江苏省中考数学试题汇编之压轴题精选(学生版)

江苏省中考数学试题汇编之压轴题精选(学生版)
江苏省中考数学试题汇编之压轴题精选(学生版)

2008年江苏省中考数学压轴题精选

1(08江苏常州28题)如图,抛物线2

4y x x =+与x 轴分别相交于点B 、O ,它的顶点为A ,连接AB,把AB 所的直线沿y 轴向上平移,使它经过原点O,得到直线l ,设P 是直线l 上一动点.

(1) 求点A 的坐标;

(2) 以点A 、B 、O 、P 为顶点的四边形中,有菱形、等腰梯形、直角梯形,请分别直接写出这些特殊四边

形的顶点P 的坐标;

(3) 设以点A 、B 、O 、P 为顶点的四边形的面积为S,点P 的横坐标为x,

当46S +≤≤+,

求x 的取值范围.

2(08江苏淮安28题)28.(本小题14分)

如图所示,在平面直角坐标系中.二次函数y=a(x-2)2

-1图象的顶点为P ,与x 轴交点为 A 、B ,与y 轴交点为C .连结BP 并延长交y 轴于点D. (1)写出点P 的坐标;

(2)连结AP ,如果△APB 为等腰直角三角形,求a 的值及点C 、D 的坐标;

(3)在(2)的条件下,连结BC 、AC 、AD ,点E(0,b)在线段CD(端点C 、D 除外)上,将△BCD 绕点E 逆时针方向旋转90°,得到一个新三角形.设该三角形与△ACD 重叠部分的面积为S ,根据不同情况,分别用含b 的代数式表示S .选择其中一种情况给出解答过程,其它情况直接写出结果;判断当b 为何值时,重叠部分的面积最大?写出最大值.

(第28题)

(第24题图)

3(08江苏连云港24题)(本小题满分14分)

如图,现有两块全等的直角三角形纸板Ⅰ,Ⅱ,它们两直角边的长分别为1和2.将它们分别放置于平面直角坐标系中的AOB △,COD △处,直角边OB OD ,在x 轴上.一直尺从上方紧靠两纸板放置,让纸板Ⅰ沿直尺边缘平行移动.当纸板Ⅰ移动至PEF △处时,设PE PF ,与OC 分别交于点M N ,,与x 轴分别交于点G H ,.

(1)求直线AC 所对应的函数关系式;

(2)当点P 是线段AC (端点除外)上的动点时,试探究:

①点M 到x 轴的距离h 与线段BH 的长是否总相等?请说明理由;

②两块纸板重叠部分(图中的阴影部分)的面积S 是否存在最大值?若存在,求出这个最大值及S 取最大值时点P 的坐标;若不存在,请说明理由.

4(08江苏南京28题)(10分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为(h)x ,两车之间的距离.......为(km)y ,图中的折线表示y 与x 之间的函数关系. 根据图象进行以下探究: 信息读取

(1)甲、乙两地之间的距离为 km ; (2)请解释图中点B 的实际意义; 图象理解

(3)求慢车和快车的速度;

(4)求线段BC 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围;

问题解决 (

5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时?

(第28题)

y

5(08江苏南通28题)(14分)已知双曲线k y x =

与直线1

4

y x =相交于A 、B 两点.第一象限上的点M (m ,n )(在A 点左侧)是双曲线k

y x

=

上的动点.过点B 作BD ∥y 轴交x 轴于点D .过N (0,-n )作NC ∥x 轴交双曲线k

y x

=

于点E ,交BD 于点C . (1)若点D 坐标是(-8,0),求A 、B 两点坐标及k 的值.

(2)若B 是CD 的中点,四边形OBCE 的面积为4,求直线CM 的解析式.

(3)设直线AM 、BM 分别与y 轴相交于P 、Q 两点,且MA =pMP ,MB =qMQ ,求p -q 的值.

6(08江苏苏州28题)28.(本题9分) 课堂上,老师将图①中△AOB 绕O 点逆时针旋转,在旋转中发现图形的形状和大小不变,但位置发生了变化当△AOB 旋转90°时,得到△A 1OB 1.已知A(4,2)、B(3,0). (1)△A 1OB 1的面积是 ;

A 1点的坐标为( , ;

B 1点的坐标为( , ); (2)课后,小玲和小惠对该问题继续进行探究,将图②中△AOB 绕AO 的中点C(2,1)逆时

针旋转90°得到△A′O ′B ′,设O ′B ′交OA 于D ,O ′A ′交x 轴于E .此时A ′、O ′和B ′的坐

标分别为(1,3)、(3,-1)和(3,2),且O ′B ′ 经过B 点.在刚才的旋转过程中,小玲和小惠发现旋转中的三角形与△AOB 重叠部分的面积不断变小,旋转到90°时重叠部分的面积(即四边形CEBD 的面积)最小,求四边形CFBD 的面积;

(3)在(2)的条件一下,△AOB 外接圆的半径等于 . (第28题)

如图,⊙O 的半径为1,正方形ABCD 顶点B 坐标为)0,5(,顶点D 在⊙O 上运动.

(1)当点D 运动到与点A 、O 在同一条直线上时,试证明直线CD 与⊙O 相切; (2)当直线CD 与⊙O 相切时,求CD 所在直线对应的函数关系式;

(3)设点D 的横坐标为x ,正方形ABCD 的面积为S ,求S 与x 之间的函数关系式,并求出S 的最大值与最小值.

8(08江苏泰州29题)已知二次函数)0(2

1≠++=a c bx ax y 的图象经过三点(1,0),(-3,0),(0,2

3

-

)。 (1)求二次函数的解析式,并在给定的直角坐标系中作出这个函数的图像;(5分) (2)若反比例函数)0(2

2>=

x x

y 图像与二次函数)0(21≠++=a c bx ax y 的图像在第一象限内交于点A (x 0,y 0), x 0落在两个相邻的正整数之间。请你观察图像,写出这两个相邻的正整数;(4分)

(3)若反比例函数)0,0(2>>=

x k x

k

y 的图像与二次函数)0(21≠++=a c bx ax y 的图像在第一象限内的交点为A ,点A 的横坐标为0x 满足2<0x <3,试求实数k 的取值范围。(5分)

第27题

如图,已知点A 从(10),出发,以1个单位长度/秒的速度沿x 轴向正方向运动,以O A ,为顶点作菱形

OABC ,使点B C ,在第一象限内,且60AOC ∠=;以(03)P ,

为圆心,PC 为半径作圆.设点A 运动了t 秒,求:

(1)点C 的坐标(用含t 的代数式表示);

(2)当点A 在运动过程中,所有使P 与菱形OABC 的边所在直线相切的t 的值.

10(08江苏无锡28题)(本小题满分8分)

一种电讯信号转发装置的发射直径为31km .现要求:在一边长为30km 的正方形城区选择若干个安装点,每个点安装一个这种转发装置,使这些装置转发的信号能完全覆盖这个城市.问:

(1)能否找到这样的4个安装点,使得这些点安装了这种转发装置后能达到预设的要求? (2)至少需要选择多少个安装点,才能使这些点安装了这种转发装置后达到预设的要求?

答题要求:请你在解答时,画出必要的示意图,并用必要的计算、推理和文字来说明你的理由.(下面给出了几个边长为30km 的正方形城区示意图,供解题时选用)

1

11(08江苏徐州28题)28.如图1,一副直角三角板满足AB =BC ,AC =DE ,∠ABC =∠DEF =90°,∠EDF =30°

【操作】将三角板DEF 的直角顶点E 放置于三角板ABC 的斜边AC 上,再将三角板....DEF ...绕点..E .旋转..,并使边DE 与边AB 交于点P ,边EF 与边BC 于点Q 【探究一】在旋转过程中, (1) 如图2,当CE

1EA

=时,EP 与EQ 满足怎样的数量关系?并给出证明. (2) 如图3,当

CE

2EA

=时EP 与EQ 满足怎样的数量关系?,并说明理由. (3) 根据你对(1)、(2)的探究结果,试写出当

CE

EA

=m 时,EP 与EQ 满足的数量关系式 为_________,其中m 的取值范围是_______(直接写出结论,不必证明)

【探究二】若,AC =30cm ,连续PQ ,设△EPQ 的面积为S(cm 2

),在旋转过程中:

(1) S 是否存在最大值或最小值?若存在,求出最大值或最小值,若不存在,说明理由. (2) 随着S 取不同的值,对应△EPQ 的个数有哪些变化?不出相应S 值的取值范围. F

C(E)

A(D)

Q P

D

E

F

C

B

A

Q

P

D

E

F

C

B

A

如图甲,在△ABC 中,∠ACB 为锐角.点D 为射线BC 上一动点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF . 解答下列问题:

(1)如果AB=AC ,∠BAC=90o.

①当点D 在线段BC 上时(与点B 不重合),如图乙,线段CF 、BD 之间的位置关系为 ▲ ,数量关系为 ▲ .

②当点D 在线段BC 的延长线上时,如图丙,①中的结论是否仍然成立,为什么?

(2)如果AB ≠AC ,∠BAC≠90o,点D 在线段BC 上运动.

试探究:当△ABC 满足一个什么条件时,CF ⊥BC (点C 、F 重合除外)?画出相应图形,并说明

理由.(画图不写作法)

(3)若AC

=BC=3,在(2)的条件下,设正方形ADEF 的边DE 与线段CF 相交于点P ,求线段

CP 长的最大值.

A B

C

D

E

F 第28题图

图甲

图乙 F E

B

A

F E D

C

B A 图丙

已知:矩形ABCD 中,AB=1,点M 在对角线AC 上,直线l 过点M 且与AC 垂直,与AD 相交于点E 。 (1)如果直线l 与边BC 相交于点H (如图1),AM=

3

1

AC 且AD=A ,求AE 的长;(用含a 的代数式表示) (2)在(1)中,又直线l 把矩形分成的两部分面积比为2:5,求a 的值;

(3)若AM=

4

1

AC ,且直线l 经过点B (如图2),求AD 的长; (4)如果直线l 分别与边AD 、AB 相交于点E 、F ,AM=4

1

AC 。设AD 长为x ,△AEF 的面积为y ,求y 与x

的函数关系式,并指出x 的取值范围。(求x 的取值范围可不写过程)

14(08江苏镇江28题)28.(本小题满分8分)探索研究 如图,在直角坐标系xOy 中,点P 为函数2

14

y x =

在第一象限内的图象上的任一点,点A 的坐标为(01),,直线l 过(01)B -,且与x 轴平行,过P 作y 轴的平行线分别交x 轴,l 于C Q ,,连结AQ 交x 轴于H ,直线PH 交y 轴于R .

(1)求证:H 点为线段AQ 的中点; (2)求证:①四边形APQR 为平行四边形;

②平行四边形APQR 为菱形;

(3)除P 点外,直线PH 与抛物线2

14

y x =有无其它公共点?并说明理由.

x

江苏省中考数学几何填空题精选48题

2008年江苏省中考数学几何填空题精选48题 1(08年江苏常州)3.如图,在△ABC 中BE 平分∠ABC,DE ∥BC,∠ABE=35°, 则∠DEB=______°,∠ADE=_______°. 2(08年江苏常州)5.已知扇形的半径为3cm,扇形的弧长为πcm,则该扇形的面积是______cm 2 ,扇形的圆心角为______°. 3(08年江苏常州)8.若将棱长为2的正方体切成8个棱长为1的小正方体,则所有小 正方体的表面积的和是原正方体表面积的_______倍; 若将棱长为3的正方体切成27个棱长为1的小正方体,则所有小正方体的表面积的和是原正方体表面积的_______倍; 若将棱长为n(n>1,且为整数)的正方体 切成n 3 个棱长为1的小正方体,则所有小正方体的表面积的和是原正方体表面积的_______倍. 4(08年江苏淮安)12.已知⊙O 1与⊙O 2的半径分别为2cm 和3cm ,当⊙O 1与⊙O 2外切时,圆心距O 1O 2=______ 5(08年江苏淮安)13.如图,请填写一个适当的条件:___________,使得DE ∥ AB. 6(08年江苏连云港)11.在Rt ABC △中,90C ∠=,5AC =,4BC =,则tan A = 4 5 . 7(08年江苏连云港)14.如图,一落地晾衣架两撑杆的公共点为O ,75OA =cm ,50OD =cm .若撑杆下端点A B ,所在直线平行于上端点C D ,所在直线,且90AB =cm ,则CD = cm .60 8(08年江苏连云港)15.如图,扇形彩色纸的半径为45cm ,圆心角为40,用它制作一个圆锥形火炬模型的侧面(接头忽略不计),则这个圆锥的高约为 44.7 cm .(结果精确到0.1cm .参考数据:2 1.414≈, 3 1.732≈,5 2.236≈,π 3.142≈) 9(08年江苏南京)13.已知1O 和2O 的半径分别为3cm 和5cm ,且它们内切,则圆心距12O O 等于 cm .2 _4 (第14题图) 40 (第15题图) S B A 45cm (第3题)A B C D E

江苏省中考数学试题汇编之压轴题精选(学生版)

2008年江苏省中考数学压轴题精选 1(08江苏常州28题)如图,抛物线2 4y x x =+与x 轴分别相交于点B 、O ,它的顶点为A ,连接AB,把AB 所的直线沿y 轴向上平移,使它经过原点O,得到直线l ,设P 是直线l 上一动点. (1) 求点A 的坐标; (2) 以点A 、B 、O 、P 为顶点的四边形中,有菱形、等腰梯形、直角梯形,请分别直接写出这些特殊四边 形的顶点P 的坐标; (3) 设以点A 、B 、O 、P 为顶点的四边形的面积为S,点P 的横坐标为x, 当46S +≤≤+, 求x 的取值范围. 2(08江苏淮安28题)28.(本小题14分) 如图所示,在平面直角坐标系中.二次函数y=a(x-2)2 -1图象的顶点为P ,与x 轴交点为 A 、B ,与y 轴交点为C .连结BP 并延长交y 轴于点D. (1)写出点P 的坐标; (2)连结AP ,如果△APB 为等腰直角三角形,求a 的值及点C 、D 的坐标; (3)在(2)的条件下,连结BC 、AC 、AD ,点E(0,b)在线段CD(端点C 、D 除外)上,将△BCD 绕点E 逆时针方向旋转90°,得到一个新三角形.设该三角形与△ACD 重叠部分的面积为S ,根据不同情况,分别用含b 的代数式表示S .选择其中一种情况给出解答过程,其它情况直接写出结果;判断当b 为何值时,重叠部分的面积最大?写出最大值. (第28题)

(第24题图) 3(08江苏连云港24题)(本小题满分14分) 如图,现有两块全等的直角三角形纸板Ⅰ,Ⅱ,它们两直角边的长分别为1和2.将它们分别放置于平面直角坐标系中的AOB △,COD △处,直角边OB OD ,在x 轴上.一直尺从上方紧靠两纸板放置,让纸板Ⅰ沿直尺边缘平行移动.当纸板Ⅰ移动至PEF △处时,设PE PF ,与OC 分别交于点M N ,,与x 轴分别交于点G H ,. (1)求直线AC 所对应的函数关系式; (2)当点P 是线段AC (端点除外)上的动点时,试探究: ①点M 到x 轴的距离h 与线段BH 的长是否总相等?请说明理由; ②两块纸板重叠部分(图中的阴影部分)的面积S 是否存在最大值?若存在,求出这个最大值及S 取最大值时点P 的坐标;若不存在,请说明理由. 4(08江苏南京28题)(10分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为(h)x ,两车之间的距离.......为(km)y ,图中的折线表示y 与x 之间的函数关系. 根据图象进行以下探究: 信息读取 (1)甲、乙两地之间的距离为 km ; (2)请解释图中点B 的实际意义; 图象理解 (3)求慢车和快车的速度; (4)求线段BC 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围; 问题解决 ( 5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时? (第28题) y

江苏各市中考数学压轴题汇编

江苏省13市2015年中考数学压轴题 1. (2015年江苏连云港3分)如图是本地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间t(单位;天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是【】 A. 第24天的销售量为200件 B. 第10天销售一件产品的利润是15元 C. 第12天与第30天这两天的日销售利润相等 D. 第30天的日销售利润是750元 2. (2015年江苏南京2分)如图,在矩形ABCD中,AB=4,AD=5,AD、AB、BC分别与⊙O相切于E、F、G三点,过点D作⊙O的切线交BC于点M,则DM的长为【】 A. 13 3 B. 9 2 C. 4 13 3 D. 25 3. (2015年江苏苏州3分)如图,在一笔直的海岸线l上有A、B两个观测站,AB=2km,从A测得船C在北偏东45°的方向,从B测得船C在北偏东22.5°的方向,则船C离海岸线l的距离(即CD的长)为【】 A.4km B.() 22 +km C.22km D.() 42 -km 4. (2015年江苏泰州3分)如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等的三角形的对数是【】

A. 1对 B. 2对 C. 3对 D. 4对 5. (2015年江苏无锡3分)如图,Rt △ABC 中,∠ACB =90o,AC =3,BC =4,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B ′处,两条折痕与斜边AB 分别交于点E 、F ,则线段B ′F 的长为【 】 A. 35 B. 45 C. 2 3 D. 32 6. (2015年江苏徐州3分)若函数y kx b =-的图像如图所示,则关于x 的不等式()3>0k x b --的解集为【 】 A. <2x B. >2x C. <5x D. >5x 7. (2015年江苏盐城3分)如图,在边长为2的正方形ABCD 中剪去一个边长为1的小正方形CEFG ,动点P 从点A 出发,沿A →D →E →F →G →B 的路线绕多边形的边匀速运动到点B 时停止(不含点A 和点B ),则△ABP 的面积S 随着时间t 变化的函数图像大致为【 】

2019年江苏省苏州市中考数学试题及参考答案

2019年苏州市初中毕业暨升学考试试卷 数 学 一、选择题:本大题目共10小题.每小题3分.共30分.在每小题给出的四个选项中,只有一顶是 符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相应位置上........ . 1. 2 3的倒数是 A. 32 B. 32- C. 23 D. 23 - 2.肥皂泡的泡壁厚度大约是0.0007㎜,将0.0007用科学记数法科表示为() A. 30.710-? B. 3710-? C. 4710-? D. 5 710-? 3.下列运算结果正确的是 A. 23a b ab += B. 22 321a a -= C. 248 a a a ?= D. 2 3 3 2 ()()a b a b b -÷=- 4.一次数学测试后,某班40名学生的成绩被分为5组,第14组的频数分别为12、10、6、8,则第5组的频数是 A.0.1 B.0.2 C.0.3 D.0.4 5.如图,直线//a b ,直线l 与a 、b 分别相交于A 、B 两点,过点A 做直线l 的垂线交直线b 于点C ,若∠1=58°,则 ∠2的度数为 A.58° B.42° C.32° D.28° 6.已知点1(2,)A y 、2(4,)B y 都是反比例函数(0)k y k x =<的图像上,则1y 、2y 的大小关系为 A. 12y y > B. 12y y < C. 12y y = D.无法比较 7.根据国家发改委实施“阶梯水价”的有关文件要求,某市结合地方实际,决定从20161月1日起对居民生活用水按照新的“阶梯水价”标准收费,某中学研究性学习小组的同学们在用水量(吨) 15 20 25 30 35 户数 3 6 7 9 5 则这30户家庭该月应水量的众数和中位数分别是 A.25 ,27.5 B.25,25 C.30 ,27.5 D. 30 ,25 8.如图,长4 m 的楼梯AB 的倾斜角∠ABD 为60度,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD 为45°免责调整后的楼梯AC 的长为 A. 23m B. 26m C. (232)m - D. (262)m -

2020年江苏中考数学压轴题精选精练2

2020年中考数学压轴题精析精练2 一、选择题 1.如图,在平面直角坐标系xOy中,已知△ABC,∠ABC=90°,顶点A在第一象限,B,C在x轴的正半轴上(C在B的右侧),BC=2,AB=2,△ADC与△ABC关于AC所在的直线对称.若点A和点D在同一个反比例函数y=的图象上,则OB的长是() A.2 B.3 C.2D.3 2.在平面直角坐标系中,已知平行四边形ABCD的点A(0,﹣2)、点B(3m,4m+1)(m ≠﹣1),点C(6,2),则对角线BD的最小值是() A.3B.2C.5 D.6 3.如图,在矩形ABCD中,AB=4,BC=6,E是矩形内部的一个动点,且AE⊥BE,则线段CE的最小值为() A.B.2﹣2 C.2﹣2 D.4 4.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数y=(x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE的面积是9,则k=()

A.B.C.D.12 5.如图,矩形ABCD中,AB=3,BC=8,点P为矩形内一动点,且满足∠PBC=∠PCD,则线段PD的最小值为() A.5 B.1 C.2 D.3 6.如图,平行四边形ABCO的顶点B在双曲线y=上,顶点C在双曲线y=上,BC中点P恰好落在y轴上,已知S?OABC=10,则k的值为() A.﹣8 B.﹣6 C.﹣4 D.﹣2 二、填空题 1.如图,正方形ABCD中,E为AB边上一点,过点E作EF⊥AB交对角线BD于点F.连接EC交BD于点G.取DF的中点H,并连接AH.若AH=,EG=,则四边形AEFH 的面积为. 第1题第2题 2.在△ABC中,AB=5,AC=8,BC=7,点D是BC上一动点,DE⊥AB于E,DF⊥AC 于F,线段EF的最小值为.

中考数学真题试卷及答案(江苏省)

江苏省中考数学试卷 说明: 1. 本试卷共6页,包含选择题(第1题~第8题,共8题)、非选择题(第9题~第28题, 共20题)两部分.本卷满分150分,考试时间为120分钟.考试结束后,请将本试卷和答题卡一并交回. 2. 答题前,考生务必将本人的姓名、准考证号填写在答题卡相应的位置上,同时务必在试 卷的装订线内将本人的姓名、准考证号、毕业学校填写好,在试卷第一面的右下角填写好座位号. 3. 所有的试题都必须在专用的“答题卡”上作答,选择题用2B 铅笔作答、非选择题在指 定位置用0.5毫米黑色水笔作答.在试卷或草稿纸上答题无效. 4. 作图必须用2B 铅笔作答,并请加黑加粗,描写清楚. 一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号涂在答题卡相应位置.......上) 1.2-的相反数是( ) A .2 B .2- C . 1 2 D .12 - 2.计算23 ()a 的结果是( ) A .5 a B .6 a C .8 a D .2 3a 3.如图,数轴上A B 、两点分别对应实数a b 、, 则下列结论正确的是( ) A .0a b +> B .0ab > C .0a b -> D .||||0a b -> 4.下面四个几何体中,左视图是四边形的几何体共有( ) A .1个 B .2个 C .3个 D .4个 5.如图,在55?方格纸中,将图①中的三角形甲平移到图② 中所示的位置,与三角形乙拼成一个矩形,那么,下面的平 移方法中,正确的是( ) A .先向下平移3格,再向右平移1格 B .先向下平移2格,再向右平移1格 C .先向下平移2格,再向右平移2格 D .先向下平移3格,再向右平移2格 (第3题) 圆柱 圆锥 球 正方体 (第5题) 图② 图①

最新江苏13市中考数学压轴题汇编(有答案)

江苏13市2012年中考数学试题分类解析汇编1 专题12:押轴题 2 一、选择题 3 1. (2012江苏常州2分)已知a、b、c、d都是正实数,且a c b d <,给出下列 4 四个不等式:5 ① a c a+b c+d <;② c a c+d a+b <;③ d b c+d a+b <;④ b d a+b c+d <。 6 其中不等式正确的是【】 7 A. ①③ B. ①④ C. ②④ D. ②③8 【答案】A。 9 【考点】不等式的性质。 10 【分析】根据不等式的性质,计算后作出判断: 11 ∵a、b、c、d都是正实数,且a c b d <,∴ a c +1+1 b d <,即 a+b c+d b d <。 12 ∴ b d a+b c+d >,即 d b c+d a+b <,∴③正确,④不正确。 13 ∵a、b、c、d都是正实数,且a c b d <,∴ b d a c >。∴ b d +1+1 a c >,即 a+b c+d a c >。 14 ∴ a c a+b c+d <。∴①正确,②不正确。 15 ∴不等式正确的是①③。故选A。 16 2. (2012江苏淮安3分)下列说法正确的是【】 17 A、两名同学5次成绩的平均分相同,则方差较大的同学成绩更稳定。 18

19 B、某班选出两名同学参加校演讲比赛,结果一定是一名男生和一名女生 20 C、学校气象小组预报明天下雨的概率为0.8,则明天下雨的可能性较大 21 D、为了解我市学校“阳光体育”活动开展情况,必须采用普查的方法 22 【答案】C。 23 【考点】方差的意义,概率的意义,调查方法的选择。 24 【分析】根据方差的意义,概率的意义,调查方法的选择逐一作出判断: 25 A、两名同学5次成绩的平均分相同,则方差较小的同学成绩更稳定,故本选 26 项错误; 27 B、某班选出两名同学参加校演讲比赛,结果不一定是一名男生和一名女生, 28 故本选项错误; C、学校气象小组预报明天下雨的概率为0.8,则明天下雨的可能性较大,故 29 30 本选项正确; 31 D、为了解我市学校“阳光体育”活动开展情况,易采用抽样调查的方法,故 本选项错误。 32 33 故选C。 34 3. (2012江苏连云港3分)小明在学习“锐角三角函数”中发现,将如图所35 示的矩形纸片ABCD沿过点B的直线折叠,使点A落在BC上的点E处,还原后,36 再沿过点E的直线折叠,使点A落在BC上的点F处,这样就可以求出67.5°角37 的正切值是【】

江苏省南京市2019年中考数学真题试题(含解析)

2019 年江苏省南京市中考数学试卷 、选择题(本大题共6小题,每小题2分,共12分?在每小题所给出的四个选项中,恰 有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上) A. D. (2分)如图,△ A'B'C是由△ ABC经过平移得到的,△ A'B'C还可以看作是△ ABC经过怎次轴对称.其中所有正确结论的序号是 接填写在答题卡相应位置上) (2分)计算——-亍的结果是____________ (2分)分解因式(a- b)2+4ab的结果是 科学记数法表示13000 是() A. 0.13 X 105 B. 1.3 X 104 C.13X 103 D. 130 X 102 2. (2分)计算 ( a2b)3的结果是() 2 3 A. a b 5 3 B. a b C. 6. a b 6 3 D. a b 3. (2分)面积 为 4的止方形的边长是() A. 4的平方根 B.4的算术平方根 C. 4开平方的结果 D.4的立方根 1. (2分)2018年中国与“一带一路”沿线国家货物贸易进出口总额达 到 (2分)实数a、b、c满足a>b且ac v be,它们在数轴上的对应点的位置可以是( 4 . 13000亿美元.用 B. 5. (2分)下列整数中,与10- 下最接近的是( A. 4 B. 5 C. D. 7 6. 样的图形变化得到?下列结论:①1次旋转; ②1次旋转和1次轴对称;③2次旋转;④2 A.①④ C.②④ D.③④ 二、填空题(本大题共10小题,每小题2 分, 共20分。不需写出解答过程,请把答案直 7. (2分)-2的相反数是 9. B.②③

中考数学压轴题(五)平移问题

平移问题 平移性质——平移前后图形全等,对应点连线平行且相等。 一、直线的平移 1、(2009武汉)如图,直线43y x = 与双曲线k y x =(0x >)交于点A .将直线43y x =向右平移9 2 个单位后,与双曲线k y x =(0x >)交于点B ,与x 轴交于点C ,若2=BC AO ,则k = . 2、(09年四川南充市)如图已知正比例函数和反比例函数的图象都经过点(33)A ,. (1)求正比例函数和反比例函数的解析式; (2)把直线O A 向下平移后与反比例函数的图象交于点(6)B m ,,求m 的值和这个一次函数的解析式; (3)第(2)问中的一次函数的图象与x 轴、y 轴分别交于C 、D ,求过A 、B 、D 三点的二次函数的解析式; (4)在第(3)问的条件下,二次函数的图象上是否存在点E ,使四边形O ECD 的面积1S 与四边形O ABD 的面积S 满足:12 3 S S =?若存在,求点E 的坐标;若不存在,请说明理由. 提示:第(2)问,直线平行时,解析式中k 值相等。 ‘ 3、(2009年日照)某仓库为了保持库内的湿度和温度,四周墙上均装有如图所示的自动通风设施.该设施的下部ABCD 是矩形,其中AB =2米,BC =1米;上部CDG 是等边三角形,固定点E 为AB 的中点.△EMN 是由电脑控制其形状变化的三角通风窗(阴影部分均不通风),MN 是可以沿设施边框上下滑动且始终保持和AB 平行的伸缩横杆. (1)当MN 和AB 之间的距离为0.5米时,求此时△EMN 的面积; (2)设MN 与AB 之间的距离为x 米,试将△EMN 的面积S (平方米)表示成关于x 的函数; (3)请你探究△EMN 的面积S (平方米)有无最大值,若有,请求出这个最大值;若没有,请说明理由. 提示:第(2)问,按MN 分别在三角形、矩形区域内滑动分类讨论; 第(3)问,对(2)问中两种情况分别求最值,再比较得最值。 C

江苏省中考数学试卷及答案(全部word版)

江苏省2009年中考数学试卷 说明: 1. 本试卷共6页,包含选择题(第1题~第8题,共8题)、非选择题(第9题~第28题, 共20题)两部分.本卷满分150分,考试时间为120分钟.考试结束后,请将本试卷和答题卡一并交回. 2. 答题前,考生务必将本人的姓名、准考证号填写在答题卡相应的位置上,同时务必在试 卷的装订线内将本人的姓名、准考证号、毕业学校填写好,在试卷第一面的右下角填写好座位号. 3. 所有的试题都必须在专用的“答题卡”上作答,选择题用2B 铅笔作答、非选择题在指 定位置用0.5毫米黑色水笔作答.在试卷或草稿纸上答题无效. 4. 作图必须用2B 铅笔作答,并请加黑加粗,描写清楚. 一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号涂在答题卡相应位置.......上) 1.2-的相反数是( ) A .2 B .2- C . 1 2 D .12 - 2.计算23 ()a 的结果是( ) A .5 a B .6 a C .8 a D .2 3a 3.如图,数轴上A B 、两点分别对应实数a b 、, 则下列结论正确的是( ) A .0a b +> B .0ab > C .0a b -> D .||||0a b -> 4.下面四个几何体中,左视图是四边形的几何体共有( ) A .1个 B .2个 C .3个 D .4个 5.如图,在55?方格纸中,将图①中的三角形甲平移到图② 中所示的位置,与三角形乙拼成一个矩形,那么,下面的平 移方法中,正确的是( ) A .先向下平移3格,再向右平移1格 B .先向下平移2格,再向右平移1格 C .先向下平移2格,再向右平移2格 D .先向下平移3格,再向右平移2格 6.某商场试销一种新款衬衫,一周内销售情况如下表所示: (第3题) 圆柱 圆锥 球 正方体 (第5题) 图② 图①

2019江苏南京中考数学试卷

2019年江苏省南京市中考数学试卷 一、选择题(本大题共6小题,每小题2分,共12分.) 1. 2018年中国与“一带一路”沿线国家货物贸易进出口总额达到13000亿美元.用科学记数法表示13000是() A.0.13×105B.1.3×104C.13×103D.130×102 2.计算(a2b)3的结果是() A.a2b3B.a5b3C.a6b D.a6b3 3.面积为4的正方形的边长是() A.4的平方根 B.4的算术平方根C.4开平方的结果 D.4的立方根 4.实数a、b、c满足a>b且ac<bc,它们在数轴上的对应点的位置可以是()A.B. C.D. 5.下列整数中,与10﹣最接近的是() A.4 B.5 C.6 D.7 6.如图,△A'B'C'是由△ABC经过平移得到的,△A'B'C还可以看作是△ABC经过怎样的图形变化得到? 下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中所有正确结论的序号是() A.①④B.②③C.②④D.③④ 二、填空题(本大题共10小题,每小题2分,共20分。) 7.﹣2的相反数是;的倒数是. 8.计算﹣的结果是. 9.分解因式(a﹣b)2+4ab的结果是. 10.已知2+是关于x的方程x2﹣4x+m=0的一个根,则m=. 11.结合图,用符号语言表达定理“同旁内角互补,两直线平行”的推理形式:∵,∴a∥b.

12.无盖圆柱形杯子的展开图如图所示.将一根长为20cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有cm. 13.为了了解某区初中学生的视力情况,随机抽取了该区500名初中学生进行调查.整理样本数据,得到下表: 根据抽样调查结果,估计该区12000名初中学生视力不低于4.8的人数是. 14.如图,PA、PB是⊙O的切线,A、B为切点,点C、D在⊙O上.若∠P=102°,则∠A+∠C=. 15.如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分∠ACB.若AD=2,BD=3,则AC的长. 16.在△ABC中,AB=4,∠C=60°,∠A>∠B,则BC的长的取值范围是. 三、解答题(本大题共11小题,共88分) 17.计算(x+y)(x2﹣xy+y2) 18.解方程:﹣1=.

江苏数学中考题汇编 苏科版

2008年江苏省中考数学压轴题精选精析 1(08江苏常州28题)(答案暂缺)如图,抛物线2 4y x x =+与x 轴分别相交于点B 、O ,它的顶点为A ,连接AB,把AB 所的直线沿y 轴向上平移,使它经过原点O,得到直线l ,设P 是直线l 上一动点. (1) 求点A 的坐标; (2) 以点A 、B 、O 、P 为顶点的四边形中,有菱形、等腰梯形、直角梯形,请分别直接写出这些特殊四边 形的顶点P 的坐标; (3) 设以点A 、B 、O 、P 为顶点的四边形的面积为S,点P 的横坐标为x, 当46S +≤+, 求x 的取值范围. 2(08江苏淮安28题)(答案暂缺)28.(本小题14分) 如图所示,在平面直角坐标系中.二次函数y=a(x-2)2 -1图象的顶点为P ,与x 轴交点为 A 、B ,与y 轴交点为C .连结BP 并延长交y 轴于点D. (1)写出点P 的坐标; (2)连结AP ,如果△APB 为等腰直角三角形,求a 的值及点C 、D 的坐标; (3)在(2)的条件下,连结BC 、AC 、AD ,点E(0,b)在线段CD(端点C 、D 除外)上,将△BCD 绕点E 逆时针方向旋转90°,得到一个新三角形.设该三角形与△ACD 重叠部分的面积为S ,根据不同情况,分别用含b 的代数式表示S .选择其中一种情况给出解答过程,其它情况直接写出结果;判断当b 为何值时,重叠部分的面积最大?写出最大值. (第28题)

(第24题图) 3(08江苏连云港24题)(本小题满分14分) 如图,现有两块全等的直角三角形纸板Ⅰ,Ⅱ,它们两直角边的长分别为1和2.将它们分别放置于平面直角坐标系中的AOB △,COD △处,直角边OB OD ,在x 轴上.一直尺从上方紧靠两纸板放置,让纸板Ⅰ沿直尺边缘平行移动.当纸板Ⅰ移动至PEF △处时,设PE PF ,与OC 分别交于点M N ,,与x 轴分别交于点G H ,. (1)求直线AC 所对应的函数关系式; (2)当点P 是线段AC (端点除外)上的动点时,试探究: ①点M 到x 轴的距离h 与线段BH 的长是否总相等?请说明理由; ②两块纸板重叠部分(图中的阴影部分)的面积S 是否存在最大值?若存在,求出这个最大值及S 取最大值时点P 的坐标;若不存在,请说明理由. (08江苏连云港24题解析)解:(1)由直角三角形纸板的两直角边的长为1和2, 知A C ,两点的坐标分别为(12)(21),,, . 设直线AC 所对应的函数关系式为y kx b =+. ················ 2分 有221k b k b +=?? +=?,.解得13k b =-??=? , . 所以,直线AC 所对应的函数关系式为3y x =-+. ·············· 4分 (2)①点M 到x 轴距离h 与线段BH 的长总相等. 因为点C 的坐标为(21),, 所以,直线OC 所对应的函数关系式为1 2 y x =. 又因为点P 在直线AC 上, 所以可设点P 的坐标为(3)a a -, . 过点M 作x 轴的垂线,设垂足为点K ,则有MK h =. 因为点M 在直线OC 上,所以有(2)M h h ,. ······ 6分 因为纸板为平行移动,故有EF OB ∥,即EF GH ∥. 又EF PF ⊥,所以PH GH ⊥. 法一:故Rt Rt Rt MKG PHG PFE △∽△∽△, (第24题答图)

江苏省13市2017年中考数学试题(合集)

2017年苏州市初中毕业暨升学考试数学试卷 第Ⅰ卷(共30分) 一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.()217-÷的结果是 A .3 B .3- C . 13 D .13 - 2.有一组数据:2,5,5,6,7,这组数据的平均数为 A .3 B .4 C .5 D .6 3.小亮用天平称得一个罐头的质量为2.026kg ,用四舍五入法将2.026精确到0.01的近似值为 A .2 B .2.0 C .2.02 D .2.03 4.关于x 的一元二次方程220x x k -+=有两个相等的实数根,则k 的值为 A . B .1- C.2 D .2- 5.为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见.现从学校所有2400名学生中随机征求了100名学生的意见,其中持“反对”和“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生人数约为 A .70 B .720 C.1680 D .2370 6.若点(),m n A 在一次函数3y x b =+的图像上,且32m n ->,则b 的取值范围为 A .2b > B .2b >- C.2b < D .2b <- 7.如图,在正五边形CD AB E 中,连接BE ,则∠ABE 的度数为 A .30 B .36 C.54 D .72 8.若二次函数21y ax =+的图像经过点()2,0-,则关于x 的方程()2 210a x -+=的实数根为 A .10x =,24x = B .12x =-,26x = C.132x = ,25 2 x = D .14x =-,20x = 9.如图,在Rt C ?AB 中,C 90∠A B =,56∠A =.以C B 为直径的O 交AB 于点D ,E 是O 上一点,且C CD E =,连接OE ,过点E 作F E ⊥OE ,交C A 的延长线于点F ,则F ∠的度数为

2018年江苏省中考数学试卷含答案解析

2018年江苏省中考数学试卷 含答案解析 一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分) 1.(3分)﹣的相反数是() A.﹣B.C.﹣D. 2.(3分)今年一季度,江苏省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为() A.2.147×102B.0.2147×103C.2.147×1010D.0.2147×1011 3.(3分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是() A.厉B.害C.了D.我 4.(3分)下列运算正确的是() A.(﹣x2)3=﹣x5B.x2+x3=x5C.x3?x4=x7D.2x3﹣x3=1 5.(3分)江苏省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是() A.中位数是12.7% B.众数是15.3% C.平均数是15.98% D.方差是0 6.(3分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为() A.B. C.D. 7.(3分)下列一元二次方程中,有两个不相等实数根的是()

A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=0 8.(3分)现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案 是“”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是() A.B.C.D. 9.(3分)如图,已知?AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G,则点G的坐标为() A.(﹣1,2)B.(,2)C.(3﹣,2)D.(﹣2,2) 10.(2018.江苏.10)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为() A.B.2 C.D.2 二、细心填一填(本大题共5小题,每小题3分,满分15分,请把答案填在答題卷相应题号的横线上) 11.(3分)计算:|﹣5|﹣=. 12.(3分)如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数

苏教版中考数学压轴题:动点问题

运动变化型问题专题复习 【考点导航】 运动变化题是指以三角形、四边形、圆等几何图形为载体,设计动态变化,并对变化过程中伴随着的等量关系、变量关系、图形的特殊状态、图形间的特殊关系等进行考察研究的一类问题,这类试题信息量大,题目灵活多变,有较强的选拔功能,是近年来中考数学试题的热点题型之一,常以压轴题的面目出现.解决此类问题需要运用运动和变化的观点,把握运动和变化的全过程,动中取静,静中求动,抓住变化过程中的特殊情形,建立方程、不等式、函数模型. 【答题锦囊】 例1 如图在Rt △ABC 中,∠C =90°,AC =12,BC =16,动点P 从点A 出发沿AC 边向点C 以每秒3个单位长的速度运动,动点Q 从点C 出发沿CB 边向点B 以每秒4个单位长的速度运动.P ,Q 分别从点A ,C 同时出发,当其中一点到达端点时,另一点也随之停止运动.在运动过程中,△PCQ 关于直线PQ 对称的图形是△PDQ .设运动时间为t (秒). (1)设四边形PCQD 的面积为y ,求y 与t 的函数关系式; (2)t 为何值时,四边形PQBA 是梯形? (3)是否存在时刻t ,使得PD ∥AB ?若存在,求出t 的值;若不存在,请说明理由; (4)通过观察、画图或折纸等方法,猜想是否存在时刻t ,使得PD ⊥AB ?若存在,请估计t 的值在括号中的哪个时间段内(0≤t ≤1;1<t ≤2;2<t ≤3;3<t ≤4);若不存在,请简要说明理由. 例2 如图2,直角梯形ABCD 中,AB ∥CD ,∠A=900,AB=6,AD=4,DC=3,动点P 从点A 出发,沿A →D →C →B 方向移动,动点Q 从点A 出发,在AB 边上移动.设点P 移动的路程为x ,点Q 移动的路程为 y ,线段PQ 平分梯形ABCD 的周长. (1)求y 与x 的函数关系式,并求出x y ,的取值范围; (2)当PQ ∥AC 时,求x y ,的值; (3)当P 不在BC 边上时,线段PQ 能否平分梯形ABCD 的面积?若能,求出此时x 的值;若不能,说明理 由. 图1 P A C D Q P B 图2

中考数学试题及答案江苏省

2013年中考试题 数 学 注 意 事 项 考生在答题前请认真阅读本注意事项 1.本试卷共6页,满分为150分,考试时间为120分钟.考试结束后,请将本试卷和答题卡一并交回. 2.答题前,请务必将自己的姓名、考试证号用0.5毫米黑色字迹的签字笔填写在试卷及答题卡指定的位置. 3.答案必须按要求填涂、书写在答题卡上,在试卷、草稿纸上答题一律无效. 一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题 目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上. 1. -4的倒数是 A .4 B .-4 C . 1 4 D .- 14 2. 9的算术平方根是 A .3 B .-3 C .81 D .-81 3. 用科学记数法表示0.000031,结果是 A .3.1×10-4 B .3.1×10-5 C .0.31×10-4 D .31×10-6 4. 若36x -在实数范围内有意义,则x 的取值范围是 A .2x -≥ B .2x ≠- C .2x ≥ D .2x ≠ 5. 如图,⊙O 的直径AB =4,点C 在⊙O 上,∠ABC =30°,则AC 的长是 A .1 B .2 C .3 D .2 6. 某纺织厂从10万件同类产品中随机抽取了100件进行质检,发现 其中有5件不合格,那么估计该厂这10万件产品中合格品约为 A .9.5万件 B .9万件 C .9500件 D .5000件 7. 关于x 的方程12mx x -=的解为正实数,则m 的取值范围是 A .m ≥2 B .m ≤2 C .m >2 D .m <2 8. 如图,菱形ABCD 中,AB = 5,∠BCD = 120°,则对角线 B A C D (第8题) (第5题) · O A B C

南昌中考数学压轴题大集合

一、函数与几何综合的压轴题 1.(2004安徽芜湖)如图①,在平面直角坐标系中,AB 、CD 都垂直于x 轴,垂足分别为B 、D 且AD 与B 相交于E 点.已知:A (-2,-6),C (1,-3) (1) 求证:E 点在y 轴上; (2) 如果有一抛物线经过A ,E ,C 三点,求此抛物线方程. (3) 如果AB 位置不变,再将DC 水平向右移动k (k >0)个单位,此时AD 与BC 相交 于E ′点,如图②,求△AE ′C 的面积S 关于k 的函数解析式. [解] (1)(本小题介绍二种方法,供参考) 方法一:过E 作EO ′⊥x 轴,垂足O ′∴AB ∥EO ′∥DC ∴ ,EO DO EO BO AB DB CD DB '''' == 又∵DO ′+BO ′=DB ∴ 1EO EO AB DC '' += ∵AB =6,DC =3,∴EO ′=2 又∵ DO EO DB AB ''=,∴2 316 EO DO DB AB ''=?=?= ∴DO ′=DO ,即O ′与O 重合,E 在y 轴上 图① 图②

方法二:由D (1,0),A (-2,-6),得DA 直线方程:y =2x -2① 再由B (-2,0),C (1,-3),得BC 直线方程:y =-x -2 ② 联立①②得0 2 x y =?? =-? ∴E 点坐标(0,-2),即E 点在y 轴上 (2)设抛物线的方程y =ax 2+bx +c (a ≠0)过A (-2,-6),C (1,-3) E (0,-2)三点,得方程组42632a b c a b c c -+=-?? ++=-??=-? 解得a =-1,b =0,c =-2 ∴抛物线方程y =-x 2-2 (3)(本小题给出三种方法,供参考) 由(1)当DC 水平向右平移k 后,过AD 与BC 的交点E ′作E ′F ⊥x 轴垂足为F 。 同(1)可得: 1E F E F AB DC ''+= 得:E ′F =2 方法一:又∵E ′F ∥AB E F DF AB DB '?= ,∴1 3DF DB = S △AE ′C = S △ADC - S △E ′DC =1112 2223 DC DB DC DF DC DB ?-?=? =1 3 DC DB ?=DB=3+k S=3+k 为所求函数解析式 方法二:∵ BA ∥DC ,∴S △BCA =S △BDA ∴S △AE ′C = S △BDE ′()11 32322 BD E F k k '= ?=+?=+ ∴S =3+k 为所求函数解析式. 证法三:S △DE ′C ∶S △AE ′C =DE ′∶AE ′=DC ∶AB =1∶2 同理:S △DE ′C ∶S △DE ′B =1∶2,又∵S △DE ′C ∶S △ABE ′=DC 2∶AB 2=1∶4 ∴()221 3992 AE C ABCD S S AB CD BD k '?= =?+?=+梯形 ∴S =3+k 为所求函数解析式. 2. (2004广东茂名)已知:如图,在直线坐标系中,以点M (1,0)为圆心、直

挑战中考数学压轴题-最新

目录 第一部分函数图象中点的存在性问题 1.1 因动点产生的相似三角形问题 例1 2013年上海市中考第24题 例2 2012年苏州市中考第29题 例3 2012年黄冈市中考第25题 例4 2010年义乌市中考第24题 例5 2009年临沂市中考第26题 例6 2008年苏州市中考第29题 第一部分函数图象中点的存在性问题 1.1 因动点产生的相似三角形问题

例1 2013年上海市中考第24题 如图1,在平面直角坐标系xOy 中,顶点为M 的抛物线y =ax 2+bx (a >0)经过点A 和x 轴正半轴上的点B ,AO =BO =2,∠AOB =120°. (1)求这条抛物线的表达式; (2)连结OM ,求∠AOM 的大小; (3)如果点C 在x 轴上,且△ABC 与△AOM 相似,求点C 的坐标. 图1 动感体验 请打开几何画板文件名“13上海24”,拖动点C 在x 轴上运动,可以体验到,点C 在点B 的右侧,有两种情况,△ABC 与△AOM 相似. 请打开超级画板文件名“13上海24”,拖动点C 在x 轴上运动,可以体验到,点C 在点B 的右侧,有两种情况,△ABC 与△AOM 相似.点击按钮的左部和中部,可到达相似的准确位置。 思路点拨 1.第(2)题把求∠AOM 的大小,转化为求∠BOM 的大小. 2.因为∠BOM =∠ABO =30°,因此点C 在点B 的右侧时,恰好有∠ABC =∠AOM . 3.根据夹角相等对应边成比例,分两种情况讨论△ABC 与△AOM 相似. 满分解答 (1)如图2,过点A 作AH ⊥y 轴,垂足为H . 在Rt △AOH 中,AO =2,∠AOH =30°, 所以AH =1,OH =3.所以A (1,3)-. 因为抛物线与x 轴交于O 、B (2,0)两点, 设y =ax (x -2),代入点A (1,3)-,可得 3 a = . 图2 所以抛物线的表达式为23323(2)333 y x x x x =-=-. (2)由2232333 (1)y x x x = -=-- , 得抛物线的顶点M 的坐标为3(1,)- .所以3 tan BOM ∠= . 所以∠BOM =30°.所以∠AOM =150°. (3)由A (1,3)-、B (2,0)、M 3 (1,)-, 得3 tan 3 ABO ∠= ,23AB =,233OM =.

中考数学压轴题大集合

中考数学压轴题大集合(二) 17.(2005浙江台州)如图,在平面直角坐标系内,⊙C 与y 轴相切于D 点,与x 轴相交于A (2,0)、B (8,0)两点,圆心C 在第四象限. (1)求点C 的坐标; (2)连结BC 并延长交⊙C 于另一点E ,若线段..BE 上有一点P ,使得 AB 2=BP·BE ,能否推出AP ⊥BE ?请给出你的结论,并说明理由; (3)在直线..BE 上是否存在点Q ,使得AQ 2=BQ·EQ ?若存在,求出点Q 的坐标;若不存在,也请说明理由. [解] (1) C (5,-4); (2)能。连结AE ,∵BE 是⊙O 的直径, ∴∠BAE=90°. 在△ABE 与△PBA 中,AB 2=BP· BE , 即AB BE BP AB =, 又 ∠ABE=∠PBA, ∴△ABE ∽△PBA . ∴∠BPA=∠BAE=90°, 即AP ⊥BE . (3)分析:假设在直线EB 上存在点Q ,使AQ 2=BQ· EQ. Q 点位置有三种情况: ①若三条线段有两条等长,则三条均等长,于是容易知点C 即点Q ; ②若无两条等长,且点Q 在线段EB 上,由Rt △EBA 中的射影定理知点Q 即为AQ ⊥EB 之垂足; ③若无两条等长,且当点Q 在线段EB 外,由条件想到切割线定理,知QA 切⊙C 于点A.设Q()(,t y t ),并过点Q 作QR ⊥x 轴于点R,由相似三角形性质、切割线定理、勾股定理、三角函数或直线解析式等可得多种解法. 解题过程: ① 当点Q 1与C 重合时,AQ 1=Q 1B=Q 1E, 显然有AQ 12=BQ 1· EQ 1 , ∴Q 1(5, -4)符合题意; ② 当Q 2点在线段EB 上, ∵△ABE 中,∠BAE=90° ∴点Q 2为AQ 2在BE 上的垂足, ∴AQ 2= 10 48=?BE AE AB = 4.8(或 5 24 ). ∴Q 2点的横坐标是2+ AQ 2· cos ∠BAQ 2= 2+3.84=5.84,

相关文档
最新文档