变速恒频风力发电关键技术研究

变速恒频风力发电关键技术研究
变速恒频风力发电关键技术研究

变速恒频风力发电关键技术研究

[摘要]本文以变速恒频风力发电技术为研究对象,着眼于风力发电的关键实现技术,从交流—直流—交流风力发电技术分析、磁场调制发电机技术分析以及交流励磁双馈发电机技术分析这几个方面入手,围绕变速恒频风力发电机关键技术这一中心问题展开了较为详细的分析与阐述,并据此论证了变速恒频风力发电技术作为风力发电最关键技术,其在缓解能源危机以及推动“绿色能源”可持续发展过程中所发挥的至关重要的作用与意义。

[关键词]变速恒频风力发电技术发电机励磁定子转子分析

为缓解能源危机问题,各方工作人员开始针对一种全新的“绿色能源”展开详细分析与研究。一种将电力电子技术、微机信息处理技术及矢量变化控制技术充分融于发电机控制过程当中的发电技术——变速恒频风力发电技术更是以其特殊的应用优势而备受关注。本文是针对变速恒频风力风力发电关键技术这一中心问题做详细分析与说明。

一、交流—直流—交流风力发电技术分析

该技术运作系统结构示意图如下图所示(见图1)。受到风速持续变化因素的影响,整个系统当中的风力机装置及发电机装置也会产生与风速变化存在一定关系的变速旋转作用,进而导致电功率的产生。由图1我们不难看出:由发电机装置所发出的交流电电流首先

变速恒频双馈风力发电机的主要优点和基本原理

变速恒频双馈风力发电机的原理和优点研究 变速恒频发电技术 变速恒频发电技术是一种新型风力发电技术,其主要优点在于风轮以变速运行。这一调速系统和变桨距调节技术环节结合起来,就构成了变速恒频风力发电系统。其调节方法是:起动时通过调节桨距控制发电机转速;并网后在额定风速以下,调节发电机的转矩使转速跟随风速变化,保持最佳叶尖速比以获得最大风能;在额定风速以上,采用失速与桨距双重调节、减少桨距调节的频繁动作,限制风力机获取的能量,保证发电机功率输出的稳定性和良好的动态特性,提高传动系统的柔性。上述方式目前被公认为最优化的调节方式,也是未来风电技术发展的主要方向。其主要优点是可大范围调节转速,使风能利用系数保持在最佳值;能吸收和存储阵风能量,减少阵风冲击对风力发电机产生的疲劳损坏、机械应力和转矩脉动,延长机组寿命,减小噪声;还可控制有功功率和无功功率,改善电能质量。尽管变速系统与恒速系统相比,风电转换装置中的电力电子部分比较复杂和昂贵,但成本在大型风力发电机组中所占比例并不大,因而大力发展变速恒频技术将是今后风力发电的必然趋势。 目前,采用变速恒频技术的风力发电机组,由于采用不同类型的发电机,并辅之相关的电力电子变流装置,配合发电机进行功率控制,就构成了形式多样的变速恒频风力发电系统。主要有以下几类:鼠笼型异步发电机变速恒频风力发电系统、绕线式异步发电机变速恒频风力发电系统、同步发电机变速恒频风力发电系统、双馈发电机变速恒频风力发电系统。其中,由双馈发电机构成的变速恒频控制方案是在转子电路实现的,采用双馈发电方式,突破了机电系统必须严格同步运行的传统观念,使原动机转速不受发电机输出频率限制,而发电机输出电压和电流的频率、幅值和相位也不受转子速度和瞬时位置的影响,变机电系统之间的刚性连接为柔性连接。基于诸多优点,由双馈发电机构成的变速恒频风力发电系统已经成为目前国际上风力发电方面的研究热点和必然的发展趋势。

风电发展的关键技术研究

风电发展的关键技术研究 风电行业的兴起是全球能源与资源紧张的必然趋势,同时也是全球对清洁能源的迫切需求,风电作为清洁能源之一受到了各国政府的重视和发展。文章从四个方面讲述了风电发展的关键和核心技术:叶片技术、齿轮技术、轴承技术与控制技术。 标签:风电;关键技术;机电;控制 我国的常规资源比较缺乏,而风能资源比较丰富,从对环境污染更小的角度来看,风电是无污染能源,清洁能源。到2020年国内用电需求将达到4亿千瓦的用电量,庞大的用电需求对于国内发展风电来说将是个巨大的契机。政府的规划到2020年风电将会超过水电,成为第二大电力资源。目前世界市场上风电机主要的调节技术有:定桨距调节风电机技术、变桨距调节风电机技术、主动定桨距调节技术、变速恒频四种。目前,我国仅掌握定桨距失速调节型风电机技术,这类风电机的容量可以扩大到750kW,另外三种技术均没有涉及。我国与西方发达国家的风能利用方面还有比较大的差距,尤其核心控制模块还需要从国外进口,从风能的利用率方面还比较低,并网技术方面还有不小的差距。我国风电机技术开发仍处于较低水平。 1 风力发电机叶片应该满足的基本要求 风力发电机的叶片是叶轮的核心部件。叶片的设计涉及到多学科的知识,机械学,空气动力学,材料学疲劳特性学等等。风力发电机组效率的高低取决于叶片的形状。叶片主要几何参数有:风轮的直径,风轮的扫掠面积,风轮的偏角以及叶尖速比等等。叶片形状合理的设计与叶片片数的合理选择将会对发电机组的效率和降低噪音起到关键的作用。 叶片是风力发电机中最基础和最关键的部件,其良好的设计、可靠的质量和优越的性能是保证机组正常稳定运行的决定因素。恶劣的环境和长期不停的运转,致使对叶片的要求需要很严格:密度轻且具有最佳的疲劳强度和力学性能,能经受暴风等极端恶劣条件和随机负载的考验;叶片的弹性、旋转时的惯性及其振动频率特性曲线都正常,传递给整个发电系统的负载稳定性好,不得在失控的情况下离心力的作用下拉断并飞出,亦不得在风压的作用下折断,也不得在飞车转速以下范围内产生引起整个风力发电机组的强烈共振;叶片的材料必须保证表面光滑以减小风阻,粗糙的表面亦会被风“撕裂”;不得产生强烈的电磁波干扰和光反射;不允许产生过大噪声;耐腐蚀、耐紫外线照射和耐雷击性能好;成本较低,维护费用低。 2 风力发电机用轴承主要类型及工况条件 存在于风机轴承开发研制中的主要技术难点是实现轴承长寿命所需要的密封结构和润滑脂、特殊的滚道加工方法和热处理技术、特殊保持架的设计和加工

风电产业创新分析

到位并做好自己责任内的功课,尽职尽责地动员和唤起员工们自主管理的积极性,则绩效管理必定能够成功提升整个组织的运作效率,从而促进组织目标的步步高升。 参考文献 [1] 邓小军,整合绩效管理与企业升值战略的实现[J],价值工程,2010(5) [2] 殷新华,绩效管理运用及其关键[J],企业技术开发,2006(1) Analysis of Common Difficulties in Performance Management Li Ping (Advanced Training Center of Shanxi Electric Power Company) Abstract: based on objective reality,This article content give in-depth analysis of common questions in Performance Management, and pointed out the roots of problems. These problems are common in sectors whose overall goals and targets at all levels are not easy to quantify and not clear enough. The problems are typical. Adopting the approach of drilling top-down analysis combined with the implementation process, the paper discussed common problems in Performance Management and pointed out the roots of the problems. Key words: performance management; management philosophy; self-management 风电产业创新分析 刘学鹏① 赵冬梅 (中山职业技术学院) 摘要:我国风电产业建设步伐加快,产业规模逐步扩大,风电已成为能源发展的重要领域。但我国风电发展尚处于起步阶段,存在风能资源评价和规划工作滞后、风电产业体系不健全、技术创新能力不强、关键技术和装备依赖进口、等问题。本文从风电制造信息精细化和技术创新的精细化出发,提出了叶片技术、偏航系统、控制监测系统、风机传动系统、风机与电网的柔性连接、高可靠性设计风电安装设备等几个方面的创新。 关键词:创新;制造信息精细化化;技术创新精细化 1 引言 近年来,新兴市场的风电发展迅速。中国本土企业的市场份额在风电设备领域越来越大,到2009年底这中国风机市场份额已超过了7成。过低的市场准入门槛是致使风电设备制造业在短时间内爆发性增长的主要诱因。但是我国风机产业增长背后却是一系列奇怪现象:进口设备多,价格昂贵,国产风机维修频率大大高于进口风机维修的频率,尤其是国产风机的齿轮箱、主轴、液压缸等电机元件的损坏问题比较严重。 为了尽快扭转风电装备制造业被动局面,我国的机械制造协会等部门正在抓紧修订风电装备制造业相关的设备技术标准,准备实施强制性论证,主要包括完整的风电机组整机和零部件技术标准,以及涵盖设计评估、质量管理体系评估、制造监督和样机试验等环节的认证体系,以提高风电设备制造业的准入门槛,促进我国风电产业的健康规范发展。 本文对风电产业从风电制造信息精细化和技术创新精细化的角度,结合风电产业创新方法、技术路线以及工艺流程,进行创新分析,提出了相关措施。 2 创新内容 风电产业的创新是一个系统工程,本文从以下几个方面进行论述。 2.1 风电制造信息精细化 建立符台我国自然环境和资源条件的风电设备标准、检测和认证体系,并积极准备建立 ①作者简介:刘学鹏、赵冬梅,中山职业技术学院。

风力发电的发展现状与关键技术综述

12 用资源,建立统一的中小企业外部诚信信息发布平台;配合银行部门加大对中小企业进行信用评级,评价结果作为中小企业贷款时商业银行认可的信用标准和必备条件,以期降低融资成本,缩短放贷时间。 3.6 打造良好金融环境 营造“守信光荣、失信可耻”的道德氛围,大力宣传一批诚实守信的中小企业典型,同时强化公正执法环境,执法部门应加大对逃、赖、废金融债务行为的惩罚力度,为金融环境提供强大的法治保障。参考文献 [1] 白金花.中小企业融资渠道拓展探析[J].中国高新技术企业,2010,(34). [2] 宋德荣.我国中小企业融资问题研究[D].中国海洋大学, 2010. [3] 姚益龙.中小企业融资问题研究[M].北京:经济管理出 版社,2012. 作者简介:殷慧琴(1974-),女,江西吉水人,供职于江西省吉水县统计局。 (责任编辑:王书柏) 随着世界经济的不断发展和科学技术水平的不断提高,人类的生活水平也随之提高。经济发展、科学进步、人们生活水平的提高,都需要能源的大力支持,这也导致全球能源消耗的快速增长。根据相关数据显示,到2020年全球的能源消耗将再增长50%~100%。由此可以看出,能源的消耗造成的气体对地球的温室效应的影响也在不断扩大,为人类带来严重后果。 针对这一现象,人们也陷入了深思:如何才能建立一个可持续发展的社会环境?因此,节约能源也成为了各国关注的话题。人们逐步将眼光转向了清洁发电的方法。 在清洁发电的方法中,风力发电无论从技术层面,还是实际操作方面,都是最成熟的发电方法之一。相对于消耗煤炭和石油的老旧方式,风力发电既不消耗任何能源,又能减排二氧化碳等污染物,净化空气。同时,风力发电在新能源领域中,不仅可以调整电力工业结构,也是极具商业开发规模的发电方式。因此,许多国家已将风电发展作为国家可持续发展的重头戏。 1 风电发展历史与现状 第一台风力发电机的雏形形成于丹麦,虽然是电力方面的重大发展,但因技术的不完善、经济支 风力发电的发展现状与关键技术研究综述 王海峰 (广东电网公司湛江供电局,广东 湛江 524005) 摘要: 文章主要论述了国内外风电最新的发展现状和风力发电的关键技术最新研究进展,并对风电技术中的功率控制技术和风电功率预测做了重点论述。另外,在其中简要介绍了全球风电的发展概况、中国风能资源分布情况等相关内容。文章有助于对风电发展全面了解和深入掌握。关键词: 风力发电;风电技术;功率控制;风电功率预测中图分类号: TM614 文献标识码:A 文章编号:1009-2374(2012)33-0012-03 2012年第33/36期(总第240/243期)NO.33/36.2012 (CumulativetyNO.240/243)

变速恒频风力发电机组的无功功率极限

变速恒频风力发电机组的无功功率极限 申洪,王伟胜,戴慧珠 (中国电力科学研究院,北京100085) 摘 要:根据变速恒频风电机组的工作原理,建立了变速恒频风电机组的稳态数学模型,该模型考虑了风力机、双馈电机及其转速控制的稳态特性。在此模型的基础上,提出了计算变速恒频风电机组无功功率极限的方法,并对一变速恒频风电机组进行了计算分析,验证了所提方法的可行性。 关键词:变速恒频风电机;双馈电机;无功功率极限 1 引言 近年来世界风力发电发展迅速,风电装机容量平均每年以高于20%的速度增长。截止到2002年底,全世界风力发电装机容量约为31128MW,其中我国风电装机容量达468.42MW。目前,兆瓦级风力发电机组已逐渐取代600kW级的机组,成为国际上风力发电机市场的主力机型,风电机组正向着大型化、变桨距和变速恒频的方向不断发展和完善。 虽然变速恒频风电机组与固定转速的风电机组相比在性能上有较大改善,但由于风速变化的随机性,变速恒频风电机组的并网运行对电力系统而言仍然是一种波动的冲击功率,因而必须对这种风电机组的并网运行特性进行研究。变速恒频风电机组的发电机采用双馈感应电机,文献[1]~[3]对它的稳态模型进行了研究,建立了基于与定子磁场同步旋转的dq坐标系的数学模型。因为双馈发电机的转速和定子侧的无功功率都可以调节,所以转速控制规律和无功功率控制规律对变速恒频风电机组的稳态特性也有很大的影响。文献[1]、[2]介绍了转速控制和无功功率控制的基本思想,其中转速控制的目标是使风力机的功率系数最优,而无功功率控制则根据其接入的电力系统的实际运行方式可以设定为功率因数恒定或端电压恒定两种控制方式。 风电机组发出的有功功率主要取决于风速的大小,而无功功率则取决于风电机组的无功控制方案。一般风电场位于偏远地区,电网结构薄弱,当无功功率控制的设定值达到风电机组的无功功率极限时,一方面转子绕组发热将导致风电机组停机,另一方面由于不能向系统中提供或吸收足够的无功功率,将导致端电压降低或升高,严重时将导致系统电压失稳。因而研究变速恒频风电机组的无功功率极限是很有必要的。文献[4]对此问题进行了一定的研究,但它只讨论了发电机定子绕组中有功功率和无功功率的稳态运行域问题,并没有解决整个风电机组注入系统的有功功率和无功功率的稳态运行域问题。另外,该文献没有考虑转速控制规律的影响。

变速恒频风力发电技术研究

变速恒频风力发电技术研究 目录 摘要 ............................................................................ I Abstract ........................................................................ II 第一章绪论 . (1) 1.1风力发电研究的背景和意义及现状 (1) 1.2 风力发电系统组成及原理 (2) 1.2.1 风力机工作原理 (2) 1.2.2 风电系统 (3) 1.3 风力发电技术 (4) 1.3.1 定桨距失速调节型风力发电机组 (4) 1.3.2 变桨距调节型风力发电机组 (5) 1.3.3 主动失速调节型风力发电机组 (5) 1.3.4 变速恒频风力发电机组 (5) 1.4变速恒频风力发电技术 (6) 1.4.1 恒速恒频风力发电技术 (6) 1.4.2 变速恒频风力发电技术 (6) 第二章变速恒频风力发电电机及其系统 (10) 2.1变速恒频风力发电机组的运行原理 (10) 2.2 笼型异步发电机变速恒频风力发电系统 (12) 2.3 永磁发电机变速恒频风力发电系统 (13) 2.4 交流励磁双馈型变速恒频发电系统 (13) 2.5无刷双馈发电机变速恒频风力发电系统 (14) 2.6磁场调制型变速恒频风力发电系统 (15) 第三章变速恒频双馈电机风力发电控制策略 (16) 3.1变速恒频双馈电机风力发电控制策略 (16) 3.2 双馈电机存在的主要问题 (16) 3.3 双馈电机的控制策略综述 (17) 3.3.1 双馈电机标量控制 (17) 3.3.2 双馈电机直接转矩控制 (18) 3.3.3 双馈电机转子磁场定向控制 (19) 3.4变速恒频双馈电机风力发电功率控制 (20) 3.5双馈电机风电场的无功功率控制技术 (22) 3.6风力发电机组的并网控制技术 (22) 3.7结论 (23) 结论 (24) 致谢 (25) 参考文献 (26)

河北省风电产业发展概况

河北省风电产业发展概况

————————————————————————————————作者:————————————————————————————————日期:

河北省风电产业发展概况 风电场分布: 张家口: 一,2009年6月大唐张北乌登山风电场一期4.95万千瓦风电工程正式获得河北省发展和改革委员会的核准批复,大唐张北乌登山风电场位于河北省张北县大西湾乡区域。 二,七甲山风电场项目建设规模19.95万千瓦,拟安装单机容量1500千瓦风电机组133台,设计年发电量约4.62亿千瓦时。预计2010年全部并网发电。 三,尚义龙源风电场核准总装机容量为15万千瓦,总投资13.2亿元,将建设100台1500千瓦风电机组。预计2010年全部并网发电。 四,张北县绿脑包风电场核准总装机容量10.05万千瓦,将建设67台1500千瓦风电机组 目投资额为9.5亿元,年发电量约为2.42亿千瓦时,预计2010年全部并网发电。 五,2009年7月河北省张北县满井风电场风电项目全部建成投产。满井风电场风电项目单体容量达19.35万KW,是国内目前单体容量最大的风电场。满井风电场的建成,不仅对改善华北电网能源结构和有效改善北京、天津等华北地区的环境状况有重要的现实意义,而且也将有效地促进和带动当地经济的发展。满井风电场年可实现发电量约4.5亿KW.h 六,2010年1月,华电沽源九龙泉风电场一期(100.5MW)工程67台风电机组全部调试完成、顺利并网发电,成为国家规划的首个百万千瓦级风电基地中第一个实现全部投产发电的风电场。与此同时,这县还顺利入围了2009年中国新能源百强县。 为该风电场全部建成投产奠定了良好的基础。2009年12月31日67台风机全部并网发电,成为国家规划的首个百万千瓦级风电基地中第一个实现全部投产发电的风电场。截止目前,该县已实现累计并网发电18.3万千瓦。今年全县风电装机和开工总量将达到90万千瓦,实现并网发电50万千瓦,2012年可并网100万千瓦。2010年2月为止张家口市风电装机容量已突破200万千瓦,位居全省首位,成为全国风电装机容量最多的成市之一。 承德: 一,河北省红松风力发电股份有限公司经营业务为风力发电,至2006年底,承德红松风力发电有限公司已先后完成其投资风电项目的一、二、三期建设工程,总投资 8.86亿元,总装机158台,装机总量达到10.62万千瓦。装机10万千瓦的四、五 期工程也于年初开工建设,并网发电后,总装机容量将达到20.62万千瓦,年发电量可达2.68亿千瓦。 二,2009年12月随着张家湾项目风机的启动,河北省、承德市重点项目———由河北围场龙源建投风力发电有限公司等承建的4个49.5MW风电项目,在历时近一年零八个月的施工建设后,成功并网发电。其中49.5MW竹子下项目、49.5MW广发永实现了在华北坝上地区1500KW风电机组的计划。 三,2009年10月21日河北承德华能围场御道口牧场风电场二期工程场址位于河北省承德市围场县城西北的御道口牧场,距县城66km,海拔高度1390m~1578m。 风电场规划总装机规模249MW,分2期建设。本期为第二期,装机容量199.5MW,

变速恒频风力发电关键技术研究

变速恒频风力发电关键技术研究 发表时间:2018-06-07T10:41:35.750Z 来源:《电力设备》2018年第1期作者:李琳[导读] 摘要:本文主要对风力发电技术进行研究,首先从传统的恒速恒频发电入手与变速恒频发电做对比,展示了变速恒频发电在性能方面的突出优点,再分析变速恒频发电机组的工作原理和机组中的两种发电系统:交流励磁双馈发电系统和无刷双馈发电系统,分别对两种系统的工作原理、控制方式、优点及缺点等方面作出了阐述。 (大唐新能源黑龙江公司 150038)摘要:本文主要对风力发电技术进行研究,首先从传统的恒速恒频发电入手与变速恒频发电做对比,展示了变速恒频发电在性能方面的突出优点,再分析变速恒频发电机组的工作原理和机组中的两种发电系统:交流励磁双馈发电系统和无刷双馈发电系统,分别对两种系统的工作原理、控制方式、优点及缺点等方面作出了阐述。 关键词:变速恒频;风力发电;技术研究前言:根据我国目前生态建设和可持续发展的需要,大力开发可再生能源已经成为了当下应用能源的新型趋势,而风能正是符合这一需求的可再生绿色能源。风力发电技术早在上个世纪就开始进行研究和应用,但是在一定程度上机组性能尚不完善,关键技术的研发未有突破,导致了风能利用率较低。在近些年逐步发展的变速恒频风力发电技术在一定程度上可以对此改善,在技术研究上也有了新突破。 1.风力发电的技术分析 1.1恒速恒频风力发电机组分析 恒速恒频风力发电机组是一种运行后叶轮不能根据风速的变化而发生变化的,是由电网频率决定的风轮转速和电能频率在运行时基本保持不变的风电机组。主要发展于上世纪八十年代和九十年代之间,曾经被我国广泛应用于风力发电,并在此期间不断被研究者优化的一种风力发电形式。恒速恒频风力发电机组最开始的容量只有几十千瓦级,逐步发展为兆瓦级,并且有着一系列优点,例如:性能稳定、操作简便等,但仍属于非智能操作系统。 在恒速恒频风力发电机组中,由两种较为常用的控制方式:主动失速控制和定桨距失速控制。其中,主动失速控制是应用于大容量机组的一种控制方式,这种控制方式可以使机组具有稳定的输出功率,也会有部分机组采用定桨距失速控制,但是,该方式的输出功率不稳定还会造成一定程度上的齿轮箱磨损。 在恒速恒频风力发电系统中,由于外界风速变化无常,但风力发电机本身的转速不会改变,就会造成数据的不准确,风机效率低下等状况。在风力发电中,要提高风力发电系统的发电效率是首要任务,在整个过程中捕获最大风能是要点,所以发电系统一直在向着目标改进发展。随着科学技术的发展,在风力发电方面也有了明显的突破,正如近年来慢慢发展并强大的变速恒频风力发电系统。 1.2变速恒频与恒速恒频的对比分析 变速恒频风力发电机组是当今的主流风力发电机组,是二十世纪末期发展起来的一种高效的风力发电方式。与恒速恒频风力发电机组相比,变速恒频风力发电机组有明显的优势。变速恒频风电机组可以应对不同风速大小,在不同风速下进行自身调节,最大化捕捉风能,提高风能的利用率。恒速恒频发电机组在遇到较大风力时,自身产生的较大电流会使自身结构遭到损害。变速恒频风力发电机组本身可以根据外界风速的变化进行自身调节,减少因力的相互作用而导致装置内部结构遭到破坏的现象,从而大大延长了机组的使用寿命。不仅如此,变速恒频风力发电机组主要是通过对内部转子交流励磁电流幅值、频率以及相位的控制,实现在变速下对于频率的恒定控制,,这种控制方式还可以达到对输出功率的控制,使装置运行更加灵活,以便于整个机组的运作。 2.变速恒频风力发电的关键技术分析 2.1变速恒频风力发电工作原理 在变速恒频风力发电机组中,主要的三个部,分是风力机、发电机和辅助构件。变速恒频风力发电的基本工作原理是风力机构件中的叶轮吸收风能,在风能的作用下发生转动,使之转化为机械能,而后,叶轮的转动带动齿轮箱工作,产生机械能,再将产生的机械能通过发电机转化为电能,并经过一定转化输入电网,再由电网对各个用户进行传输。 目前的变速风力发电系统完全实现了机械自动化,属于智能运作系统,不需要人工调节,可以根据风速风力进行自身调节,适应外界变化。对于变速恒频发电机组而言,在额定风速以上运行时,可以使叶轮上的载荷控制在安全值内,并且,有效的调节风电机组吸收的能量。风力机的叶轮由于质量较大,具有较大的惯性,在变桨控制产生作用时,叶轮不会及时发生变化,通常情况下会滞后一定时间才能有所表现,这一情况很容易使功率有大幅度的波动。所以,在额定风速上运行时,需要用发电机转矩来进行快速的调节,来保证输出稳定的能量。当机组处于额定风速以下时,可以通过提高对发电机转矩的控制,使机组变速运行,以达到提高能量转换率的目的。 2.2变速恒频发电系统 交流励磁双馈发电系统:这种发电系统内部的主要结构有叶轮、齿轮箱、发电机、四象限变频器、交流励磁控制器、检测装置以及风力发电控制器等,其内部还存在滑环和电刷。馈电方式为装置内部转子绕组通过交流—交流的方式或是交流—直流—交流方式的变频器提供相关数据可以调节的电源,定子绕组接电网。交流励磁控制器还可以通过对于转子变频器输出的电压、幅值、相位以及频率的控制来调节转矩和定子的无功功率。在装置中,变频器提供给转子低频旋转磁场,且满足公式:ω1=ωs±ωr。其中ω1代表定子磁场同步转速,ωs代表整个磁场旋转速度,ωr代表转子机械旋转速度。 无刷双馈发电系统:这种电力系统的深入研究始于上世纪七十年代末,在此期间的几十年中,主要由美国Wisconsin大学、Ohio州立大学等高等院校对无刷双馈发电系统进行深入研究。其内部结构主要有电网、功率绕组、控制绕组、变频器、无刷电机、风力机等。在其内部定子上,一般有两套三相对称绕组,一个为主绕组,一个为副绕组。一般由工频交流电源直接为主绕组供电,如果副绕组短路,系统能够在异步运行方式下运作。无刷双馈发电系统内部的转子一般分为磁阻转子和笼形转子两类,其中,磁阻转子以ALA型较为常见,笼形以笼形短路绕组转子较为常见。 在风力发电系统的研究中表明,无电刷和滑环的发电转子在应用中更为稳定耐用,可靠性强。并且,发现在所有的发电系统研究中双馈型有刷及无刷的变速恒频控制在性能上都较为优越,较为常用,可以在此结论的基础上进一步对于双馈型变速恒频空间展开研究,进一步发展我国变速恒频风力发电的应用。 3.结语

海上风力发电基础形式及关键技术探析

龙源期刊网 https://www.360docs.net/doc/0b6382486.html, 海上风力发电基础形式及关键技术探析 作者:莫非 来源:《科技信息·上旬刊》2017年第07期 摘要:风力发电作为一种全新的能源产生方式,因为其资源丰富不会受到土地条件的限制,在多个国家逐渐兴起。我国拥有很长的海岸线,就更应该利用好这一部分资源,扩大对海上风力发电的研究。因此,本文通过海上风力发电基础型式的了解,探讨其关键技术,希望可以解决我国在能源方面面临的问题。 关键词:海上风力发电;基础型式;漂浮;技术 因为风能本身的可再生性、清洁性,再加上大规模应用技术的成熟,使得风力发电成为除开核能之外,技术最为成熟,且最具发展前景的一种发电方式。 一、海上风力发电基础形式 (一)桩基础结构 目前,单桩基础结构是风力发电基础中应用最多的结构。其固定方式是选择液压撞击法,利用撞锤直接将钢管夯入海床,或者是在海床安装钻孔而形成。这一种基础的直径为3-6m,且壁厚为直径的1%。钢管需要插入海床的实际深度则是根据海床土壤本身的强度来定,按照测土所给予的压力传递其荷载。一般来说,单桩基础勇于浅水或者是水深为20-25m的中水水域,并且需要海床土质良好。多桩基础属于将多个桩基直接打入土内的一种形式,可以选择斜向与竖直打入两种方式。多桩基础可以有效的抵抗海水动力与海上波浪,能够满足中等水深和深水水域的要求。按照海水流动、水深不同等外部因素所造成的荷载与风机系统动力特点,就可以直接将多桩基础上部结构确定下来。多桩基础不需要准备海床,可以直接在任何水深与海床地质中使用,并且其建设简单,质量较小,但是成本高昂,在安装中需要使用专门的设备,且工作年限过后,拆卸移动都较为困难[1]。 (二)导管架基础 风基础结构会直接受到风轮机运转荷载与海洋环境荷载的影响,利用钢制材料导管架重量较轻,并且对于海床地质拥有极强的适应力,并且稳定性良好,所以适合在较深海域使用,目前在欧洲等海上的大型风电场中使用较多。导管架主要是基于框架形成结构的基础。主体的导管架基础结构包含:主筒体、主斜撑以及平台甲板等结构过渡段;可以分成先打桩导管架,后打桩导管架两种结构形式的基础主体,更进一步需要研究导管架由圆柱钢管所组成的三腿或者是四腿的基础,这一种基础在深水域采油中应用非常成熟,并逐渐运用到海上风力发电中来。 (三)重力式基础

恒速恒频风力发电系统的数学模型

恒速恒频风力发电系统的数学模型 为了研究风电场对电力系统的影响,需要建立合理的风电场数学模型,为进一步仿真分析奠定基础。按照本课题研究的要求,我们先后建立了异步发电机的稳态数学模型和动态数学模型,其中动态数学模型包括风速模型风轮机、传动机构和异步发电机的模型。本文以恒速恒频风力发电系统为研究对象,它主要由风力机和异步风力发电机等主要元件组成。我们着重于风电场与系统相互影响问题的研究,与之密切相关的环节,其数学模型将详细地描述。数学模型的建立为研究风电场的运行特性和风电场并网运行带来的稳定问题以及研究电力系统接入一定规模的风电场的可行性提供了基本的工具。 2.1 风电场及风力发电机组简介 风力发电场是将多台并网风力发电机安装在风力资源好的场地,按照地形和主风向排成阵列,组成机群向电网供电,简称风电场。风力发电形式可分为“离网型”和“并网型”“离网型”有:(1)单机小型风力发电机;(2)并联的小型或大型孤立的风力发电系统;(3)与其它能源发电技术联合的发电技术,如风力/柴油发电机联合供电系统。“并网型”的风力发电是规模较大的风力发电场,容量大约为几兆瓦到儿百兆瓦,由于十台甚至成百上千台风电机组构成。并网运行的风力发电场可以得大大电网的补偿和支撑,更加充分的开发可利用的风力资源,也是近儿年来风电发展的主要趋势。在日益开放的电力市场环境下,风力发电的成本也将不断降低,如果考虑到环境等因素带来的间接效益,则风电在经济上也具有很大的吸引力。 风电场的发电设备为风力发电机组,发电机经过变压器升压与电力系统连接,如图2.1

图2-1风电场与电力系统连接图 在风场内,风机与变电所之间的连接有两种方式:场地布置相对集中时用电缆直埋;场地布置相对分散时用架空lOkV 线路。一般有两种供电方式如图2-2:一是采用一台风机经一台箱式变电站就近升压;二是采用两台或多台风机经一台箱式变电站就近升压。 2.2 异步发电机的稳态数学模型 为了研究风电场对电力系统的影响,需要建立合理的风电场数学模型,为进一步仿真分析奠定基础。按照本课题研究的要求,我们先后建立了异步发电机的稳态数学模型和动态数学模型,其中动态数学模型包括风速模型、风轮机、传动机构和异步发电机的模型。首先异步发电机与异步电动机在能量转换过程中各功率损耗之间的关系不同,如图2-11。步发电机的功率转换是将输入的机械功率己转换为输出电功率,它的特点在于其转子的转速比定子产生的旋转磁场的转速更高。自然风吹动风轮机叶片,将风能转化为机械能,由此获得的机械功率只扣除掉机械损耗Pm 。和附加损耗mc P 后即为传递到异步发电机转子可转换的机械功率mec P 。在等效电路中对应可变电阻(1-s)/s(s<0)上的电功率,扣除转子铜耗1cu P 和铁心损耗fe P ,得到输入定子绕阻的电磁功率me P ,再扣除定子铜耗1cu P ,即得到注入电网的电功率Pe 。上述功率流向可表达为 ad me mec m P P P p ++= (2-1)

风力发电中的变速恒频技术综述

风力发电中的变速恒频技术综述 1引言 风力发电技术是一种利用风能驱动风机浆叶。进而带动发电机组发电的能源技术。由于风能储量丰富、用之不竭、无污染等特点,被各国广泛重视,纷纷投入大量的人力物力财力来发展风力发电技术。第一次世界大战后,丹麦首开先河,制造了仿螺旋桨高速风力发电机组。随后美国、法国、前西德等国先后制造出了风力发电机组并投入运行。前西德在风机桨叶制造上首次使用了质地轻、强度高的复合材料。到20世纪60年代,由于石油廉价和内燃机的广泛运用,风力发电成本高的问题显得突出,和以内燃机为动力的发电技术相比失去竞争力,发展几近停止。但1973年全世界的石油危机以及燃料发电带来的环境污染问题,使得风力发电技术重新受到重视。风力发电又进入迅速发展阶段。先后有美国研制的1000kW大型风力发电机、前西德的3000kW大型风力发电机、英国加拿大的3800kW大型风力发电机投入运行,自动控制技术日益成熟,并形成了能并网运行的风力发电机群(见图1)。2002年,世界各国风电装机总量达到近40000MW,并且每年增长率达20%,发展势头强劲。我国现代风力发电技术始于20世纪70年代。2002年底,我国风力发电装机容量达473MW,遍布新疆、内蒙古、广东、辽宁、浙江等地[1]。 图1风力发电机群 最近世界风力发电技术的发展取得很大进步,主要表现为以下几点: (1)风力发电机单机容量稳步变大。现在单机容量已达到兆瓦级; (2)变桨距调节成为气动功率调节的主流方式。目前,绝大多数的风力发电机采用这种技术; (3)变速恒频发电系统迅速取代恒速恒频发电系统,风能利用更加有效; (4)无齿轮箱风力发电系统市场份额增长迅速。这主要是由于没有齿轮箱系统效率显著提高[2]。 2 风力发电机的气动功率调节方式 气动功率调节是风力发电的关键技术之一。风力发电机组在超过额定风速以后,由于桨叶、塔架等的机械强度、发电机变频器等的容量限制,必须降低风机吸收功率,使其在接近额定功率下运行,同时减少桨叶承受的载荷冲击,使其不致受到损坏。功率调节方式主要有三种。 (1)定桨距失速调节 这种调节方式下,桨叶与轮毂刚性联接,桨距角度保持不变。随着风速增加,攻角增大,分离区形成大的涡流,流动失去翼型效应,上下翼面压力差减少,阻力增加,升力减少,造成失速,从而限制功率增加。整机结构简单、部件少、安全系数较高,但翼型结构复杂,制造困难,机组额定功率增加后,叶片加长,

变频技术在变速恒频风电系统的应用

变频技术在变速恒频风电系统的应用摘要:变速恒频异步风力发电技术特别是双馈异步发电技术在风力发电中得到了广泛的应用。本文在阐述变频技术在风力发电系统应用的基础上,对变速恒频异步风力发电系统的不同的拓扑结构和控制策略进行了分析,并介绍了变速恒频双馈异步风力发电技术的研究热点以及清能华福风电技术XX的产品QHVERT-DFIG-1500B型变流器。 关键字:风力发电、变速恒频、变频技术 一、引言 中国的风能资源十分丰富,目前已经探明的风能储量约为3226GW,其中可利用风能约为253GW,主要分布在西北、华北和东北的草原和戈壁以及东部和东南沿海及岛屿上。根据统计,截至到2006年底,中国大陆地区已建成并网型风电场91座,累计运行风力发电机组3311台,总容量达259.9万kW(以完成整机吊装作为统计依据)。已经建成并网发电的风场主要分布在XX、内蒙、XX、XX、XX等16个省区。根据电监会公布的数据,截至2006年底,中国发电装机容量达到62200万kW,风力发电占全国总装机容量的0.42%。截至到2006年底,全世界总风电装机容量已经达到7390.4万kW,其中德国总装机容量2062.2万kW,位居世界第一,中国2006年风电新增装机容量仅次于美国、德国、印度和西班牙,列第五位;总装机容量列世界第六位。因此,风力发电将成为我国最具大规模开发前景的新能源之一。 风力发电系统主要有恒速恒频风力发电机系统和变速恒频风力发电机系统两大类。恒速恒频风力发电系统一般使用同步电机或者鼠笼式异步

电机作为发电机,通过定桨距失速控制的风轮机使发电机的转速保持在恒定的数值继而保证发电机端输出电压的频率和幅值的恒定,其运行X围比较窄,只能在一定风速下捕获风能,发电效率较低。变速恒频风力发电系统一般采用永磁同步电机或者双馈电机作为发电机,通过变桨距控制风轮使整个系统在很大的速度X围内按照最佳的效率运行,是目前风力发电技术的发展方向。对于风机来说,其调速X围一般在同步速的50%~150%之间,如果采用普通鼠笼异步电机系统或者永磁同步电机系统,变频器的容量要求与所拖动的发电机容量相当,这是非常不经济的。双馈异步风力发电系统定子和电网直接相连接,转子和功率变换器相连接,通过变换器的功率仅仅是转差功率,这是各种传动系统中效率比较高的,该结构适合于调速X围不宽的风力发电系统,尤其是大、中容量的风力发电系统。 本文将从变速恒频异步风力系统的拓扑结构及其控制技术两个方面对变频技术在风力发电中的应用进行综述,以反映变频技术在风力发电中的发展情况。 二、变速恒频异步风力发电系统拓扑。 采用绕线异步电机作为发电机并对其转子电流进行控制,是变速恒频异步风力发电系统的主要实现形式之一。主要的拓扑结构包括交流励磁控制,转子斩波调阻以及由上述两种拓扑结构结合发展而来的混合结构。 1.交流励磁结构 交流励磁控制通过变频装置向转子提供三相滑差频率的电流进行励磁,这种方式的变频装置通常使用交交变频器,矩阵变换器或交直交变频

中国风电产业现状与展望

施鹏飞Shi Pengfei 施鹏飞,教授级高级工程师,现任中国可再生能源学会风能专业委员会(中国风能协会)副理事长。1981年作为访问学者到荷兰和英国进修风能利用专业。曾任中国风能技术开发中心国际合作部主任,电力部水电总院新能源处处长、副总工程师,中国水电工程顾问集团公司专家委员会委员。主要从事风电场项目的规划、组织编制风电前期工作的规程规范等。 ?Mr. Shi Pengfei is a Senior Consultant for wind power, now is serving as Vice president of Chinese Wind Energy Association (CWEA). He mainly worked on the pre-construction phase of wind power projects, including resource assessment, planning, project proposal, feasibility study, wind farm design, standard formulation, etc. ?Before 2010, he was Member of Expert Committee, HYDROCHINA Co.. Since 1998 to 2000 he was Vice Chief Engineer, and from 1995 to 1998 he was Director of New Energy Division of Hydropower Planning General Institute, Ministry of Electric Power. ?1984-1994 he was Head of Liaison Division, Chinese Wind Energy Development Center (CWEDC), responsible for international cooperation. ?During 1981 and 1983, Mr. Shi went to Europe as a visiting scholar, worked in Energy Center of the Netherlands (ECN) for test of 300kW experimental wind turbine, and later in the Department of Engineering, Reading University of UK for Wind/diesel power system research.

海上风力发电及其关键技术分析

海上风力发电及其关键技术分析 发表时间:2019-04-17T10:00:32.630Z 来源:《建筑学研究前沿》2018年第35期作者:张旭明 [导读] 由于人类社会生产和生活方式的发展,电能是使用技术最为成熟和应用最为广泛的能源。因此对天然能源最有效的利用方式是将这些能源首先转化为电能,将电力能源供应给个人或者企业用户之后,再根据具体使用需要将其转变成动能、热能以及光能等形式 张旭明 中国能源建设集团广东省电力设计研究院有限公司广东广州 510663 摘要:由于人类社会生产和生活方式的发展,电能是使用技术最为成熟和应用最为广泛的能源。因此对天然能源最有效的利用方式是将这些能源首先转化为电能,将电力能源供应给个人或者企业用户之后,再根据具体使用需要将其转变成动能、热能以及光能等形式。因此能量的转换技术是现代人类社会生产和生活中应用的最关键的技术之一,而发电技术是其中影响最深远的一种。 关键词:海上风力发电;关键技术;分析 1导言 我国风力资源储量十分丰富。近年来,我国陆地风电产业发展十分迅速,但是存在建设用地、电网条件以及环保等问题,极大地制约了陆地风电的发展。同时,我国的海岸线较长,风能资源十分丰富。有关调查表明,海上的风速要比陆地高出20%以上,单位面积可增加70%以上的发电量。因此,研究分析海上风力发电及其关键技术具有重要的现实意义。 2海上风力发电技术概述 与传统能源的开采利用相比,扑捉和利用海上风力资源面临空前的技术难题。这些技术问题涵盖了能量转换设备的设计研发、发电设备的安装施工、海上风力发电电能的传输和供电网络的建设以及海上风力电场的运维管理等方面。因此尽管早在二十世纪的七十年代就有人提出了利用海上风力发电的设想,但是全面的科学研究和实践应用到上个世纪末才真正的全面展开。这由于与陆地风力发电技术的研究相比,海上风力发电面临的复杂施工地质环境缺乏成熟和可借鉴的工程技术做为基础,针对海水的波浪冲击、海冰影响、海水腐蚀以及海上风力和风向变化也没有系统的荷载计算和分析标准。另一方面因为特殊的工程环境和施工、运输以及运维技术需要等因素,造成海上风力发电场建设缺少足够的成熟经验做为参考,导致建设海上风力发电场的投资规模和回报率具有很多不确定性,因而海上风力发的商用推广近十年才随着相关技术的日渐成熟真正展开。 3海上风电与陆上风电的对比及其技术难点 3.1海上风电与陆上风电的对比 (1)随着高度的变化,海上风速呈现下降趋势,因此在海上实现风力发电可以有效利用塔架,降低海上风湍流的强度,使主导风向处于稳定状态,有效避免风力发电机组因疲劳负荷出现故障,延长风力发电机组的使用寿命。一般情况下,它将会比在陆地的使用寿命高2.5~3倍。(2)由于海面上障碍物较少且海平面粗糙度较低,相对而言风速的大小和方向都不会产生较大变化,风况好于陆地。(3)通常情况下,海上的风速要比陆地上高25%,且不会受到噪音影响。因此,基于相同发电设备的基础上,在海上风力发电要比陆地上增加25%以上的发电量。 3.2海上风电的技术难点 (1)在海面上,风力发电设备需要面临大风和海浪的冲击。在进行风电机组安装和建设过程中,它的支撑结构(塔架、基础和连接等)的施工质量要求较高,不仅需要能够应对各种恶劣的海上气候环境,还需要具有较高的防腐蚀性能。(2)很多风力资源分布在5~50km的海岸,这些区域大多水深超过50m,给海上风力发电场的施工带来了巨大影响。一般情况下,常采用贯穿桩结构进行基础的海底固定,如重力基础、多脚架基础等,但是这些建设成本都较高。 4海上风力发电基础形式及其关键技术原理简析 4.1海上风力发电基础设计分类概述 设置在海上的风力发电的主要设备需要有具有一定承重能力和稳定性的基础,才能够稳定可靠的捕捉和转化海上的风能,因此基础的设计主要需要考虑其承重能力和在复杂的海上环境与风电设备运转带来的荷载下工作的稳定性。根据基础与海床之间的相对关系,目前的设计基本可以分为固定式和悬浮式两种。其中悬浮式的基础设计是针对海水深度大于五十米的情况,参照海上石油天然气开采平台的建设技术而研究的,目前还没有具体的实践应用。而因海床工程地质条件和海水深度的不同,固定式基础的具体结构又分为多种形式。 4.2重力式基础原理及其技术要点 重力式的海上风力发电基础设计是在传统的船坞和码头工程技术的基础上,根据风电设备的运行和安装需要改进而成,因此基础的设计、预制、运输和安装技术都比较成熟。其原理是利用基础自身材料的和所承载的风电设备的重力,实现整个发电设施在海床上的稳定运行,因此在具体的技术参数的设计中的关键是计算风电设施的运转和环境带来的荷载[3]。目前重力式基础的应用主要受到海床工程地质条件、海水深度和经济性的限制,首先由于重力式基础的稳定性要求海床天然结构比较坚实,并且在预制的基础沉入海底之前需要对海床进行预处理,而在我国很多近海海床存在软土层,导致预处理所需要耗费的成本比较可观;其次由于技术条件和经济性所限,目前重力式基础的使用仅限于海水深度小于10m的海域。 4.3桩基式基础技术原理及其应用 在目前已经建成的海上风力发电场当中,桩式基础的应用占有最大的比例,尤其是其中的单桩式基础,是海上风电大国丹麦海上电场建设的主要基础形式。这一方面是因为这一设计形式的施工技术相对简单和经济,另一方面与丹麦沿海的海床工程地质条件有关。单桩式基础的材料采用大径空心柱形钢管,利用大功率的打桩设备直接嵌入海床,为了实现风电设施在海上的可靠稳定运行,单体式的钢管直径最大可达六米,能够适用的海水最大深度为30m。但是由于来自海水、海风和风机运行荷载的承载形式所限,这种风电设施基础形式对海床工程地质的要求相对较高,而且由于目前海上风力发电机组的单机容量越来越大,单桩的直径过大导致其经济性变差和面临施工技术瓶颈。因此在实践应用过程中又演化出了单立柱三桩、导管架式以及多桩承台式等多种桩基式基础,通过复杂的结构形式来增强基础的稳

相关文档
最新文档