基本初等函数知识点(一轮复习)

基本初等函数知识点(一轮复习)
基本初等函数知识点(一轮复习)

基本初等函数

中学阶段(初高中)我们只要求掌握基本初等函数及其复合函数即可。什么是基本初等函数?就是那些:幂函数(一次二次负一次)、指数、对数、三角等。力求在这些具体函数中,运用函数的性质(奇偶性、周期、单调等的性质),掌握某些函数的特殊技巧。

一、一次函数

初中的一个函数,Primary基本、简单而又很重要。解析式:y=kx+b或y=ax+b,通常我们会这样设。那么高中我们在什么地方会用到它呢?解析几何中我们会设直线;线性规划会有好多跟直线;也容易在函数里面作为条件表达一下……

画出以下解析式的图像:要求快

(1)y=x+1; (2)y=x-1 (3)y=-x+1 (4)y=-x-1 (5)x=1(6)y=1 (7)y=2x

根据以下条件,设出一次函数的解析式:

(1)直线经过(1,2)点

(2)直线的斜率是2

总结:两个参数主宰斜率和与y轴的交点位置。因为两个参数,所以要有两个条件才能解得解析式。

二、二次函数

二次函数的大部分内容在另外一个讲义里面已经讲述了,这里补遗强调一下。十分重要的内容,属于幂函数中最重要的一类。二次函数图象的应用与其最值问题是高考的热点,题型多以小题或大题中关键的一步的形式出现,主要考查二次函数与一元二次方程及一元二次不等式三者的综合应用,幂函数的内容要求较低,只要求会简单幂函数的图象与性质.

1、二次函数的三种表示形式

(1)一般式:y=ax2+bx+c,(a≠0);

(2)顶点式:y=a(x-h)2+k(顶点坐标为(h,k));

(3)双根式:y=a(x-x1)(x-x2)(图象与x轴的交点为(x1,0),(x2,0))

求一元二次解析式:将题目有的条件表示一下,没有难度,过场的题目而已

Eg:已知二次函数f(x)同时满足条件:(1)f(1+x)=f(1-x);(2)f(x)的最大值为15;(3)f(x)=0的两根平方和等于7.求f(x)的解析式.

Ans:f(1+x)=f(1-x)知二次函数对称轴为x=1.

∴已知最大值和对称轴,用顶点式,设f(x)=a(x-1)2+15=ax2-2ax+15+a.

∵x21+x22=7 即(x1+x2)2-2x1x2=7

∴4-2(15+a)a

=7,∴a =-6.

2、二次函数在特定区间上的最值问题

EX :函数y=x 2+4x+3在[-1,0]上的最大值是________,最小值是________.

解析:y=x 2+4x+3=(x+2)2-1,对称轴x=-2,在[-1,0]的左侧,所以在[-1,0]上单调递增.故当x=0

时,f(x)取最大值f(0)=3;当x=-1时,f(x)取最小值f(-1)=0. 答案:3 0

进阶Eg :(建议一做):已知函数f(x)=-x 2+2mx+1-m 在0≤x ≤1时有最大值2, 求m 的值 (1)若(2b x a =-

<=0) (2)若(0<2b x a =-<1) (3)若(2b

x a

=->=1) key:m=-1 or m=2 解析:每种情况分别画出草图。原草图作法:求根得到与x 轴的交点,c 与y 轴的交点,a

看开口,估计着画。但是这里m 为参数解不出根,c 也未知。题目的条件是固定区间的最值,我们只要知道定义域内的增减性(单调性)即可,由于已经知道开口向下,所以只要分类讨论对称轴的位置即可。123问分别是分类讨论的三种情况

进阶Ex :已知f(x)=x 2+3x-5,x ∈[t,t+1],若f(x)的最小值为h(t),写出h(t)的表达式.

解析:所求二次函数解析式(所以图像也)固定,区间变动,可考虑区间在变动过程中,二次函数的单调性,从而利用二次函数的单调性求函数在区间上的最值.

()()()()()()()()2

2 [],x 1t 1,t ,h t f t 1t 13t 15,h 3

,

2

3551.

222353329

1,.

2222t t 5t 24t t ,h t t t f -??-- ??=+-=+=+++-=+-<=???-<+---=- ???Q 解如图所示函数图象的对称轴为当≤即≤时即≤当≤即≤时()()()2223

2

551,22953(),

3t ,h t f t t 3t 542

23.

.

352t t t h t t t t t -???+-- ?>==+????

???

=--<-? ??????

?+->-? ???

-?当时≤综上可得≤

3、方法技巧:待定系数法,恒成立问题之分离变量

Eg/Ex:已知二次函数f(x)满足f(x +1)-f(x)=2x ,且f(0)=1. (1)求f(x)的解析式;

(2)在区间[-1,1]上,函数f(x)的图象恒在直线y =2x +m 的上方,求实数m 的取值范围. ()()()()2222222min 1(0)(1)(1)112221

.1.

111[1,1]112231.1(3)2121.f x ax bx a a x b x ax bx x a b b a f x x x a b b x x x x m x x m x x x m m ≠+=+=????++==-??

∈>><<设函数=++, ∵f(x+1)-f(x)=2x 带入假设的解析式则++++=+++,

整理得,解得所以=-+当-时,由-++,得--当=时,-=-【解析】,所以--,则-故实数(1)m ∞的取值范围是-,-.

Ex :若函数f(x)是一次函数,且f[f(x)]=4x +3,且f(1)=3。X^2+m+2>f(x)在R 上恒成立

(1)求f(x)的解析式;(2)求m的取值。

Key:f(x)=2x+1;m>0

三、幂函数

解析式()a

f x x

,当a=1时,一次函数;当a=2时,二次函数;当a=-1时,反比例函

数;当a=1

2

时,y=x。幂函数只要求掌握a为某些特殊值的时候的图象即可。

幂函数性质的推广

(1)一般地,当α>0时,幂函数y=xα有下列性质:

①图象都通过点(0,0),(1,1);

②在第一象限内,函数值随x的增大而增大【也就是x>0单调递增咯】

③在第一象限内,α>1时,图象是向下凹的;0<α<1时,图象是向上凸的;

④在第一象限内,过(1,1)点后,图象向右上方无限伸展.

(2)当α<0时,幂函数y=xα有下列性质:

①图象都通过点(1,1)

②在第一象限内,函数值随x的增大而减小,图象是向下凹的;【也就是x>0单调递减咯】

③在第一象限内,图象向上与y轴无限地接近,向右与x轴无限地接近;

④在第一象限内,过(1,1)点后,|α|越大,图象下落的速度越快.

1、看指数判断图象

前人归纳的结论:幂函数的图象一定会出现在第一象限,一定不会出现在第四象限,是否在第二、三象限内出现,要看奇偶性;在(0,1)上幂函数中指数愈大,函数图象愈靠近x轴(简记“指大图低”)在(1,+∞)上,幂函数中指数越大,函数图象越远离x轴.

Eg:如上图,为幂函数y=x^n在第一象限的图象,则C1、C2、C3、C4的大小关系为( ) A.C1>C2>C3>C4B.C2>C1>C4>C3

C.C1>C2>C4>C3 D.C1>C4>C3>C2

【解析】观察图形可知,C1>0,C2>0,且C1>1,而0

Ex:如上图是幂函数y=xm和y=xn在第一象限内的图象,则()

A.-1

C.-11 D.n<-1,m>1 key:A

2、比较大小---利用幂函数的单调性比较大小要注意以下几点:

(1)将要比较的两个数都写成同一个函数的函数值的形式. (2)构造的幂函数,要分析其单调性.

(3)注意两个函数值要在同一个单调区间上取到.

(4)若直接不易比较大小,可构造中间值,间接比较其大小.(中间值通常选用0、1)

3、幂函数的概念(补加的)

()()()()()()2

21(2)1234m m f x m m x m f x +-已知=+,实数为何值时,是:

正比例函数;反比例函数;二次函数;幂函数.

()()()()22

22

20

11120

111

12m m f x m m m m m f x m m m ?+≠??+-=???+≠??+-=-??若是正比例函数,则,解得=;若是反比例函数,则,解得=-;

()()()()22

220

11312211 2.

34m m f x m m m f x m m m ?+≠-±??+-=??

若是二次函数,则,解得=若是幂函数,则+=,解得

=-

()2

21Ex :(21)m m f x m m x m +-已知函数=++是幂函数且其图象过坐标原点,则实数=____

2

2211()

2.

10(a 0)m m m m m ?++=??+->>??幂函数【解前面的系数是1由题设知,解得=-过原点析就是】

四、指数函数

指数函数是高中新学的,反应相同的底数a被自乘x次的结果。同时它也是理解对数函数的基础。

1、指数运算能力

*根式的性质

:n a

=;当n为奇数时

,a

=;当n为偶数时,

(0)

||

(0)

a a

a

a a

?

==?

-<

?.

(2)分数指数幂的概念

①正数的正分数指数幂的意义是:0,,,

m

n

a a m n N

+

=>∈且1)

n>.0的正分数指数幂等于0.

②正数的负分数指数幂:

1

()0,,,

m m

n n

a a m n N

a

-

+

==>∈且1)

n>.0的负分数指数幂没有意义.注意口诀:底数取倒数,指数取相反数.

(3)分数指数幂的运算性质

(0,,)

r s r s

a a a a r s R

+

?=>∈如果是除法就相减咯。

()(0,,)

r s rs

a a a r s R

=>∈

()(0,0,)

r r r

ab a b a b r R

=>>∈

解决此类问题的关键是利用幂指式的运算性质,将根式与指数幂互化.一般地,进行指数幂的运算时,化负指数为正指数,化根式为分数指数幂,便于利用幂的运算性质,化繁为简

.

12

11

213

33

22

5

:(3)(4)

6

EG a b a b a b

-

---

??

-

?

??

÷

g

1111311

31

6222222

513555

(2).

232444

a b a b a b a b a b b

b

---

--

??

=--=-=-=-

?

??

÷??

原式

1

2

1

2

3

17

:(0.027)21);

79

ex

-

-????

-+-

? ?

????

11

32

2725105

72149145.

1000933

-

????

=-+-=-+-=-

? ?

????

原式

2、图像性质:()x

f x a

=自变量在指数的位置,注意跟幂函数()a

f x x

=区别

(1)指数函数在同一直角坐标系中的图象的相对位置与底数大小的关系如图所示,则0

在y 轴右侧,图象从上到下相应的底数由大变小;在y 轴左侧,图象从下到上相应的底数由大变小;

即无论在

y 轴的左侧还是右侧,底数随逆时针方向变大. *另记,作x=1,从下往上,底数从小到大

3、比较大小

比较0.7a 与0.8a 的大小。利用上述的图象性质

设函数y=0.7x 与y=0.8x,则两个函数的图象关系如图. 当x=a ≥0时,0.8a ≥0.7a;当x=a<0时,0.8a<0.7a.

[方法与技巧]对于不同底而同指数的指数值的大小的比较,利用图象法求解快捷而准确.

*若底数与指数均不同,则可用中间值1 Eg :比较30.4与0.43的大小.

[解]因为y=3x 是增函数,所以30.4>30=1,又y=0.4x 是减函数,所以0.43<0.40=1,故30.4>0.43.

0.9

0.48

1233122113123132

.5

y 4,y 8,y ()

A.y y y

B.y y y

C.y y y

D.1y ,y 2y -==>>>>>>>>??

= ???

ex:设则 () 1.5

1.50.9

1.8

0.48

1.44

123x 132:y 42,y 82,y f x 2R ,1.81.51.44,y y y ,1 D.

2.

2-??

=======> ???

>>>解析由于指数函数在上是增函数且所以选

()()()11

0.3 3.10.90.48 1.53

21

10.80.921.70.9348().

2-Ex:比较下列各组实数的大小. ,; ,; ,,

()()()111

111133

222220.3 3.10.3 3.10.9 1.80.48 1.44-1.5 1.50.9-1.50.480.12380.90.90.90.80.9.

1.71,0.911.70.9.

11

4282()24()8.22

y x <<<><>>>由函数=的单调性得; 由指数函数的单调性得,所以因为,所以因为=,

=,=, 所以由指数函数的单调性得【解析】五、对数

对数其实是指数的逆过程。指数函数是相同的底数a 被自乘x 次之后的结果;对数就是知道了这个结果和底数,求一下究竟自乘了多少次。 1、(1)定义:一般地,对于指数式a b =N,把数b 叫做以a 为底N 的对数,记作log a N,其中a 叫做对数的底数,N 叫做真数. (2)对数性质

①零和负数没有对数,即N>0;

②1的对数为0,即log a 1=0(a>0且a ≠1); ③底的对数等于1,即log a a=1(a>0且a ≠1).

对数恒等式:log N a N(a 0a 1,N 0).a

=>≠>且 ②log a a b

=b(a>0,且a ≠1,b ∈R)

(4)常用对数:通常将以10为底的对数叫做常用对数,N 的常用对数log 10N 简记为lgN.

(5)自然对数:以无理数e=2.71828…为底的对数称为自然对数,N 的自然对数log e N 简记作lnN. 2、对数的运算性质

如果a>0且a ≠1,M>0,N>0,那么

()()()()a a a a

a a n a a 1log (M N)log M log N;2log log M log N; 3log M nlog M n R .

(4)log log (5)log log 1log (6)log log m n a a a b a b a M

N

n

b b m

b a N N b

=+=-=∈=?==

g

3、运算能力

在对数运算中,要注意以下几个问题:

(1)在化简与运算中,一般先用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后再运用对数运算法则化简合并. (2)a b =N ?b =log a N(a>0,且a≠1)是解决有关指数、对数问题的有效方法,在运算中要注意互化.

()(

)483192

.log 3log 3log 2log 2log ++-eg:求下列式子的值

()()

2325

324

12

223323232

1115

33222324

53555532.62444 []log 3log 3log o 2

2l g 2log log log log log log log ????=+++

????=++???=+=+-?=解原式

2lg 2lg3

111lg 0.36lg823

+

++

ex:化简、求值:

2lg 2lg32lg 2lg3

1.

1lg 0.6lg 21lg 2lg31lg 2++++++-+原式===

4、图象性质

f(x)=log a x 对数函数的图象:经过点(1,0),且图象都在第一?四象限;都以y 轴为渐近线(当01时,图象向下无限接近y 轴) 无论在x 轴的上侧还是下侧,底数随顺时针方向变大. *另记,作y=1,从左往右,底数从小到大。

Eg :已知下图中曲线C 1、C 2、C 3、C 4是函数y =log a x 的图象,则曲线C 1、C 2、C 3、C 4对应的a 的值依次为( )注意第一象限内最左是C3,第二是C4,接着才是C1、C2

A .3、2、13、12

B .2、3、13、12

C .2、3、12、13

D .3、2、12、1

3

5、大小比较

Eg :(如上图)若log a 2

A .0

B .0

C .a>b>1

D .b>a>1 key :B

Ex :(2010·天津卷)设a =log 54,b =(log 53)2,c =log 45,则( ) A .a

【解析】由于b =(log 53)2=log 53·log53

①同底数,不同真数,利用对数函数的单调性进行判断; ②同真数,不同底数,利用对数换底公式转化为同底的对数;

③不同底数,也不同真数,利用指数、对数互化或寻找中间量进行判断.(1)中是同真不同底的两个对数,用对数换底公式比较简便;(2)题是函数值大小的比较,一般方法是作差,寻找自变量的取值范围或临界点,再作判断.

六、总结归纳几种基本初等函数,另外一个资料。

基本初等函数I知识点总结

第二章 基本初等函数 一、指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N * . ◆ 负数没有偶次方根;0的任何次方根都是0,记作00=n 。 当n 是奇数时,a a n n =,当n 是偶数时,???<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m , )1,,,0(1 1* >∈>= = - n N n m a a a a n m n m n m ◆ 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3) s r r a a ab =)(),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2 注意:利用函数的单调性,结合图象还可以看出:(1)在[a ,b]上, )1a 0 a (a )x (f x ≠>=且值域是)]b (f ),a (f [或)]a (f ),b (f [; (2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈; (3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =; 二、对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为.底.N 的对数,记作:N x a log =(a — 底数,N — 真数,N a log —对数式) 说明:○1 注意底数的限制0>a ,且1≠a ; ○ 2 x N N a a x =?=log ; ○ 3 注意对数的书写格式. 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数Λ71828.2=e 为底的对数的对数N ln . ◆ 指数式与对数式的互化 幂值 真数 = b

高考复习函数知识点总结

高考复习 函数知识点总结 一.函数概念的理解以及函数的三要素 (1)函数的概念 ①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →. ②函数的三要素:定义域、值域和对应法则. ③只有定义域相同,且对应法则(函数关系式)也相同的两个函数才是同一函数. (2)区间的概念及表示法 ①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ; 满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ; 满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做 [,)a b ,(,]a b ; 满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做 [,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b < . (3)求函数的定义域时,一般遵循以下原则: ① 分式的分母不为0; ② 偶次根式下被开方数大于0; ③ 0y x = ,则有0x ≠ ; ④ 对数函数的真数大于0,底数大于0切不等于1 注意:①解析式为整式的函数定义域为R ; ②若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则

其定义域一般是各基本初等函数的定义域的交集; ③对于求复合函数定义域问题,一般步骤是:若已知() f x的定义域 为[,] a g x b ≤≤解出. f g x的定义域应由不等式() a b,其复合函数[()] (4)求函数的值域或最值 常用方法: ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值. ②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量 的取值范围确定函数的值域或最值. ③判别式法:若函数() =可以化成一个系数含有y的关于x的二次方程 y f x 2 ++=,则在()0 a y x b y x c y ()()()0 a y≠时,由于,x y为实数,故必须有 2()4()()0 ?=-?≥,从而确定函数的值域或最值. b y a y c y ④不等式法:利用基本不等式确定函数的值域或最值. ⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代 数函数的最值问题转化为三角函数的最值问题. ⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的 值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法. (5)函数解析式 ①换元法;(用于求复合函数的解析式) ②配凑法;(用于求复合函数的解析式)

(完整)高一必修一基本初等函数知识点总结归纳,推荐文档

n a n a n ? (1)根式的概念 高一必修一函数知识点(12.1) 〖1.1〗指数函数 ① 叫做根式,这里 n 叫做根指数, a 叫做被开方数. ②当 n 为奇数时, a 为任意实数;当 n 为偶数时, a ≥ 0 . ?a (a ≥ 0) ③根式的性质: ( n a )n = a ;当 n 为奇数时, = a ;当 n 为偶数时, =| a |= ?-a . (a < 0) (2) 分数指数幂的概念 m ①正数的正分数指数幂的意义是: a n = (a > 0, m , n ∈ N + , 且 n > 1) .0 的正分数指数幂等于 0. a - m = ( )1 m ( ) 1(a > 0, m , n ∈ N , n > 1) ②正数的负分数指数幂的意义是: n n = n m + 且 .0 的负分数指数幂没有意 a a 义. 注意口诀:底数取倒数,指数取相反数. (3) 分数指数幂的运算性质 ① a r ? a s = a r +s (a > 0, r , s ∈ R ) ② (a r )s = a rs (a > 0, r , s ∈ R ) ③ (ab )r = a r b r (a > 0, b > 0, r ∈ R ) (4) 指数函数 函数名称 指数函数 定义 函数 y = a (a > 0 且 a ≠ 1)叫做指数函数 a > 1 0 < a < 1 图象 y 1 y O y a x (0,1) x y a x y 1 O y (0,1) x 定义域 R 值域 (0,+∞) 过定点 图象过定点(0,1),即当 x=0 时,y=1. 奇偶性 非奇非偶 单调性 在 R 上是增函数 在 R 上是减函数 函数值的变化情况 y >1(x >0), y=1(x=0), 0<y <1(x <0) y >1(x <0), y=1(x=0), 0<y <1(x >0) a 变化对 图象的影响 在第一象限内, a 越大图象越高,越靠近 y 轴; 在第二象限内, a 越大图象越低,越靠近 x 轴. 在第一象限内, a 越小图象越高,越靠近 y 轴; 在第二象限内, a 越小图象越低,越靠近 x 轴. 例:比较 n a n n a m

高中数学基本初等函数知识点梳理

第二章 基本初等函数(Ⅰ) 〖2.1〗指数函数 【2.1.1】指数与指数幂的运算 (1)根式的概念 ①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇 数时,a 的n n 是偶数时,正数a 的正的n 表示,负的n 次方根用符号0的n 次方根是0;负数a 没有n 次方根. n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥. ③根式的性质:n a =;当n 为奇数时, a =;当n 为偶数时, (0) || (0) a a a a a ≥?==? -∈且1)n >.0的正分 数指数幂等于0. ②正数的负分数指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质 ①(0,,)r s r s a a a a r s R +?=>∈ ②()(0,,)r s rs a a a r s R =>∈ ③()(0,0,)r r r ab a b a b r R =>>∈

【2.1.2】指数函数及其性质(4)指数函数

〖2.2〗对数函数 【2.2.1】对数与对数运算 (1)对数的定义 ①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫 做底数,N 叫做真数. ②负数和零没有对数. ③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =?=>≠>. (2)几个重要的对数恒等式:log 10a =,log 1a a =,log b a a b =. (3)常用对数与自然对数 常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么 ①加法:log log log ()a a a M N MN += ②减法:log log log a a a M M N N -= ③数乘:log log ()n a a n M M n R =∈ ④log a N a N = ⑤log log (0,)b n a a n M M b n R b = ≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a = >≠且

一次函数知识点总结及典型试题(用)

一次函数知识点总结及经典试题 (一)函数 1、变量:在一个变化过程中可以取不同数值的量。 常量:在一个变化过程中只能取同一数值的量。 2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。 *判断Y 是否为X 的函数,只要看X 取值确定的时候,Y 是否有唯一确定的值与之对应 3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。 4、确定函数定义域的方法: (1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。 5、函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式 6、函数的图像 一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象. 7、描点法画函数图形的一般步骤 第一步:列表(表中给出一些自变量的值及其对应的函数值); 第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。 8、函数的表示方法 列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。 解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。 图象法:形象直观,但只能近似地表达两个变量之间的函数关系。 (二)一次函数 1、一次函数的定义 一般地,形如y kx b =+(k ,b 是常数,且0k ≠)的函数,叫做一次函数,其中x 是自变量。当0b =时,一次函数y kx =,又叫做正比例函数。 ⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式. ⑵当0b =,0k ≠时,y kx =仍是一次函数. ⑶当0b =,0k =时,它不是一次函数. ⑷正比例函数是一次函数的特例,一次函数包括正比例函数. 2、正比例函数及性质 一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数. 注:正比例函数一般形式 y=kx (k 不为零) ① k 不为零 ② x 指数为1 ③ b 取零 当k>0时,直线y=kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k<0时,?直线y=kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小. (1) 解析式:y=kx (k 是常数,k ≠0) (2) 必过点:(0,0)、(1,k ) (3) 走向:k>0时,图像经过一、三象限;k<0时,?图像经过二、四象限 (4) 增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小 (5) 倾斜度:|k|越大,越接近y 轴;|k|越小,越接近x 轴 3、一次函数及性质 一般地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数.当b=0时,y=kx +b 即y=kx ,所以说正

初中函数知识点总结非常全

知识点一、平面直角坐标系 1、平面直角坐标系 在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。 其中,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;两轴的交点O (即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。 为了便于描述坐标平面内点的位置,把坐标平面被x 轴和y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。 注意:x 轴和y 轴上的点,不属于任何象限。 2、点的坐标的概念 点的坐标用(a ,b )表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当b a ≠时,(a ,b )和(b ,a )是两个不同点的坐标。 知识点二、不同位置的点的坐标的特征 1、各象限内点的坐标的特征 点P(x,y)在第一象限0,0>>?y x 点P(x,y)在第二象限0,0>?y x 2、坐标轴上的点的特征 点P(x,y)在x 轴上0=?y ,x 为任意实数 点P(x,y)在y 轴上0=?x ,y 为任意实数 点P(x,y)既在x 轴上,又在y 轴上?x ,y 同时为零,即点P 坐标为(0,0) 3、两条坐标轴夹角平分线上点的坐标的特征 点P(x,y)在第一、三象限夹角平分线上?x 与y 相等 点P(x,y)在第二、四象限夹角平分线上?x 与y 互为相反数 4、和坐标轴平行的直线上点的坐标的特征 位于平行于x 轴的直线上的各点的纵坐标相同。 位于平行于y 轴的直线上的各点的横坐标相同。 5、关于x 轴、y 轴或远点对称的点的坐标的特征 点P 与点p ’关于x 轴对称?横坐标相等,纵坐标互为相反数 点P 与点p ’关于y 轴对称?纵坐标相等,横坐标互为相反数 点P 与点p ’关于原点对称?横、纵坐标均互为相反数 6、点到坐标轴及原点的距离 点P(x,y)到坐标轴及原点的距离: (1)点P(x,y)到x 轴的距离等于y (2)点P(x,y)到y 轴的距离等于x (3)点P(x,y)到原点的距离等于2 2y x + 知识点三、函数及其相关概念 1、变量与常量 在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。 一般地,在某一变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一确定的值与它对应,那么就说x 是自变量,y 是x 的函数。 2、函数解析式 用来表示函数关系的数学式子叫做函数解析式或函数关系式。 使函数有意义的自变量的取值的全体,叫做自变量的取值范围。 3、函数的三种表示法及其优缺点 (1)解析法 两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。 (2)列表法 把自变量x 的一系列值和函数y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法。 (3)图像法 用图像表示函数关系的方法叫做图像法。 4、由函数解析式画其图像的一般步骤 (1)列表:列表给出自变量与函数的一些对应值 (2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点 (3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。 知识点四、正比例函数和一次函数 1、正比例函数和一次函数的概念

初中数学函数知识点归纳(1)

函数知识点总结(掌握函数的定义、性质和图像) 平面直角坐标系 1、定义:平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系 2、各个象限内点的特征: 第一象限:(+,+)点P(x,y),则x>0,y>0; 第二象限:(-,+)点P(x,y),则x<0,y>0; 第三象限:(-,-)点P(x,y),则x<0,y<0; 第四象限:(+,-)点P(x,y),则x>0,y<0; 3、坐标轴上点的坐标特征: x轴上的点,纵坐标为零;y轴上的点,横坐标为零;原点的坐标为(0 , 0)。两坐标轴的点不属于任何象限。 4、点的对称特征:已知点P(m,n), 关于x轴的对称点坐标是(m,-n), 横坐标相同,纵坐标反号 关于y轴的对称点坐标是(-m,n) 纵坐标相同,横坐标反号 关于原点的对称点坐标是(-m,-n) 横,纵坐标都反号 5、平行于坐标轴的直线上的点的坐标特征: 平行于x轴的直线上的任意两点:纵坐标相等; 平行于y轴的直线上的任意两点:横坐标相等。 6、各象限角平分线上的点的坐标特征: 第一、三象限角平分线上的点横、纵坐标相等。 第二、四象限角平分线上的点横、纵坐标互为相反数。 7、点P(x,y)的几何意义: 点P(x,y)到x轴的距离为 |y|,

点P (x,y )到y 轴的距离为 |x|。 点P (x,y )到坐标原点的距离为22y x + 8、两点之间的距离: X 轴上两点为A )0,(1x 、B )0,(2x |AB|||12x x -= Y 轴上两点为C ),0(1y 、D ),0(2y |CD|||12y y -= 已知A ),(11y x 、B ),(22y x AB|= 2 12212)()(y y x x -+- 9、中点坐标公式:已知A ),(11y x 、B ),(22y x M 为AB 的中点,则:M=(212x x + , 2 1 2y y +) 10、点的平移特征: 在平面直角坐标系中, 将点(x,y )向右平移a 个单位长度,可以得到对应点( x-a ,y ); 将点(x,y )向左平移a 个单位长度,可以得到对应点(x+a ,y ); 将点(x,y )向上平移b 个单位长度,可以得到对应点(x ,y +b ); 将点(x,y )向下平移b 个单位长度,可以得到对应点(x ,y -b )。 注意:对一个图形进行平移,这个图形上所有点的坐标都要发生相应的变化;反过来, 从图形上点的坐标的加减变化,我们也可以看出对这个图形进行了怎样的平移。 函数的基本知识: 基本概念 1、变量:在一个变化过程中可以取不同数值的量。 常量:在一个变化过程中只能取同一数值的量。 2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的 值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。 *判断A 是否为B 的函数,只要看B 取值确定的时候,A 是否有唯一确定的值与之对应 3、定义域和值域: 定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。 值域:一般的,一个函数的因变量所得的值的范围,叫做这个函数的值域。

基本初等函数知识点

指数函数及其性质 一、指数与指数幂的运算 (一)根式的概念 1、如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次方根用符号n 是偶数时,正数a 的正的n 表示,负的n 次方根用符号0的n 次方根是0;负数a 没有n 次方根. 2 n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥. 3、根式的性质 :n a =;当n 为奇数时 , a =;当n 为偶数时, (0) || (0) a a a a a ≥?==? -∈且1)n >.0的正分数指数幂等于0. 2 、正数的负分数指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数. 3、a 0=1 (a ≠0) a -p = 1/a p (a ≠0;p ∈N *) 4、指数幂的运算性质 (0,,)r s r s a a a a r s R +?=>∈ ()(0,,)r s rs a a a r s R =>∈ ()(0,0,)r r r ab a b a b r R =>>∈ 5、0的正分数指数幂等于0,0的负分数指数幂无意义。 二、指数函数的概念 一般地,函数)1a ,0a (a y x ≠>=且叫做指数函数,其中x 是自变量,函数的定义域为R . 注意:○ 1 指数函数的定义是一个形式定义; ○ 2 注意指数函数的底数的取值范围不能是负数、零和1. 三、指数函数的图象和性质

高中数学函数知识点总结

高中数学函数知识点总结 1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。 2 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况 注重借助于数轴和文氏图解集合问题。 空集是一切集合的子集,是一切非空集合的真子集。 {} {}如:集合,A x x x B x ax =--===||2 2301 若,则实数的值构成的集合为B A a ? 3. 注意下列性质: {}()集合,,……,的所有子集的个数是;1212a a a n n 要知道它的来历:若B 为A 的子集,则对于元素a 1来说,有2种选择(在或者不在)。同样,对于元素a 2, a 3,……a n ,都有2种选择,所以,总共有2n 种选择, 即集合A 有2n 个子集。 当然,我们也要注意到,这2n 种情况之中,包含了这n 个元素全部在何全部不在的情况,故真子集个数为21n -,非空真子集个数为22n - ()若,;2A B A B A A B B ??== (3)德摩根定律: ()()()()()()C C C C C C U U U U U U A B A B A B A B ==, 有些版本可能是这种写法,遇到后要能够看懂 4. 你会用补集思想解决问题吗?(排除法、间接法) 如:已知关于的不等式 的解集为,若且,求实数x ax x a M M M a --<∈?5 0352 的取值范围。 7. 对映射的概念了解吗?映射f :A →B ,是否注意到A 中元素的任意性和B 中与之对应元素的唯一性,哪几种对应能构成映射? (一对一,多对一,允许B 中有元素无原象。) 注意映射个数的求法。如集合A 中有m 个元素,集合B 中有n 个元素,则从A 到B 的映射个数有n m 个。 如:若}4,3,2,1{=A ,},,{c b a B =;问:A 到B 的映射有 个,B 到A 的映射有 个;A 到B 的函数有 个,若}3,2,1{=A ,则A 到B 的一一映射有 个。 函数)(x y ?=的图象与直线a x =交点的个数为 个。 8. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域) 相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备) 9. 求函数的定义域有哪些常见类型?

高一数学必修一第二章基本初等函数知识点总结

第二章基本初等函数知识点整理 〖2.1〗指数函数 2.1.1指数与指数幂的运算 (1)根式的概念 ①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 表示;当n 是偶数时,正数a 的正的n n 次方根用符号0的n 次方根是0;负数 a 没有n 次方根. n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥. ③根式的性质:n a =;当n a =;当n 为偶数时, (0) || (0) a a a a a ≥?==? -∈且1)n >.0的正分数指数幂等于0.②正数的负分数 指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底 数取倒数,指数取相反数. (3)分数指数幂的运算性质 ①(0,,)r s r s a a a a r s R +?=>∈ ②()(0,,)r s rs a a a r s R =>∈ ③()(0,0,)r r r a b a b a b r R =>>∈ 2.1.2指数函数及其性质 (4)指数函数

〖2.2〗对数函数 【2.2.1】对数与对数运算 (1)对数的定义 ①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数. ②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =?=>≠>. (2)几个重要的对数恒等式: log 10a =,log 1a a =,log b a a b =. (3)常用对数与自然对数:常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…) . (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么 ①加法:log log log ()a a a M N MN += ②减法:log log log a a a M M N N -= ③数乘: log log ()n a a n M M n R =∈ ④log a N a N = ⑤log log (0,)b n a a n M M b n R b =≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a = >≠且

初中所有函数知识点总结

初中所有函数知识点总结 1、一次函数 2、二次函数 3、反比例函数 4、正比例函数 1、正比例函数的求法 形如y=kx(k为常数,且k不等于0),y就叫做x的正比例函数. 图象做法:1.带定系数2.描点 3.连线 图象是一条直线,一定经过坐标轴的原点 性质:当k>0时,图象经过一,三象限,y随x的增大而增大 当k<0时,图象经过二,四象限,y随x的增大而减小 形如y=k/x(k为常数且k≠0) 的函数,叫做反比例函数。 自变量x的取值范围是不等于0的一切实数。 2、反比例函数求法 反比例函数的图像为双曲线。它可以无限地接近坐标轴,但永不相交. 性质:当k>0时,图象在一,三象限,在每个象限内,y随x的增大而减小, 当k<0时,图象在二,四象限,在每个象限内,y随x的增大而增大 形如y=kx+b(k为常数,且k不等于0),y就叫做x的正比例函数。 3、一次函数求法 正比例函数过原点(0,0),属于一次函数 k>0,b>O,则图象过1,2,3象限 k>0,b<0,则图象过1,3,4象限 k<0,b>0,则图象过1,2,4象限 k<0,b<0,则图象过2,3,4象限 4、二次函数求法 二次函数:y=ax^2+bx+c (a,b,c是常数,且a不等于0) a>0开口向上 a<0开口向下 a,b同号,对称轴在y轴左侧,反之,再y轴右侧 |x1-x2|=根号下b^2-4ac除以|a| 与y轴交点为(0,c) b^2-4ac>0,ax^2+bx+c=0有两个不相等的实根 b^2-4ac<0,ax^2+bx+c=0无实根

b^2-4ac=0,ax^2+bx+c=0有两个相等的实根 对称轴x=-b/2a 顶点(-b/2a,(4ac-b^2)/4a) 顶点式y=a(x+b/2a)^2+(4ac-b^2)/4a 函数向左移动d(d>0)个单位,解析式为y=a(x+b/2a+d)^2+(4ac-b^2)/4a,向右就是减 函数向上移动d(d>0)个单位,解析式为y=a(x+b/2a)^2+(4ac-b^2)/4a+d,向下就是减 当a>0时,开口向上,抛物线在y轴的上方(顶点在x轴上),并向上无限延伸;当a<0时,开口向下,抛物线在x轴下方(顶点在x轴上),并向下无限延伸。|a|越大,开口越小;|a|越小,开口越大. 三角函数知识点总结 1、勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方a2+b2=c2。 2、如下图,在Rt△ABC中,∠C为直角,则∠A的锐角三角函数为(∠A可换成∠B): 3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。 4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。 5、0°、30°、45°、60°、90°特殊角的三角函数值(重要) 6、正弦、余弦的增减性: 当0°≤α≤90°时,sinα随α的增大而增大,cosα随α的增大而减小。 7、正切、余切的增减性:当0°<α<90°时,tanα随α的增大而增大,cotα随α的增大而减小。 三角函数公式 正弦(sin):角α的对边比上斜边 余弦(cos):角α的邻边比上斜边 正切(tan):角α的对边

一次函数知识点归纳总结大全

一次函数知识点归纳总结大全 基本概念 1、变量:在一个变化过程中可以取不同数值的量。常量:在一个变化过程中只能取同一数值的量。 例题:在匀速运动公式中,表示速度,表示时间,表示在时间内所走的路程,则变量是vt s =v t s t ________,常量是_______。在圆的周长公式C=2πr 中,变量是________,常量是_________. 2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值, y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。 *判断Y 是否为X 的函数,只要看X 取值确定的时候,Y 是否有唯一确定的值与之对应 例题:下列函数(1)y=πx (2)y=2x-1 (3)y= (4)y=2-1-3x (5)y=x 2-1中,是一次函数的有1x ( ) (A )4个 (B )3个 (C )2个 (D )1个3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。 4、确定函数定义域的方法: (1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。 例题:下列函数中,自变量x 的取值范围是x≥2的是( ) A . B . C . D . 函数x 的取值范围是___________. y =已知函数,当时,y 的取值范围是 ( )22 1+-=x y 11≤<-x A. B. C. D.2325≤<-y 2523<

基本初等函数知识点

- 考试资料 指数函数及其性质 一、指数与指数幂的运算 (一)根式的概念 1、如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次方根用符号n 是偶数时,正数a 的正的n 表示,负的n 次方根用符号0的n 次方根是0;负数a 没有n 次方根. 2 n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥. 3、根式的性质 :n a =;当n 为奇数时 , a =;当n 为偶数时, (0) || (0) a a a a a ≥?==? -∈且1)n >.0的正分数指数幂等于0. 2 、正数的负分数指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数. 3、a 0 =1 (a ≠0) a -p = 1/a p (a ≠0;p ∈N *) 4、指数幂的运算性质 (0,,)r s r s a a a a r s R +?=>∈ ()(0,,)r s rs a a a r s R =>∈ ()(0,0,)r r r ab a b a b r R =>>∈ 5、0的正分数指数幂等于0,0的负分数指数幂无意义。 二、指数函数的概念 一般地,函数)1a ,0a (a y x ≠>=且叫做指数函数,其中x 是自变量,函数的定义域为R . 注意:○ 1 指数函数的定义是一个形式定义; ○ 2 注意指数函数的底数的取值范围不能是负数、零和1.

初中函数知识点总结归纳

函数知识点总结(掌握函数的定义、性质和图像) (一)正比例函数和一次函数 1、正比例函数及性质 一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数. 注:正比例函数一般形式 y=kx (k 不为零) ① k 不为零 ② x 指数为1 ③ b 取零 当k>0时,直线y=kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k<0时,?直线y=kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小. (1) 解析式:y=kx (k 是常数,k ≠0) (2) 必过点:(0,0)、(1,k ) (3) 走向:k>0时,图像经过一、三象限;k<0时,?图像经过二、四象限 (4) 增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小 (5) 倾斜度:|k|越大,越接近y 轴;|k|越小,越接近x 轴 2、一次函数及性质 一般地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数.当b=0时,y=kx +b 即y=kx ,所以说正比例函数是一种特殊的一次函数. 注:一次函数一般形式 y=kx+b (k 不为零) ① k 不为零 ②x 指数为1 ③ b 取任意实数 一次函数y=kx+b 的图象是经过(0,b )和(- k b ,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx 平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移) (1)解析式:y=kx+b(k 、b 是常数,k ≠0) (2)必过点:(0,b )和(- k b ,0) (3)走向: k>0,图象经过第一、三象限;k<0,图象经过第二、四象限 b>0,图象经过第一、二象限;b<0,图象经过第三、四象限 ?? ??>>00 b k 直线经过第一、二、三象限 ?? ??<>00 b k 直线经过第一、三、四象限 ??? ?><0 b k 直线经过第一、二、四象限 ????<<0 b k 直线经过第二、三、四象限

一次函数知识点梳理

一次函数知识点梳理 1、正比例函数 一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数. 2、正比例函数图象和性质 一般地,正比例函数y=kx(k为常数,k≠0)的图象是一条经过原点和(1,k)的一条直线,我们称它为直线y=kx.当k>0时,直线y=kx经过第一、三象限,从左向右上升,即随着x的增大,y也增大;当k<0时,直线y=kx经过第二、四象限,从左向右下降,即随着x的增大y反而减小. 3、正比例函数解析式的确定 确定一个正比例函数,就是要确定正比例函数定义式y=kx(k≠0)中的常数k,其基本步骤是: (1)设出含有待定系数的函数解析式y=kx(k≠0); (2)把已知条件(自变量与函数的对应值)代入解析式,得到关于系数k的一元一次方程; (3)解方程,求出待定系数k; (4)将求得的待定系数的值代回解析式. 4、一次函数 一般地,形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.当b=0时,y=kx +b即y=kx,所以说正比例函数是一种特殊的一次函数. 5、一次函数的图象 (1)一次函数y=kx+b(k≠0)的图象是经过(0,b)和两点的一条直线,因此一次函数y=kx+b的图象也称为直线y=kx+b. (2)一次函数y=kx+b的图象的画法. 根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b), .即横坐标或纵坐标为0的点. 6、正比例函数与一次函数图象之间的关系 一次函数y=kx+b的图象是一条直线,它可以看作是由直线y=kx平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移). 7、直线y=kx+b的图象和性质与k、b的关系如下表所示: k>0,b>0 经过第一、二、三象限 k>0,b<0经过第一、三、四象限 k>0,b=0经过第一、三象限k>0时,图象从左到右上升,y随x的增大而增大 k<0 b>0经过第一、二、四象限 k<0,b<0经过第二、三、四象限 K,0,b=0经过第二、四象限 k<0 图象从左到右下降,y随x的增大而减小 8、直线y1=kx+b与y2=kx图象的位置关系: (1)当b>0时,将y2=kx图象向x轴上方平移b个单位,就得到y1=kx+b的图象. (2)当b<0时,将y2=kx图象向x轴下方平移-b个单位,就得到了y1=kx+b的图象.

函数知识点总结

一次函数知识点总结 (一)函数 1、变量:在一个变化过程中可以取不同数值的量。 常量:在一个变化过程中只能取同一数值的量。 2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每 一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。 *判断Y是否为X的函数,只要看X取值确定的时候,Y是否有唯一确定的值与之对应 3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。 4、确定函数定义域的方法: (1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。 5、函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式 6、函数的图像 一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象. 7、描点法画函数图形的一般步骤 第一步:列表(表中给出一些自变量的值及其对应的函数值); 第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);

第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。 8、函数的表示方法 列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。 解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。 图象法:形象直观,但只能近似地表达两个变量之间的函数关系。 (二)、平面直角坐标系 1、定义:平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。其中水平的数轴叫做横轴(或x轴),取向右为正方向;竖直的数轴叫做纵轴(y轴),取向上为正方向;两轴的交点O叫做原点。在平面内,原点的右边为正,左边为负,原点的上边为正,下边为负。 2、坐标平面内被x轴、y轴分割成四个部分,按照“逆时针方向”分别为第一象限、第二象限、第三象限、第四象限 注意:x轴、y轴原点不属于任何象限。 3、平面直角坐标系中的点分别向x轴、y轴作垂线段,在x轴上垂足所显示的数称为该点的横坐标,在y轴上垂足所显示的数称为该点的纵坐标。点的坐标反映的是一个点在平面内的位置。 写坐标的规则:横坐标在前,纵坐标在后,中间用“,”隔开,全部用小括号括起来。 如P(3,2)横坐标为3,纵坐标为2。 特别注意坐标的顺序不同,表示的就是不同位置的点。 所以点的坐标是一对有顺序的实数,称为有序实数对。 4、平面直角坐标系中的点与有序实数对一一对应。

10基本初等函数知识点总结

基本初等函数知识点总结 一、指数函数的概念 (1)、指数函数的定义 一般地,函数x y a =(0a >,且1a ≠)叫做指数函数,其中x 是自变量,函数的定义域是R 。 (2)、因为指数的概念已经扩充到有理数和无理数,所以在底数0a >且1a ≠的前提下,x R ∈。 (3)、指数函数x y a =(0a >且1a ≠)解析式的结构特征 1、底数:大于0且不等于1的常数。 2、指数:自变量x 。 3、系数:1。 二、指数函数的图象与性质 一般地,指数函数x y a =(0a >,且1a ≠)的图象与性质如下表: 三、幂的大小比较方法 比较幂的大小常用方法有:(1)、比差(商)法;(2)、函数单调性法;(3)、中间值法: 要比较A 与B 的大小,先找一个中间值C ,再比较A 与C 、B 与C 的大小,由不等式的传递性得到A 与B 之间的大小。 四、底数对指数函数图象的影响 (1)、对函数值变化快慢的影响 1、当底数1a >时,指数函数x y a =是R 上的增函数,且当0x >时,底数a 的值越大,函数图象越“陡”,说明其函数值增长得越快。 2、当底数01a <<时,指数函数x y a =是R 上的减函数,且当0x <时,底数a 的值越小,函数图象越“陡”,说明其函数值减小得越快。 (2)、对函数图象变化的影响

指数函数x y a =与x y b =的图象的特点: 1、1a b >>时,当0x <时,总有01x x a b <<<;当0x =时,总有1x x a b ==;当 0x >时,总有1x x a b >>。 2、01a b <<<时,当0x <时,总有1x x a b >>;当0x =时,总有1x x a b ==;当 0x >时,总有01x x a b <<<。 五、对数的概念 (1)、对数:一般地,如果x a N =(0a >,且1a ≠),那么数x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做对数的底数,N 叫做真数。 (2)、常用对数:我们通常把以10为底的对数叫做常用对数,为了简便,N 的常用对数10log N 简记为lg N 。 (3)、自然对数:我们通常把以无理数e ( 2.71828e =)为底的对数称为自然对数, 为了简便,N 的自然对数log e N 简记为ln N 。 六、对数的基本性质 根据对数的定义,对数log a N (0a >,1a ≠)具有如下性质: 1、0和负数没有对数,即0N >; 2、1的对数是0,即log 10a =; 3、底数的对数等于1,即log 1a a =; 4、对数恒等式:如果把b a N =中的b 写成log a N ,则log a N a N =。 七、对数运算性质 如果0a >且1a ≠,0M >,0N >,那么 (1)、()log log log a a a MN M N =+; (2)、log log log a a a M M N N =-; (3)、log log n a a M n M =(n R ∈)。 八、换底公式

相关文档
最新文档