 所以也称y t 为差分平稳过程(difference- stationary process )。α是? y t 序列的均值,原序列y t 的增长速度。 (3)趋势平稳过程 y t = β0 + β1 t + u t , u t = ρu t -1 + v t , (ρ <1, v t ~ IID(0, σ2)) y t 与趋势值 β0+β1t 不同,差值为u t 。因为u t 是平稳的,y t 只会

面板数据的单位根检验

面板数据的单位根检验 1 LLC (Levin-Lin-Chu ,2002)检验(适用于相同根(common root )情形) LLC 检验原理是仍采用ADF 检验式形式。但使用的却是it y ?和it y 的剔出自相关和确定项影响的、标准的代理变量。具体做法是(1)先从? y it 和y it 中剔出自相关和确定项的影响,并使 其标准化,成为代理变量。(2)用代理变量做ADF 回归,*?ij ε=ρ*ij ε% + v it 。LLC 修正的?()t ρ 渐近服从N(0,1)分布。 详细步骤如下: H 0: ρ = 0(有单位根); H 1: ρ < 0。LLC 检验为左单端检验。 LLC 检验以如下ADF 检验式为基础: ? y it = ρ y i t -1 +∑=i k j j i 1γ? y i t -j + Z it 'φ + εit , i = 1, 2, …, N ; t = 1, 2, …, T (38) 其中Z it 表示外生变量(确定性变量)列向量,φ 表示回归系数列向量。 (1)估计代理变量。首先确定附加项个数k i ,然后作如下两个回归式, ? y it = ∑=i k j j i ? 1 γ? y i t -j + Z it '?φ +t i ε?

y i t -1 = ∑=i k j j i ~1 γ ? y i t -j + Z it 'φ%+1 ~-it ε 移项得 t i ε ?= ? y it -∑=i k j j i ?1 γ? y i t -j - Z it '?φ 1 ~-it ε= y it -∑=i k j j i ~1 γ? y i t -j - Z it 'φ% 把t i ε?和1 ~-it ε标准化, * ?ij ε= t i ε?/s i *ij ε%= 1~-it ε/s i 其中s i , i = 1, 2, …, N 是用(38)式对每个个体回归时得到的残差的标准差,从而得到? y it 和y it -1 的代理变量*?ij ε和* ij ε%。 (2)用代理变量*?ij ε和* ij ε%作如下回归,

15单位根检验ADL模型

第9章 单位根检验 9.1 DF 分布 由于虚假回归问题的存在,在回归模型中应避免直接使用非平稳变量。因此检验变量的平稳性是一个必须解决的问题。在第二章中介绍用相关图判断时间序列的平稳性。这一章则给出严格的统计检验方法,即单位根检验。 先给出三个简单的自回归数据生成过程(d.g.p .), y t = y t -1 + u t , y 0 = 0, u t ~ IID(0, σ 2) (9.1) y t = μ + y t -1 + u t , y 0 = 0, u t ~ IID(0, σ 2) (9.2) y t = μ + α t + y t -1 + u t , y 0 = 0, u t ~ IID(0, σ 2 ) (9.3) 其中μ 称作位移项(漂移项),α t 称为趋势项。 显然,对于以上三个模型中的y t 都是非平稳的。 (9.1) 式是无漂移项和趋势项的随机游走过程。见图9.1a 。 (9.2) 式是随机趋势过程。将(9.2) 式做如下变换则展示的更清楚。 y t = μ + y t -1 + u t = μ + (μ + y t -2 + u t -1) + u t = … = y 0 + μ t + ∑-t i i u 1 = μ t + ∑-t i i u 1 (9.4) -10 -5 5 10 20 40 60 80 100120140160180200 y=y(-1)+u 1200 1400 1600 1800 2000 2200 50100150200250300 图9.1a 由y t = y t -1+ u t 生成的序列 图9.1b 深圳股票综合指数(file:stock ) 这是一个趋势项和一个随机游走过程之和。所以称作随机趋势过程,见图9.2,虽然总趋势向上,但误差项上下漂动。因为对y t 作一次差分 ? y t = y t - y t -1 = μ + u t (平稳) (9.5) 序列就平稳了,所以也称y t 为差分平稳过程。 -20 0204060 801001201002003004005006007008009001000y=0.1+y(-1)+u -100 -80-60-40 -20 020 1002003004005006007008009001000 y=-0.1+y(-1)+u 图9.2a 由y t = 0.1+ y t -1+ u t 生成的序列 图9.2b 由y t = - 0.1+ y t -1+ u t 生成的序列(file:simu2)

用eviews检验时间系列是否存在单位根

我国1978-2003年GDP数据平稳性分析实验报告 开机进入eviews系统,建立时间序列,导入以下数据: x(年度)y(GDP)x(年度)y(GDP) 1978 3624.1 1991 21617.8 1979 4038.2 1992 26638.1 1980 4517.8 1993 34634.4 1981 4862.4 1994 46759.4 1982 5294.7 1995 58478.1 1983 5934.5 1996 67884.6 1984 7171 1997 74462.6 1985 8964.4 1998 79395.7 1986 10202.2 1999 82067.5 1987 11962.5 2000 89468.1 1988 14928.3 2001 97314.8 1989 16909.2 2002 105172.3 1990 18547.9 2003 116898.4 绘制y的时序图可初步判断该序列是不平稳的。如图所示: 120000 100000 80000 60000 40000 20000 78808284868890929496980002 Y 接着进行单位根检验:

输入y,弹出如下窗口: 选择ADF检验,level(水平序列),trend and intercept,滞后期数设为2.得到: 可知,在原假设下,单位根的t检验统计量的值为-0.786011,比在1%,5%,10%这三个显著性水平下的单位根检验的临界值都要大,故接受原假设,可知该时间序列存在单位根,为非平稳序列。 继续对该序列的一阶差分进行检验。 得到

单位根检验精编版

单位根检验 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

一、单位根检验面板数据增强了稳定性,但是也需要进行单位根检验。 面板数据单位根检验有四种方法: 1、LLC检验?需要安装命令searchlevinlin,net,要求各截面单元具有同质性, H0:具有单位根 命令:levinlin?varname,lags(n) 2、IPS检验?安装命令searchipshin,net,各截面存在异质单位根 H0:具有单位根 命令:ipshinvarname,lags(n) 3、fisherADF检验 命令:xtfishervarname,lags(n)对统计量样本容量和滞后期较为稳健,并且适用于非平衡面板数据 4、fisherPP检验 命令:xtfishervarname,lags(n)pp?N较大时必须对P进行修正,即为fisherPPtest 以上各种,还可以加入trend,时间趋势项。加入存在单位根需要差分后再检验。差分即D.varname 注意:以上各种在使用前均需要xtset设置好面板数据。

helpxtunitroot?默认带有截距项 二、协整检验 1、在Stata中对面板数据进行协整检验的命令是xtwest, ?命令安装sscinstallxtwest ?命令:xtwestdepvarvarlist[ifexp][inrange],lags(#[#])leads(#[#]) ?具体使用时可以help 通过了协整检验,说明变量之间存在着长期稳定的均衡关系,其方程回 归残差是平稳的。因此可以在此基础上直接对原方程进行回归,此时的 回归结果是较精确的。 三、长面板的处理 长面板N相对较小,T相对较大,扰动项不一定服从iid分布,需要估计 扰动项的具体形式,然后使用广义最小二乘法(FGLS)进行估计。长面 板数据关注的焦点在于设定扰动项相关的具体形式,用于提高估计的效率。在对长面板估计时需要确定是否存在异方差或者自相关,因此需要 进行检验。 1、组间异方差的检验 quietlyxtglsladdindu?L.lofdi?huilother,iglspanel(het) eststorehetero quietlyxtgls?laddindL.lofdihuilother,igls eststorehomo localdf=e(N_g)-1lrtestheterohomo,df(`df')

相关文档
最新文档