自动控制理论实验报告 华科电气汇总

自动控制理论实验报告 华科电气汇总
自动控制理论实验报告 华科电气汇总

电气学科大类

2012 级

《信号与控制综合实验》课程

实验报告

(基本实验二:自动控制理论基本实验)

姓名学号专业班号

同组者1 学号专业班号

同组者2 学号专业班号

指导教师

日期

实验成绩

评阅人

实验评分表

目录

一、实验项目 (2)

1.实验十一二阶系统的模拟与动态性能研究 (2)

1.1 任务和目标 (2)

1.2 总体方案设计 (2)

1.3 方案实现和具体设计 (3)

1.4 实验结果与分析 (3)

1.5 实验总结 (5)

2.实验十二二阶系统的稳态性能研究 (8)

2.1 任务和目标 (8)

2.2 总体方案设计 (8)

2.3 方案实现和具体设计 (9)

2.4 实验结果与分析 (10)

2.5 实验总结 (15)

3.实验十四线性控制系统的设计与校正 (15)

3.1 任务和目标 (15)

3.2 总体方案设计 (15)

3.3 方案实现和具体设计 (16)

3.4 实验结果与分析 (19)

3.5 实验总结 (20)

4.实验十六控制系统极点的任意配置 (21)

4.1 任务和目标 (21)

4.2 总体方案设计 (21)

4.3 方案实现和具体设计 (22)

4.4 实验结果与分析 (25)

4.5 实验总结 (26)

二、心得体会 (27)

三、参考资料 (27)

一、实验项目

1.实验十一二阶系统的模拟与动态性能研究

1.1 任务和目标

1、掌握典型二阶系统动态性能指标的测试方法。

2、通过实验和理论分析计算比较,研究二阶系统的参数对其动态性能的影响。

1.2 总体方案设计

实验原理:

典型二阶系统的方框图如图11-1所示:

图11-1.典型二阶振荡环节的方框图

其闭环传递函数为:Φ(s)=

G(s)

1+G(s)

=K

Ts2+s+k

=ωn2

s2+2ξωn+ωn2

式中ξ=

2√KT

,为系统的阻尼比;ωn=√K T,为系统的无阻尼自然频率。ζ为系统的阻尼比,n为系统的无阻尼自然频率。对于不同的系统,ζ和所包含的内容也是不同的。调节系统的开环增益K,或时间常数T可使系统的阻尼比分别为:0<ξ<1,ξ=1和ξ>1三种。实验中能观测对应于这三种情况下的系统阶跃响应曲线是完全不同的。

二阶系统可用图11-2所示的模拟电路图来模拟:

图11-2 二阶系统模拟电路图

1.3 方案实现和具体设计

1、在实验装置上搭建二阶系统模拟电路。

2、分别设置ζ=0、0<ζ<1和ζ>1,观察并记录r(t)为正负方波信号时输出的波形c(t);

3、分析此时相对应的个

p

、s t ,并加以定性的讨论。

4、改变运算放大器1A 的电容C ,再重复以上实验内容。

1.4 实验结果与分析

(1)当C 1=C 2,ζ=0(R=0)时,波形如图11-3所示

图11-3 无阻尼输入输出波形

(2)当C1=C2,增大R的值,0<ζ<1时,波形如图11-4所示

图11-4 欠阻尼输入输出波形

(3)当C1=C2,继续增大R的值,ζ>1时,波形如图11-5所示

图11-5 过阻尼输入输出波形

(4)当C1>C2,ζ=0(R=0)时,波形如图11-6所示

图11-6 无阻尼输入输出波形

(5)当C1>C2,增大R的值,0<ζ<1时,波形如图11-7所示

图11-7 欠阻尼输入输出波形

(6)当C1>C2,继续增大R的值,ζ>1时,波形如图11-8所示

图11-8 过阻尼输入输出波形

由以上波形可知,增大R的值,使波形由无阻尼到欠阻尼和过阻尼状态变化;从ξ=

中可知,欠阻尼状态下,增大C的值,可使时间常数T增大,ζ减2√KT

小,超调PO增大;同时,由ωn=√K T可以得到,T增大,ωn减小,调节时间增大,响应变慢。

1.5 实验总结

本次实验室自动控制理论部分的第一个实验。通过此次实验,我了解了二阶电路装置的组成和运用,在实验前对模拟电路各部分进行了理论分析,实验时的效率得以提高,为之后的实验打下了良好的基础。

1.6 思考题

(1)根据实验模拟电路图绘出对应的方框图。消除内环将系统变为一个单位负反馈的典型结构。此时能知道系统中的阻尼比ζ体现在哪一部分吗?如何改变ζ的数值?

答:从实验模拟电路图可以得出,阻尼比体现在积分环节和惯性环节中;将系统中的某个积分环节改为惯性环节可以改变ξ的数值。

(2)当线路中的运算放大器A4的反馈电阻分别为8.2,20,28,40,50,102,120,180,220kΩ时计算系统的阻尼比ζ。

答:取C

1=C

2

=0.68μF,则阻尼比

10

10

707

.02

+

=

R

ξ,对应取值分别为

1.29,

2.12,2.69,

3.54,

4.24,7.92,9.19,13.44,16.26。

当C

1=0.082μF,C

2

=0.68μF时,

2

1

2

10

10

707

.0

C

C

R+

=

ξ,对应取值分别为

0.45、0.74、0.93、1.23、1.47、2.75、3.19、4.67、5.65。

(3)用实验线路如何实现ζ=0?当把运算放大器A4所形成的内环

打开时,系统主通道由2个积分环节和一个比例系数为1的放大器

串联而成,主反馈仍为1,此时的ζ=?

答:要使ζ=0,需将运算放大器A

4

所形成的内环打开;改变电路环节后,ζ仍然为0。

(4)如果阶跃输入信号的幅值过大,会在实验中产生什么后果?

答:放大器可能会工作在非线性区,从而使使输出信号失真。

(5)在电路模拟系统中,如何实现单位负反馈?

答:若此时信号与输入信号反向,将输出通过一个与输入相同的电阻引入到输入端即可。若此时信号与输入信号同相,则需要增加一个增益为1的反向放大器来实现单位负反馈。

(6)惯性环节中的时间常数T改变意味着典型二阶系统的什么值发生了改变?σp、ts、tr、tp各值将如何改变?

答:系统惯性环节的时间常数T改变意味着闭环极点的实部-ζω

n

发生变

化。T增大时,系统的阻尼比增大,超调量减小;等效时间常数ζω

n

减小,系

统的调节时间t

s

减小。

对于调节时间和峰值时间,需要分情况讨论:若系统是过阻尼或临界阻

尼,则不存在t

r 、t

p

的概念,系统响应没有超调。如果系统是欠阻尼,随着T

的增大,峰值时间t

p 和上升时间t

r

变大。

(7)采用反向输入的运算放大器构成系统时,如何保证闭环系统的是负反馈?有没有简单的判别方法?

答:若干个运算放大器串联时,第奇数个运算放大器的输出信号与输入信号反相,因而可以通过保证反馈点接在第奇数个运算放大器的输出点来保证系统的反馈性质为负反馈。

2.实验十二 二阶系统的稳态性能研究 2.1 任务和目标

(1)进一步通过实验了解稳态误差与系统结构、参数及输入信号的关系: 了解不同典型输入信号对于同一个系统所产生的稳态误差; 了解一个典型输入信号对不同类型系统所产生的稳态误差; 研究系统的开环增益K 对稳态误差的影响。

(2)了解扰动信号对系统类型和稳态误差的影响。 (3) 研究减小直至消除稳态误差的措施。。

2.2 总体方案设计 设计原理

控制系统的方框图如图12-1:

图12-1 闭环控制系统方框图

当H(s) = 1(单位反馈)时,系统的闭环传递函数为:Φ(s)=G(s)/(1+G(s) ),而系统的稳态误差E(S)的表达式为:E(s)=R(s)/(1+G(s) )。系统的误差不仅与其结构(系统类型N )及参数(增益K )有关,而且也与入信号R(s)的大小有关。

表12-1为对应于某些常见信号,不同型别系统的稳态误差。 0 1 2 1

0 0 s 1

p k +11

2

1

s

v

k 1

3

1

s

a k 1

表12-1 不同型别系统对应不同信号的稳态误差

型别N

输入R(s)

设二阶系统的方框图如图12-2:

图12-2 二阶系统的方框图

二阶系统的模拟电路图如图12-3:

图12-3 二阶系统模拟电路图

当所有固定电阻取10k,所有电容取1F时(试验中根据任务有所改变),系统开环传递函数为:

由表12-1系统型别表知,K越大稳态误差越小,故调节其增益系数K或其系统型别n即可调节稳态误差。

2.3 方案实现和具体设计

(1)r(t)为阶跃信号、f(t)=0,A1(s)、A3(s)为惯性环节,A2(s)为比例环节,观察系统的输出C(t)和稳态误差ess,并记录开环放大系数K的变化对二阶系统输出和稳态误差的影响。

(2)将A1(s)改为积分环节,观察并记录二阶系统的稳态误差和变化。

(3)当r(t)=0、f(t)为阶跃信号时,扰动作用点在f点,A1(s)、A3(s)为惯性环节,A2(s)为比例环节,观察系统的输出C(t)和稳态误差ess,并记录开环放大系数K的变化对二阶系统输出和稳态误差的影响。

(4)当r(t)=0、f(t)为阶跃信号时,将扰动点从f点移动到g点,A1(s)、A3(s)为惯性环节,A2(s)为比例环节,观察系统的输出C(t)和稳态误差ess,并记录开环放大系数K的变化对二阶系统输出和稳态误差的影响。

(5)当r(t)=0、f(t)为阶跃信号时,扰动作用点在f点时,观察并记录当A1(s)、A3(s)分别为积分环节时系统的稳态误差ess的变化。

(6)当r(t)、f(t)均为阶跃信号时,扰动作用点在f点时,分别观察并记录以下情况时系统的稳态误差ess。

①A1(s)、A3(s)为惯性环节;

②A1(s)为积分环节,A3(s)为惯性环节;

③A1(s)为惯性环节,A3(s)为积分环节。

2.4 实验结果与分析

(1)r(t)为阶跃信号,f(t)=g(t)=0,A1(s)、A3(s)为惯性环节,改变K的值,输入输出波形如图12-4和图12-5所示:

图12-4 K=4,R=33k时c(t)- r(t)波形

图12-5 K=21,R=200k时c(t)- r(t)波形

由以上结果可知,增大R12,即增大开环增益K,稳态误差减小。同时,由闭环传递函数G(s)=K/(Ts^2+s+k)知,开环增益的大小会影响响应速度和超调量。

(2)r(t)为阶跃信号,f(t)=g(t)=0,A1(s)为积分环节、A3(s)为惯性环节,改变K的值,输入输出波形如图12-6和图12-7所示:

图12-6 K=4,R=33k时c(t)- r(t)波形

图12-7 K=21,R=200k时c(t)- r(t)波形

由以上结果可知,将A1(s)改为积分环节后,系统变为1型系统,阶跃响应无稳态误差,故改变R12的值对系统的稳态输出无影响。但会使系统的超调和响应速度改变。

(3)r(t)=g(t)=0,f(t)为阶跃信号,A1(s)、A3(s)为惯性环节,改变K的值,输入输出波形如图12-8和图12-9所示:

图12-8 K=1时c(t)- r(t)波形

图12-9 K=2时c(t)- r(t)波形

当K增大时,稳态误差逐渐减小,最终消失,而系统对扰动的响应也较慢。(4)r(t)=f(t)=0,g(t)为阶跃信号,A1(s)、A3(s)为惯性环节,改变K的值,输入输出波形如图12-10和图12-11所示:

图12-10 K=1时c(t)- r(t)波形

图12-11 K=2时c(t)- r(t)波形

由以上实验结果可知,当开环增益紧接在扰动输入之后,系统对扰动的响应会随开环增益K的增大(电阻R12增大)而增大。

(5)r(t)=g(t)=0,f(t)为阶跃信号,A1(s)为积分环节、A3(s)为惯性环节的输入输出波形如图12-12所示;A1(s)为惯性环节、A3(s)为积分环节的输入输出波形如图12-13所示:

图12-12 A1(s)为积分环节的输入输出波形

图12-13 A3(s)为积分环节的输入输出波形

由以上结果可知,反馈通道中含积分环节时,干扰对系统阶跃响应稳态值无影响。而对于反馈通道含惯性环节的系统,前向通道中的积分环节无法完全消除干扰对系统稳态值的影响。

(6)g(t)=0,r(t)、f(t)为阶跃信号,对应A1(s)、A3(s)均为惯性环节,A1(s)为积分环节、A3(s)惯性环节,A1(s)为惯性环节、A3(s)为积分环节,系统的输入输出波形分别如图12-14、12-25和12-26所示。

计算机组成原理实验报告

福建农林大学计算机与信息学院信息工程类实验报告系:计算机科学与技术专业:计算机科学与技术年级: 09级 姓名:张文绮学号: 091150022 实验课程:计算机组成原理 实验室号:___田405 实验设备号: 43 实验时间:2010.12.19 指导教师签字:成绩: 实验一算术逻辑运算实验 1.实验目的和要求 1. 熟悉简单运算器的数据传送通路; 2. 验证4位运算功能发生器功能(74LS181)的组合功能。 2.实验原理 实验中所用到的运算器数据通路如图1-1所示。其中运算器由两片74181

以并/串形式构成8位字长的ALU。运算器的输出经过一个三态门(74245)和数据总线相连,运算器的两个数据输入端分别由两个锁存器(74373)锁存,锁存器的输入连接至数据总线,数据开关INPUT DEVICE用来给出参与运算的数据,并经过一个三态门(74245)和数据总线相连,数据显示灯“BUS UNIT”已和数据总线相连,用来显示数据总线内容。 图1-2中已将用户需要连接的控制信号用圆圈标明(其他实验相同,不再说明),其中除T4为脉冲信号,其它均为电平信号。由于实验电路中的时序信号均已连至W/R UNIT的相应时序信号引出端,因此,在进行实验时,只需将W/R UNIT 的T4接至STATE UNIT的微动开关KK2的输出端,按动微动开关,即可获得实验所需的单脉冲,而S3,S2,S1,S0,Cn,LDDR1,LDDR2,ALU-B,SW-B各电平控制信号用SWITCH UNIT中的二进制数据开关来模拟,其中Cn,ALU-B,SW-B为低电平控制有效,LDDR1,LDDR2为高电平有效。 3.主要仪器设备(实验用的软硬件环境) ZYE1603B计算机组成原理教学实验系统一台,排线若干。 4.操作方法与实验步骤

计算机组成原理实验报告

重庆理工大学 《计算机组成原理》 实验报告 学号 __11503080109____ 姓名 __张致远_________ 专业 __软件工程_______ 学院 _计算机科学与工程 二0一六年四月二十三实验一基本运算器实验报告

一、实验名称 基本运算器实验 二、完成学生:张致远班级115030801 学号11503080109 三、实验目的 1.了解运算器的组成结构。 2.掌握运算器的工作原理。 四、实验原理: 两片74LS181 芯片以并/串形式构成的8位字长的运算器。右方为低4位运算芯片,左方为高4位运算芯片。低位芯片的进位输出端Cn+4与高位芯片的进位输入端Cn相连,使低4位运算产生的进位送进高4位。低位芯片的进位输入端Cn可与外来进位相连,高位芯片的进位输出到外部。 两个芯片的控制端S0~S3 和M 各自相连,其控制电平按表2.6-1。为进行双操作数运算,运算器的两个数据输入端分别由两个数据暂存器DR1、DR2(用锁存器74LS273 实现)来锁存数据。要将内总线上的数据锁存到DR1 或DR2 中,则锁存器74LS273 的控制端LDDR1 或LDDR2 须为高电平。当T4 脉冲来到的时候,总线上的数据就被锁存进DR1 或DR2 中了。 为控制运算器向内总线上输出运算结果,在其输出端连接了一个三态门(用74LS245 实现)。若要将运算结果输出到总线上,则要将三态门74LS245 的控制端ALU-B 置低电平。否则输出高阻态。数据输入单元(实验板上印有INPUT DEVICE)用以给出参与运算的数据。其中,输入开关经过一个三态门(74LS245)和内总线相连,该三态门的控制信号为SW-B,取低电平时,开关上的数据则通过三态门而送入内总线中。 总线数据显示灯(在BUS UNIT 单元中)已与内总线相连,用来显示内总线上的数据。控制信号中除T4 为脉冲信号,其它均为电平信号。 由于实验电路中的时序信号均已连至“W/R UNIT”单元中的相应时序信号引出端,因此,需要将“W/R UNIT”单元中的T4 接至“STATE UNIT”单元中的微动开关KK2 的输出端。在进行实验时,按动微动开关,即可获得实验所需的单脉冲。 S3、S2、 S1、S0 、Cn、M、LDDR1、LDDR2、ALU-B、SW-B 各电平控制信号则使用“SWITCHUNIT”单元中的二进制数据开关来模拟,其中Cn、ALU-B、SW-B 为低电平有效,LDDR1、LDDR2 为高电平有效。 对于单总线数据通路,作实验时就要分时控制总线,即当向DR1、DR2 工作暂存器打入数据时,数据开关三态门打开,这时应保证运算器输出三态门关闭;同样,当运算器输出结果至总线时也应保证数据输入三态门是在关闭状态。 运算结果表

电路实验报告1--叠加原理

电路实验报告1-叠加原理的验证 所属栏目:电路实验- 实验报告示例发布时间:2010-3-11 实验三叠加原理的验证 一、实验目的 验证线性电路叠加原理的正确性,加深对线性电路的叠加性和齐次性的认识和理解。 二、原理说明 叠加原理指出:在有多个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。 线性电路的齐次性是指当激励信号(某独立源的值)增加或减小K 倍时,电路的响应(即在电路中各电阻元件上所建立的电流和电压值)也将增加或减小K倍。 三、实验设备 高性能电工技术实验装置DGJ-01:直流稳压电压、直流数字电压表、直流数字电流表、叠加原理实验电路板DGJ-03。 四、实验步骤 1.用实验装置上的DGJ-03线路, 按照实验指导书上的图3-1,将两路稳压电源的输出分别调节为12V和6V,接入图中的U1和U2处。 2.通过调节开关K1和K2,分别将电源同时作用和单独作用在电路中,完成如下表格。 表3-1

3.将U2的数值调到12V,重复以上测量,并记录在表3-1的最后一行中。 4.将R3(330 )换成二极管IN4007,继续测量并填入表3-2中。 表3-2 五、实验数据处理和分析 对图3-1的线性电路进行理论分析,利用回路电流法或节点电压法列出电路方程,借助计算机进行方程求解,或直接用EWB软件对电路分析计算,得出的电压、电流的数据与测量值基本相符。验证了测量数据的准确性。电压表和电流表的测量有一定的误差,都在可允许的误差范围内。 验证叠加定理:以I1为例,U1单独作用时,I1a=8.693mA,,U2单独作用时,I1b=-1.198mA,I1a+I1b=7.495mA,U1和U2共同作用时,测量值为7.556mA,因此叠加性得以验证。2U2单独作用时,测量值为-2.395mA,而2*I1b=-2.396mA,因此齐次性得以验证。其他的支路电流和电压也可类似验证叠加定理的准确性。 对于含有二极管的非线性电路,表2中的数据不符合叠加性和齐次性。 六、思考题 1.电源单独作用时,将另外一出开关投向短路侧,不能直接将电压源短接置零。 2.电阻改为二极管后,叠加原理不成立。

华中科技大学附属协和医院计算机组成原理历年考研真题汇编完整版

华中科技大学附属协和医院计算机组成原理历年考研真题汇编 集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

目 录 说明:计算机组成原理科目代码更换频繁,2016年科目代码是961,本书以此为准。 华中科技大学附属协和医院 961计算机组成原理历年考研真题汇编 最新资料,WORD 格式,可编辑修改!

华中理工大学1999硕士入学计算机组成原理真题 一、填空(每空1分,共20分) 1.计算机中数值数据表示长采用的格式有______和______两种。 2.已知十进制数,则相应的二进制数X=______,[X]补=______。 3.若X=-0.X1X2……Xn,则[X]原=______,[-X]补=______。 4.主机与外部设备之间以软件方式控制信息交换的方式有______ 和______。 5.主存储器最小的存取单位是______,而磁盘存储器的最小存取单位是______。 6.一条机器指令的处理过程,宏观上可分作______和______过程。 7.I/O接口按数据传送的宽度可分为______和______两类。 8.总线的控制方式可分为两类,即______和______。 9.多级中断常分为______和______多级中断。 10.DMA控制器含两种类型,一类是______,另一类是______。 二、计算(10分) 1.已知X=-0.01010,Y=0.10101,根据补码不恢复余数除法求[X]补÷[Y]补。(要求完整写出计算过程) 2.若存储芯片容量为128K×8位,求 (1)访问该芯片需要多少位地址 (2)假定该芯片在存储器中首地址为A0000H,求地址应为多少? 三、判断下列各题正误,并说明理由(15分) 1.ALU就是运算器。 2.不使用74182芯片,仅使用16片74181芯片就能构成64位ALU。 3.设置高速缓冲存储器的主要目的是提高存储系统的速度。 4.时序产生器是产生控制信号的部件。 5.所谓记录方式就是磁表面存储器的记忆方式。 四、简答题(16分) 1.冯·诺依曼型计算机的设计思想是什么? 2.CPU对主存进行读写操作,应该分别给出哪些信息? 3.计算机硬件组织由哪几大功能部件组成? 4.半导体只读存储器可分作哪几种类型? 五、论述题(21分) 1.论述磁表面存储器的读写操作原理。 2.试述采用直接表示法微指令的特点。 3.试述微程序控制器设计所采用的技术及设计思想。 六、下图给出了补码加法器,图中A0,B0分别为两个操作数的符号位,A1,B1分别为操作数的最高有效,要求: 1.增加能实现减法运算的逻辑电路,并说明加,减法是任何被控制实现的。 2.增加以变形补码进行运算,并且具有溢出检测功能的逻辑电路。 图4 七、绘出CPU与存储系统的连接框图。并说明CPU访问内存的读写操作原理(注内存包含主存与Cache)

计算机组成原理实验报告

《计算机组成原理》 实验报告 实验室名称:S402 任课教师:邹洋 小组成员:王娜任芬 学号:2010212121 2010212119

实验一_HAMMING码 (2) 实验二_乘法器 (7) 实验三_时序部件 (16) 实验四_CPU__算术逻辑单元实验 (24) 实验五_CPU__指令译码器实验 (32) 实验六_CPU_微程序控制器实验1 (43) 实验七_八_CPU实验 (59)

1 编码实验:Hamming码 1.1、实验目的 1、对容错技术有初步了解,理解掌握海明码的原理 2、掌握海明码的编码以及校验方法 1.2、实验原理 海明码是由Richard Hamming于1950年提出的,目前是被广泛采用的很有效的校验编码。它的特点是只要增加少数几个校验位,就能检测出多位出错,并能自动纠错。 Hamming码的实现原理是在数据中加入几个校验位,将数据代码的码距比较均匀的拉大,并把数据的每一个二进制位分配在几个奇偶校验组中。当某一位出错后,就会引起有关的几个校验位的值发生变化。这不但可以发现出错,还能指出是哪一位出错,为进一步自动纠错提供了依据。 假设校验位的个数为r,则它能表示2r个信息,用其中的一个信息指出“没有错误”,其余的2r-1个信息指出错误发生在哪一位。然而错误也可能发生在校验位,因此只有k=2r-1-r个信息能用于纠正被传送数据的位数,也就是说要满足关系: 2r≥k+r+1 若要能检测与自动校正一位错,并能发现两位错,此时校验位的位数r和数据位的位数k应满足下述关系:2r-1≥k+r 按上述不等式,可计算出数据位k与校验位r的对应关系,如表1.1所示: 表1.1 数据位k与校验位r的对应关系 k值最小的r值 1~3 4 4~10 5 11~25 6 26~56 7 57~119 8 若海明码的最高位号为m,最低位号为1,即H m H m-1…H2H1,则此海明码的编码规律通常是 1)校验位与数据位之和为m,每个校验位P i在海明码中被分在位号为2i-1的位置上,其余各位为数据位,并按从低向高逐位依次排列的关系分配各数据位。 2)海明码的每一位码H i(包括数据位和校验位本身)由多个校验位校验,其关系是被校验的每一位位号等于校验它的各校验位的位号之和。 3)在增大合法码的码距时,所有码的码距应尽量均匀增大,以保证对所有码的检错能力平衡提高。 下面具体看一下对一个字节进行海明编码的实现过程。 只实现一位纠错两位检错,由前面的表可以看出,8位数据位需要5位校验位,可表示为H13H12…H2H1。 五个校验位P5~P1对应的海明码位号分别为H13、H8、H4、H2和H1。P5只能放在H13位

计算机组成原理实验报告(运算器组成、存储器)

计算机组成原理实验报告 一、实验1 Quartus Ⅱ的使用 一.实验目的 掌握Quartus Ⅱ的基本使用方法。 了解74138(3:8)译码器、74244、74273的功能。 利用Quartus Ⅱ验证74138(3:8)译码器、74244、74273的功能。 二.实验任务 熟悉Quartus Ⅱ中的管理项目、输入原理图以及仿真的设计方法与流程。 新建项目,利用原理编辑方式输入74138、74244、74273的功能特性,依照其功能表分别进行仿真,验证这三种期间的功能。 三.74138、74244、74273的原理图与仿真图 1.74138的原理图与仿真图 74244的原理图与仿真图

1. 4.74273的原理图与仿真图、

实验2 运算器组成实验 一、实验目的 1.掌握算术逻辑运算单元(ALU)的工作原理。 2.熟悉简单运算器的数据传送通路。 3.验证4位运算器(74181)的组合功能。 4.按给定数据,完成几种指定的算术和逻辑运算。 二、实验电路 附录中的图示出了本实验所用的运算器数据通路图。8位字长的ALU由2片74181构成。2片74273构成两个操作数寄存器DR1和DR2,用来保存参与运算的数据。DR1接ALU的A数据输入端口,DR2接ALU的B数据输入端口,ALU的数据输出通过三态门74244发送到数据总线BUS7-BUS0上。参与运算的数据可通过一个三态门74244输入到数据总线上,并可送到DR1或DR2暂存。 图中尾巴上带粗短线标记的信号都是控制信号。除了T4是脉冲信号外,其他均为电位信号。nC0,nALU-BUS,nSW-BUS均为低电平有效。 三、实验任务 按所示实验电路,输入原理图,建立.bdf文件。 四.实验原理图及仿真图 给DR1存入01010101,给DR2存入10101010,然后利用ALU的直通功能,检查DR1、

叠加原理 实验报告范文(含数据处理)

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 叠加原理实验报告范文 一、实验目的 验证线性电路叠加原理的正确性,加深对线性电路的叠加性和齐次性的认识和理解。 二、原理说明 叠加原理指出:在有多个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。 线性电路的齐次性是指当激励信号(某独立源的值)增加或减小K倍时,电路的响应(即在电路中各电阻元件上所建立的电流和电压值)也将增加或减小K倍。 三、实验设备 高性能电工技术实验装置DGJ-01:直流稳压电压、直流数字电压表、直流数字电流表、叠加原理实验电路板DGJ-03。 四、实验步骤 1.用实验装置上的DGJ-03线路,按照实验指导书上的图3-1,将两路稳压电源的输出分别调节为12V和6V,接入图中的U1和U2处。 2.通过调节开关K1和K2,分别将电源同时作用和单独作用在电路中,完成如下表格。 表3-1

3.将U2的数值调到12V,重复以上测量,并记录在表3-1的最后一行中。 4.将R3(330 )换成二极管IN4007,继续测量并填入表3-2中。 表3-2 五、实验数据处理和分析 对图3-1的线性电路进行理论分析,利用回路电流法或节点电压法列出电路方程,借助计算机进行方程求解,或直接用EWB软件对电路分析计算,得出的电压、电流的数据与测量值基本相符。验证了测量数据的准确性。电压表和电流表的测量有一定的误差,都在可允许的误差范围内。 验证叠加定理:以I1为例,U1单独作用时,I1a=8.693mA,,U2单独作用时, I1b=-1.198mA,I1a+I1b=7.495mA,U1和U2共同作用时,测量值为7.556mA,因此叠加性得以验证。2U2单独作用时,测量值为-2.395mA,而2*I1b=-2.396mA,因此齐次性得以验证。其他的支路电流和电压也可类似验证叠加定理的准确性。 对于含有二极管的非线性电路,表2中的数据不符合叠加性和齐次性。

华中科技大学计算机组成原理慕课答案

一、单项选择题 1、下列说法中,错误的是( B ) A.固件功能类似软件,形态类似硬件 B.寄存器的数据位对微程序级用户透明 C.软件与硬件具有逻辑功能的等效性 D.计算机系统层次结构中,微程序属于硬件级 2、完整的计算机系统通常包括( A ) A.硬件系统与软件系统 B.运算器、控制器、存储器 C.主机、外部设备 D.主机和应用软件 3、CPU地址线数量与下列哪项指标密切相关( B ) A.运算精确度 B.内存容量 C.存储数据位 D.运算速度 4、下列属于冯?诺依曼计算机的核心思想是( C ) A.采用补码 B.采用总线 C.存储程序和程序控制 D.存储器按地址访问 5、计算机中表示地址时使用( A )

A.无符号数 B.反码 C.补码 D.原码 6、当-1 < x < 0 时,[x] 补=(C ) A. x B.1-x C.2+x D.2-x 7、假设寄存器为8 位,用补码形式存储机器数,包括一位符号位, 那么十进制数一25 在寄存器中的十六进制形式表示为( C ) A.99H B.67H C.E7H D.E6H 8、如果某系统15*4=112 成立,则系统采用的进制是( C ) A.9 B.8 C.6 D.7 9、某十六进制浮点数A3D00000中最高8 位是阶码(含 1 位阶符),尾数是最低24 位(含1 位数符),若阶码和尾数均采用补码,则该浮

点数的十进制真值是( A ) A.-0.375 ×2^(-93) B.-0.375 ×2^(-35) C. -0.625 ×2^(-93) D.0.625 ×2^(-35) 10、存储器中地址号分别为1000#、1001#、1002#、1003 的4 个连续存储单元,分别保存的字节数据是1A、2B、3C、4D,如果数据字长为32 位, 存储器采用的是小端对齐模式,则这4 个存储单元存储的数据值应被解析为( A ) A.4D3C2B1A B.A1B2C3D4 C.D4C3B2A1 D.1A2B2C3D 11、字长8 位的某二进制补码整数为11011010,则该数的标准移码是(B ) A.11011010 B.01011010 C.00111010 D.10111010 12、对于IEEE754格式的浮点数,下列描述正确的是( D ) A.阶码和尾数都用补码表示 B.阶码用移码表示,尾数用补码表示

计算机组成原理--实验报告

实验一寄存器实验 实验目的:了解模型机中各种寄存器结构、工作原理及其控制方法。 实验要求:利用CPTH 实验仪上的K16..K23 开关做为DBUS 的数据,其它开关做为控制信号,将数据写入寄存器,这些寄存器包括累加器A,工作寄存器W,数据寄存器组R0..R3,地址寄存器MAR,堆栈寄存器ST,输出寄存器OUT。 实验电路:寄存器的作用是用于保存数据的CPTH 用74HC574 来构成寄存器。74HC574 的功能如下: - 1 -

实验1:A,W 寄存器实验 原理图 寄存器A原理图 寄存器W 原理图连接线表: - 2 -

- 3 - 系统清零和手动状态设定:K23-K16开关置零,按[RST]钮,按[TV/ME]键三次,进入"Hand......"手动状态。 在后面实验中实验模式为手动的操作方法不再详述. 将55H 写入A 寄存器 二进制开关K23-K16用于DBUS[7:0]的数据输入,置数据 55H 置控制信号为: 按住STEP 脉冲键,CK 由高变低,这时寄存器A 的黄色选择指示灯亮,表明选择A 寄存器。放开STEP 键,CK 由低变高,产生一个上升沿,数据55H 被写入A 寄存器。 将66H 写入W 寄存器 二进制开关K23-K16用于DBUS[7:0]的数据输入,置数据66H

置控制信号为: 按住STEP脉冲键,CK由高变低,这时寄存器W 的黄色选择指示灯亮,表明选择W寄存器。放开STEP 键,CK 由低变高,产生一个上升沿,数据66H 被写入W 寄存器。 注意观察: 1.数据是在放开STEP键后改变的,也就是CK的上升沿数据被打入。 2.WEN,AEN为高时,即使CK有上升沿,寄存器的数据也不会改变。 实验2:R0,R1,R2,R3 寄存器实验 连接线表 - 4 -

电路基础实验报告

基尔霍夫定律和叠加定理的验证 组长:曹波组员:袁怡潘依林王群梁泽宇郑勋 一、实验目的 通过本次实验验证基尔霍夫电流定律和电压定律加深对“节点电流代数和”及“回路电压代数和”的概念的理解;通过实验验证叠加定理,加深对线性电路中可加性的认识。 二、实验原理 ①基尔霍夫节点电流定律[KCL]:在集总电路中,任何时刻,对任一结点,所有流出结点的支路电流的代数和恒等于0。 ②基尔霍夫回路电压定律[KVL]:在集总电路中,任何时刻,沿任一回路,所有支路电压的代数和恒等于0。 ③叠加定理:在线性电阻电路中,某处电压或电流都是电路中各个独立电源单独作用时,在该处分别产生的电压或电流的叠加。 三、实验准备 ①仪器准备 1.0~30V可调直流稳压电源 2.±15V直流稳压电源 3.200mA可调恒流源 4.电阻 5.交直流电压电流表 6.实验电路板 7.导线

②实验电路图设计简图 四、实验步骤及内容 1、启动仪器总电源,连通整个电路,分别用导线给电路中加上直流电压U1=15v,U2=10v。 2、先大致计算好电路中的电流和电压,同时调好各电表量程。 3、依次用直流电压表测出电阻电压U AB、U BE、U ED,并记录好电压表读数。 4、再换用电流表分别测出支路电流I1、I2、I3,并记录好电流读数。 5、然后断开电压U2,用直流电压表测出电阻电压U、BE,用电流表分别测出支路电流I、1并记录好电压表读数。 6、然后断开电压U1,接通电压U2,用直流电压表测出电阻电压U、、BE,用电流表分别测出支路电流I、、1并记录好电压表读数。 7、实验完毕,将各器材整理并收拾好,放回原处。 实验过程辑录 图1 测出U AB= 图2 测出电压U BE=

计算机组成原理实验报告

计算机组成原理实验报告 ——微程序控制器实验 一.实验目的: 1.能瞧懂教学计算机(TH-union)已经设计好并正常运行的数条基本指令的功能、格式及执 行流程。并可以自己设计几条指令,并理解其功能,格式及执行流程,在教学计算机上实现。 2.深入理解计算机微程序控制器的功能与组成原理 3.深入学习计算机各类典型指令的执行流程 4.对指令格式、寻址方式、指令系统、指令分类等建立具体的总体概念 5.学习微程序控制器的设计过程与相关技术 二.实验原理: 微程序控制器主要由控制存储器、微指令寄存器与地址转移逻辑三大部分组成。 其工作原理分为: 1、将程序与数据通过输入设备送入存储器; 2、启动运行后从存储器中取出程序指令送到控制器去识别,分析该指令要求什么事; 3、控制器根据指令的含义发出相应的命令(如加法、减法),将存储单元中存放的操作数据取出送往运算器进行运算,再把运算结果送回存储器指定的单元中; 4、运算任务完成后,就可以根据指令将结果通过输出设备输出 三.微指令格式: 其中高八位为下地址字段、其余各位为控制字段、 1)微地址形成逻辑 TH—UNION 教学机利用器件形成下一条微指令在控制器存储器的地址、 下地址的形成由下地址字段及控制字段中的CI3—SCC控制、当为顺序执行时,下地址字段不起作用、下地址为当前微指令地址加1;当为转移指令(CI3—0=0011)时,由控制信号SCC 提供转移条件,由下地址字段提供转移地址、 2)控制字段 控制字段用以向各部件发送控制信号,使各部件能协调工作。 控制字段中各控制信号有如下几类: ①对运算器部件为了完成数据运算与传送功能,微指令向其提供了24位的控制信号,包括:4位的A、B口地址,用于选择读写的通用积存器3组3位的控制码I8-I6、 I5-I3、I2-I6,用于选择结果处置方案、运算功能、数据来源。 3组共7位控制信号控制配合的两片GAL20V8 3位SST,用于控制记忆的状态标志位 2位SCI,用于控制产生运算器低位的进位输入信号 2位SSH,用于控制产生运算器最高,最地位(与积存器)移位输入信号 ②对内存储器I/O与接口部件,控制器主要向它们提供读写操作用到的全部控制信号,共3位,即MRW

实验二 电路原理图的绘制实验报告

实验二电路原理图的绘制实验报告 一、实验目的 (1)掌握设计项目的建立和管理; (2)掌握原理图图纸参数的设置、原理图环境参数的设置; (3)掌握元器件库的装载,学会元器件、电源、接地、网络标号、总线、输入/输出端口、节点等电路元素的选取、放置等操作; (4)掌握电路元素的参数修改方法。 二、实验原理 1、创建一个新的项目文件。 在Altium Designer 10中,根据不同的设计主要有三种形式的项目文件,分别是:PCB项目文件,文件后缀为PrjPCB;FPGA项目文件,文件后缀为PrjFPG;库文件,根据电路原理图和印制电路板图设计的不同,其后缀有SchLib和PcbLib 两种。在我们实验中均建立一个PCB项目文件。 (1)执行菜单命令“文件\工程\PCB Project”,建立一个空的项目文件后的项目工作面板; (2)执行菜单命令“File\Save Project”,保存文件。 2、新建原理图文件 (1)执行菜单命令“File\New\Schematic”,在刚才建立的项目中新建原理图,默认的文件名为Sheet1.SchDoc。 (2)执行菜单命令“File\Save Project”,保存文件。 3、设置原理图选项 (1)图纸参数设定:执行菜单命令“设计\文档选项”,系统弹出文档选项对话框,在此对话框的“方块电路选项”标签页设置图纸参数。 (2)填写图纸设计信息:执行菜单命令“设计\文档选项”,系统弹出文档选项对话框,在此对话框的“参数”标签页设置图纸参数。 (3)原理图环境参数设置:执行菜单命令“工具\设置原理图参数”,系统将弹出“喜好”对话框,在此对话框的左边树状图中选择原理图选项,此选项组中有12个选项卡,它们分别是原理图参数选项、图形编辑参数选项、编译器选项、导线分割选项、默认的初始值选项和软件参数选项等,分别用于设置原理图绘制过程中的各类功能选项。

计算机组成原理实验报告

实验报告书 实验名称:计算机组成原理实验 专业班级:113030701 学号:113030701 姓名: 联系电话: 指导老师:张光建 实验时间:2015.4.30-2015.6.25

实验二基本运算器实验 一、实验内容 1、根据原理图连接实验电路

3、比较实验结果与手工运算结果,如有错误,分析原因。 二、实验原理 运算器可以完成算术,逻辑,移位运算,数据来自暂存器A和B,运算方式由S3-S0以及CN来控制。运算器由一片CPLD来实现。ALU的输入和输出通过三态门74LS245连接到CPU内总线上。另外还有指示灯进位标志位FC和零标志位FZ。 运算器原理图: 运算器原理图 暂存器A和暂存器B的数据能在LED灯上实时显示。进位进位标志FC、零标志FZ 和数据总线D7…D0 的显示原理也是如此。 ALU和外围电路连接原理图:

ALU和外围电路连接原理图运算器逻辑功能表:

三、实验步骤 1、按照下图的接线图,连接电路。 2、将时序与操作台单元的开关KK2 置为‘单拍’档,开关KK1、KK3 置为‘运行’档。 3、打开电源开关,如果听到有‘嘀’报警声,说明有总线竞争现象,应立即关闭电源,重新检查接线,直到错误排除。然后按动CON 单元的CLR 按钮,将运算器的A、B 和FC、FZ 清零。 4、用输入开关向暂存器A 置数。 ①拨动CON 单元的SD27…SD20 数据开关,形成二进制数01100101 (或其它数值),数据显示亮为‘1’,灭为‘0’。 ②置LDA=1,LDB=0,连续按动时序单元的ST 按钮,产生一个T4 上沿,则将二进制数01100101 置入暂存器A 中,暂存器A 的值通过ALU 单元的 A7…A0 八位LED 灯显示。 5、用输入开关向暂存器B 置数。 ①拨动CON 单元的SD27…SD20 数据开关,形成二进制数10100111 (或其它数值)。 ②置LDA=0,LDB=1,连续按动时序单元的ST 按钮,产生一个T4 上沿,则将二进制数10100111 置入暂存器B 中,暂存器B 的值通过ALU 单元的 B7…B0 八位LED 灯显示。 6、改变运算器的功能设置,观察运算器的输出。置ALU_B=0 、LDA=0、LDB=0,然后按表2-2-1 置S3、S2、S1、S0 和Cn的数值,并观察数据总线LED 显示灯显示的结果。如置S3、S2、S1、S0 为0010 ,运算器作逻辑与运算,置S3、S2、

计算机组成原理实验报告册

实验一监控程序与汇编实验 实验时间:第周星期年月日节实验室:实验台: (以上部分由学生填写,如有遗漏,后果由学生本人自负) 1、实验目的 1)了解教学计算机的指令格式、指令编码、选择的寻址方式和具体功能。 2)了解汇编语言的语句与机器语言的指令之间的对应关系,学习用汇编语言设计程序的过程和方法。 3)学习教学机监控程序的功能、监控命令的使用方法,体会软件系统在计算机组成中的地位和作用。 2、实验平台 硬件平台:清华大学TEC-XP实验箱的MACH部分 软件平台:监控程序、PC端指令集仿真软件 3、实验要求 1)学习联机使用TEC-XP 教学实验系统和仿真终端软件; 2)使用监控程序的R 命令显示/修改寄存器内容、D 命令显示存储器内容、E 命令修改存储器内容; 3)使用A 命令写一小段汇编程序,使用U命令观察汇编码与机器码之间的关系,用G 命令连续运行该程序,用T命令单步运行并观察程序单步执行情况。 **代码不得写到0000——1FFF的地址单元中,如有违反将被取消当堂成绩 4、操作步骤及实验内容 1)实验箱功能开关设置及联机操作: 1. 将实验箱COM1口与PC机相连; 2. 设置功能状态开关为00110; 3. 于PC端运行; 4. 按RESET,START键,若PC端出现如下输出(如图所示),则操作成功; 图 2)仿真软件相关操作: 1. 在项目文件夹找到并启动; 图

2. 点击文件-启动监控程序; 图 4.若PC端出现如下输出(如图所示),则操作成功; 图 3)理解下列监控命令功能: A、U、G、R、E、D、T 1. A命令:完成指令汇编操作,把产生的指令代码放入对应的内存单元中,可连 续输入。不输入指令直接回车,则结束A命令(如图所示); 图 2. U命令:从相应的地址反汇编15条指令,并将结果显示在终端屏幕上(如图所 示); 图 注:连续使用不带参数的U命令时,将从上一次反汇编的最后一条语句之后接着继续反汇编。 3. G命令:从指定(或默认)的地址运行一个用户程序(如图所示); 图 4. R命令:显示、修改寄存器内容,当R命令不带参数时,显示全部寄存器和状 态寄存器的值(如图所示); 图 5. E命令:从指定(或默认)地址逐字显示每个内存字的内容,并等待用户打入 一个新的数值存回原内存单元(如图所示); 图 6. D命令:从指定(或默认)地址开始显示内存120个存储字的内容(如图所示);

电路原理图设计及Hspice实验报告

电子科技大学成都学院 (微电子技术系) 实验报告书 课程名称:电路原理图设计及Hspice 学号: 姓名: 教师: 年06月15日 实验一基本电路图的Hspice仿真 实验时间:同组人员: 一、实验目的 1.学习用Cadence软件画电路图。 2.用Cadence软件导出所需的电路仿真网表。 3.对反相器电路进行仿真,研究该反相器电路的特点。 二、实验仪器设备 Hspice软件、Cadence软件、服务器、电脑 三、实验原理和内容 激励源:直流源、交流小信号源。 瞬态源:正弦、脉冲、指数、分线段性和单频调频源等几种形式。 分析类型:分析类型语句由定义电路分析类型的描述语句和一些控制语句组成,如直流分析(.OP)、交流小信号分析(.AC)、瞬态分析(.TRAN)等分析语句,以及初始状态设置(.IC)、选择项设置(.OPTIONS)等控制语句。这类语句以一个“.”开头,故也称为点语句。其位置可以在标题语句之间的任何地方,习惯上写在电路描述语句之后。 基本原理:(1)当UI=UIL=0V时,UGS1=0,因此V1管截止,而此时|UGS2|> |UTP|,所以V2导通,且导通内阻很低,所以UO=UOH≈UDD,即输出电平. (2)当UI=UIH=UDD时,UGS1=UDD>UTN,V1导通,而UGS2=0<|UTP|,因此V2截止。此时UO=UOL≈0,即输出为低电平。可见,CMOS反相器实现了逻辑非的功能. 四、实验步骤

1.打开Cadence软件,画出CMOS反相器电路图,导出反相器的HSPICE网表文件。 2.修改网表,仿真出图。 3.修改网表,做电路的瞬态仿真,观察输出变化,观察波形,并做说明。 4.对5个首尾连接的反相器组成的振荡器进行波形仿真。 5.分析仿真结果,得出结论。 五、实验数据 输入输出仿真: 网表: * lab2c - simple inverter .options list node post .model pch pmos .model nch nmos *.tran 200p 20n .dc vin 0 5 1m sweep data=w .print v(1) v(2) .param wp=10u wn=10u .data w wp wn 10u 10u 20u 10u 40u 10u 40u 5u .enddata vcc vcc 0 5 vin in 0 2.5 *pulse .2 4.8 2n 1n 1n 5n 20n cload out 0 .75p m1 vcc in out vcc pch l=1u w=wp m2 out in 0 0 nch l=1u w=wn .alter vcc vcc 0 3 .end 图像: 瞬态仿真: 网表: * lab2c - simple inverter .options list node post .model pch pmos .model nch nmos .tran 200p 20n .print tran v(1) v(2) vcc vcc 0 5 vin in 0 2.5 pulse .2 4.8 2n 1n 1n 5n 20n cload out 0 .75p m1 vcc in out vcc pch l=1u w=20u

计算机组成原理实验报告

实验一 实验题目:运算器实验 实验目的:熟悉存储器和总线的硬件电路 实验要求:按照实验步骤完成实验项目,利用存储器和总线传输数据 实验器材:计算机组成原理实验仪 实验电路图/程序流程图: 实验步骤/程序源代码: 实验原理:实验中所用的运算器原理如图1所示。其中运算器由两片74LS181以并/川形式构成8位字长的ALU。运算器的输出经过有一个三态门(74LS245)和数据总线相连,运算器的两个数据输入端分别由两个锁存器锁存,锁存器的输入已连至数据总线,数据开关用来给出参与运算的数据,经一三态门和数据总线相连,数据显示灯已和数据总线相连,用来显示数据总线内容。 本实验装置的控制线应与相连,数据总线、时序电路产生的脉冲信号(T1-T4)、P(1)、P(2)、P(3)本实验装置已做连接,必须选择一档合适的时钟,其余均为电平控制信号。进行实验室,首先按动位于本实验装置右中则的复位按钮使系统进入初始待令状态,在LED显示器闪动出现“P”的环境下,按动增址命令键使LED显示器自左向右第一位显示提示符“H”,表示本装置已进入手动单元实验状态,在该状态下按动单步命令键,即可获得实验所需的单脉冲信号,而各电平控制信号用位于LED显示器左方的K25-K0二进制数据开关来模拟。在进行手动实验时,必须先预置开关电平:/Load=1,/CE=1,其余开关控制信号电平均置为0,这在以后手动实验时不再说明,敬请注意。 实验连接:按上图实验线路作以下连接: (1)八位运算器控制信号连接:位于实验装置左上方的控制信号(CTR-OUT UNIT)中的(S3、S2、S1、S0、M、/CN、LDDR1、LDDR2、LDCZY、C、B、A)与位于实验装置右中方的(CTR-IN UNIT)、位于实验装置左中方的(UPC UNIT)、位于右上方的(FL UNIT)做对应链接。 (2)完成上述连接,仔细检查无误后方可接通电源进入实验。 实验仪器工作状态设定 在闪动的“P”状态下按动“增址”命令键,使LED显示器自左向右第一位显示提示符“H”,

计算机组成原理实验报告

计算机组成原理实验报告-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

计算机组成原理实验报告 ——微程序控制器实验一.实验目的: 1.能看懂教学计算机(TH-union)已经设计好并正常运行的数条基本指令的功能、格式及 执行流程。并可以自己设计几条指令,并理解其功能,格式及执行流程,在教学计算机上实现。 2.深入理解计算机微程序控制器的功能与组成原理 3.深入学习计算机各类典型指令的执行流程 4.对指令格式、寻址方式、指令系统、指令分类等建立具体的总体概念 5.学习微程序控制器的设计过程和相关技术 二.实验原理: 微程序控制器主要由控制存储器、微指令寄存器和地址转移逻辑三大部分组成。 其工作原理分为: 1、将程序和数据通过输入设备送入存储器; 2、启动运行后从存储器中取出程序指令送到控制器去识别,分析该指令要求什么事; 3、控制器根据指令的含义发出相应的命令(如加法、减法),将存储单元中存放的操作数据取出送往运算器进行运算,再把运算结果送回存储器指定的单元中; 4、运算任务完成后,就可以根据指令将结果通过输出设备输出 三.微指令格式: 微指令由下地址字段及控制字段组成.TH—UNION教学机的微指令格式如下: 其中高八位为下地址字段.其余各位为控制字段. 1)微地址形成逻辑 TH—UNION 教学机利用器件形成下一条微指令在控制器存储器的地址. 下地址的形成由下地址字段及控制字段中的CI3—SCC控制.当为顺序执行时,下地址字段不起作用.下地址为当前微指令地址加1;当为转移指令(CI3— 0=0011)时,由控制信号SCC提供转移条件,由下地址字段提供转移地址. 2)控制字段

计算机组成原理实验报告

实验一8位程序计数器PC[7:0]的设计 实验要求: 1.分别用图形方式和V erilog HDL语言设计8位程序计数器,计数器带有复位,计数,转移功能。 2.具体要求参见1_部件实验内容.doc说明文件。 实验实现: 1.用图形方式设计实现8位程序计数器,用到了两个74LS161四位十六进制计数器,主要步骤是两个四位十六进制计数器的串联,低四位计数器的进位端RCO连到高四位计数器的进位使能端ENT,然后连上reset、clk、ir[7:0]、t[1:0]、pc[7:0]、rco等输入输出信号,最后加上转移控制逻辑即可。注意两个十六进制计数器是同步的,具体参见PC_8bit.gdf文件。 2.编译通过,建立波形仿真文件,设置输入信号参数。注意在一张图中同时实现复位(reset低位有效)、计数、转移功能,最后加上一些文字注释即可,具体参见PC_8bit.scf文件。 3.用V erilog HDL语言设计实现8位程序计数器。在已经实现.gdf文件的基础上使用库函数形式是很容易编写出.v文件的,不过学生选择了行为描述方式实现,因为后者更具有通用性,依次实现8位程序计数器的复位、计数、转移功能即可,具体参见PC_8bit.v文件。 4.编译仿真类似上述步骤2。 实验小结: 1.这是计算机组成原理的第一个实验,比较简单,按照实验要求即可完成实验。通果这次实验,我对Max+Plus软件的使用方法和V erilog HDL语言编程复习了一遍,为后面的实验打好基础。 实验二CPU运行时序逻辑的设计 实验要求: 1.用V erilog HDL 语言设计三周期时序逻辑电路,要求带复位功能,t[2:0]在非法错误状态下能自动恢复。(比如说110恢复到001)。 2.具体要求参见1_部件实验内容.doc说明文件。 实验实现: 1.用V erilog HDL 语言设计实现带复位和纠错功能的三周期时序逻辑电路。输入clk外部时钟信号和reset复位信号(低位有效),输出ck内部时钟信号和三周期信号t[2:0]。利用两级3位移位式分频逻辑实现,具体参见cycle_3.v文件。 2.编译通过,建立波形仿真文件,设置clk外部时钟信号和reset复位信号,Simulate 即可输出实验要求中显示的波形。 实验小结: 1.刚做这个实验的时候不知道CPU运行时序逻辑设计的真实用途,在进一步学习了计算机组成原理的理论知识,做cpu4实验后才知道是用来由外部时钟信号clk产生内部时钟信号ck以及三周期信号t[2:0]的。刚完成本次实验的时候未添加三周期信号t[2:0]的自动功能,后来完成cpu4后补上了。 实验三静态存储器的设计与读写验证 实验要求: 1.设计一个SRAM存储器,地址和数据都是8位,存储容量是256个字节。 2.采用异步的时序逻辑设计方式,数据是双向的,输入输出不寄存,存储器的地址也不寄存。 3.具体要求参见1_部件实验内容.doc说明文件。 实验实现:

电路分析 等效电源定理 实验报告

电路分析等效电源定理实验报告 一、实验名称 等效电源定理 二、实验目的 1. 验证戴维宁定理和诺顿定理的正确性,加深对该定理的理解。 2. 掌握测量有源二端网络等效参数的一般方法。 三、原理说明 1. 任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为含源一端口网络)。 戴维宁定理指出:任何一个线性有源网络,总可以用一个电压源与一个电阻的串联来等效代替,此电压源的电动势Us等于这个有源二端网络的开路电压Uoc,其等效内阻R0等于该网络中所有独立源均置零(理想电压源视为短接,理想电流源视为开路)时的等效电阻。 诺顿定理指出:任何一个线性有源网络,总可以用一个电流源与一个电阻的并联组合来等效代替,此电流源的电流Is等于这个有源二端网络的短路电流I SC,其等效内阻R0定义同戴维宁定理。 Uoc(Us)和R0或者I SC(I S)和R0称为有源二端网络的等效参数。 2. 有源二端网络等效参数的测量方法 (1) 开路电压的测量 在有源二端网络输出端开路时,用电压表直接测其输出端的开路电压Uoc。 (2)短路电流的测量 在有源二端网络输出端短路,用电流表测其短路电流Isc。 (3)等效内阻R0的测量 Uoc R0=── Isc 如果二端网络的内阻很小,若将其输出端口短路,则易损坏其内部元件,因此不宜用此法。

五、实验内容 被测有源二端网络如图5-1(a)所示,即HE-12挂箱中“戴维宁定理/诺顿定理”线路。 (a) (b) 图5-1 1. 用开路电压、短路电流法测定戴维宁等效电路的Uoc、R0。 按图5-1(a)接入稳压电源Us=12V和恒流源Is=10mA,不接入R L。测出U O c和Isc,并计算出R0(测U OC时,不接入mA表。),并记录于表1。 表1 实验数据表一 2. 负载实验 按图5-1(a)接入可调电阻箱R L。按表2所示阻值改变R L阻值,测量有源二端网络的外特性曲线,并记录于表2。 表2 实验数据表二 3. 验证戴维宁定理 把恒压源移去,代之用导线连接原接恒压源处;把恒流源移去,这时,A、B两点间的电阻即为R0,然后令其与直流稳压电源(调到步骤“1”时所测得的开路电压Uoc之值)相串联,如图5-1(b)所示,仿照步骤“2”测其外特性,对戴氏定理进行验证,数据记录于表3。 表3 实验数据表三 4. 验证诺顿定理 在图5-1(a)中把理想电流源及理想电压源移开,并在电路接理想电压源处用导线短接(即相当于使两电源置零了),这时,A、B两点的等效电阻值即为诺顿定理中R0,然后令

相关文档
最新文档