触摸式音量调节器电路

触摸式音量调节器电路
触摸式音量调节器电路

触摸式音量调节器电路

触摸式音量调节器电路

如图为触摸式音量调节器电路。该电路中VT4是一个VMOS管,RP是功放机的原音量电位器,M+和M-是音量调高和调低触摸片。触摸M-时,人体手指的皮肤电阻使VT2加上偏置而导通,V+通过VT2的e-c结和R2对C2充电,VT4的G极电位升高,其D-S极间阻抗减小,对功放输入的音频信号分流增加,音量减小。触摸M+时,皮肤电阻使VT3导通,C2通过R3和VT3的c-e结放电,VT4的G极电位降低,D-S极间电阻增大,对音频信号分流减小,音量增大。

停止触摸时,VT2、VT3皆截止,由于VMOS管的G极输入阻抗极高,所以C2上电压可以很长时间保持不变,也即VT4的D—s极间电阻可以长时间保持不变或微变,音量便在调定状态不变。由于c2可以平滑地充放电,且VMOS管具有较宽的线性放大区,所以触摸M+或M-时,音量呵以和缓平稳地升降。

VT1和R1、C1组成升机复位电路。刚开机时,R1、C1在VT1的b极产生一个负脉冲,VT1瞬间导通,迅速给C2充满电,VT4呈饱和导通状态,进入功放的音频信号被全部短路,功放无输入、输出从而避免了开机时对功放管和扬声器的冲击。

电路中,VT1~VT3的β值以大于150为好,VT4可以用BS107、3D03等小功率VMOS场效应管,C2应选用漏电流小的电容。V+取用功放机中的低压直流电源。M+和M-可用两个直径1cm左右的薄铜片,一分为二,相距1~2mm用万能胶粘贴于机正面合适位置,注意连线隐蔽。

R2、R3的阻值决定了C2的充、放电速度,也即决定了触摸时音量大小的变化速度,可适当调整之,使音量可从容地调高或调低。稳压管DW是为保护VT4而设,如果V+不超过12V,则DW可不用。

触摸式音量自动调节器电路图

CD4017:十进制计数器/脉冲分配器CD4017 是5 位Johns ON计数器,具有10 个译码输出端,CP、CR、INH 输入端。时钟输入端的斯密特触发器具有脉冲整形功能,对输入时钟脉冲上升和下降时间无限制。INH 为低电平时,计数器在时钟上升沿计数;反之,计数功能无效。CR 为高电平时,计数器清零。Johnson 计数器,提供了快速操作、2 输入译码选通和无毛刺译码输出。防锁选通,保证了正确的计数顺序。译码输出一般为低电平,只有在对应时钟周期内保持高电平。在每10 个时钟输入周期CO 信号完成一次进位,并用作多级计数链的下级脉动时钟。CD4017 提供了16 引线多层陶瓷双列直插(D)、熔封陶瓷双列直插(J)、塑料双列直插(P)和陶瓷片状载体(C)4 种封装形式

触摸式10档音量自动调节器电路图

VT1、VT2、VT3及阻容元件组成触摸开关。当手摸金属片T时,感应电压经VT1放大,D1、C1整流滤波,其直流电压使VT2导通,VT3截止,IC1(555)的复位端呈高电平,则由555和R7、R8、C2组成的多谐振荡器起振,输出振荡脉冲。

T=0.693(R7+2R6)C2

图示参数的周期约在3秒左右。555的输出脉冲作为IC2(CD4017)的计数时钟CP。CD4017是十进制计数器,脉冲分配器,在CP作用下,Q0~Q9依次呈现高电平脉冲,使场效应管VT4导通。电阻R1~R10的选择,应使其阻值从小到大排列,这样就可使R1~R10的分压在VT4的栅极产生的电压依次减小,则VT4的沟道电阻RDS会依次增大。Vi经R12和RDS 分压后,输出的音量信号依次增大。当感到音量合适时,松开金属片T,由于555的4脚呈低电平,使555强制复位,振荡中止,使CD4017计数中止,并自锁,故音量保持在当前水平。

简单音量调节电路

音量调节电路见图9。音频信号由Vi端输入,经分压电阻R11和隔直电容加到由R1~R10构成的加/减电阻网络。CD40192为十进制加/减计数器,“与非”门YF3、YF4构成低频振荡器(低频振荡器是指产生频率在0.1赫兹到10赫兹之间交流讯号的振荡器。这个词通常用在音讯合成中,用来区别其他的音讯振荡器。振荡器主要可以分成两种:谐波振荡与弛张振荡器),“与非”门YF1、YF2分别为加计数端CPU(CPU即中央处理器,是电脑中的核心配件,只有火柴盒那么大,几十张纸那么厚,但它却是一台计算机的运算核心和控制核心。电脑中所有操作都由CPU负责读取指令,对指令译码并执行指令的核心部件)和减计数端CPD的计数闸门。

当D1端为高电平时,闸门YF1开通,低频脉冲经YF1加到CD40192的CPU端,使其作加法计数,输出端Q0~Q3数据增大,使16路模拟开关的刀向低端转换,顺序接通R1~R10,接通的电阻增大,经与R11分压后,使输出音频信号V o增大;当D2端为高电平时,闸门YF2开通,低频脉冲经YF2加到CD40192的CPD端,使其作减法计数,输出端Q0~Q3数据减小,使16路模拟开关的刀向高端转换,顺序接通R10~R1,接通的电阻减小,经与R11分压后,使输出音频信号V o减小。

电子音量控制器一般均采用集成电路

采用电子音量控制器后,由于音频信号本身并不通过音量电位器,而且可以采用相应的消除噪声措施,这样电位器存在动片接触不好时也不会引起明显的噪声。另外,双声道电子音量控制器电路中,可以用一只单联电位器同时控制左、右声道的音量。

电子音量控制器一般均采用集成电路,而且在一些电路中将音调控制、立体声平衡控制器也设在集成电路中。

电子音量控制器电路有两种形式:一是直接由手动控制,二是通过红外遥控器来控制。

1.电子音量控制器原理电路

图3-32所示是电子音量控制器原理电路。电路中,VT1、VT2构成差分放大器,VT3构成VT1和VT2发射极回路恒流管,RP1是音量电位器。U为音频输入信号,U为经过电子音量控制器控制后的输出信号。

这一电路的音频信号传输线路如图3-33所示,音频信号“经Cl 耦合,加到VT1基极,经放大和控制后从其集电极输出。

电子音量控制器电路的工作原理是:VT1和VT2发射极电流之和等于VT3的集电极电流,而VT3集电极电流受RP1动片控制。

(1) RP1动辟在最下端时电路分析。VT3基极电压为零,其集电极电流为零,VT1和VT2截止,无输出信号,处于音量关死状态。

(2) RP1动片从下端向上滑动时电路分析。VT3基极电压逐渐增大,基极和集电极电流也逐渐增大,由于VT2的基极电流由R4决定,所以VT2发射极电流基本不变。

这样VT3集电极电流增大导致VT1发射极电流逐渐增大,VT1发射极电流增大就是其放大能力增大,使输出信号增大,即音量在增大。

(3) RP1动片滑到最上端时电路分析。VT3集电极电流和VT1

发射极电流最大,这时音量最大。

电路中,C3用来消除RP1动片可能出现接触不良而带来的噪声,当RPI动片发生接触不良时,由于C3两端的电压不能突变,这样保证了加到VT3基极电压的比较平稳,达到消除因RP1接触不良引起噪声的目的。另外,从电路中可以看出,音频信号只经过VT1传输而不经过RP1传输。

在双声道电路中,再设一套VT1、VT2和VT3压控增益电路,可以利用RP1动片电压大小来控制左、右两个声道音量,这样可以实现用一只单联电位器RP1同步控制左、右声道音量的目的。

2.集成双声道电子音量控制器电路

图3-34所示是一个集成双声道电子音量控制器电踣,其中RP1、RP2是音量电位器。这一电路与前面电路不同的是,RP1、RP不直接参与音量信号的传输,故它引起的转动噪声,不会窜入音频信号电路中。

前置放大器输出的信号经耦合电容送到输入端①、⑧脚。实现信号强、弱控制后,从③、⑩脚输出,经耦合电容送到低放电路。调节RP1、RP2只改变控制电压。集成电路BJ829各引脚作用见表3-7。

为了进一步分析集成双声道电子音量控制器电路的原理,画出BJ829内电路如图3-35所示。

电路中,VT1、VT2、VT3构成镜像恒流源,使VT3的Ic为恒定值,即在其集电极负载变化时,Ic保持不变。

VT3的集电极负载由RP1及电阻等组成。KI661- KI662 调节RP1时,VT4基极电压作相应变化。RP1调至0时,VT4基极电压最低;RP1调大时,

VT4基极电压也相应增大。

VT4基极电压变化,引起其集电极电压化,又引起VT5的发射极电压变化。当RP1调至0时,VT4的饥变低,使VT4的职变高,则VT5的Ue变高;反之,VT5的Ue则变低。VT5仉的高低变化控制了VT11、VT14基极电压。

输入信号从①脚(或⑧脚)送入VT10基极。VT10为恒流管和放大管,其集电极输出信号,经VT12内阻(c-e)送到VT17基极。VT17为射极输出器,发射极的输出电压经电阻R3由③脚(或⑩脚)

送到外电路。

VT12的Ic≈Ie,Ic数值等于VT10Ic值减去VT11的Ie值。若VT11Ie增大,就会使VT12Ic小,则送到输出管VT17的信号变小,③脚输出小,反之则大。这样便达到了音量控制的目的。

所以,RP1通过控制VT5Ue大小,控制了VT11、VT14基极电压大小,同时还控制了VT17输入大小,从而控制③脚输出信号大小。

多谐振荡器双闪灯电路设计与制作

多谐振荡器双闪灯电路设计与制作 南昌理工学院张呈张海峰 我们主张,电子初学者要采用万能板焊接电子制作作品,因为这种电子制作方法,不仅能培养电子爱好者的焊接技术,还能提高他们识别电路图和分析原理图的能力,为日后维修、设计电子产品打下坚实的基础。 上一篇文章《电路模型设计与制作》我们重点介绍了电路模型的概念以及电流、电压、电阻、发光二极管、轻触开关等基本知识,并完成了电路模型的设计与制作,通过成功调试与测试产品参数,进一步掌握了电子基础知识。 本文将通过设计与制作多谐振荡器双闪灯,掌握识别与检测电阻、电容、二极管、三极管。掌握识别简单的电路原理图,能够将原理图上的符号与实际元件一一对应,能准确判断上述元件的属性、极性。

一、多谐振荡器双闪灯电路功能介绍 图1 多谐振荡器双闪灯成品图

多谐振荡器双闪灯电路,来源于汽车的双闪灯电路,是经典的互推互挽电路,通电后LED1和LED2交替闪烁,也就是两个发光二极管轮流导通。 完成本作品的目的是为了掌握识别与检测电阻、电容、二极管、三极管。掌握识别简单的电路原理图,能够将原理图上的符号与实际元件一一对应,能准确判断上述元件的属性、极性。。 该电路是一个典型的自激多谐振荡电路,电路设计简单、易懂、趣味性强、理论知识丰富,特别适合初学者制作。 二、原理图 图2 多谐振荡器双闪灯原理图 三、工作原理 本电路由电阻、电容、发光二极管、三极管构成典型的自激多谐振荡电路。在上篇文章中介绍了电阻、和发光二极管,本文只介绍电容和三极管。 1、电容器的识别

电容器,简称电容,用字母C表示,国际单位是法拉,简称法,用F表示,在实际应用中,电容器的电容量往往比1法拉小得多,常用较小的单位,如微法(μF)、皮法(pF)等,它们的关系是: 1法拉(F)=1000000微法(μF),1微法(μF)=1000000皮法(pF)。 本的套件中使用了2个10μF的电解电容,引脚长的为正,短的为负;旁边有一条白色的为负,另一引脚为正。电容上标有耐压值上25V,容量是10μF。 2、三极管的识别 三极管,全称应为半导体三极管,也称双极型晶体管,晶体三极管,是一种电流控制电流的半导体器件。其作用是把微弱信号放大成幅值较大的电信号, 也用作无触点开关,俗称开关管。套件中使用的是NPN型的三极管9013,当把有字的面向自己,引脚朝下,总左往右排列是发射极E,基极B,集电极C。如图3所示。 图3 三极管的引脚图 晶体三极管具有电流放大作用,其实质是三极管能以基极电流微小的变化量来控制集电极电流较大的变化量。这是三极管最基本的和最重要的特性。我们将ΔIc/ΔIb的比值称为晶体三极管的电流放大倍数,用符号“β”表示。电流放大倍数对于某一只三极管来说是一个定值,但随着三极管工作时基极电流的变化也会有一定的改变。 晶体三极管的三种工作状态: (1)截止状态 当加在三极管发射结的电压小于PN结的导通电压,基极电流为零,集电极电流和发射极电流都为零,三极管这时失去了电流放大作用,集电极和发射极之间相当于开关的断开状态,我们称三极管处于截止状态。

基于单片机的音量控制电路设计

摘要 题目名称基于单片机的音量控制电路设计 任务与要求 1.熟悉STC系列单片机的工作原理; 2.掌握数字电位器的使用方法,重点学习数控音频信号工作机理; 3.熟练掌握C51程序设计技巧与编程方法; 4.设计基于单片机的音频控制电路系统(原理与PCB图); 5.设计相关操作软件; 6.撰写毕业论文。 题目名称基于单片机的音量控制电路设计 一、毕业设计(论文)进度 起止时间工作内容 2017.1.15—2017.1.30熟悉STC单片机的工作原理,掌握中断、串 口等使用方法; 2017.2.1—2017.2.28掌握数字电位器工作原理,熟悉数模信号控 制电路; 2017.3.1—2017.3.15 熟练掌握C51程序编程方法; 2017.3.16—2017.3.25熟悉PROTEL99SE软件工具,设计相关测 试电路(原理图及PCB图); 2017.3.26—2017.4.23 设计基于单片机的音量控制系统(包括相关 硬件、相关软件及调试部分等内容);

ABSTRACT 2017.4.24—2017.5.20 撰写毕业论文并准备答辩。 二、主要参考书目(资料) [1] 杨振江,单片机原理与实践指导,中国电力出版社,2008年8月 [2]杨振江,流行集成电路程序设计与实例,西安电子科技大学出版社,2009年2月 [3]杨振江刘男杨璐,单片机应用与实践指导,西安电子科技大学出版社,2010年3月 [4]张毅刚,单片机原理及接口技术(C51编程),人民邮电出版社,2011年8月 [5]张毅刚,新编MCS-51单片机应用设计(第3版),哈尔滨工业大学出版社,2008年4月 [6]谢维成杨加国,单片机原理与应用及C51程序设计,清华大学出版社,2009年7月 三、主要仪器设备及材料 PC机、单片机及相关设计系统。 四、教师的指导安排情况(场地安排、指导方式等) 每周指导一次以上。 五、对计划的说明

采用单片机控制的数字音量电位器功放

采用AT89C2051单片机控制的TC9153数字音量电位器功放 说明下,这个电路是我的原创已于2008年11月发表在我百度空间了有兴趣的朋友可以去看看“https://www.360docs.net/doc/0c11117954.html,/xiaomage/blo ... d9a4d4fc1f1003.html”(我曾在网上找了好久都没有相关的文章介绍,根本没有人去做单片机控制这款音量调节电路,也许是感觉采用单片机控制没什么必要吧?所以说有些东西都是“逼”出来的,本来没有的电路或程序,你去做了并成功了就是一种创新,也是一种改革。比如我的那篇51单片机检测光电编码器一样)呵呵。 哦对了,顺便说下,我那个检测光电编码器程序,改用了STC89C52RC并启用双倍速后检测速度大为提高,源代码没有做任何改动的情况下检测速度能>15米/分钟 好了废话少说上图: PCB: 想看关于TC9153芯片和完工后的图的话还是去我的空间看吧,下面是程序 LED选用的共阳的所以用了2个PNP型三极管做选通,我用的8550

晶振用的6MHZ(这个速度足够了)~ D1 BIT P1.7 ;数码管1选通 D2 BIT P3.7;数码管2选通 K1 BIT P3.5 ;音量加 K2 BIT P3.4;音量减 K3 BIT P3.3;静音输入 JI BIT P3.2 ;静音输出 UD BIT P3.1 CLK BIT P3.0 D3 BIT 20H D4 BIT 21H ;P1.0~P1.6 :A~G ORG 00H LJMP MAIN ORG 30H MAIN: MOV SP,#40H ;初始化,设置 MOV P1,#0FFH MOV P3,#0FFH CLR P3.2 CLR CLK CLR UD SETB D1 SETB D2 CLR D3 CLR D4 MOV R7,#08H ;R6,R7是显示缓存,初始化过程中,让2个数码管全部显示为"8"用来检测 MOV R6,#08H LCALL CS SETB P3.2 MOV R7,#07H MOV R6,#00H MA: LCALL XS LCALL KAY LJMP MA KAY: SETB K1 ;按键扫描

数字电路课设(数字式音量控制器)

数字电路课设(数字式音量控制器) 课程名称:数字式音量控制器学院:电气工程与自动化学院专业班级:08级4班 指导教师:姜海燕 学号:010800423 姓名:王旭州 日期:2011年1月16日 1 目录 一、设计任务 书 ..................................................................... . (3) 二、总体设计方案的选择与论 证 .......................................................... 3 1.总体设计方 案 ..................................................................... ................................... 3 2.系统方案选择与论 证 ..................................................................... ....................... 3 2.1档数选择电路设计方案的选 择 ..................................................................... ..... 3 2.2音量大小电路设计方案的选 择 ..................................................................... ..... 5 2.3译码显示电路设 计 .....................................................................

电流调节器设计举例

双闭环直流调速系统设计举例 例题2-1:某晶闸管供电得双闭环直流调速系统,整流装置采用三相桥式电路,基本 数据如下: 直流电动机: 220V、136A、 1460r /min, Ce=0、132V﹒min/r,允许过载倍数λ=1、5。 晶闸管装置放大系数Ks =40。 电枢回路总电阻R=0、5 时间常数 电流反馈系数β=0、062V/A(β≈10V/1.5I N) 试按工程方法设计电流调节器,设计要求如下 要求稳态指标:电流无静差; 动态指标:电流超调量<5%。 双闭环直流调速系统结构图如下

双闭环直流调速系统电流环得设计 1.确定时间常数 (1)整流装置滞后时间常数Ts 。 -I dL U d0 U n + - - + - U i ACR 1/R T l s+1 R T m s U *i U c K s T s s+1 I d 1 C e + E β T 0i s+1 1 T 0i s+1 ASR 1 T 0n s+1 α T 0n s+1 U *n n

三相桥式电路得平均失控时间Ts=0、0017s。 (2)电流滤波时间常数 三相桥式电路每个波头得时间就是3.33ms,为了基本滤平波头,应有(l~2)=3.33ms, 因此取=2ms=0、002s。 (3)电流环小时间常数;按小时间常数近似处理,取=0、0037s。 2.选择电流调节器结构 根据设计要求:5%,而且 因此可按典型1型系统设计。电流调节器选用PI型,其传递函数为 3.选择电流调节器参数 ACR超前时间常数:== 0、03s。 电流环开环增益:要求5%时,应取

=0、5因此 于就是,ACR得比例系数为 4.校验近似条件 电流环截止频率s-1 (1)晶闸管装置传递函数近似条件 ﹤ 现在 = s-1> 满足近似条件 (2)忽略反电动势对电流环影响得条件:; 现在, = 满足近似条件。 (3)小时间常数近似处理条件: =

双三极管多谐振荡器电路工作原理

双三极管多谐振荡器电路工作原理 双三极管多谐振荡器 电路工作原理 多谐振荡器电路是一种矩形波产生电路.这种电路不需要外加触发信号,便能连续地, 周期性地自行产生矩形脉冲.该脉冲是由基波和多次谐波构成,因此称为多谐振 荡器电路. 电路结构 1.路图 2.把双稳态触发器电路的两支电阻耦合支路改为电容耦合支路.那么电路就没有稳 定状态,而成为无稳电路 3.开机:由于电路参数的微小差异,和正反馈使一支管子饱和另一支截止.出现一个暂 稳态.设Q1饱和,Q2截止. 工作原理 正反馈: Q1饱和瞬间,VC1由+VCC 突变到接近于零,迫使Q2的基极电位VB2瞬间下 降到接近 —VCC,于是Q2可靠截止. 注:为什么Q2的基极产生负压,因为Q1导通使Q1 集电极的电压瞬间接近于零,电容C1的

正极也接近于零,由于电容两边电压不能突变使得电容的负端为—VCC。 2.第一个暂稳态: C1放电: C2充电: 3.翻转:当VB2随着C1放电而升高到+0.5V时,Q2开始导通,通过正反馈使Q1截止,Q2饱和. 正反馈: 4.第二个暂稳态: C2放电: C1充电: 5.不断循环往复,便形成了自激振荡 6.振荡周期: T=T1+T2=0.7(R2*C1+R1*C2)=1.4R2*C 7.振荡频率: F=1/T=0.7/R2*C 8..波形的改善: 可以同单稳态电路,采用校正二极管电路 下面我们来做一个实验:如图 振荡周期: T=1.4R2*C=1.4*10000Ω*0.00001F=0.14s=140ms 此图利用Multisim仿真软件去求出时间与实际的偏差 数据测量图:此图测量了Q2的基极和集电极极,集电极的波形相当于图的矩形波,基极波形相当于图的锯齿波。

高低音调节电路

所谓音调控制就是人为地改变信号里高、低频成分的比重,以满足听者的爱好、渲染某种气氛、达到某种效果、或补偿扬声器系统及放音场所的音响不足。这个控制过程其实并没有改变节目里各种声音的音调(频率),所谓“音调控制”只是个习惯叫法,实际上是“高、低音控制”或“音色调节”。高保真扩音机大都装有音调控制器。然而,从保证信号传送质量来考虑,音调控制倒不是必须的。 一个良好的音调控制电路,要有足够的高、低音调节范围,但又同时要求高、低音从最强到最弱的整个调节过程里,中音信号(通常指1000赫)不发生明显的幅度变化,以保证音量大致不变。 所谓提升或衰减高、低音,都是相对于中音而言的。先把中音作一个固定衰减(或加深负反馈)然后让高音或低音衰减小一些(或负反馈轻一些),就算是得到提升。因此,为了弥补音调控制电路的增益损失,常需增加一到两级放大电路。 音调控制电路大致可分为两大类:衰减式和负反馈式。衰减式音调控制电路的调节范围可以做得较宽,但因中音电平要作很大衷减,并且在调节过程中整个电路的阻抗也在变。所以噪声和失真大一些。负反馈式音调控制电路的噪声和失真较小,但调节范围受最大负反馈量的限制,所以实际的电路常和输入衷减联合使用,成为衰减负反馈混合式。 1.衰减式音调控制电路。 典型电路如图: 衰减式音调控制典型电路 高音、低音分开调节:C1、C2、W1构成高音调节器,R1、R2、C3、C4、W2构成低音调节器。W1旋到A点时高音提升,旋到B点时高音衰减。W2旋到C点时低音提升,旋到D点时低音衰减。组成音调电路的元件值必须满足下列关系:(1)R1≥R2; (2)W1和W2的阻值远大于R1、R2; (3)与有关电阻相比,C1、C2的容抗在高频时足够小,在中、低频时足够大;而C3、C4的容抗则在高、中频时足够小,在低频时足够大。C1、C2能让高频信号通过,但不让中、低频信号通过;而C3、C4则让高、中频信号都通过,但不让低频信号通过。

高品质音调电路的制作

高品质音调电路的制作 ——RC电路的应用案例 功放系统中无论是低档还是高档机,除了音量控制外都有音调控制电路,在一些低档机厂家为节省成本,其音调部分仅采用阻容式,当音调调节时往往使得高低音相互干扰,而且缺乏力度和清晰感,听起来非常浑浊杂乱,听久了令人烦燥不安,这些机子弃之又觉浪费,但用之又不满意,如果有动手能力的话,很有必要花几十元对其动动手术——制作一款高品质的音调板来替换原机音调部分。 下面就向同学们介绍几款品质极佳的音调电路供爱好者选择。其中以LM4610N、LM1036N 最佳,LM4610N是在LM1036N的基础上增加了3D音场效果处理功能的新一代精品,建议首选LM4610N。 图1是由2块NE5532N组成的高中低音音调及音量控制电路(图中仅画一声道,另一声道完全一样),原理为:信号经IC1(作缓冲放大及隔离作用,避免负载与信号源之间的影响)进入由电阻电容组成的三个频率均衡网络,即高音、中音、低音的频率,当调节RP1–––RP3相应的低中高频就会相应地进入由IC2及其反馈电路组成的反相放大器电路,调节RP1–––RP3就是提升或衰减了高中低音,从而实现了音频调节作用。需要说明一点是所采用的NE5532N必须是正宗品,如美国大S的、飞利浦的,这样才使行本电路的信噪比、动态范围、瞬态响应和控制效果均达到相当高水准。(欲获更高的水准NE5532N可换为NE5535N、OP275、AD827JN等精品运放,当然价格就高一点了)。 图2是采用二阶RC有源二分频电路,该电路由2块NE5532N构成(图中仅画一声道,另一声道相同),图中IC1A与IC1B分别组成低通与高通滤波器,完成音频信号的分割,再分别送到高低音音量控制电位器再分别进入高低音功放电路去推动高音喇叭和低音喇叭。利用该电路的缺点是要多增加一对功板电路及增多一组接线柱。相对来说需要多花点钱,但采用前级分频的优点却是非常明显的:①改善了低音音质;②兼顾了高低音扬声器的发声效

电流调节器设计举例样本

双闭环直流调速系统设计举例 例题2-1:某晶闸管供电双闭环直流调速系统,整流装置采用三相桥式电路,基本数据如下: 直流电动机: 220V、136A、1460r/min,Ce=0.132V﹒min/r,容许过载倍数λ=1.5。 晶闸管装置放大系数Ks =40。 电枢回路总电阻R=0.5 时间常数 电流反馈系数β=0.062V/A(β≈10V/1.5I N) 试按工程办法设计电流调节器,设计规定如下 规定稳态指标:电流无静差; 动态指标:电流超调量<5%。 双闭环直流调速系统构造图如下

双闭环直流调速系统电流环设计 1.拟定期间常数 (1)整流装置滞后时间常数Ts 。 三相桥式电路平均失控时间 T s =0.0017s 。 -I dL U U + - - + - U ACR 1/R T s+1 R T s U * U K T s+1 I 1 + E β T s+1 1 T s+1 ASR 1 T s+1 α T s+1 U * n

(2)电流滤波时间常数 三相桥式电路每个波头时间是3.33ms,为了基本滤平波头,应有(l~2)=3.33ms, 因而取=2ms=0.002s。 (3)电流环小时间常数;按小时间常数近似解决,取=0.0037s。2.选取电流调节器构造 依照设计规定:5%,并且 因而可按典型1型系统设计。电流调节器选用PI型,其传递函数为 3.选取电流调节器参数

ACR超前时间常数:== 0.03s。电流环开环增益:规定5%时,应取=0.5因而 于是,ACR比例系数为 4.校验近似条件 电流环截止频率s-1(1)晶闸管装置传递函数近似条件﹤ 当前= s-1> 满足近似条件

传动教材第2章转速电流双闭环直流调速系统和调节器的工程设计方法

第2章 转速、电流双闭环直流调速系统 和调节器的工程设计方法 2.1 转速、电流双闭环直流调速系统及其静特性 采用PI 调节的单个转速闭环直流调速系统可以在保证系统稳定的前提下实现转速无静差。但是,如果对系统的动态性能要求较高,单闭环系统就难以满足需要,这主要是因为在单闭环系统中不能控制电流和转矩的动态过程。电流截止负反馈环节是专门用来控制电流的,并不能很理想地控制电流的动态波形,图2-1a)。 在起动过程中,始终保持电流(转矩)为允许的最大值,使电力拖动系统以最大的加速度起动,到达稳态转速时,立即让电流降下来,使转矩马上与负载相平衡,从而转入稳态运行。这样的理想起动过程波形示于图2-1b 。 为了实现在允许条件下的最快起动,关键是要获得一段使电流保持为最大值dm I 的恒流过程。按照反馈控制规律,采用某个物理量的负反馈就可以保持该量基本不变,那么,采用电流负反馈应该能够得到近似的恒流过程。应该在起动过程中只有电流负反馈,没有转速负反馈,达到稳态转速后,又希望只要转速负反馈,不再让电流负反馈发挥作用。 2.1.1 转速、电流双闭环直流调速系统的组成 系统中设置两个调节器,分别调节转速和电流,如图2-2所示。把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE 。从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。这就形成了转速、电流双闭环调速系统。 转速和电流两个调节器一般都采用PI 调节器,图2-3。两个调节器的输出都是带限幅 + TG n ASR ACR U *n + - U n U i U * i + - U c TA M + - U d I d UPE - M T 图2-2 转速、电流双闭环直流调速系统结构 ASR —转速调节器 ACR —电流调节器 TG —测速发电机 TA —电流互感器 UPE —电力电子变换器 内外 n i

多谐振荡器

第八章 脉冲波形的产生与整形 在数字电路或系统中,常常需要各种脉冲波形,例如时钟脉冲、控制过程的定时信号等。这些脉冲波形的获取,通常采用两种方法:一种是利用脉冲信号产生器直接产生;另一种则是通过对已有信号进行变换,使之满足系统的要求。 本章以中规模集成电路555定时器为典型电路,主要讨论555定时器构成的施密特触发器、单稳态触发器、多谐振荡器以及555定时器的典型应用。 8.1 集成555定时器 555定时器是一种多用途的单片中规模集成电路。该电路使用灵活、方便,只需外接少量的阻容元件就可以构成单稳、多谐和施密特触发器。因而在波形的产生与变换、测量与控制、家用电器和电子玩具等许多领域中都得到了广泛的应用。 目前生产的定时器有双极型和CMOS 两种类型,其型号分别有NE555(或5G555)和C7555等多种。通常,双极型产品型号最后的三位数码都是555,CMOS 产品型号的最后四位数码都是7555,它们的结构、工作原理以及外部引脚排列基本相同。 一般双极型定时器具有较大的驱动能力,而CMOS 定时电路具有低功耗、输入阻抗高等优点。555定时器工作的电源电压很宽,并可承受较大的负载电流。双极型定时器电源电压范围为5~16V ,最大负载电流可达200mA ;CMOS 定时器电源电压变化范围为3~18V ,最大负载电流在4mA 以下。 一. 555定时器的电路结构与工作原理 1.555定时器内部结构: (1)由三个阻值为5k Ω的电阻组成的分压器; (2)两个电压比较器C 1和C 2: v +>v -,v o =1; v +<v -,v o =0。 (3)基本RS 触发器; (4)放电三极管T 及缓冲器G 。 2.工作原理。 当5脚悬空时,比较器C 1和C 2的比较电压分别为cc V 32和cc V 3 1 。 (1)当v I1>cc V 32,v I2>cc V 31 时,比较器 C 1输出低电平,C 2输出高电平,基本RS 触发 器被置0,放电三极管T 导通,输出端v O 为低电平。 (2)当v I1cc V 31 时,比较器 C 1输出高电平,C 2也输出高电平,即基本RS 触发器R =1,S =1,触发器状态不变,电路亦保持原状态不变。

音调电路

音调控制电路 音调控制电路 音调控制电路的作用主要是为了满足听音者自己的听音爱好,通过对声音某部分频率信号进行提升或者衰减,使整个的声场更加符合听音者对听觉的要求。一般音响系统中通常设有低音调节和高音调节两个旋钮,用来对音频信号中的低频成分和高频成分进行提升或衰减。比较高档的音响设备中多采用多频段频率均衡方式,以达到更细致地校正频响的效果。 高低音调节的音调电路,根据其在整机电路中的位置,可分为衰减式、负反馈式以及衰减负反馈混合式音调控制电路三种。这种电路一般使用高音、低音两个调节电位器;但在少数普及型机中,也有用一个电位器兼作高低音音调控制电路的。 图4所示为负反馈式高低音调节的音调控制 电路。该电路调试方便、信噪比高,目前大多数的普及型功放都采用这种电路。图中C1、C2的容量大于C3,对于低音信号C1与C2可视为开路,而对于高音信号C3可视为短路。低音调节时,当W1滑臂到左端时,C1被短路,C2对低音信号容抗很大,可视为开路;低音信号经过R1、R3直接送入运放,输入量最大;而低音输出则经过R2、W1、R3负反馈送入运放,负反馈量最小,因而低音提升最大;当W1滑臂到右端时,则刚好与上述情形相反,因而低音衰减最大。不论W1的滑臂怎样滑动,因为C1、C2对高音信号可视为是短路的,所以此时对高音信号无任何影响。高音调节时,当W2滑臂到左端时,因C3对高音信号可视为短路,高音信号经过R4、C3直接送入运放,输入量最大;而高音输出则经过R5、W2、C3负反馈送入运放,负反馈量最小,因而高音提升最大;当W2滑臂到右端时,则刚好相反,因而高音衰减最大。不论W2的滑臂怎样滑动,因为C3对中低音信号可视为是开路的,所以此时对中低音信号无任何影响。普及型功放一般都使用这种音调处理电路。使用时必须注意的是,为避免前级电路对音调调节的影响,接入的前级电路的输出阻抗必需尽可能地小,应与本级电路输入阻抗互相匹配。 图5所示为衰减式高低音调节的音调控制电路。电容C1、C2的容量大于电容C3、C4;对于高音信号C1与C2可视为短路,而对于低音信号则可视为开路;C3与C4对于高音信号可视为短路,而对于中低音信号则可视为开路,具体原理分析读者可自行参考图4的情况分析。

《电力拖动自动控制系统》-第二章转速、电流双闭环直流调速系统和调节器的工程设计方法

第二章转速、电流双闭环直流调速系统和调节器 的工程设计方法 内容提要: 转速、电流双闭环控制的直流调速系统是应用最广性能很好的直流调速系统。本章着重阐明其控制规律、性能特点和设计方法,是各种交、直流电力拖动自动控制系统的重要基础。我们将重点学习: ●转速、电流双闭环直流调速系统及其静特性 ●双闭环直流调速系统的数学模型和动态性能分析 ●调节器的工程设计方法 ●按工程设计方法设计双闭环系统的调节器 ●弱磁控制的直流调速系统 2.1 转速、电流双闭环直流调速系统及其静特性 问题的提出: 第1章中表明,采用转速负反馈和PI调节器的单闭环直流调速系统可以在保证系统稳定的前提下实现转速无静差。但是,如果对系统的动态性能要求较高,例如:要求快速起制动,突加负载动态速降小等等,单闭环系统就难以满足需要。 1. 主要原因 是因为在单闭环系统中不能随心所欲地控制电流和转矩的动态过程。在单闭环直流调速系统中,电流截止负反馈环节是专门用来控制电流的,但它只能在超过临界电流值 Idcr 以后,靠强烈的负反馈作用限制电流的冲击,并不能很理想地控制电流的动态波形。 2.理想的启动过程 a) 带电流截止负反馈的单闭环调速系统 b) 理想的快速起动过程 2-1 直 流调速系统起动过程的电流和转速波形 性能比较: 带电流截止负反馈的单闭环直流调速系统起动过程如图所示,起动电流达到最大值Idm 后,受电流负反馈的作用降低下来,电机的电磁转矩也随之减小,加速过程延长。理想起动过程波形如图所示,这时,起动电流呈方形波,转速按线性增长。这是在最大电流(转矩)受限制时调速系统所能获得的最快的起动过程。 3. 解决思路 为了实现在允许条件下的最快起动,关键是要获得一段使电流保持为最大值Idm的恒流过程。按照反馈控制规律,采用某个物理量的负反馈就可以保持该量基本不变,那么,采用

数字控制音频放大电路--课程设计报告

~ 课程设计报告 课程名称:电子技术应用课程设计 设计题目:数控音频放大电路 专业班级: 10电气2班 { 设计者: 学号: 指导老师:舒华、王峥 设计所在学期:大三第一学期 " 设计成绩: 广州大学 机械与电气工程学院 2012年 9 月 29 日

数控音频放大器设计报告 [ 声音无处不在,人类对于声音的利用可以是无孔不入。特别是信息传递方面,最常见的如人与人之间的对话。但是有时候我们想把声音信息先保存下来等到有需要的时候再播放出来,而播放的机制好坏直接影响到声音信息的完整性与真实性,即和声音的失真率有关。所以声音播放机制的好坏关乎到信息传递的准确性。 再者,当今社会声音播放机制是随处可见,这足以证明现实社会对播放机制的需求量大,且渐渐地向失真较小的方向发展。人们在致力寻求失真最小的机制同时,也想该机制尽量简单小规模,因为这样才能广泛利用于各个领域。如电脑音箱、笔记本音响、广播、手机等。各个领域对于声音播放的要求又各有不同,所以本报告着重讨论研究失真较小的家用级播放机制。 最后,机制电路的设计对于设计者来说是一个不容易解决得问题。对于设计者技术方面要求犹为重要。设计者要尽可能地减少外界对机制的影响和电路内部的影响,综合考虑电路布局、功率和材料选择。设计者如果在任何一个环节出错都会导致播放机制不稳定乃至失真、震荡。因此选择这个电路作为讨论研究对象具有代表性意义,能使初级设计者更好地理解播放机制的工作原理,同时也是是初级设计者技术的试金石,是一个很好的锻炼台阶!

一、系统功能简述 二、简论本系统意义(创新性、实用性、课题特点) 电子产品趋向于自动化,智能化方向发展,人们想电子产品在满足其基本需要时,能具备智能化、人性化的体现。因此,在这样的市场需求下,电子产品发展已向智能化、人性化方向发展。 在这个大趋势的推动下,本系统在设计方面也加入了一些比较人性化的设计,如可视化音量级别,与数控音量调节。也许正是一个经常可以看到的简单功能,但这却是一个具有创新性意义的代表功能。以前播放机制,是用一个简单的电位器来调节的,基于以前技术的相对落后,与材料的缺乏。电位器不是为一个很好地解决方案,但是电

555 振荡器 工作原理

555多谐振荡器工作原理FROM维库 集成555定时器多谐振荡器 1.多谐振荡器 的工作原理 多谐振荡器 是能产生矩形波的一种自激振荡器电路,由于矩形波中除基波外还含有丰富的高次谐波,故称为多谐振荡器。多谐振荡器没有稳态,只有两个暂稳态,在自身因素的作用下,电路就在两个暂稳态之间来回转换,故又称它为无稳态电路。 由555定时器 构成的多谐振荡器如图1所示,R1,R2和C是外接定时元件,电路中将高电平触发端(6脚)和低电平触发端(2脚)并接后接到R2和C的连接处,将放电端(7脚)接到R1,R2的连接处。 由于接通电源 瞬间,电容C来不及充电,电容器 两端电压uc为低电平,小于(1/3)Vcc,故高电平触发端与低电平触发端均为低电平,输出uo为高电平,放电管 VT截止。这时,电源经R1,R2对电容C充电,使电压uc按指数规律上升,当uc上升到(2/3)Vcc 时,输出uo为低电平,放电管VT导通,把uc从(1/3)Vcc 上升到(2/3)Vcc这段时间内电路的状态称为第一暂稳态,其维持时间TPH的长短与电容的充电时间有关。充电时间常数T充=(R1+R2)C。 由于放电管VT导通,电容C通过电阻 R2和放电管放电,电路进人第二暂稳态.其维持时间TPL的长短与电容的放电时间有关,放电时间常数T 放=R2C0随着C的放电,uc下降,当uc下降到(1/3)Vcc时,输出uo。为高电平,放电管VT截止,Vcc再次对电容c充电,电路又翻转到第一暂稳态。不难理解,接通电源后,电路就在两个暂稳态之间来回翻转,则输出可得矩形波。电路一旦起振后,uc电压总是在(1/3~2/3)Vcc 之间变化。图1(b)所示为工作波形。

数字音量调节器

数字音量调节器 使用说明书 User Manual Ver 中文 在使用本产品之前,请务必先仔细阅读本使用说明书 请务必妥善保管好本书,以便日后能随时查阅 请在充分理解内容的基础上,正确使用

目录 综合介绍 ?功能特性1 ?特性参数2 ?工业标准3 产品说明 ?结构与连接4 ?注意事项7 通讯协议 ?协议结构8 ?控制指令9 目 录

综合介绍:功能特性 1.LCD面板状态显示; 2.音量可调; 3.高低音调可调; 4.静音功能; 5.等响度选择功能; 6.立体声/单声道切换功能; 7.RS232串口控制; 8.结合快思聪,AMX等高端中控使用,可节省控制端口的成本; 9.使用低压电源,安全可靠; 1 综合介绍:特性参数

综合介绍: 工业标准 数字音量调节器,就其整体设计,包括线路板,电子元件等,并经过耐久性,高温环境,震荡, 2 使用控制界面(User Controls ) 2 x 输入通道状态LED 指示灯 2 x LCD 面板指令指示灯 1 x 参数设置旋钮开关 1 x 参数设置按键开关 使用环境(Operating Environment ) 温度范围 -5℃ 至 +40℃ 湿度范围 0 至 90% RH 尺寸(Dimensions ) 高 x 宽 x 深 H 45mm x W 183mm x D 160mm 重量(Weight ) 净重 load compatibility 输入电源 (Control Supply ) 12V 直流电源 控制输入通道数(Input Control Number ) 1 路 RS232 控制输出通道数(Output Control Terminals ) 1 x 直通RS232通道 音频通道 4 x 非平行音频接口输入 4 x 非平行音频接口缓冲输出

电流环调节器设计过程

电流环PID 调节器设计大致流程 以下设计过程主要参考文献[1],首先给出永磁同步电机参数表如下: 电机的反电势会使电流输出与给定存在偏差,但低速时反电势较小,可通过调节器的控制消除, 因此设计时可忽略不计。电流环传函结构图如图1所示,其中,v K 是逆变器电压放大倍数,表示逆变器直流侧电压与三角载波电压幅值之比,v τ是逆变器时间常数,与开关频率有关,s R 是电枢绕组电阻,q L 是交轴电感,β 是反馈系数, oi T 是反馈滤波时间常 数,ACR G 是电流调节器传递函数。 图1 未加校正时的电流环开环传函如下: (1)()(1)v iob v q s oi K G S L S R T S βτ= +++ (1) 式中: v τ、oi T 是小时间常数, 因此可将控制对象等效: ()[()1] v iob q s v oi K G L S R T S βτ=+++ (2) 电流调节器可选用 PI 调节器进行设计: 1p i ACR i K K S G K S += (3) 用 PI 调节器的零点来抵消控制对象的大时间常数极点, 如下: 11q p i s L K K S S R += + (4) 得到电流环的开环传递函数: [()1]*v ik i oi v s K G K S T S R βτ=++ (5) 系统要求电流环具有较快的响应速度, 同时超调又不可过大, 因此令: ()0.5v oi v i s K T K R βτ+= (6)

设定逆变器开关频率为f=18kHz ,于是逆变器时间常数155.6v us f τ==,将15.5dc v s U K U ==、0.6β=、 0.11ms oi T =和表1的电机参数代入到式(4)、式(6)中,得 6.5p K =,0.0022i K =。 加入 PI 调节器之前的系统开环幅相频率特性曲线如图2 所示, 系统明显不稳定; 加入 PI 调节器后得到的系统开环的幅相频率特性曲线如图 3 所示, 可见所设计的电流环是稳定的, 且有 45°左右的相角裕度。 图2 原系统幅相频率特性曲线 图3 补偿后电流环幅相频率特性曲线 参考文献: [1]刘军,敖然,韩海云,秦海鹏,朱德明.永磁同步电动机伺服系统电流环优化设计[J ]. 微特电机,2012,40(6):17-20. [2]熊小娟,韩亚荣,邱鑫.永磁同步电机伺服系统电流环设计及性能分析[J ]. 科技传播,2010,5(上):62-63. [3]陈荣,邓智泉,严仰光.永磁同步服系统电流环的设计[J ]. 南京航空航天大学学报,2004,36(2):220-225.

PGA2310电子音量PCB及原理图

PGA2310电子音量控制器 此前级包含一块控制板和前级主板。 控制板硬件部分包含:ATMAGE16主控芯片,LCD1602液晶屏幕,EC11带按键旋转编码器,桥式整流和LM1117-5稳压IC,红外接收头及其他阻容元件。 控制板的特性和优点: 1、此控制板是针对此配套PGA2310前级主板开发的,除此之外无须改动可兼容替换市面上所有采用PGA2310,PGA2311,PGA4311,CS3310等芯片的产品。 2、控制板上包含有独立的整流稳压电路,即可单独采用交流5~8V或直流5-12V(只需断开整流部分)为控制板提供电源。 3、多达7路的继电器控制输出,其中3组作为前级主板上的音源输入切换,1组作为音源输出,另外3组为扩展输出控制,可用作本机电源或其他设备(诸如CD,后级功放等设备电源控制)的控制。 4、作为唯一的面板操作器件--EC11旋转编码器,大大简化操作面板。可实现360度旋转音量调节,音源切换及系统菜单设置。(具体设置操作方式,见后),手感和可操作性优于普通电位器。 5、自主开发的控制程序。极具人性化和可操作性。 6、代表本机先进性的控制设置,3级菜单显示,实现3路音源切换、静音、最大和最小增益设定(-91.5dB--31.5dB)、音量步进值设定(0.5dB--10dB)、音量显示3种模式设定(步近值、百分比、dB)。每路音源可单独定义音量值。以上的每种设定都能自动保存,以便断电后再次开机仍然为上一次的设定。 7、代表本机先进性的红外设置,可采用市面上或现有常见的大部分红外遥控器(只要NEC 编码格式的),对每个单独操作功能进行红外对码,任意按键设置(屏幕显示遥控按键编码,这对爱好和编写单片机红外遥控程序的人来说很有意义)。用户无需订购专用的红外遥控器,只要利用手头剩余遥控器或与其他电器剩余的遥控器按键整合。在节省成本同时,便于日后遥控器损坏和丢失等问题的解决。 8、鉴于ATMAGE16强大性能,控制板仍预留10组IO接口,在升级程序后可以将输入或输出接口扩展达17组,也就是说可再增加遥控至少10台设备。 主板的硬件部分包含:一路双15V(LM317、LM337)和一路5V(LM317)分别为模拟和数字供电,双627单运放构成的输入缓冲和PGA2310芯片。 主板的特性和优点: 1、采用BB公司最顶级的直插型PGA2310,目前也是能买到最好的数字音量控制IC(性能和指标上不是类似廉价的CS3310等可以比拟的)。 2、采用2个低噪音高精度单运放作为前级0DB缓冲,目的是将输入阻抗提高至100K,因为象PGA2310,CS3310等IC输入阻抗只有10K。提高输入阻抗的作用大家都明白就不多说了,市面上很多类似音量控制板为节省成本都省略了这部分。 3、模拟部分的运放和PG2310都是采用正负15V供电,对比PGA2311,CS3310这些正负5V 供电的IC,在动态上有更具优秀。独立的数模供电,良好的数模分离,甚至与单片机控制板的数数分离,最大幅度提高信噪比。与此相比,很多为了节省成本的音量控制板都把数字和MCU电源取自了模拟电源。 4、通过控制板对该主板上信号继电器的操控,实现音源切换,开机延时缓冲和关机瞬断。不存在许多DIY前级的开关机时出现暴音和噪音问题。 5、具有SDO扩展接口,相同2套以上系统可组成多声道前级。

高中低音音调及音量控制电路

NE5532N组成的高中低音音调及音量控制电路 [日期:2008-08-13 ] [来源:东哥单片机学习网https://www.360docs.net/doc/0c11117954.html, 作者:佚名] [字体:大中小] (投递新闻) 功放系统中无论是低档还是高档机,除了音量控制外都有音调控制电路,在一些低档机厂家为节省成本,其音调部分仅采用阻容式,当音调调节时往往使得高低音相互干扰,而且缺乏力度和清晰感,听起来非常浑浊杂乱,听久了令人烦燥不安,这些机子弃之又觉浪费,但用之又不满意,如果有动手能力的话,很有必要花几十元对其动动手术(摩机)–––––制作一款高品质的音调板来替换原机音调部分。下面就向广大发烧友介绍几款品质极佳的音调电路供爱好者选择。其中以LM4610N、LM1036N最佳,LM4610N是在LM1036N的基础上增加了3D音场效果处理功能的新一代发烧精品,笔者建议首选LM4610N。 图1是由2块NE5532N组成的高中低音音调及音量控制电路(图中仅画一声道,另一声道完全一样),原理为:信号经IC1(作缓冲放大及隔离作用,避免负载与信号源之间的影响)进入由电阻电容组成的三个频率均衡网络,即高音、中音、低音的频率,当调节RP1–––RP3相应的低中高频就会相应地进入由IC2及其反馈电路组成的反相放大器电路,调节RP1–––RP3就是提升或衰减了高中低音,从而实现了音频调节作用。需要说明一点是所采用的NE5532N必须是正宗品,如美国大S的、飞利浦的,这样才使行本电路的信噪比、动态范围、瞬态响应和控制效果均达到相当高水准。(欲获更高的水准NE5532N可换为NE5535N、OP275、AD827JN等精品运放,当然价格就高一点了)。 图2是采用二阶RC有源二分频电路,该电路由2块NE5532N构成(图中仅画一声道,另一声道相同),图中IC1A与IC1B分别组成低通与高通滤波器,完成音频信号的分割,再分别送到高低音音量控制电位器再分别进入高低音功放电路去推动高音喇叭和低音喇叭。利用该电路的缺点是要多增加一对功板电路及增多一组接线柱。相对来说需要多花点钱,但采用前级分频的优点却是非常明显的:①改善了低音音质;②兼顾了高低音扬声器的发声效率; ③解决了以住电路中高低音扬声器联接时存在的阻抗不匹配问题;④音调调节的动态范围明显变大。正是如此很多发烧友都爱玩电子分频功放。 图3是一款音量、音调、平衡、等响控制电路,其核心是采用美国国家半导体公司的高品质音调电路LM1036N,并配以美国大S精品运放NE5532N作一级放大及展宽作用(T2与NEH短接时起作用,对卡座效果好),LM1036N是采用直流电平控制音调(高低音)、音量、平衡的双声道集成电路,并有等响控制,其作用是因人耳在音量较小时对高低频信号灵敏度下降,因而需要在不同音量时对高低频信号作适当附加提升补偿,以使人耳在任何响度

自激多谐振荡器工作原理及实险

自激多谐振荡器工作原理及实险 一、原理 与非门作为一个开关倒相器件,可用以构成各种脉冲波形的产生电路。电路的基本工作原理是利用电容器的充放电,当输入电压达到与非门的阈值电压VT时,门的输出状态即发生变化。因此,电路输出的脉冲波形参数直接取决于电路中阻容元件的数值。 1、非对称型多谐振荡器 如图12-1所示,非门3用于输出波形整形。 非对称型多谐振荡器的输出波形是不对称的,当用TTL与非门组成时,输出脉冲宽度 tw1═RC tw2═1.2RC T═2.2RC 调节 R和C值,可改变输出信号的振荡频率,通常用改变C实现输出频率的粗调,改变电位器R实现输出频率的细调。 2、对称型多谐振荡器 如图12-2所示,由于电路完全对称,电容器的充放电时间常数相同, 故输出为对称的方波。改变R和C的值,可以改变输出振荡频率。非门3用于输出波形整形。 一般取R≤1KΩ?,当R=1KΩ,C=100pf~100μf时,f=nHz~nMHz,脉冲宽度tw1=tw2=0.7RC,T=1.4RC 3、带RC电路的环形振荡器 电路如图12-3所示,非门4用于输出波形整形,R为限流电阻,一般取100Ω,电位器Rw 要求≤1KΩ,电路利用电容C的充放电过程,控制D点电压VD,从而控制与非门的自动启闭,形成多谐振荡,电容C的充电时间tw1、放电时间tw2和总的振荡周期T分别为tw1≈0.94RC, tw2≈1.26RC, T ≈2.2RC 调节R和C的大小可改变电路输出的振荡频率。 以上这些电路的状态转换都发生在与非门输入电平达到门的阈值电平VT的时刻。在VT 附近电容器的充放电速度已经缓慢,而且VT本身也不够稳定,易受温度、电源电压变化等因素以及干扰的影响。因此,电路输出频率的稳定性较差。 4、石英晶体稳频的多谐振荡器 当要求多谐振荡器的工作频率稳定性很高时,上述几种多谐振荡器的精度已不能满足要求。为此常用石英晶体作为信号频率的基准。用石英晶体与门电路构成的多谐振荡器常用

相关文档
最新文档