直角坐标系教学设计

直角坐标系教学设计
直角坐标系教学设计

《平面直角坐标系》教学设计

一、指导思想与理论

在这节课的设计中,我立足于问题情境的创设,将原本枯燥的平面直角坐标系赋予一定的现实意义,在实际问题中学习知识,力求避免空洞的说教;立足于知识的发现和发展,让学生能在一种自然而然的情境中理解建立平面直角坐标系的必要性,应用平面直角坐标系去分析和解决问题;立足于知识和情感的教育,在知识教学的同时,结合数学家的故事及时地对学生进行理想教育,又在本课结束前对学生进行人生观的教育。同时在设计时,我还力求体现学生探究能力的培养,通过一个个问题的设计,一步一步地引导学生进行探究及自主地进行学习,并及时地加以总结和反馈,尝试从多角度去体现新课程的教学理念。

二、教材分析

本节课是在学习了有序数对的基础上进行的,是平面直角坐标系的起始课,是数轴的发展。平面直角坐标系是进一步学习函数及其它坐标系必备的基础知识。它是图形与数量之间的桥梁,是解决数学问题的一个重要工具,利用它可以使许多数学问题变得直观而简明,并实现了几何问题与代数问题的互化。

平面直角坐标系是数轴由一维到二维的过渡,同时它又是学习函数的基础,起到承上启下的作用。另外,平面直角坐标系将平面内的点与数结合起来,体现了数形结合的思想。掌握本节内容对以后学习和生活有着积极的意义。平面直角坐标系涉及的知识面较宽,具有很强的理论意义和实际意义,是前一节位置的确定的具体应用。因此,本节的教学与前面所学知识具有密切的联系,在后面的教材编排中,建立平面直角坐标系后,平面上的任意一点都可以用一对有序实数(即坐标)来表示。所以点的坐标是数形结合的桥梁,为解决几何代数问题提供了便利。

三、学情分析

由于本节是初一内容,是联系代数、几何的桥梁,对学生情况我从以下几方面分析:

1、知识掌握上,初一学生年龄小,思维正处于由具体形象思维向抽象思维转变的阶段,学生接受力强,正是学习的好时机。

2、心理上,学生爱听小故事,我抓住这一点,介绍法国数学家笛卡尔以及他对数学发展的贡献,对学生进行数学文化的熏陶。

3、生理上,初一学生好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中我运用身边的实例,引发学生的兴趣,使他们的注意力集中在课堂上;给他们创造条件和机会,让每一个学生都参与到课堂教学中来,感受成功的快乐。

四、教学目标

【知识目标】

1、理解平面直角坐标系以及横轴、纵轴、原点、坐标等的概念。

2、认识并能画出平面直角坐标系。

3、能在给定的直角坐标系中,根据点的坐标描出点的位置,由点的位置写出它的坐标。【能力目标】

1、通过画坐标系,由点找坐标等过程,发展学生的数形结合意识,合作交流意识。

2、通过对一些点的坐标进行观察,探索坐标轴上点的坐标有什么特点,培养学生的探索意识和能力。

【情感目标】

由平面直角坐标系的有关内容,以及由点找坐标,反映平面直角坐标系与现实世界的密切联系,让学生认识数学与人类生活的密切联系和对人类历史发展的作用,提高学生参加数学学习活动的积极性和好奇心。

五、教学重点和难点

教学重点:

1、理解平面直角坐标系的有关知识。

2、在给定的平面直角坐标系中,会根据点的坐标描出点的位置,根据点的位置写出它的坐标。

3、由点的坐标观察,说明坐标轴上点的坐标有什么特点。

教学难点:

1、横(或纵)坐标相同的点的连线与坐标轴的关系的探究。

2、坐标轴上点的坐标有什么特点的总结。

六、教学方法

探究式教学法。从学省的生活经验和已有的认知水平出发,提出问题,让学生通过合作交流解决问题掌握新知。

七、教学准备

多媒体课件

八、教学设计

教学环节师生活动媒体演示

(一)创设情境,引入新知

引例:我们等教室共有56个作位,自前向后分为7排,自左向右分为8列,每位学生对应了一个座位,我们来做个“点将”游戏,游戏规则是:(1)老师点学生姓名,学生起立并说出座位号;(2)老师说出座位号,对应的学生起立。奖励:同学们的掌声。

提问:你如何来确定自己的座位?

结论:同学们的座位必须由两个数才能确定下来。实际上生活中有很多时候需要用一对数字确定平面内一点位置。

师补充:如电影票,中国象棋上的棋子位置,自己所在的班级位置等。

引入新课——平面直角坐标系

(二)讲解概念,合作探究

1、平面直角坐标系的概念

像同学们的座位号一样,为了研究平面内的点的表示,先在平面内建一直角坐标系。

教师利用多媒体演示画直角坐标系的过程。

学生描述平面直角坐标系特征和画法,纳总结直角坐标系的概念

通过以上画图过程学生可以发现画直角坐标系的关键是画两条互相垂直的、原点重合的、具有相同单位长度的数轴。

概念:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。

①水平方向的数轴称为x轴或横轴。竖直方向的数轴称为y轴或纵轴。

②公共原点称为坐标原点。

2、动手操作,合作探究

(1)、学生动手自己画一个平面直角坐标系。(画完后互查)

教师巡视,指导学生画出平面直角坐标系。

(2)、①你能否在平面内找到表示(2,3)的点吗?

②你是如何找的?

③反过来,你能用数表示出平面内的任一点吗?试一试

在学生回答交流的基础上总结:在直角坐标系中由一对有序实数(a,b)可以确定一个点p的位置。过x轴上表示实数a的点画x轴垂线,过y轴上表示实数b的点画y轴的垂线,这两条垂线的交点即为点p。

过点Q分别画x轴和y轴的垂线,如果垂足对应的实数分别是m、n,则点就可以用有序

实数对(m,n)来表示。

点的坐标:在直角坐标系中一对有序实数可以确定一个点的位置:反之任意一点的位置都可以用一对有序实数表示。这样的有序实数叫做点的坐标。。

①横坐标写在纵坐标前。②点的坐标通常与表示该点的大写字母在一起。

(3)各象限内点的特征

平面内有四个点A、B、C、D、E、F,回答下列问题:

①请写出A、B、C、D、E、F的坐标

②请同学们观察一下,各区域内点的坐标的符号有什么不同?这说明它们的符号特点是?

③两条坐标轴上的点又有什么特征?

教师适当点拨、总结、归纳:2条坐标轴将平面分成4个区域称为象限,按逆时针顺序分别记为第一、二、三、四象限。

第一象限的点的坐标为(+、+)

第二象限的点的坐标为(-、+)

第三象限的点的坐标为(-、-)

第四象限的点的坐标为(+、-)

坐标轴上的点不在任何一个象限内。

教师引导学生分组讨论,合作探究,学生积极思考,学生小组讨论

(三)、巩固练习,熟能生巧

(1)指出下列图中点A、B、C、D、E、F的坐标

(2)标出表示下列坐标的点(3,5)、(3,-5)、(-4,-2)、(-4,2)、(4,5)、(-4,-5)。

学生说出,教师完善

(四)、拓展应用,深化认知

根据以下条件画一幅示意图,标出某一公园的各个景点.

菊花园:从中心广场向北走150米,再向东走150米;

湖心亭:从中心广场向西走150米,再向北走100米;

松风亭:从中心广场向西走100米,再向南走50米;

育德泉:从中心广场向北走200米.

学生练习

两道题目从不同侧面体现数形结合,进一步强化数形结合思想。培养学生读图的能力和思维的广阔性。

(五)、总结新知,布置作业

1、通过本节课的学习,你有哪些收获?

2、利用多媒体介绍笛卡儿的故事。(通过介绍科学家的事迹激发学生钻研数学兴趣。)

3、

①必做题:习题第1、2、3题

②选做题:探究平面内点(2,3)关于x轴、y轴、原点对称的点分别是什么?

学生归纳,教师补充

回忆本节课知识,培养复习的学习习惯

作业分层要求,既面向全体,又给部分学生提供发挥的空间,满足他们的求知欲,使不同的学生得到不同的发展。

(六)板书设计(需要一直留在黑板上主板书)

平面直角坐标系

1、平面直角坐标系概念

2、由点写坐标、由坐标找点、点的坐标概念、:

3、横(X)轴、纵(Y)轴、坐标原点各象限内点的坐标特征:

4、象限:一、二、三、四,象限及坐标轴上点的坐标特征:

5、直角坐标系中的点和有序实数对之间的关系,P(X,Y)平面上的点与有序实数对一一对应

(七)、教学反思

1.兴趣的引起包括以下心理程序:问题——兴奋性节点——情绪节点——成功感——持续刺激——兴趣产生。因此例子的选择应具备持续性和递进性。在实际教学中,电影院的座位、气温图、到图书馆找书和学生的课程表等只是适用于兴趣的引起,而对于讲述实际例题则兴奋性很低。因此除了贴近生活外更加要升华生活,尤其是学生不熟悉的领域,更加能够引起他们的兴趣,如战略导弹是如何进行定位的呢?

2.教师在组织学生开展探究性学习和问题式学习的时候,教师要扮演好引导者和指导者的角色,注意引导学生将各自的猜想、假设、结论进行交流,比较个人或各小组的探究思维过程,从中获得成功的经验和失败的教训。

3.教师在重视学生的表达与交流的同时,也应该注重鼓励性评价和肯定性评价的作用,尽量少使用否定性评价。

4.教师设计的问题应该具有启发性和方向性,力求课堂围绕问题让所有学生动起来,变被动性学为主动性学习,变要我学为我要学,充分发挥学生的主体作用。

空间直角坐标系》教学设计

《空间直角坐标系》教学设计 (一)教学目标1.知识与技能 (1)使学生深刻感受到空间直角坐标系的建立的背景(2)使学生理解掌握空间中点的坐标表示 2.过程与方法建立空间直角坐标系的方法与空间点的坐标表示 3.情态与价值观通过数轴与数、平面直角坐标系与一对有序实数,引申出建立空间直角坐标系的必要性,培养学生类比和数形结合的思想. (二)教学重点和难点空间直角坐标系中点的坐标表示. (三)教学手段多媒体 (四)教学设计 教学 环节 教学内容师生互动设计意图 复习引入问题情景1 对于直线上的点,我们可以通过数 轴来确定点的位置,数轴上的任意一 点M都可用对应一个实数x表示;对 于平面上的点,我们可以通过平面直 角坐标系来确定点的位置,平面上任 意一点M都可用对应一对有序实数 (x,y)表示;对于空间中的点,我们也 希望建立适当的坐标系来确定点的位 置. 因此,如何在空间中建立坐标系, 就成为我们需要研究的课题. 师:启发学生联想思 考,生:感觉可以 师:我们不能仅凭感 觉,我们要对它的认 识从感性化提升到理 性化. 让学生体 会到点与 数(有序数 组)的对应 关系.培养 学生类比 的思想.

那么假设我们建立一个空间直角坐标系后,空间中的任意一点是否可用对应的有序实数组(x,y,z)表示出来呢 概念形成问题情景2 空间直角坐标系该如何建立呢 O x X 一维坐标 二维坐标 三维坐标(图) 师:引导学生看 图,单位正方体OABC –D′A′B′C′,让学生认 识该空间直角系O –xyz中,什么是坐标 原点,坐标轴以及坐标 平面. 师:该空间直角坐 标系我们称为右手直 角坐标系. 让学生通过 对一维坐 标、二维坐 标的认识, 体会空间直 角坐标系的 建立过程. 问题情景3 建立了空间直角坐标系以后,空间中 任意一点M如何用坐标表示呢 师:引导学生观察 图, 生:点M对应着 唯一确定的有序实数 组(x,y,z),x、y、z 分别是P、Q、R在x、 通过幻灯片 展示横坐 标、纵坐标、 竖坐标产生 过程,让 学生从图中

人教版初中数学七年级下册《平面直角坐标系》说课稿

《平面直角坐标系》说课稿 说教材 《平面直角坐标系》是人教版九年义务教育七年级数学下册第六章第一节第二次课的内容,它是在学习了数 轴和有序数对后安排的一次概念性教学,也是初中生与坐标系的第一次亲密接触。平面直角坐标系的建立架 起了数与形之间的桥梁,是数形结合的具体体现。这一节课主要是让学生认识平面直角坐标系,了解点与坐标 的对应关系;在给定的平面直角坐标系中,能根据坐标描出点的位置,能由点的位置写出点的坐标。因此,本节 课的学习,是今后进一步学习平面直角坐标系的有关知识和借助平面直角坐标系学习一次函数、二次函数的 一个基础,它在整个初中数学教材体系中有着举足轻重的作用。b5E2RGbCAP 说目标与重难点 1.知识与能力目标: 使学生认识平面直角坐标系,理解并掌握横轴、纵轴、原点及点的坐标,了解点与坐标的对应关系;能准 确地在平面直角坐标系中描出点的位置和根据点的位置写出点的坐标,培养学生思维的准确性和深刻性。
p1EanqFDPw
2.过程与方法目标: 通过自主阅读,用游戏活动和动手实践的方式,让学生认识平面直角坐标系,掌握用“坐标”表示平 面内点的位置的方法,培养学生自主获取知识的能力。DXDiTa9E3d 3.情感态度价值观目标: 利用游戏、观察、实践、归纳等方法,积淀学生的数学文化涵养,鼓励学生去发现、去思考,使学生 认识到数学的科学价值和应用价值,培养热爱数学,勇于探索的精神。RTCrpUDGiT 其中认识平面直角坐标系,能正确地画出平面直角坐标系是本节课的教学重点; 会用“坐标”表示平面内点的位置和坐标轴上的点的特征是本节课的教学难点。 说学情 七年级的学生具有活泼好动,好奇的天性,他们正处于独立思维发展的重要阶段,对数学的求知欲较强, 具有初步的自主、合作探究的学习能力,对数轴有一定的认识,因此,对于平面直角坐标系的构成和建立 较为容易理解。5PCzVD7HxA 说教学策略 数学课程标准指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者”,学生的数 学学习内容应当是现实的,有趣的和富有挑战性的”。教师的责任是为学生的发展创设一个和谐开放地思 考、讨论、探究的氛围,创造 “海阔凭鱼跃,天高任鸟飞”的课堂教学境界。为此,这节课我主要采用了 情景激趣法、自主学习尝试法、合作探究交流法等教学方法,设计了“与文本对话——与生活对话——与 同学对话——与教师对话 ” 等一系列教学程序。jLBHrnAILg 说教程 一、游戏激趣,导入新课(约 2 分钟) “破译密码”游戏 【设计意图: 以游戏的形式导入,具有一定的新奇性、挑战性,能有效地激发学生的学习兴趣。】 二、与文本对话,理解概念( 约 17 分钟 ) 1.接触概念(让学生阅读教材,自主学

平面直角坐标系教案全

第三章平面直角坐标系 集体备课:(共7课时) 教材内容 本章内容包括平面直角坐标系及有关概念,点的坐标,用坐标表示地理位置和平移等。 实际生活中常用有序实数对表示位置,由此引出平面直角坐标系,建立点与有序实数对的对应关系,从而把数和形结合起来。用坐标法表示地理位置体现了直角坐标系在实际生活中的应用。用坐标表示地理位置,可以通过建立直角坐标系,绘制出一个区域内地点分布的平面示意图来完成。用坐标表示平移,从数的角度刻画了第五章有关平移的内容,主要研究了两方面的问题,一方面探讨点或图形的平移引起的点或图形顶点坐标的变化规律,另一方面探讨点或图形顶点坐标的有规律变化引起的点或图形的平移。 此外,用极坐标表示一个地点的地理位置,在本章最后的“数学活动”中有所渗透。 教学目标 〔知识与技能〕 1、能利用有序数对来表示点的位置;2会画出平面直角坐标系,能建立适当的直角坐标系描述物体的位置;3、在给定的直角坐标系中,会根据坐标描出点的位置,由点的位置写出它的坐标。 〔过程与方法〕 1、经历画坐标系、描点,由点找坐标的过程和图形的坐标变化与图形平移之间关系的探索过程,发展学生的形象思维能力与数形结合意识; 2、通过平面直角坐标确定地理位置,提高学生解决问题的能力。 〔情感、态度与价值观〕 明确数学理论来源于实践,反过来又能指导实践,数与形是可以相互转化的,进一步发展学生的辩证唯物主义思想。 重点难点 在平面直角坐标糸中,由已知点的坐标确定这一点的位置,由已知点的位置确定这一点的坐标和平面直角坐标系的应用是重点;建立坐标平面内点与有序实数对之间的一一对应关系和由坐标变化探求图形之间的变化是难点。 课时分配 6.1平面直角坐标系……………………………………… 3课时 6.2 坐标方法的简单应用…………………………………2课时 本章小结……………………………………………………2课时 3.1平面直角坐标系(1) 〔教学目标〕理解有序数对的意义,能利用有序数对表示物体的位置。

最新空间直角坐标系专题学案(含答案解析)

第九讲 空间直角坐标系 时间: 年 月 日 刘老师 学生签名: 一、 兴趣导入 二、 学前测试 要点考向1:利用空间向量证明空间位置关系 考情聚焦:1.平行与垂直是空间关系中最重要的位置关系,也是每年的必考内容,利用空间向量判断空间位置关系更是近几年高考题的新亮点。 2.题型灵活多样,难度为中档题,且常考常新。 考向链接:1.空间中线面的平行与垂直是立体几何中经常考查的一个重要内容,一方面考查学生的空间想象能力和逻辑推理能力;另一个方面考查“向量法”的应用。 2.空间中线面的平行与垂直的证明有两个思路:一是利用相应的判定定理和性质定理去解决;二是利用空间向量来论证。 例1:如图,在多面体ABCDEF 中,四边形ABCD 是正方形,EF ∥AB ,EF FB ⊥,2AB EF =, 90BFC ∠=?,BF FC =,H 为BC 的中点。 (1)求证:FH ∥平面EDB ; (2)求证:AC ⊥平面EDB ; (3)求二面角B DE C --的大小。 【命题立意】本题主要考查了空间几何体的线面平行、线面垂直的证明、二面角的求解的问题,考查了考生的空间想象能力、推理论证能力和运算求解能力。 【思路点拨】可以采用综合法证明,亦可采用向量法证明。 【规范解答】 E F B C D H G X Y Z

,,//,,,,,,,. ABCD AB BC EF FB EF AB AB FB BC FB B AB FBC AB FH BF FC H BC FH BC AB BC B FH ABC ∴⊥⊥∴⊥=∴⊥∴⊥=∴⊥=∴⊥Q Q I I 四边形为正方形,又且,平面又为中点,且平面 H HB GH HF u u u r u u u r u u u r 如图,以为坐标原点,分别以、、的方向为x 轴、y 轴、z 轴的正方向建立坐标系, 1,(1,2,0),(1,0,0),(1,0,0),(1,2,0),(0,1,1),(0,0,1).BH A B C D E F =-----令则 (1) (0,0,1), (0,0,1),////HF HF GE HF HF ∴==∴??∴u u r u u u r u u r u u u r Q 设AC 与BD 的交点为G ,连接GE 、GH,则G (0,-1,0),GE 又GE 平面EDB,平面EDB,平面EDB (2) (2,2,0),(0,0,1),0,. AC AC AC AC AC =-=∴=∴⊥⊥∴⊥u u u r u u r u u u r u u r Q g I GE GE GE 又BD,且GE BD=G ,平面EBD. (3) 1111111(1,,),(1,1,1),(2,2,0). 010,10,220011,0y z BE BD BE y z y z y BD ==--=--?=--+=??=-=??--==? ??∴=-u u r u u u r u u u r Q u u u r u u r g u u u r u u r g u u r 1111设平面BDE 的法向量为n n 由即,得,n n (,) 2222222(1,,),(0,2,0),(1,1,1). 00,01,10010,-1y z CD CE CD y y z y z CE ==-=-?==??==-??-+==? ??∴=u u r u u u r u u u r Q u u u r u u r g u u u r u u r g u u r 2222设平面CDE 的法向量为n n 由即,得,n n (,) 121212121 cos ,,2||||,60,n n n n n n n n ∴<>===∴<>=o o u r u u r u r u u r g u r u u r u r u u r 即二面角B-DE-C 为60。 【方法技巧】1、证明线面平行通常转化为证明直线与平面内的一条直线平行; 2、证明线面垂直通常转化为证明直线与平面内的两条相交直线垂直; 3、确定二面角的大小,可以先构造二面角的平面角,然后转化到一个合适的三角形中进行求解。 4、以上立体几何中的常见问题,也可以采用向量法建立空间直角坐标系,转化为向量问

北师版八上数学《平面直角坐标系》说课稿

【说课稿】北师版八上数学平面直角坐标系 北师大版八年级数学上册第三章第二节第一课时 XX学校XX人名 一.说教材背景 本节课的内容包含了1.平面直角坐标系及相关的X轴(横轴)与Y轴(纵轴)、坐标原点、四个象限等概念;2.直角坐标系的点的坐标及其特点。 “平面直角坐标系”作为初一学过的“数轴”的进一步发展,它是实现了认识上从一维空间到二维空间的跨越,构成更广泛范围的数形结合、数形互相转化的理论基础。它是以后进一步学习函数、三角函数及解析几何等内容的必要知识。所以平面直角坐标系是沟通几何与代数的桥梁。教材编写把“平面直角坐标系”单独作一章并放在八年级上册的“一次函数”前面,这减轻了初三知识的压力,又使学生尽早认识直角坐标系这种优势的数学工具,从而更快更好的感受数形结合的先进数学思想。 二.说学生情况 学生学习过数轴的概念后,已经有了初步的数形结合意识,知道了数轴的作用和意义,同时在前一节学了“位置的确定”,对平面上的点用一个“有序数对”表示,有了一定的认识,这对学习这一节有了一定的知识基础。 但是,对于现代时期的我们这个教育不发达地区的初中生,学习这一先进数学思想的知识有一定的难度。教材里的一些概念既多和琐碎又较为深奥,如“有序数对”、“一一对应”以及“四个象限”的符号特点等比较难以理解和掌握。何况本人所教的是普通班的学生,接受能力和理解能力以及学习积极性都不高,要教好这一节课,除了加强学生多练多探索来认识有关的知识外,还必须在“激趣”上下功夫,尽量调动学生的学习积极性。 三.说教学目标 根据新课标要求和学生现有知识水平,确定本节课教学目标: 1.认识并能画出平面直角坐标系,理解掌握平面直角坐标系的有关概念;理解平面内点 的意义,会由点求得坐标。 2.通过训练和讲解,培养学生的数形结合意识和合作交流意识,体会数形结合思想的作 用,从而激发学习数学的兴趣。 四. 说教学重难点 重点:理解平面直角坐标系及相关概念,能由点写出它的坐标及其位置特征。 难点:平面直角坐标系中的点与有序数对之间的一一对应与数形结合意识的培养。

平面直角坐标系教案(1)

平面直角坐标系教案(1) 【教学目标】 1、认识平面直角坐标系,了解点与坐标的对应关系; 2、在给定的直角坐标系中,能由点的位置写出点的坐标(坐标都为整数); 3、渗透数形结合的思想; 4、通过介绍数学家的故事,渗透理想和情感的教育. 【重点难点】 重点:认识平面直角坐标系。 难点:根据点的位置写出点的坐标。 【教学准备】 教师:收集有关法国数学家笛卡儿的有关资料(也可以将有关的直角坐标系制作成课件)。【教学过程】 一、情境导入 1、在一条笔直的街道边,竖着一排等距离的路灯,小华、小红、小明的位置如图1所示,你能根据图示确切地描述他们三个人的位置关系吗? 在学生进行叙述后,教师可以抓住以什么为“基准”,并借助于数轴来处理这个问题,从而进入课题. 设计意图:学生可以以其中的一人为基准进行描述,其目的是为数轴上的点的坐标的确定做准备。 2、如果我们画一条数轴,取小红的位置为原点,取向右的方向为正方向,取两盏路灯间的距离为一个单位长度,那么小华的位置(A)就可以用-3来表示,小明的位置(B)就可以用6来表示(如图2).此时,我们说点A在数轴上的坐标是-3,点B在数轴上的坐标是6.这样数轴上的点的位置与坐标之间就建立了对应关系.

设计意图:将数轴上点的坐标的概念学习置于具体的问题情境中。 问题:(1)在上述情境中,如果小兵位于小明左侧的第二盏路灯处,你能说出小兵在数轴上对应的点的坐标吗? (2)如果小兵站在一个长方形的操场上,你用什么方法可以确定小兵的位置? (3)如果小兵站在一个大操场上,你用什么方法可以确定小兵的位置? 设计意图:三个问题的安排有一定的层次性,为下一步引出平面直角坐标系作铺垫。 二、探究新知 1、平面直角坐标系的引入 对于上述第(2)个问题,我们可以用图3来表 示:这时,小兵(P)的位置就可以用两个数来表 示.如点P离AB边1 cm,离AD边1. 5 cm,如 果1 cm代表20 m,那么小兵离AB边20 m,离AD 边30 m. 对于上述第(3)个问题,我们是否也可以借助 于这样的一些线来确定小兵的位置呢?我们在小兵所在的平面内画上一些方格线(如图4),利用上节课所学的知识,就可以解决这个问题了. (然后由学生回答这个问题的解决过程) 受上述方法的启发,为了确定平面内点的位置,我们可以画一些纵横交错的直线,便于标记每一条直线的顺序,我们又可以以其中的两条为基准(如图5).

重庆高中数学必修二 第四章《空间直角坐标系》全套教案

《空间直角坐标系》教案设计 (一)教学目标 1.知识与技能 (1)使学生深刻感受到空间直角坐标系的建立的背景 (2)使学生理解掌握空间中点的坐标表示 2.过程与方法 建立空间直角坐标系的方法与空间点的坐标表示 3.情态与价值观 通过数轴与数、平面直角坐标系与一对有序实数,引申出建立空间直角坐标系的必要性,培养学生类比和数形结合的思想. (二)教学重点和难点 空间直角坐标系中点的坐标表示. (三)教学手段多媒体 (四)教学设计 教学 环节 教学内容师生互动设计意图 复习引入问题情景1 对于直线上的点,我们可以通过数 轴来确定点的位置,数轴上的任意一 点M都可用对应一个实数x表示;对 于平面上的点,我们可以通过平面直 角坐标系来确定点的位置,平面上任 意一点M都可用对应一对有序实数 师:启发学生联想思 考, 生:感觉可以 师:我们不能仅凭感 觉,我们要对它的认 识从感性化提升到理 性化. 让学生体 会到点与 数(有序数 组)的对应 关系.培养 学生类比 的思想.

(x,y)表示;对于空间中的点,我们也希望建立适当的坐标系来确定点的位置. 因此,如何在空间中建立坐标系,就成为我们需要研究的课题. 那么假设我们建立一个空间直角坐标系后,空间中的任意一点是否可用对应的有序实数组(x,y,z)表示出来呢? 概念形成问题情景2 空间直角坐标系该如何建立呢? O x X 一维坐标 二维坐标 三维坐标(图4.3-1) 师:引导学生看图 4.3-1,单位正方体 OABC–D′A′B′C′,让学 生认识该空间直角系 O –xyz中,什么是坐标 原点,坐标轴以及坐标 平面. 师:该空间直角坐 标系我们称为右手直 角坐标系. 让学生通过 对一维坐 标、二维坐 标的认识, 体会空间直 角坐标系的 建立过程.

平面直角坐标系教案

平面直角坐标系 适用学科初中数学适用年级初中二年级适用区域通用课时时长(分钟)60 知识点1、物体位置的确定; 2、平面直角坐标系. 教学目标1、能利用有序数对来表示点的位置; 2、会画出平面直角坐标系,能建立适当的直角坐标系描述物体的位置; 3、在给定的直角坐标系中,会根据坐标描出点的位置,由点的位置写出它的坐标. 教学重点在平面直角坐标系中,由已知点的坐标确定这一点的位置,由已知点的位置确定这一点的坐标和平面直角坐标系的应用 教学难点建立坐标平面内点与有序实数对之间的一一对应关系和由坐标变化探求图形之间的变化

教学过程 一、课堂导入 问题:思考我们能否用数字来表示棋子的位置呢?

二、复习预习 数轴 一般地,在数学中人们用画图的方式把数“直观化”,通常用一条直线上的点表示数,这条直线叫做数轴,它满足以下要求:(1)在直线上任取一个点表示数0,这个点叫做原点,记为0; (2)通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向; (3)选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点. 像这样规定了原点、正方向和单位长度的直线叫做数轴. 原点、正方向和单位长度称为数轴的三要素,缺一不可. 单位长度的大小可以根据不同的需要选择. 如上图,利用数轴能确定直线上点的位置,能不能找到一种办法来确定平面内点的位置呢?接下来我们将共同研究这个问题。

三、知识讲解 考点1 平面上确定物体位置的方法:1、行、列定位法 2,方向定位法 3、经纬定位法 4,区域定位法 5,方格定位法

考点2 平面直角坐标系 1、平面直角坐标系的概念:平面内两条互相垂直的数轴构成平面直角坐标系 2、坐标轴:水平的数轴称为x轴,向右为正方向,铅直的数轴称为y轴,向上为正方向,两轴交点O为原点 3、象限:建立直角坐标系的平面叫做平面,两条坐标轴将平面分成的四个区域称为象限,按逆时针顺序分别记为第一、二、三、四象限

平面直角坐标系2教案

平面直角坐标系2 一.教学目标 (一)教学知识点 1.理解平面直角坐标系,以及横轴、纵轴、原点、坐标等的概念. 2.认识并能画出平面直角坐标系. 3.能在给定的直角坐标系中,由点的位置写出它的坐标. (二)能力训练要求 1.通过画坐标系,由点找坐标等过程,发展学生的数形结合意识,合作交流意识. 2.通过对一些点的坐标进行观察,探索坐标轴上点的坐标有什么特点,纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,培养学生的探索意识和能力. (三)情感与价值观要求 由平面直角坐标系的有关内容,以及由点找坐标,反映平面直角坐标系与现实世界的密切联系,让学生认识数学与人类生活的密切联系和对人类历史发展的作用,提高学生参加数学学习活动的积极性和好奇心. 二.教学重点 1.理解平面直角坐标系的有关知识. 2.在给定的平面直角坐标系中,会根据点的位置写出它的坐标. 3.由点的坐标观察,横坐标相同的点或纵坐标相同的点的连线与坐标轴的关系.说明坐标轴上的点的坐标有什么特点. 三.教学难点 1.横(或纵)坐标相同的点的连线与坐标轴的关系的探究. 2.坐标轴上点的坐标有什么特点的总结.

四.教学方法 讨论式学习法. 五.教具准备 方格纸若干张. 投影片四张: 第一张:例题(记作§5.2.1 A); 第二张:例题(记作§5.2.1 B); 第三张:做一做(记作§5.2.1 C); 第四张:练习(记作§5.2.1 D). 六.教学过程 Ⅰ.导入新课 [师]随着改革开放的逐步深化,我们中国发生了翻天覆地的变化,人民的生活水平在不断 提高,消费水平也相应提高,旅游业空前高涨.假如你到了某一个城市旅游,那么你应怎样确定旅游景点的位置呢?下面给出一张某市旅游景点的示意图.根据示意图回答以下问题. (1)你是怎样确定各个景点位置的? (2)"大成殿"在"中心广场"南、西各多少个格?"碑林"在"中心广场"北、东各多少个格? (3)如果以"中心广场"为原点作两条相互垂直的数轴、分别取向右和向上的方向为数轴的正方向,一个方格的边长看做一个单位长度,那么你能表示"碑林"的位置吗?"大成殿"的位置呢? 在上一节课我们已经学习了许多确定位置的方法,主要学习用反映极坐标思想的定位方式,和用反映直角坐标思想的定位方式.在这个问题中大家看用哪种方法比较适合? [生]用反映直角坐标思想的定位方式. [师]在上一节课中我们已经做过这方面的练习,现在应怎样表示呢?这就是本节课的任务.

高中数学必修二《空间直角坐标系》优秀教学设计

4.3空间直角坐标系 4.3.1空间直角坐标系 教材分析 本节课内容是数学必修2 第四章圆与方程的最后一节的第一小节。 课本之所以把“空间直角坐标系”的内容放在必修2的最后即第四章的最后,原因有三:一、“空间直角坐标系”的内容为以后选修中用空间向量解决空间中的平行、垂直以及空间中的夹角与距离问题打基础,做好准备;二、必修2第三、四章是平面解析几何的基础内容,本节“空间直角坐标系”的内容是空间解析几何的基础,与平面解析几何的内容共同体现了“用代数方法解决几何问题”的解析几何思想;三、本套教材从整体上体现了“螺旋式上升”的思想,本节内容安排“空间直角坐标系”,为以后的学习作铺垫,正是很好地体现了这一思想。 本小节内容主要包含空间直角坐标系的建立、空间中由点的位置确定点的坐标以及由点的坐标确定点的位置等问题。结合图形、联系长方体和正方体是学好本小节的关键。 课时分配 本小节内容用1课时的时间完成,主要讲解空间直角坐标系的建立以及空间中的点与坐标之间的联系。 教学目标 重点:空间直角坐标系,空间中点的坐标及空间坐标对应的点。 难点:右手直角坐标系的理解,空间中的点与坐标的一一对应。 知识点:空间直角坐标系的相关概念,空间中点的坐标以及空间坐标对应的点。 能力点:理解空间直角坐标系的建立过程,以及空间中的点与坐标的一一对应。 教育点:通过空间直角坐标系的建立,体会由二维空间到三维空间的拓展和推广,让学生建立发展的观点;通过空间点与坐标的对应关系,进一步加强学生对“数形结合”思想方法的认识。 自主探究点:如何由空间中点的坐标确定点的位置。 考试点:空间中点的确定及坐标表示。 易错易混点:空间中的点与平面内的点以及它们的坐标之间的联系与区别;空间直角坐标系中x轴上单位长度的选取。 拓展点:不同空间直角坐标系下点的坐标的不同;空间中线段的中点坐标公式。 教具准备多媒体课件和三角板 课堂模式师生互动、小组评分以及兵带兵的课堂模式。 一、引入新课 由数轴上的点和平面直角坐标系内的点的表示引入空间中点的表示。 ,x y 数轴Ox上的点M,可用与它对应的实数x表示;直角坐标平面内的点M可以用一对有序实数()表示。类似于数轴和平面直角坐标系(一维坐标系和二维坐标系),当我们建立空间直角坐标系(三维坐 x y z表示。 标系)后,空间中任意一点可用有序实数组(,,)

初中数学平面直角坐标系教案

第七章 平面直角坐标系 7.1.1有序数对 教学目标:1、理解有序数对的应用意义,了解平面上确定点的常用方法 2、培养学生用数学的意识,激发学生的学习兴趣. 教学重点:有序数对及平面内确定点的方法. 教学难点:利用有序数对表示平面内的点. 教学过程 一.创设问题情境,引入新课 1.一位居民打电话给供电部门:“卫星路第8根电线杆的路灯坏了,”维修人员很快修好了路灯。 2.地质部门在某地埋下一个标志桩,上面写着“北纬44.2°,东经125.7°”。 3.某人买了一张8排6号的电影票,很快找到了自己的座位。 分析以上情景,他们分别利用那些数据找到位置的。 你能举出生活中利用数据表示位置的例子吗? 二、新课讲授 1、由学生回答以下问题: (1)引入:影院对观众席所有的座位都按“几排几号”编号,以便确 定每个座位在影院中的位置,观众根据入场券上的“排数”和“号数”准确入座。 (2)根据下面这个教室的平面图你能确定某同学的坐位吗?对于下面这个根据教师平面 图写的通知,你明白它的意思吗?“今天以下座位的同学放学后参加数学问题讨论:(1,5),(2,4),(4,2),(3,3),(5,6)。” 学生通过合作交流后得到共识:规定了两个数所表示的含义后就可以表示座位的位置. 思考: (1)怎样确定教室里坐位的位置? (2)排数和列数先后顺序对位置有影响吗?(2,4)和(4,2)在同一位置。 (3)假设我们约定“列数在前,排数在后”,你在图书6 1-1上标出被邀请参加讨论的同学的座位。 让学生讨论、交流后得到以下共识: (1)可用排数和列数两个不同的数来确定位置。 (2)排数和列数先后顺序对位置有影响。(2,4)和(4,2)表示不同的位置,若约定“列数在前 排数在后”则(2,4)表示第2列第4排,而(4,2)则表示第4列第2排。因而这一对数是有顺序的。 (3)让学生到黑板贴出的表格上指出讨论同学的位置。 2、有序数对:用含有两个数的词表示一个确定的位置,其中各个数表示不同的含义,我们把这种 有顺序的两个数a 与b 组成的数对,叫做有序数对,记作(a,b ) 利用有序数对,可以很准确地表示出一个位置。 3、常见的确定平面上的点位置常用的方法 (1)以某一点为原点(0,0)将平面分成若干个小正方形的方格,利用点所在的行和列的位置来确定点的位置。 (2)以某一点为观察点,用方位角、目标到这个点的距离这两个数来确定目标所在的位置。(以后学习) 巩固练习:1、教材65页练习 2.如图,马所处的位置为(2,3). (1)你能表示出象的位置吗? (2)写出马的下一步可以到达的位置。 1 234 56765 43 2 1 纵排 横排

空间直角坐标系教案

【课题】4.3.1空间直角坐标系 【教材】人教A版普通高中数学必修二第134页至136页. 【课时安排】1个课时. 【教学对象】高二(上)学生.【授课教师】*** 一.教材分析: 本节内容主要引入空间直角坐标系的基本概念,是在学生已学过的二维平面直角坐标系的基础上进行推广,为以后学习用空间向量解决空间中的平行、垂直以及空间中的夹角与距离问题、研究空间几何对象等内容打下良好的基础。 空间直角坐标系的知识是空间解析几何的基础,与平面解析几何的内容共同体现了“用代数方法解决几何问题”的解析几何思想;通过空间直角坐标系内任一点与有序数组的对应关系,实现了形向数的转化,将数与形紧密结合,提供一个度量几何对象的方法。其对于沟通高中各部分知识,完善学生的认知结构,起到了很重要的作用。 二.教学目标: ?知识与技能 (1)能说出空间直角坐标系的构成与特征; (2)掌握空间点的坐标的确定方法和过程; (3)能初步建立空间直角坐标系。 ?过程与方法 (1)结合具体问题引入,诱导学生自主探究; (2)类比学习,循序渐进。 1

情感态度价值观 (1)通过实际问题的引入和解决,让学生体会数学的实践性和应用性,感受数学刻画生活的作用,进而拓展自己的思维空间。 (2)通过用类比的数学思想方法探究新知识,使学生感受新旧知识的联系,并加深领会研究事物从低维到高维的方法与过程。 (3)通过对空间坐标系的接触学习,进一步培养学生的空间想象能力。三.教学重点与难点: 教学重点:空间直角坐标系相关概念的理解;空间中点的坐标表示。 教学难点:右手直角坐标系的理解,空间中点与坐标的一一对应。 四.教学方法:启发式教学、引导探究 五.教学基本流程: ↓ ↓ ↓ ↓ 2

高中数学人教版必修二(浙江专版)学案:4.3空间直角坐标系含答案

4.3空间直角坐标系 4.3.1&4.3.2 空间直角坐标系 空间两点间的距离公式 1.在空间直角坐标系中怎样确定空间中任一点的坐标? 2.空间中线段的中点坐标公式是什么? 3.空间中两点间的距离公式是什么? [新知初探] 1.空间直角坐标系 (1)空间直角坐标系:从空间某一定点引三条两两垂直,且有相同单位长度的数轴:x 轴、 y 轴、z 轴,这样就建立了空间直角坐标系O -xyz . (2)相关概念:点O 叫做坐标原点,x 轴、y 轴、z 轴叫做坐标轴.通过每两个坐标轴的平面叫做坐标平面,分别称为xOy 平面、yOz 平面、zOx 平面. 2.右手直角坐标系 在空间直角坐标系中,让右手拇指指向x 轴的正方向,食指指向y 轴的正方向,如果中指指向z 轴的正方向,则称这个坐标系为右手直角坐标系. 3.空间一点的坐标 空间一点M 的坐标可以用有序实数组(x ,y ,z )来表示,有序实数组(x ,y ,z )叫做点M 在此空间直角坐标系中的坐标,记作M (x ,y ,z ).其中x 叫点M 的横坐标,y 叫点M 的纵坐标,z 叫点M 的竖坐标. [点睛] 空间直角坐标系的画法 (1)x 轴与y 轴成135°(或45°),x 轴与z 轴成135°(或45°). (2)y 轴垂直于z 轴,y 轴和z 轴的单位长相等,x 轴上的单位长则等于y 轴单位长的1 2. 4.空间两点间的距离公式 (1)点P (x ,y ,z )到坐标原点O (0,0,0)的距离 |OP |= x 2 +y 2 +z 2 . 预习课本P134~137,思考并完成以下问题

(2)任意两点P 1(x 1,y 1,z 1),P 2(x 2,y 2,z 2)间的距离 |P 1P 2|= x 1-x 2 2 +y 1-y 2 2 +z 1-z 2 2 . [点睛] (1)空间两点间的距离公式可以类比平面上两点间的距离公式,只是增加了对应的竖坐标的运算. (2)空间中点坐标公式:设A (x 1,y 1,z 1),B (x 2,y 2,z 2),则AB 中点P ? ????x 1+x 22 ,y 1+y 22,z 1+z 22. [小试身手] 1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)空间直角坐标系中,在x 轴上的点的坐标一定是(0,b ,c )的形式( ) (2)空间直角坐标系中,在xOz 平面内的点的坐标一定是(a,0,c )的形式( ) (3)空间直角坐标系中,点(1,3,2)关于yOz 平面的对称点为(-1,3,2)( ) 答案:(1)× (2)√ (3)√ 2.在空间直角坐标系中,点P (3,4,5)与Q (3,-4,-5)两点的位置关系是( ) A .关于x 轴对称 B .关于xOy 平面对称 C .关于坐标原点对称 D .以上都不对 解析:选A 点P (3,4,5)与Q (3,-4,-5)两点的横坐标相同,而纵、竖坐标互为相反数,所以两点关于x 轴对称. 3.空间两点P 1(1,2,3),P 2(3,2,1)之间的距离为________. 解析:|P 1P 2|=-2 2 +02+22 =2 2. 答案:2 2 空间中点的坐标的求法 [典例] 在棱长为1的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是D 1D ,BD 的中点,G 在棱CD 上,且CG =1 4 CD ,H 为C 1G 的中点,试建立适当的坐标系,写出E ,F ,G ,H 的坐标. [解] 建立如图所示的空间直角坐标系.点E 在z 轴上,它的x 坐标、y 坐标均为0,而 E 为DD 1的中点,故其坐标为? ?? ??0,0,12. 由F 作FM ⊥AD ,FN ⊥DC ,垂足分别为M ,N , 由平面几何知识知FM =12,FN =1 2 ,

华师版八下数学平面直角坐标系说课稿

华东师大版八年级下册数学课题:平面直角坐标系(说课稿)我说课的题目是《平面直角坐标系》.下面我从四个方面汇报我对这节课的教学 设想与理解. 一、教学内容的分析 从学科知识体系看:用平面直角坐标系可以确定平面内任意一点的位置;有了平面直角坐标系,我们可以从“数”的角度进一步认识几何变换;平面直角坐标系也是后续学习函数、平面解析几何必备的知识. 从学生认知角度看:学生已经具有借助数轴用一个数表示直线上点的位置的经验,也学习了用有序数对确定物体的位置.这些均为本节课的学习打下基础. 从发展学生思维的角度看:从数轴到平面直角坐标系,再到空间直角坐标系,是从一维到二维,再到三维空间的发展,此过程渗透了数形结合思想、体现了类比方法,因此这节课是发展学生思维,提高能力的极好时机. 二、教学目标与重难点的确定 根据新课标的要求,结合教材的特点和学生的实际情况,我确定本节课的教学目标为: 1.初步掌握平面直角坐标系及相关概念;能由坐标描点,由点写出坐标. 2.经历知识的形成过程,用类比的方法思考和解决问题,进一步体会数形结合

的思想,认识平面内的点与坐标的对应关系. 3.通过了解相关数学史养成善于观察,勤于思考的品质. 本节课的教学重点是平面直角坐标系的形成过程以及由坐标描点和由点写出坐标.认识点与坐标的对应关系是本节课教学的难点. 三、教学过程的设计与实施 整个教学过程是按照: 四个环节逐一展开的. (一)创设情境、提出问题 上节课我们学习了用有序数对确定物体的位置,我以60周年校庆为背景给学生布置了如下作业:作为校庆志愿者,你如何为嘉宾描述学校东门的位置?同学们在作业中提出各种描述方案,主要有以下两类:(一)用文字语言进行描述;(二)画图说明. 创设情境 提出问题 类比抽象 形成概念 应用辨析 巩固概念 融入史料 总结延伸

空间直角坐标系学案(高三数学)

空间直角坐标系学案 【学习目标】 1.明确空间直角坐标系是如何建立;明确空间中的任意一点如何表示; 2 能够在空间直角坐标系中求出点的坐标 3.知道几何问题可通过空间直角坐标转化为代数问题求解。 【重点难点】 教学重点:空间的点与空间坐标的转化. 教学难点:空间直角坐标的建立过程,了解空间直角坐标系的作用. 【使用说明及学法指导】 1.先速读一遍教材P134—P136,再结合“预习案”进行二次阅读并回答,时间不超过10分钟. 2.本课必须记住的内容:写出空间点的坐标,根据坐标在空间找点的方法。 预习案 一、知识梳理 1. 空间直角坐标系:从空间某一个定点O引三条互相垂直且有相同单位长度的 数轴,这样的坐标系叫做空间直角坐标 系,点O叫做坐标原点,叫做坐标轴. 通过每两个坐标轴的平面叫做坐标平面,分别称为平面、 平面、平面. 2. 右手直角坐标系:在空间直角坐标系中,让右手拇指指向轴的正方向, 食指指向轴的正方向,若中指指向轴的正方向,则称这个坐标系为右手直角坐标系. 3. 空间直角坐标系中的坐标:对于空间任一点M,作出M点在三条坐标轴Ox轴、 Oy轴、Oz轴上的射影,若射影在相应数轴上的坐标依次为x、y、z,则把有序实数组叫做M点在此空间直角坐标系中的坐标,记作,其中叫做点M的横坐标,叫做点M的纵坐标,叫做点M的竖坐标. 4. 在xOy平面上的点的坐标都是零,在yOz平面上的点的 坐标都是零,在zOx平面上的点的坐标都是零;在Ox轴上的点的纵坐标、竖坐标都是, 在Oy轴上的点的横坐标、竖坐标都是,在Oz轴上的点的横坐标、纵坐标都是。 二、问题导学 1.平面直角坐标系的建立方法,点的坐标的确定过程、表示方法? 2. 我们知道数轴上的任意一点M都可用对应一个实数x表示,建立了平面直角 坐标系后,平面上任意一点M都可用对应一对有序实数) x表示.那么假设我 (y , 们建立一个空间直角坐标系时,

人教版七年级下册数学平面直角坐标系第一课时数学说课稿

平面直角第一课时说课稿 前进实验小学史爱东 各位老师: 你们好!我是来自_______________。今天我说课的内容是平面直角坐标系第一课时,下面我将从五个大方面向大家汇报一下我是如何钻研教材、备课和设计教学过程的。 第一,说教材 1、教材的地位和作用 平面直角坐标系是在学生对数轴与认识的基础上,由一维直线上升到二维平面,它是学习函数的基本工具.在数学中引入平面直角坐标系,这是对代数中最基本元素‘数’和平面中最基本元素‘点’之间一一对应,使数形统一起来,从而开创数学史上的新纪元。 2、令公桃李满天下,何用堂前更种花。出自白居易的《奉和令公绿野堂种花》 ◆教学目标的确定 全日制义务教育数学课程标准指出:基础教育在为学生获得终身发展打好基础,因此,提出以下令公桃李满天下,何用堂前更种花。出自白居易的《奉和令公绿野堂种花》 ◆教学目标: 1)知识目标:会正确画出平面直角坐标系,在平面直角坐标系中根据坐标找出点和通过点求出坐标。 2)能力目标:在共同探讨平面直角坐标系的过程中,使学生真实的体验和掌握数学的思想及方法。获得探究、实践和创新的能力。 3)情感目标:在共同学习平面直角坐标系的过程中,让学生经历观察、操作、交流、归纳、想象等探索过程。并在这个过程中,渗透数形结合的思想,培养学生创新精神。 3、教学重难点的确定 学生由于受到数轴的一维空间思维定势的影响,对二维空间的建立很难适应,而且运用实数对表示平面上点的坐标也很难理解。所以重点是平面直角坐标

系的有关概念,坐标系的画法以及如何找点的坐标;难点是平面直角坐标系概念的建立。 第二,说教法 本节课我采用“探究发现式”教学模式,在教学过程中要重视知识产生及发展过程的教学设计,引导学生积极做数学的过程。在这个过程中,教师与学生平等的交流并给予恰到好处的点播,体现学生是学习的主人,教师是数学学习的组织者、引导者和合作者,并在教学过程中注重课堂文化和贯穿人文精神。 第三,说学法 动手实践,自主探索与合作交流是本节课学生学习的主要特点,为学生提供充分的从事数学活动的时间与空间,让学生在亲身体验和探索中掌握平面坐标系,使每个学生都得到充分的发展。 第四,说教学程序 本节课主要解决三个问题,一是正确画出平面直角坐标系,二是根据坐标找出点,三是由点求出坐标。对于第个知识点我是从以下几个环节进行的: 1、创设问题情境,激发学生学习兴趣; 师生共同参与完成一个在班级内找同学的游戏,游戏规则是:根据班级课桌椅的排列情况把学生分成几排几列,让学生说出自己的准确位置以及别的同学的位置。可提出以下几个问题:1)某某同学在第几排第几列?2)第三排第四列和第四排第三列表示的是哪两位同学的座位?他们一样吗?3)已知某某同学在第四排,你能找到他的位置吗?此外还可引导学生举一些实际生活中的例子。比如,在影院里如何找座位,在书架上如何找一本书的位置,再比如如精确的给出我国首都的具体位置?通过我们在地理课上学到知识知道我国首都就是位于东经116°北纬40°。通过以上问题的探讨让学生体会到一对有序的数可以确定一个具体位置,而一个具体位置也可以对应着一个有序的数对。 本环节的设计主要是想让数学背景包含在学生熟悉的事物和具体的情境之中,在数学的世界里有供他们思考,开拓和发展的用武之地,而且通过这几个问题为学生提供与启发的讨论模式,营造一个极力索和理解的气氛。 2、探索研究,发现规律 首先,简单的复习一下数轴的有关概念。并完成数学课本XX页的练习1和

平面直角坐标系教学设计(省一等奖)

课题:7.1.2平面直角坐标系 教学内容:新人教版七年级下册第六章第二节平面直角坐标系 一、设计理念 以教材中提供的素材和实际生活中的一些问题为载体,通过一系列探究互动过程,将静态的教学内容,设计成动态的过程,将传统的教学方法演变成更加生动有趣的数学课堂。引导学生在丰富、有趣的数学活动中,积极思考、充分探究、获取知识、发展能力、培养学生的数学自信和良好思维品质。 二、材的地位和作用分析 1.内容的地位和作用 《平面直角坐标系(一)》是新人教版教科书七年级下册第七章第二节内容。本节课是学生刚刚学习的用有序实数对来表示位置的内容基础上学习的,它不仅强化了平面直角坐标系的意义,而且还用平面直角坐标系来应用于现实生活中,对现实生活很有用的知识,与此同时也是为今后的解析几何做好铺垫,平面直角坐标系是用途很广泛的知识点之一,在学习时要多加注意平面直角坐标系的特点和应用时的方便性。 2.课标要求 通过对平面直角坐标系的学习,加深对坐标系的理解,也是学习空间直角坐标系做前提。作为很有用的平面直角坐标系,它在现实生活中

应用非常广泛,所以要求我们的学生在学习平面直角坐标系时要抓住它的特性去学习,以便在今后的学习中有所应用。 三、教学内容的分析 “平面直角坐标系”是“数轴”的发展,使点与坐标的对应关系顺利实现了从一维到二维的过渡.“平面直角坐标系”的建立使有序数对与平面内的点产生了一一对应,提供了用代数方法来研究几何问题的重要数学工具。 学生已在具体情境中学习了有序数对表示物体的位置.本节课先介绍数轴上点与坐标的一一对应,在此基础上说明建立平面直角坐标系的必要性以及合理性,同时引入相关的概念以及平面内点与坐标一一对应的结论。并进一步学习平面直角坐标系中象限、坐横轴、纵轴、原点、坐标的概念;如何书写坐标、描点;探究总结坐标轴上、象限中点的符号特征。 一般地,在平面内互相垂直且原点重合,分别位于水平位置与铅直位置的两条数轴组成平面直角坐标系,习惯取向右、向上为正方向.建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标.反过来,对于任何一个坐标,可以在坐标平面内确定它所表示的一个点,从而建立坐标平面内点与有序数对的一一对应,体现数形结合的思想。 四、目标及其解析

5.2平面直角坐标系(1)说课稿

5.2平面直角坐标系(1)说课稿 各位评委:晚上好! 今天我说课的题目是《平面直角坐标系》,我准备从以下几个方面对本节课的教学设计进行说明。 一、教材分析 1、教材的地位和作用 本节教材是初中数学七年级上册第五章《平面直角坐标系》第2节第1课时的内容,是初中数学的重要内容之一。平面直角坐标系概念的引入,标志着数学由常量数学向变量数学的迈进,这是学习数学知识的一个飞跃,有了平面直角坐标系,就可以把两个相依变化的量之间的变化规律,用图形非常形象地表示出来,,因此平面直角坐标系成了研究函数图象及其性质的有利工具和重要方法,也是数形结合思想的典型体现。 2.学情分析 学生在学习了数轴的概念后,已经有了一定的数形结合的意识,积累了一定的由数轴坐标描出数轴上点及由数轴上的点写出数轴上坐标的经验,同时通过对实例的分析,对平面上的点由一个有序数对表示,有了一定的认识。而如何从一维数轴点与实数之间的对应关系过渡到二维坐标平面中的点与有序数对之间关系,限于初中的学习范围与学生的接受能力,学生理解起来有一定的困难。因此,教学过程中创设生动活泼、直观形象、且贴近他们生活的问题情境,会引起学生的极大关注,会有利于学生对内容的较深层次的理解;另一方面,学生已经具备了一定的学习能力,可多为学生创造自主学习、合作交流的机会,促使他们主动参与、积极探究。 3、教学重难点 根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:(1)由点求坐标及(a,b),(b,a)的区别和书写顺序,能在坐标系中根据点求出坐标。

(2)坐标系的基本知识是学好全章的基础,在后面学习函数的图象时都要用这些知识,通过对这部分知识反复而深入的练习和应用及渗透坐标的思想,进而形成数形结合的思想。 难点确定为:平面直角坐标系的有关概念及其特殊点的坐标特征。 二、教学目标分析 根据新课标的教学理念,培养学生的数学素养和终身学习的能力,我确立了如下的三维目标: 1.知识与技能目标:认识并能画出平面直角坐标系,能在方格纸上建立适当的坐标系,描述物体的位置,在给定的坐标系中,会根据点的位置找到坐标。 2. 过程与方法目标:经历画坐标系,由点找坐标等过程,发展学生的数形结合意识,合作交流意识,培养学生创新能力。 3. 情感态度与价值目标:培养学生细致认真的学习习惯.通过介绍笛卡儿创立坐标系的背景知识,激励学生敢于探索,勇攀科学高峰。 三、教学方法分析 本节课我主要采用“学案导学,展示激学”的教学模式,并辅助采用问题式、互动式结合的教学方法,以问题的提出、问题的解决为主线,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,给学生流出足够的思考交流时间和空间,发挥学生的主体地位作用。另外,在教学过程中,采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。 四、教学过程分析 为有序、有效地进行教学,本节课我主要安排以下教学环节: (1) 创设情境引出课题 我打算一开始让同学们以游戏的形式开始我的教学。设计意图:复习上节内容确定位置,又指明数学来源于实践并应用于实践,把确定位置关系的这一方法建立一个数学模型,就是本节要研究的平面直角坐标系,从而引出课题。同时还激发了学生的学习兴趣和参与意识。

相关文档
最新文档