工业机器人技术及应用(教案)-工业机器人机械结构和运动控制.doc

工业机器人技术及应用(教案)-工业机器人机械结构和运动控制.doc
工业机器人技术及应用(教案)-工业机器人机械结构和运动控制.doc

第二章工业机器人的机械结构和运动控制

章节目录

2.1 工业机器人的系统组成

2.1.1 操作机

2.1.2 控制器

2.1.3 示教器

2.2 工业机器人的技术指标

学习目标导入案例课堂认知扩展与提高本章小结思考练习

2.3 工业机器人的运动控制

2.3.1 机器人运动学问题

2.3.2 机器人的点位运动…

2.3.3 机器人的位置控制

课前回顾

何为工业机器人?

工业机器人具有几个显著特点,分别是什么?

工业机器人的常见分类有哪些,简述其行业应用。

学习目标

认知目标

*熟悉工业机器人的常见技术指标

*掌握工业机器人的机构组成及各部分的功能

*了解工业机器人的运动控制

能力目标

*能够正确识别工业机器人的基本组成

*能够正确判别工业机器人的点位运动和连续路径运动

导入案例

国产机器人竞争力缺失关键技术是瓶颈

众所周知,中国机器人产业由于先天因素,在单体与核心零部件仍然落后于日、美、韩等发达国家。虽然中国机器人产业经过30 年的发展,形成了较为完善的产业基础,但与发达国家相比,仍存在较大差距,产业基础依然薄弱,关键零部件严重依赖进口。整个机器人产业链主要分为上游核心零部件(主要是机器人三大核心零部件——伺服电机、减速器和控制系统,相当于机器人的“大脑”)、中游机器人本体(机器人的“身体”)和下游系统集成商(国内95% 的企业都集中在这个环节上)三个层面。

课堂认知

2.1 工业机器人的系统组成

第一代工业机器人主要由以下几部分组成:操作机、控制器和示教器。对于第二代及第三代工业机器人还包括感知系统和分析决策系统,它们分别由传感器及软件实现。

工业机器人系统组成

2.1.1 操作机

操作机(或称机器人本体)是工业机器人的机械主体,是用来完成各种作业的执行机构。它主要由机械臂、驱动装置、传动单元及内部传感器等部分组成。

关节型机器人操作机基本构造

机器人操作机最后一个轴的机械接口通常为一连接法兰,可接装不同的机械操作装置,如夹紧爪、吸盘、焊枪等。

(1) 机械臂

关节型工业机器人的机械臂是由关节连在一起的许多机械连杆的集合体。实质上是一个拟人手臂的空间开链式机构,一端固定在基座上,另一端可自由运动,由关节- 连杆结构所构成的机械臂大体可分为基座、腰部、臂部(大臂和小臂)和手腕4 部分。

1) 基座基座是机器人的基础部分,起支撑作用。

2) 腰部腰部是机器人手臂的支承部分。

3) 手臂手臂是连接机身和手腕的部分,是执行结构中的主要运动部件,亦称主轴,主

要用于改变手腕和末端执行器的空间位置。

4) 手腕手腕是连接末端执行器和手臂的部分,亦称次轴,主要用于改变末端执行器的空

间姿态。

(2) 驱动装置

驱使工业机器人机械臂运动的机构。它按照控制系统发出的指令信号,借助于动力元件使机器人产生动作,相当于人的肌肉、筋络。

机器人常用的驱动方式主要有液压驱动、气压驱动和电气驱动三种基本类型。

目前,除个别运动精度不高、重负载或有防爆要求的机器人采用液压、气压驱动外,工业机器人大多采用电气驱动,而其中属交流伺服电机应用最广,且驱动器布置大都采用一个关节一个驱动器。

三种驱动方式特点比较

(3) 传动单元

目前工业机器人广泛采用的机械传动单元是减速器,应用在关节型机器人上的减速器主要有两类:RV 减速器和谐波减速器。一般将RV 减速器放置在基

座、腰部、大臂等重负载的位置( 主要用于20kg 以上的机器人关节) ;将谐波减速器放置在小臂、腕部或手部等轻负载的位置( 主要用于20kg 以下的机器关节) 。此外,机器人还采用齿轮传动、链条(带)传动、直线运动单元等。

机器人关节传动单元

1) 谐波减速器

通常由3 个基本构件组成,包括一个有内齿的刚轮,一个工作时可产生径向弹性变形并带有外齿的柔轮和一个装在柔轮内部、呈椭圆形、外圈带有柔性滚动轴承的波发生器,在这3个基本结构中可任意固定一个,其余一个为主动件一个从动件。

谐波减速器原理图

2) RV 减速器

主要由太阳轮(中心轮)、行星轮、转臂(曲柄轴)、转臂轴承、摆线轮(RV 齿轮)、针齿、刚性盘与输出盘等零部件组成。具有较高的疲劳强度和刚度以及较长的寿命,回差精度稳定,高精度机器人传动多采用RV 减速器。

RV 减速器原理图

2.1.2 控制器

机器人控制器是根据指令以及传感信息控制机器人完成一定动作或作业任务的装置,是决定机器人功能和性能的主要因素,也是机器人系统中更新和发展最快的部分,其基本功能有:

示教功能、记忆功能、位置伺服功能、坐标设定功能、与外围设备联系功能、传感器接口、故障诊断安全保护功能等。

依据控制系统的开放程度,机器人控制器分 3 类:封闭型、开放型和混合型。目前基本上都是封闭型系统(如日系机器人)或混合型系统(如欧系机器人)。

按计算机结构、控制方式和控制算法的处理方法,机器人控制器又可分为集中式控制和分布式控制两种方式。

(1) 集中式控制器

优点:硬件成本较低,便于信息的采集和分析,易于实现系统的最优控制,整体性与协调性较好,基于PC 的系统硬件扩展较为方便。

缺点:系统控制缺乏灵活性,控制危险容易集中,一旦出现故障,其影响面广,后果严重;大量数据计算,会降低系统实时性,系统对多任务的响应能力也会与系统的实时性相冲突;系统连线复杂,会降低系统的可靠性。

a) 单独接口卡驱动b) 多轴运动控制卡驱动

集中式机器人控制器结构

(2) 分布式控制器

主要思想为“分散控制,集中管理”,为一个开放、实时、精确的机器人控制系统。分布式系统中常采用两级控制方式,由上位机和下位机组成。

优点:系统灵活性好,控制系统的危险性降低,采用多处理器的分散控制,有利于系统功能的并行执行,提高系统的处理效率,缩短响应时间。

分布式机器人控制器结构

2.1.3 示教器

亦称示教编程器或示教盒,主要由液晶屏幕和操作按键组成。可由操作者手持移动。它是机器人的人机交互接口,机器人的所有操作基本上都是通过它来完成的。示教器实质上就是一个专用的智能终端。

示教时的数据流关系

2.2 工业机器人的技术指标

机器人的技术指标反映机器人的适用范围和工作性能。一般都有:自由度、工作空间、额定负载、最大工作度速和工作精度等。

自由度:物体能够对坐标系进行独立运动的数目,末端执行器的动作不包括在内。通常作

为机器人的技术指标,反映机器人动作的灵活性,可用轴的直线移动、摆动或旋转动作的数目来表示,目前,焊接和涂装作业机器人多为 6 或7 自由度,而搬运、码垛和装配机器人多为4~6 自由度。

额定负载:也称持重。正常操作条件下,作用于机器人手腕末端,不会使机器人性能降低的最大载荷,目前,使用的工业机器人负载范围可从0.5kg 直至800kg 。工作精度:机器人的工作精度主要指定位精度和重复定位精度。定位精度(也称绝对精度)是指机器人末端执行器实际到达位置与目标位置之间的差异。重复定位

精度(简称重复精度)是指机器人重复定位其末端执行器于同一目标位置的能力,目前,工业机器人的重复精度可达± 0.01~ ± 0.5mm 。依据作业任务和末端持重不同,机器人重复精度亦不同。

掠过的

空间,常用图形表示。目前,单体工业机器人本体的工作范围可达 3.5 m 左右。最大工作速度在各轴联动情况下,机器人手腕中心所能达到的最大线速度。这在生产中

是影响生产效率的重要指标。

a)垂直串联多关节机器MOTOMAN MH3F b)水平串联多关节机器人MOTOMAN

MPP3S

c) 并联多关节机器人MOTOMAN

MYS650L

不同本体结构YASKAWA 机器人工作范围

2.3 工业机器人的运动控制

2.3.1 机器人运动学问题

工业机器人操作机可看作是一个开链式多连杆机构,始端连杆就是机器人的基座,末端连杆与工具相连,相邻连杆之间用一个关节(轴)连接在一起。对于一个6 自由度工业机器人,它由 6 个连杆和 6 个关节(轴)组成。编号时,基座称

为连杆0 ,不包含在这 6 个连杆内,连杆 1 与基座由关节 1 相连,连杆 2 通过关节2 与连杆 1 相连,依此类推。

a) 实物图b) 机构简图

工业机器人操作机

(1) 运动学正问题对给定的机器人操作机,己知各关节角矢量,求末端执行器相对于参考坐标系的位姿,称之为正向运动学(运动学正解或Where 问题),机器人示教时,机器人控制器即逐点进行运动学正解运算。

(2) 运动学逆问题对给定的机器人操作机,已知末端执行器在参考坐标系中的初始位姿和目标(期望)位姿,求各关节角矢量,称之为逆向运动学(运动学逆解

或How 问题),机器人再现时,机器人控制器即逐点进行运动学逆解运算,并将矢量分解到操作机各关节。

运动学正问题(示教)运动学逆问题(再现)

2.3.2 机器人的点位运动和连续路径运动

(1) 点位运动(Point to Point, PTP )PTP 运动只关心机器人末端执行器运动的起点和目标点位姿,不关心这两点之间的运动轨迹。

(2) 连续路径运动(Continuous Path, CP )CP 运动不仅关心机器人末端执行器达到目标

点的精度,而且必须保证机器人能沿所期望的轨迹在一定精度范围内重复运动。

工业机器人PTP 运动和CP 运动

机器人CP 运动的实现是以点到点运动为基础,通过在相邻两点之间采用满足精度要求的直线或圆弧轨迹插补运算即可实现轨迹的连续化。机器人再现时主控制器(上位机从)存储器中逐点取出各示教点空间位姿坐标值,通过对其进行直线或圆弧或插补运算,生成相应路径规划,然后把各插补点的位姿坐标值通过运动学逆解运算转换成关节角度值,分送机器人各关节或关节控制器(下位机)。

2.3.3 机器人的位置控制

实现机器人的位置控制是工业机器人的基本控制任务。关节控制器(下位机)是执行计算机,负责伺服电机的闭环控制及实现所有关节的动作协调。

工业机器人的位置控制

扩展与提高

运动控制电机及驱动

机器人的核心技术是运动控制技术,目前工业机器人采用的电气驱动主要有步进电动机和伺服电动机两类。

1 .步进电动机系统

步进电机是一种将电脉冲信号转变为角位移或线位移的开环控制精密驱动元件,分为反应式步进电机、永磁式步进电机和混合式步进电机三种,其中混合式步进电机的应用最为广泛,是一种精度高、控制简单、成本低廉的驱动方案。

步进电机与步进驱动器

2 .伺服电动机系统

伺服电机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电机轴上的角位移或角速度输出,可分为直流和交流伺服电机两大类。

特点:当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降。

优点:①无电刷和换向器,工作可靠,对维护和保养要求低;②定子绕组散热比较方便;③惯量小,易于提高系统的快速性;④适应于高速大力矩工作状态;⑤同功率下有较小的体积和重量。

伺服电机与伺服驱动器

本章小结

工业机器人的机械结构部分称为操作机。通常用自由度、工作空间、额定负载、定位精度、重复定位精度和最大工作速度等技术指标来表征工业机器人操作机的性能。

工业机器人通常由操作机、控制器和示教器三部分组成。操作机是机器人赖以完成各种作业的主体部分,一般由机械臂、驱动- 传动装置以及内部传感器等组成。控制器是完成机器人控制功能的结构实现,一般由控制计算机和伺服控制器组成。示教器是机器人的人机交互接口,主要由显示屏和按键组成。

工业机器人的运动控制是指工业机器人的末端执行器从一点移动到另一点的过程中,常采用点位(PTP )控制和连续路径(CP )控制两种方式。

1 、填空

(1) ______ 通常作为机器人的技术指标,反映了机器人动作的灵活性,可

用轴的直线移动、摆动或旋转动作的数目来表示。

(2) 工业机器人主要由________ 、_______ 和_______ 组成。下图中1 表

_______ 示;2 表示_______ ;3 表示_______ 和4 表示_______。

题 2 图(3) 工业机器人的运动控制主要是实现_____ 和_____ 两种。当机器人进行

______ 运动控制时,末端执行器既要保证运动的起点和目标点位姿,而且必

须保证机器人能沿所期望的轨迹在一定精度范围内运动。

(4) 对给定的机器人操作机,己知各关节角矢量,求末端执行器相对于参

考坐标系的位姿,称之为_____ 运动学。

2 、选择

(1) 操作机是工业机器人的机械主体,是用于完成各种作业的执行机构。它主

要哪几部分组成?()

①机械臂;②驱动装置;③传动单元;④内部传感器

A. ①②

B. ①②③

C. ①③

D. ①②③④

(2) 示教器也称示教编程器或示教盒,主要由液晶屏幕和操作按键组成,可由

操作者手持移动。它是机器人的人机交互接口,试问以下哪些机器人操作可通

过示教器来完成?()。

①点动机器人;②编写、测试和运行机器人程序;③设定机器人参数;④查

阅机器人状态

A. ①②

B. ①②③

C. ①③

D. ①②③④

3 、判断

(1) 机器人手臂是连接机身和手腕的部分。它是执行结构中的主要运动部件,主要用于改变手腕和末端执行器的空间位置,满足机器人的作业空间,并将各种载荷传递到机座。()

(2) 除个别运动精度不高、重负载或有防爆要求的机器人采用液压、气压驱动外,工业机器人目前大多采用交流伺服电机驱动。()

(3) 工业机器人的腕部传动多采用RV 减速器,臂部则采用谐波减速器。()

全向移动机器人的运动控制

全向移动机器人的运动控制 作者:Xiang Li, Andreas Zell 关键词:移动机器人和自主系统,系统辨识,执行器饱和,路径跟踪控制。 摘要:本文主要关注全向移动机器人的运动控制问题。一种基于逆运动学的新的控制方法提出了输入输出线性化模型。对执行器饱和及驱动器动力学在机器人性能体现方面有重要影响,该控制法考虑到了以上两个方面并保证闭环控制系统的稳定性。这种控制算法常用于真实世界的中型组足球机器人全方位的性能体现。

1.介绍 最近,全方位轮式机器人已在移动机器人应用方面受到关注,因为全方位机器人“有一个满流动的平面,这意味着他们在每一个瞬间都可以移动,并且在任何方向都没有任何调整”。不同于非完整的机器人,例如轮式机器人,在执行之前具有旋转任何所需的翻译速度,全方位机器人具有较高的机动性并被广泛应用在动态环境下的应用,例如在中型的一年一度的足球比赛。 大多数移动机器人的运动控制方法是基于机器人的动态模型或机器人的运动学模型。动态模型直接描述力量施加于车轮和机器人运动之间的关系,以外加电压的每个轮作为输入、以机器人运动的线速度和角加速度作为输出。但动态变化所造成的变化的机器人惯性矩和机械组件的扰动使控制器设计变得较为复杂。假设没有打滑车轮发生时,传感器高精度和地面足够平坦,由于结构的简单,因而运动模型将被广泛应用于机器人的设计行为中。作为输入运动学模型是机器人车轮速度,输出机器人的线速度和角速度,机器人的执行器的动力都快足以忽略,这意味着所需的轮速度可以立即达到。然而,该驱动器的动态极限,甚至降低了机器人在真实的情况中的表现。 另一个重要方面是机器人控制的实践:执行器饱和。因机器人轮子的指挥电机速度是有饱和的界限的,执行器饱和能影响到机器人的性能,甚至使机器人运动变得不稳定。 本文提出了一个全方位的机器人的一种运动控制方法,这种控制方法是基于逆输入输出的线性的运动学模型。它需要不仅考虑到驱动器动力学的识别,但也需要考虑到执行器饱和控制器的设计,并保证闭环控制系统系统稳定性。 本文其余的部分:在2节介绍了运动学模型的一个全方位的中型足球机器人;在3节介绍了路径跟踪与定位跟踪问题基于逆运动学模型的输入输出线性化的解决方法,其中包括执行器饱和分析;4部分介绍了动态识别器及其在控制性能方面的影响;最后的实验结果和结论讨论部分分别在5和6。

机器人运动控制器

TB04-2372.jtdc-1 机器人控制标准包 机器人运动控制器 我们在机器人控制上拥有丰富的经验。除了标量机器人和2维并行机构的机器人是做为选项。其他机械机构的机器人我们提供了特殊控制技术。链接型和并行机构的机器人可以像自动机械一样运行。■优点 ◆有效运用于内部研发能够短期内使自己研发的产品稳定动作。 ◆追求独特的技术能够用于研发特殊组装和动作的机器人,并投入生产现场。◆技术知识保密自己开发技术知识的保密 ◆应用于自动机械可以应用于加工机械以及装配机械之类的生产机械的操作和运转 ■机构变换 ◆直交系列机器人◆标量机器人◆2维并行机构机器人◆垂直多关节机器人◆6维并行机构机器人 〈标准〉〈选项〉〈选项〉〈独特〉〈独特〉 ■正确的轮廓控制■按控制周期变换机构■正确的轨迹 按控制周期执行机构变换,实现插补之间的接合部的圆滑轨迹控制。可应用于精密加工。 ■运行程序(技术语言?G语言) 像去除加工毛刺及钻孔机械,使用输出CAM的G语言文件来实现DNC运行。 ■拥有丰富技能对应实际生产中的作业 通过可选项,能够用于搬运,加工,熔接,去除毛刺,装配等生产机械的操作和运行。◆可选项机能例 宏机能,多任务,扭矩指令(贴接?控制力度)DNC运行触摸屏 插补前的加减速S字加减速手动脉冲发动器,高精度制动开关(接触开关)接线?法线控制 同频同步平行轴控制■触摸屏及专用PC软件 ■触摸屏例 ■专用PC画面例 使用触摸屏或PC也可以操作。■动作机构计算的可2次开发 我们的经验可以对应您的特殊需求。 另外,你也可以自行开发动作机构变换软件。■应用于机器人控制的运动控制器◆SLM4000机器人规格 单板独立单机工作4轴脉冲列输入32 输出32RS232/USB ◆PLMC40机器人规格PLC动作 4轴脉冲列输入16输出16RS232可使用通用PLC扩展(梯形 ?IO? 模拟等) ◆PLMC-MⅡEX机器人规格MECHATROLINK-Ⅱ 标准4/9/16轴最大30轴可使用通用PLC扩展(梯形?IO?模拟等) ◆多軸运动功率放大器机器人规格多轴伺服功放一体型最大7轴输入42输出42可节省配线节省成本 A B a1 a2a3Accurate contour Uncontrolled path by simple positioning Calculation at each sampling time

智能机器人运动控制和目标跟踪

XXXX大学 《智能机器人》结课论文 移动机器人对运动目标的检测跟踪方法 学院(系): 专业班级: 学生学号: 学生姓名: 成绩:

目录 摘要 (1) 0、引言 (1) 1、运动目标检测方法 (1) 1.1 运动目标图像HSI差值模型 (1) 1.2 运动目标的自适应分割与提取 (2) 2 运动目标的预测跟踪控制 (3) 2.1 运动目标的定位 (3) 2.2 运动目标的运动轨迹估计 (4) 2.3 移动机器人运动控制策略 (6) 3 结束语 (6) 参考文献 (7)

一种移动机器人对运动目标的检测跟踪方法 摘要:从序列图像中有效地自动提取运动目标区域和跟踪运动目标是自主机器人运动控制的研究热点之一。给出了连续图像帧差分和二次帧差分改进的图像HIS 差分模型,采用自适应运动目标区域检测、自适应阴影部分分割和噪声消除算法,对无背景图像条件下自动提取运动目标区域。定义了一些运动目标的特征分析和计算 ,通过特征匹配识别所需跟踪目标的区域。采用 Kalrnan 预报器对运动目标状态的一步预测估计和两步增量式跟踪算法,能快速平滑地实现移动机器人对运动目标的跟踪驱动控制。实验结果表明该方法有效。 关键词:改进的HIS 差分模型;Kahnan 滤波器;增量式跟踪控制策略。 0、引言 运动目标检测和跟踪是机器人研究应用及智能视频监控中的重要关键技术 ,一直是备受关注的研究热点之一。在运动目标检测算法中常用方法有光流场法和图像差分法。由于光流场法的计算量大,不适合于实时性的要求。对背景图像的帧问差分法对环境变化有较强的适应性和运算简单方便的特点,但帧问差分不能提出完整的运动目标,且场景中会出现大量噪声,如光线的强弱、运动目标的阴影等。 为此文中对移动机器人的运动目标检测和跟踪中的一些关键技术进行了研究,通过对传统帧间差分的改进,引入 HSI 差值模型、图像序列的连续差分运算、自适应分割算法、自适应阴影部分分割算法和图像形态学方法消除噪声斑点,在无背景图像条件下自动提取运动 目标区域。采用 Kalman 滤波器对跟踪目标的运动轨迹进行预测,建立移动机器人跟踪运动 目标的两步增量式跟踪控制策略,实现对目标的准确检测和平滑跟踪控制。实验结果表明该算法有效。 1、运动目标检测方法 接近人跟对颜色感知的色调、饱和度和亮度属性 (H ,S ,I )模型更适合于图像识别处理。因此,文中引入改进 型 HSI 帧差模型。 1.1 运动目标图像HSI 差值模型 设移动机器人在某一位置采得的连续三帧图像序列 ()y x k ,f 1-,()y x f k ,,()y x f k ,1+

机器人的运动控制

2.4 手臂的控制 2.4.1 运动控制 对于机器人手臂的运动来说,人们通常关注末端的运动,而末端运动乃是由各个关节的运动合成实现的。因而必须考虑手臂末端的位置、姿态与各个关节位移之间的关系。此外,手臂运动,不仅仅涉及末端从某个位置向另外一个位置的移动,有时也希望它能沿着特定的空间路径进行移动。为此,不仅要考虑手臂末端的位置,而且还必须顾及它的速度和加速度。若再进一步从控制的观点来看,机器人手臂是一个复杂的多变量非线性系统,各关节之间存在耦合,为了完成高精度运动,必须对相互的影响进行补偿。 1.关节伺服和作业坐标伺服 现在来研究n个自由度的手臂,设关节位移以n i个关节的位移,刚性臂的关节位移和末端位置、姿态之间的关系以下式给出: (1) m维末端向量,当它表示三维空间内的位置姿态 时,m=6。如式(1)所示,对刚性臂来说,由于各关节的位移完全决定了手臂末端的位置姿态,故如欲控制手臂运动,只要控制各关节的运动即可。 设刚性臂的运动方程式如下所示: (2) 量为粘性摩擦系数矩阵;表示重力项的向量; 机器人手臂的驱动装置是一个为了跟踪目标值对手臂当前运动状态进行反馈构成的伺服系统。无论何种伺服系统结构,控制装置的功能都是检测各关节的 1给出了控制系统的构成示意图。来自示教、数值数据或外传感器的信号等构成了作业指令,控制系统根据这些指令,在目标轨迹生成部分产生伺服系统需要的目标值。伺服系统的构成方法因目标值的选取方法的不同而异,大体上可以分为关节伺服和作业坐标伺服两种。当目标值为速度、加速度量纲时,分别称之为速度控制或加速度控制,关于这些将在本节2.和3.中加以叙述。

图1 刚性臂控制系统的构成 1) 关节伺服控制 讨论以各关节位移的形式给定手臂运动目标值的情况。 令关节的目标值为12(,,,)T n d d d dn q q q q =∈?。图2给出了关节伺服的构成。若目标值是以关节位移的形式给出的,那么如图2所示,各个关节可以独立构成伺服系统,因此问题就变得十分简单。目标值d q 可以根据末端目标值d r 由式(1)的反函数,即逆运动学(inverse kinematics )的计算得出 1()d r d q f r -= (3) 图2 关节伺服构成举例 如果是工业机器人经常采用的示教方法,那么示教者实际上都是一面看着手臂末端,一面进行示教的,所以不必进行式(3)的计算,d q 是直接给出的。如果想让手臂静止于某个点,只要对d q 取定值即可,当欲使手臂从某个点向另一个点逐渐移动,或者使之沿某一轨迹运动时,则必须按时间的变化使d q

浅析运动控制和机器人系统的区别

浅析运动控制和机器人系统的区别 尽管可能被用于实现同样的目标,但运动控制和机器人系统却以不同的方式进行着。那么,它们之间的区别究竟是什么呢? 在工业领域,自动化工厂是一个日益增长的趋势。为什么这并不难理解,因为这些应用有助于提高效率和生产效率。为了创建自动化工厂,工程师可以实现一个运动控制系统,或者引入一个机器人系统。这两种方法都可以用来完成相同的任务。然而,每种方法都有各自的独特设置、编程选项、动作灵活性和经济效益。 运动系统和机器人的基础 一个运动控制系统是一个简单的概念:启动并控制负载的移动来执行工作。它们具有精确的速度、位置和扭矩控制能力。使用运动控制的例子有:应用程序需要的产品定位,独立元素的同步,或者运动的快速启动和停止。 这些系统通常由三个基本组成部分组成:控制器、驱动器(或放大器)和电机。控制器规划路径或轨迹计算,向驱动发送低电压的指令信号,并向电机施加必要的电压和电流,从而产生所需的运动。 可编程的逻辑控制器(PLCs)提供了一种廉价的无噪声的运动控制方法。梯级逻辑编程一直是PLCs的主要内容,新模型以人机界面(HMI)面板为代表,这些面板是编程代码的可视化表示。PLCs可用于控制多种动作控制装置和机械的逻辑控制。 在一个传统的基于PLC的运动控制系统中,高速脉冲输出卡被应用于PLCs中,用于为每个伺服器或步进驱动生成脉冲序列。驱动器接收脉冲,并且每一个脉冲都有一个预先设定的量。一个单独的信号用来确定传输的方向。这种方法被称为"步骤和方向"。 这张图描述了一个传统的运动控制系统,包括一个伺服控制器,马达和传感器。 运动控制词汇中常用的术语包括: 速度:与时间有关的位置的变化率;一个由大小和方向组成的矢量。

六轴机器人 KUKA-KR200 机器人运动控制方式

KUKA-KR200 机器人运动控制方式 机器人控制系统要对单轴或是多轴进行协调控制,虽然轴的组成形式千变万化,不一而足,而轴的结构形式也不尽相同。但从控制功能角度上控制系统的种类如下: 1.点位置控制(Point to Point Control,即PTP 控制) 点位置控制方式为了满足一定的任务质量要求,要保证末端执行器尽量接近目标点,对如何达到目标点则没有任何限制。点位置控制方式容易实现,但定位精度比较低。这种控制方式的特点是:仅需保证终点和若干个中间点的位姿在一定精度范围内、运动速度比较快、控制方式相对简单。点位置运动控制一般用于机器人运动轨迹固定,要到达或经过特定的参照点的场合,如在机器人点焊工艺中使用。 2.不间断路径控制(Continuous Path Control,CP 控制) 不间断路径控制方式中机器人的执行机构要按照一定精度和速度要求,沿着预定的轨运动。机器人的每个关节要同步、连续地按照预定的轨迹运动才能顺利的完成任务。连续路径控制方式中机器人在保证运动平稳的同时还要满足所规划的路径经过点的位姿精度要求,因此控制方式比较复杂。主要用于喷漆、切割、弧焊作业中。 线形移动:在移动过程中,机器人各个转轴要相互配合,最终使得工件参考点沿着同一条轨迹向着目标点移动。通常情况下,如果按着某种速度要求,精确沿指定轨迹到达某点,或因为有产生对撞问题的可能,而以不同的点到点移动抵达某些点的时候,通常采用线性移动的方式。包括两种移动方式,即轨迹逼近移动和精确定位移动。 如图2-3 所示: 如果使用起始点、终点和辅助点来进行描述。以精确定位方式,在上一条移动指令中到达的位置点可以当做起始点,它的方向将在整个路径上产生改变。例如以给定的速度顺着一条圆形轨迹运动时,需要采用圆弧形移动。圆弧移动有两种不同的移动方式,即轨迹逼近移动和精确定位移动。

机器人技术基础知识总结概要

坐标系 ouvw 除绕坐标系 oxyz 的坐标轴旋转外, 还可以绕它本身的坐标轴旋转。如果坐标系 ouvw 绕坐标系 oxyz 的坐标轴旋转, 则可对旋转矩阵左乘相应的基本旋转 矩阵; 如果 ouvw 绕本身的坐标轴旋转,则可对旋转矩阵右乘相应 的基本旋转矩阵。 2目前机器人的运动学和动力学研究主要向下面所述的几个方 面深人发展: 1. 机器人的轨迹规划。 2. 切实可行的设计和评价机器人的动力学方法。 3. 适应机器人的实时计算,减少计算时间,提高 计算效率。 4. 解决控制系统的反馈、稳定等方面的问题。 5. 随着机器人以高速、高精度发展,考虑构件弹性及振动影响的动力学研究。 6. 改进和完善动力学建模方法。 3国内主要采用open GL软件实现机器人仿真 4运动学和动力学模型简化条件 (1 假设机器人各杆件是刚性的;忽略各杆件的变形,都当作

刚性构件来处理; (2 各构件的摩擦忽略不计; 目前,已经能够对一般结构的六自由度串联机器人进行逆运动 学求解,但是要获得显式解,只有满足下列两个充分条件之一: a .3 个相邻关节轴交于一点。 b .3 个相邻关节轴平行。 5假定坐标系 oxyz 是三维空间中的固定坐标系(在机器人运动学中为总体坐标系,坐标系 ouvw 固定在机器人杆件上并随杆件一起运动(此坐标系为附体坐标系 6齐次坐标是用 n+1 维坐标来描述 n 维空间的位置 7在机器人杆件关节上建立坐标系有两种方法:一是把杆件坐标 系建立在每个杆件的下关节处;二是把杆件坐标系建立在每个杆件 的上关节处。 8 i 杆件的坐标系设置在 i+1 号关节上,并固定 i 关节, 坐标系{i}与杆件 i 无相对运动 这种传递矩阵是把 i 杆件的坐标系设置在 i 号关节上,并固定 i 关节, 坐标系{i}与杆件 i 无相对运动 9

移动机器人运动控制研究综述

内容摘要:移动机器人运动控制研究综述,摘要:随着经济和科技的高速发展,机器人科学的研究也有了显著的进步,移动机器人作为机器人科学研究的一个重点方面之一,有着相当大的发展空间。对于移动机器人来说,运动控制系统是其核心部位,它对机器人能否良好的运动起到决定性的作用,因此,随着科技的不断发展,要求我们不断探索、发展、完善移动机器人运动控制系统。为了更全面深刻的研究移动机器人运动控制研究,我们可以基于移动机器人运动控制现状,发现问题与不足,并提出改进措施和创新... 关键词:移动机器人;运动控制;研究;创新 近年来移动机器人的研究不断进步,国际上一些国家更是注重于移动机器人的更高层次的发展,使得移动机器人科学发展迅速。移动机器人之所以受到世界各国的重视,主要是由于其运用的广泛性,例如,可用于军事领域、航空领域、汽车行业、代替人类参与极限环境探险、工厂工作等等。自从二十世纪八十年代美国制定地面无人作战平台以后,全世界便进入了研究移动机器人的高涨阶段。 一、世界范围内移动机器人控制研究现状 (一)国外移动机器人研究现状 在世界上,移动机器人的研究最为先进的是美国,目前美国制定的机器人研究计划有,利用移动机器人参与军事活动、太空探索、汽车行业、智能机器人,都具有极为先进的思想,并且美国研制的机器人早在1997年就登上了火星,是人类机器人研究的极大进步。日本制定的移动机器人计划是极限环境探索,为人类探索极为恶劣的环境提供了便利。德国研发的智能机器人在1998年就表现尤为出色,体现了其先进的移动机器人控制系统,也是科技的又一新进步。 (二)国内移动机器人研究现状 我国近年来也加大了对移动机器人控制的研究,因为研究较晚,机器人研究经验不足,所以在很多方面存在不足,主要是研究方向单一,大项目启动困难。目前,我国移动机器人研究成果有:清华大学1994智能机器人研制成功,使得我国移动机器人控制研究取得了突破性的进展。此外,我国其他研究机构,例如,上海交通大学研究所在移动机器人控制方面取得较大成就。就目前来看,我国移动机器人控制虽然有了显著的发展,但与美国、日本、德国移动机器人研究仍有较大差距,所以为了更好的发展机器人事业,我们应该做出机器人研究规划,促进移动机器人事业的发展。 二、移动机器人运动控制发展策略 (一)移动机器人自我定位策略 所谓移动机器人就是让机器人本身具有安全移动的功能,要使其安全移动,首要的是明确其自身的位置,基于此目标,我们在研究的过程中要解决好这一问题,改进完善移动机器人运动控制系统。为了做好移动机器人子自我定位,研究工作者,有必要精确各项数据,形成合理的运动路径规划。移动机器人是在事先设定程序的情况下做出的全自动化的运动,所以我们必须进行各项功能的研究,再集中数据,协调机器人的运动系统。 (二)应加大移动机器人运动控制的研究力度 随着科技的高速发展,我国应加大对移动机器人的资本投入。现阶段移动机器人最核心的部位运动控制系统还处于发展阶段,研究力度也较小,长此以往移动机器人科技将止步不前,落后于世界各国。针对这一问题,我国应大力培养机器人研究人才,我国的机器人研究大都在一些高等院校,为了更好的发展机器人事业,我国应设立专门的机器人研究所,提供先进设备,为机器人研究提供基础保障。 (三)应加大国际间移动机器人运动控制交流

相关主题
相关文档
最新文档