灰度图像转彩色图像代码

灰度图像转彩色图像代码
灰度图像转彩色图像代码

clc; clear all; close all;

I = imread('q.jpg');

I1 = I; I2 = I; I3 = I;

I1(I1>60 & I1<120) = 255;

I2(I2>20 & I2<50) = 255;

I3(I3>80 & I3<160) = 255;

J = cat(3, I1, I2, I3);

figure;

subplot(1, 2, 1); imshow(I, []); title('By lyqmath 原图', 'FontWeight', 'Bold', 'Color', 'r');

subplot(1, 2, 2); imshow(J, []); title('By lyqmath 彩色图', 'FontWeight', 'Bold', 'Color', 'r');

二.

I = imread('q.jpg');

GS8=grayslice(I,8);

GS64=grayslice(I,64);

subplot(1,3,1), imshow(I), title('原始灰度图像');

subplot(1,3,2), subimage(GS8,hot(8)), title('分成8层伪彩色');

subplot(1,3,3), subimage(GS64,hot(64)), title('分成64层伪彩色');

k=imread('q.jpg');

[x y z]=size(k);

% z should be one for the input image k=double(k);

for i=1:x

for j=1:y

if k(i,j)>=0 & k(i,j)<50

m(i,j,1)=k(i,j,1)+5;

m(i,j,2)=k(i,j)+10;

m(i,j,3)=k(i,j)+10;

end

if k(i,j)>=50 & k(i,j)<100

m(i,j,1)=k(i,j)+35;

m(i,j,2)=k(i,j)+28;

m(i,j,3)=k(i,j)+10;

end

if k(i,j)>=100 & k(i,j)<150

m(i,j,1)=k(i,j)+52;

m(i,j,2)=k(i,j)+30;

m(i,j,3)=k(i,j)+15;

end

if k(i,j)>=150 & k(i,j)<200

m(i,j,1)=k(i,j)+50;

m(i,j,2)=k(i,j)+40;

m(i,j,3)=k(i,j)+25;

end

if k(i,j)>=200 & k(i,j)<=256 m(i,j,1)=k(i,j)+120;

m(i,j,2)=k(i,j)+60;

m(i,j,3)=k(i,j)+45;

end

end

end

figure,imshow(uint8(k),[]);

figure,imshow(uint8(m),[]);

matlab 图像的几何变换与彩色处理

实验四、图像的几何变换与彩色处理 一、实验目的 1理解和掌握图像的平移、垂直镜像变换、水平镜像变换、缩放和旋转的原理和应用; 2熟悉图像几何变换的MATLAB操作和基本功能 3 掌握彩色图像处理的基本技术 二、实验步骤 1 启动MATLAB程序,读入图像并对图像文件分别进行平移、垂直镜像变换、水平镜像变换、缩放和旋转操作 %%%%%%平移 >> flowerImg=imread('flower.jpg'); >> se=translate(strel(1),[100 100]); >> img2=imdilate(flowerImg,se); >> subplot(1,2,1); >> imshow(flowerImg); >> subplot(1,2,2); >> imshow(img2);

I1=imread('flower.jpg'); I1=double(I1); H=size(I1); I2(1:H(1),1:H(2),1:H(3))=I1(H(1):-1:1,1:H(2),1:H(3)); I3(1:H(1),1:H(2),1:H(3))=I1(1:H(1),H(2):-1:1,1:H(3)); Subplot(2,2,1); Imshow(uint8(I1)); Title('原图'); Subplot(2,2,2); Imshow(uint8(I3)); Title('水平镜像'); Subplot(2,2,3); Imshow(uint8(I2)); Title('垂直镜像'); img1=imread('flower.jpg'); figure,imshow(img1); %%%%%%缩放 img2=imresize(img1,0.25); figure,imshow(img2); imwrite(img2,'a2.jpg');

图像灰度变换实验报告

图像灰度变换报告 一.实验目的 1.学会使用Matlab ; 2.学会用Matlab 软件对图像进行灰度变换,观察采用各种不同灰度变换发法对最终图像效果的影响; 二.实验内容 1.熟悉Matlab 中的一些常用处理函数 读取图像:img=imread('filename'); //支持TIF,JPEG,GIF,BMP,PNG 等文件格式。 显示图像:imshow(img,G); //G 表示显示该图像的灰度级数,如省略则默认为256。 保存图片:imwrite(img,'filename'); //不支持GIF 格式,其他与imread 相同。 亮度变换:imadjust(img,[low_in,high_in],[low_out,high_out]); //将low_in 至high_in 之间的值映射到low_out 至high_out 之 间,low_in 以下及high_in 以上归零。 绘制直方图:imhist(img); 直方图均衡化:histeq(img,newlevel); //newlevel 表示输出图像指定的灰度级数。 2.获取实验用图像:rice.jpg. 使用imread 函数将图像读入Matlab 。 3 .产生灰度变换函数T1,使得: 0.3r r < 0.35 s = 0.105 + 2.6333(r – 0.35) 0.35 ≤ r ≤ 0.65 1 + 0.3(r – 1) r > 0.65 用T1对原图像rice.jpg 进行处理,使用imwrite 函数保存处理后的新图像。 4.产生灰度变换函数T2,使得: s = 5.用T2imwrite 保存处理后的新图像。 6.分别用 s = r 0.6; s = r 0.4; s = r 0.3 对kids.tiff 图像进行处理。为简便起见,使用Matlab 中的imadjust 函数,最后用imwrite 保存处理后的新图像。 7.对circuit.jpg 图像实施反变换(Negative Transformation )。s =1-r; 使

彩色图像的灰度化处理

第1章绪论 1.1数字图像 数字图像,又称数码图像或数位图像,是二维图像用有限数字数值像素的表示。数字图像是由模拟图像数字化得到的、以像素为基本元素的、可以用计算机或数字电路存储和处理的图像。 像素(或像元,Pixel)是数字图像的基本元素,像素是在模拟图像数字化时对连续空间进行离散化得到的。每个像素具有整数行(高)和列(宽)位置坐标,同时每个像素都具有整数灰度值或颜色值。 通常,像素在计算机中保存为二维整数数阻的光栅图像,这些值经常用压缩格式进行传输和储存。数字图像可以许多不同的输入设备和技术生成,例如数码相机、扫描仪、坐标测量机、seismographic profiling、airborne radar等等,也可以从任意的非图像数据合成得到,例如数学函数或者三维几何模型,三维几何模型是计算机图形学的一个主要分支。数字图像处理领域就是研究它们的变换算法。 1.2设计平台 本次设计采用的平台是MATLAB 7.0。MATLAB编程语言被业界称为第四代计算机语言,它允许按照数学推导的习惯编写程序。MATLAB7.0的工作环境包括当前工作窗口、命令历史记录窗口、命令控制窗口、图形处理窗口、当前路径选择菜单、程序编辑器、变量查看器、模型编辑器、GUI编辑器以及丰富的函数库和MATLAB附带的大量M文件。 MATLAB是由美国Math Works公司生产的一个为科学和工程计算专门设计的交互式大型软件,是一个可以完成各种计算和数据处理的、可视化的、强大的计算工具。它集图示和精确计算于一身,在应用数学、物理、化工、机电工程、医药、金融和其他需要进行复杂计算的领域得到了广泛应用。MATLAB作为一种科学计算的高级语言之所以受欢迎,就是因为它有丰富的函数资源和工具箱资源,编程人员可以根据自己的需要选择函数,而无需再去编写大量繁琐的程序代码,从而减轻了编程人员的工作负担,被称为第四代编程语言。 在MATLAB设计环境中,图像处理工具箱提供一套全方位的参照标准算法

数字图像的灰度处理简述

数字图像的灰度处理 数字图像处理的目的和意义: 图象处理着重强调的是在图象之间进行的各种变换,对图象进行各种加工以改善图象的视觉效果。在图象的灰度处理中,增强操作、直方图及图象间的变换是实现点操作的增强方式,又被称作灰度变换。本文主要介绍了一些数字图像灰度处理的方法,其中图象取反是实现图象灰度值翻转的最直接的方法;灰度切分可实现强化某一灰度值的目的。对直方图进行均衡化修正,可使图象的灰度间距增大或灰度均匀分布、增大反差,使图象的细节变得清晰。 数字图像处理是20世纪60年代初期所形成的一门涉及多领域的交叉学科。所谓数字图像处理,又称为计算机图像处理,就是指用数字计算机及其它有关的数字硬件技术,对图像施加某种应算和处理,从而达到某种预期的目的。在大多数情况下,计算机采用离散的技术来处理来自连续世界的图像。实际上图像是连续的,计算机只能处理离散的数字图像,所以要要对连续图像经过采样和量化以获得离散的数字图像。 数字图像处理中图像增强的目的是改善图像的视觉效果,针对给定图像的应用场合,有目的地强调图像的整体或局部特性,扩大图像中不同物体特征之间的差别,满足某些特殊分析的需要。其方法是通过一定手段对原图像附加一些信息或变换数据,有选择地突出图像中感兴趣的特征或者抑制图像中某些不需要的特征,使图像与视觉响应特性相匹配。而通过改变图像的灰度以期达到一种很好的视觉效果是图像增强的一种手段。灰度变换的目的是为了改善画质,使图像显示效果更加清晰。 图像的点应算是一种既简单又重要的技术,它能让用户改变图像数据占据的灰度范围。一幅输入图像经过点应算后将产生一幅新的输出图像,由输入像素点的灰度值决定相应的输出像素点的灰度值。图像的点应算可以有效的改变图像的直方图分布,以提高图像的分辨率和图像的均衡。点应算可以按照预定的方式改变一幅图像的灰度直方图。除了灰度级的改变是根据某种特定的灰度变换函数进行之外,点应算可以看作是“从像素到像素”的复制操作。如果输入图像为A(x,y),

Matlab图像颜色空间转换

Matlab图像颜色空间转换 实验内容 用matlab软件编程实现下述任务: 读入彩色图像,提取其中得R、G、B颜色分量,并展示出来。 我们学习了多种表示图像得颜色空间,请编写程序将图像转换到YUV、YIQ、YCrCb、HIS、CMY等颜色空间,并展示出来。 颜色空间得转化关系参考以下公式: 原始图片 三个色调分量 YUV与RGB之间得转换 Y=0、229R+0、587G+0、114B U=-0、147R-0、289G+0、436B V=0、615R-0、515G-0、100B

YIQ与RGB之间得转换 Y=0、299R+0、587G+0、114B I=0、596R-0、275G-0、321B Q=0、212R-0、523G+0、311B YCrCb与RGB之间得转换 Y = 0、2990R + 0、5870G + 0、1140B? Cr = 0、5000R 0、4187G 0、0813B + 128 Cb = 0、1687R 0、3313G + 0、5000B + 128

HSI与RGB之间得转换 I=(R+G+B)/3 H=arccos{ 0、5*((RG)+(RB)) / ((RG)^2 + (RB)(GB))^0、5} S=1[min(R,G,B)/ I ] CMY与RGB之间得转换

心得体会 查阅了很多资料,并且学习了关于matlab实现图像颜色空间转换得过程。不同得颜色空间在描述图像得颜色时侧重点不同。如RGB(红、绿、蓝三原色)颜色空间适用于彩色监视器与彩色摄像机,HSI(色调、饱与度、亮度)更符合人描述与解释颜色得方式(或称为HSV,色调、饱与度、亮度),CMY(青、深红、黄)、CMYK(青、深红、黄、黑。)主要针对彩色打印机、复印机等,YIQ(亮度、色差、色差)就是用于NTSC规定得电视系统格式,YUV(亮度、色差、色差)就是用于PAL规定得电视系统格式,YCbCr(亮度单一要素、蓝色与参考值得差值、红色与参考值得差值)在数字影像中广泛应用。近年来出现了另一种颜色空间lαβ,由于其把亮度与颜色信息最大限度得分离,在该颜色空间可以分别处理亮度或颜色而不相互影响。 通过这次实验,实现了五种颜色空间得转换,瞧到了不同得绚丽结果,掌握了一些基本得知识。 程序 clear rgb=imread('G:\Learning\MultiMedia\666、jpg'); rgb2hsi(rgb); rgb_r=rgb(:,:,1);

基于MATLAB的彩色图像灰度化处理

基于MATLAB的彩色图像灰度处理 成绩 数字图像处理期末考试 题目基于Matlab的彩色图像灰度化处理 专业、班级11电信一班 姓名钱叶辉 学号 1109121025

基于Matlab的彩色图像灰度化处理 摘要 在计算机领域中,灰度数字图像是每个像素只有一个采样颜色的图像。这类图像通常显示为从最暗的黑色到最亮的白色的灰度,尽管理论上这个采样可以是任何颜色的不同深浅,甚至可以是不同亮度上的不同颜色。灰度图像与黑白图像不同,在计算机图像领域中黑白图像只有黑色与白色两种颜色;灰度图像在黑色与白色之间还有许多级的颜色深度。但是,在数字图像领域之外,“黑白图像”也表示“灰度图像”,例如灰度的照片通常叫做“黑白照片”。在一些关于数字图像的文章中单色图像等同于灰度图像,在另外一些文章中又等同于黑白图像[1]。 彩色图像的灰度化技术在现代科技中应用越来越广泛, 例如人脸目标的检测与匹配 以及运动物体目标的监测等等, 在系统预处理阶段, 都要把采集来的彩色图像进行灰度化处理, 这样既可以提高后续算法速度, 而且可以提高系统综合应用实效, 达到更为理想的要求。因此研究图像灰度化技术具有重要意义。 关键词:灰度化;灰度数字图像;单色图像

一、设计原理 将彩色图转化成为灰度图的过程称为图像的灰度化处理。彩色图像中的每个像素的颜色有R、G、B三个分量决定,而每个分量有255个中值可取,这样一个像素点可以有1600多万(255*255*255)的颜色的变化范围。而灰度图像是R、G、B三个分量相同的一种特殊的彩色图像,其中一个像素点的变化范围为255种,所以在数字图像处理中一般先将各种格式的图像转变成灰度图像以使后续的图像的计算量变得少一些。灰度图像的描述与彩色图像一样仍然反映了整幅图像的整体和局部的色度和亮度等级的分布和特征[2]。 在RGB模型中,如果R=G=B时,则彩色表示一种灰度颜色,其中R=G=B的值叫做灰度值。因此,灰度图像每个像素只需一个字节存放灰度值(又称强度值、亮度值),灰度范围为0-255。本设计采用三种方法对图像进行灰度化处理。 加权平均法;平均值法;最大值法。 二、彩色图像的灰度化处理 2.1加权平均法 根据重要性及其它指标,将R、G、B三个分量以不同的权值进行加权平均。由于人眼对绿色的敏感度最高,对蓝色敏感度最低。因此,在MATLAB中我们可以按下式系统函数对RGB三分量进行加权平均能得到较合理的灰度图像。 f(i,j)=0.30R(i,j)+0.59G(i,j)+0.11B(i,j)) (2-1)程序首先读取一个RGB格式的图象,然后调用已有的函数rgb2gray()来实现彩色图像灰度化。 图2.1加权平均法的图像灰度处理 2.2平均值法[3] 将彩色图像中的R、G、B三个分量的亮度求简单的平均值,将得到均值作为灰度值

VC编程实现灰度图像与彩色图像的相互转换要点

VC编程实现灰度图像与彩色图像的相互转换 PhotoShop的图像处理功能很强,其中有一个功能是将灰度图像转换为彩色图像,数字图像处理中,也经常要遇到灰度图像与彩色图像相互转换的问题,如何自己解决这个问题,值得大家探讨,现将我解决这类问题的方法陈述如下: 工程应用中经常要遇到需要把彩色图像到灰度图像的变换的问题,采集卡过来的图像为彩色图像,为加快处理速度,要把彩色图像转换为黑白图象,这个问题比较好解决,一般情况下彩色图像每个像素用三个字节表示,每个字节对应着R、G、B分量的亮度(红、绿、蓝),转换后的黑白图像的一个像素用一个字节表示该点的灰度值,它的值在0~255之间,数值越大,该点越白,既越亮,越小则越黑。转换公式为Gray(i,j)=0.11*R(i,j)+0.59*G(i,j)+0.3*B(i,j),其中Gray(i,j)为转换后的黑白图像在(i,j)点处的灰度值,我们可以观察该式,其中绿色所占的比重最大,所以转换时可以直接使用G值作为转换后的灰度。 至于灰度图像转换为彩色图像,技术上称为灰度图像的伪彩色处理,这是一种视觉效果明显而技术又不是很复杂的图像增强技术。灰度图像中,如果相邻像素点的灰度相差不大,但包含了丰富的信息的话,人眼则无法从图像中提取相应的信息,因为人眼分辨灰度的能力很差,一般只有几十个数量级,但是人眼对彩色信号的分辨率却很强,这样将黑白图像转换为彩色图像人眼可以提取更多的信息量。在转换过程中,经常采用的技术是灰度级-彩色变换,意思就是对黑白图像上的每一个像素点,取得该点的灰度值并送入三个通道经过实施不同的变换,产生相应的R、G、B的亮度值,即所求彩色图像对应像素点的彩色值,具体变换公式很多,我采用的是最常用的一种,变换曲线图如下: 上图中,三个图分别代表了三个变换通道,R、G、B指的是变换后对应点的R、G、B分量值,L指的是各个分量的最大值为255,G(x,y)为相应点的灰度值。理论上就这些,下面是我用VC实现的源代码,图一为我的灰度位图,图二为伪彩色处理后的结果图。我这个实现函数中是如何得到灰度位图的数据的就不多讲了,有兴趣的朋友可参考我在天极网上九月十号发表的《VC灰度位图处理》一文,那里应该讲的很

matlab图像处理图像灰度变换直方图变换

附录1 课程实验报告格式 每个实验项目包括:1)设计思路,2)程序代码,3)实验结果,4)实验中出现的问题及解决方法。 实验一:直方图灰度变换 A:读入灰度图像‘debye1.tif’,采用交互式操作,用improfile绘制一条线段的灰度值。 imread('rice.tif'); imshow('rice.tif'),title('rice.tif'); improfile,title('主对角线上灰度值')

B:读入RGB图像‘flowers.tif’,显示所选线段上红、绿、蓝颜色分量的分布imread('flowers.tif'); imshow('flowers.tif'),title('flowers.tif'); improfile,title('主对角线红绿蓝分量') C:图像灰度变化 f=imread('rice.png'); imhist(f,256); %显示其直方图 g1=imadjust(f,[0 1],[1 0]); %灰度转换,实现明暗转换(负片图像) figure,imshow(g1)%将0.5到0.75的灰度级扩展到范围[0 1] g2=imadjust(f,[0.5 0.75],[0 1]); figure,imshow(g2) 图像灰度变换处理实例: g=imread('me.jpg'); imshow(g),title('原始图片'); h=log(1+double(g)); %对输入图像对数映射变换 h=mat2gray(h); %将矩阵h转换为灰度图片

h=im2uint8(h); %将灰度图转换为8位图 imshow(h),title('转换后的8位图'); 运行后的结果: 实验二:直方图变换 A:直方图显示 I=imread('cameraman.tif'); %读取图像 subplot(1,2,1),imshow(I) %输出图像 title('原始图像') %在原始图像中加标题 subplot(1,2,2),imhist(I) %输出原图直方图 title('原始图像直方图') %在原图直方图上加标题运行结果如下:

基于MATLAB的图像伪彩色处理

图像伪彩色处理 近几年来,随着多媒体技术和因特网的迅速发展和普及,数字图像处理技术受到了前所未有的广泛重视,出现了许多新的应用领域。最显著的是数字图像处理技术已经从工业领域、实验室走入了商业领域及办公室,甚至走入了人们的日常生活。由于彩色图像提供了比灰度图像更为丰富的信息,因此彩色图像处理正受到人们越来越多的关注。 伪彩色处理是根据特定的准则对灰度值赋以彩色的处理。由于人眼对彩色的分辨率远高于对灰度差的分辨率,所以这种技术可用来识别灰度差较小的像素。这是一种视觉效果明显而技术又不是很复杂的图像增强技术。灰度图像中,如果相邻像素点的灰度相差大,人眼将无法从图像中提取相应的信息,因为人眼分辨灰度的能力很差,一般只有几十个数量级,但是人眼对彩色信号的分辨率却很强,这样将黑白图像转换为彩色图像后,人眼可以提取更多的信息量。同时MATLAB 技术对于我们实现数字图像处理是一种非常有效的实用工具。 1.引言 进入21世纪以来,随着微电子技术、计算机技术、现代通信技术的飞速发展,人类社会正健步迈入信息化时代。在人类所接收到的全部信息中,70%以上的通过视觉得到的。因此对数字图像进行有效地处理变换十分重要,而且彩色图像占很大的比例,所以,对彩色图像的处理显得尤为重要。其中伪彩色处理技术就是一项很重要的图像处理技术。 伪彩色处理是指将黑白图像转化为彩色图像,或者是将单色图像变换成给定彩色分布的图像。由于人眼对彩色的分辨率远高于对灰度差的分辨率,所以这种技术可用来识别灰度差较小的像素。这是一种视觉效果明显而技术又不是很复杂的图像增强技术。灰度图像中,如果相邻像素点的灰度相差大,人眼将无法从图像中提取相应的信息,因为人眼分辨灰度的能力很差,一般只有几十个数量级,但是人眼对彩色信号的分辨率却很强,这样将黑白图像转换为彩色图像后,人眼就可以提高对图像细节的辨别力,提取更多的信息量。因此,伪彩色处理的主要目的是为了提高人眼对图像的细节的分辨能力,以达到图像增强的目的。 伪彩色图像处理技术已经被广泛应用于遥感和医学图像处理中,适用于航摄、遥感图片和云图判读、X光片等方面。 基本原理是将黑白图像或者单色图像的各个灰度级匹配到彩色空间中的一点,从而使单色图像映射成彩色图像。黑白图像中不同的灰度级赋予不同的彩色。

实验一Matlab图像处理基础及图像灰度变换

实验一Matlab图像处理基础及图像灰度变换 一、实验目的 了解Matlab平台下的图像编程环境,熟悉Matlab中的DIP (Digital Image Processing)工具箱;掌握Matlab中图像的表示方法,图像类型、数据类型的种类及各自的特点,并知道怎样在它们之间进行转换。掌握Matlab环境下的一些最基本的图像处理操作,如读图像、写图像、查看图像信息和格式、尺寸和灰度的伸缩等等;通过实验掌握图像直方图的描绘方法,加深直方图形状与图像特征间关系间的理解;加深对直方图均衡算法的理解。 二、实验内容 1.从硬盘中读取一幅灰度图像; 2.显示图像信息,查看图像格式、大小、位深等内容; 3.用灰度面积法编写求图像方图的Matlab程序,并画图; 4.把第3步的结果与直接用Matlab工具箱中函数histogram的结果进行比较,以衡量第3步中程序的正确性。 5.对读入的图像进行直方图均衡化,画出处理后的直方图,并比较处理前后图像效果的变化。 三、知识要点 1.Matlab6.5支持的图像图形格式 TIFF, JEPG, GIF, BMP, PNG, XWD (X Window Dump),其中GIF不支持写。 2.与图像处理相关的最基本函数 读:imread; 写:imwrite; 显示:imshow; 信息查看:imfinfo; 3.Matlab6.5支持的数据类 double, unit8, int8, uint16, int16, uint32, int32, single, char (2 bytes per element), logical. 4.Matlab6.5支持的图像类型 Intensity images, binary images, indexed images, RGB image 5.数据类及图像类型间的基本转换函数 数据类转换:B = data_class_name(A);

基于MATLAB的彩色图像灰度化处理

目录 第1章绪论............................................................................................................................ - 1 - 第2章设计原理.................................................................................................................... - 2 - 第3章彩色图像的灰度化处理............................................................................................ - 3 - 3.1加权平均法 .. (3) 3.2平均值法 (3) 3.3最大值法 (4) 3.4举例对比 (5) 3.5结果分析 (6) 第4章结论.......................................................................................................................... - 8 - 参考文献....................................................................................................... 错误!未定义书签。附录............................................................................................................................................ - 9 -

灰度图像转彩色图像代码

clc; clear all; close all; I = imread('q.jpg'); I1 = I; I2 = I; I3 = I; I1(I1>60 & I1<120) = 255; I2(I2>20 & I2<50) = 255; I3(I3>80 & I3<160) = 255; J = cat(3, I1, I2, I3); figure; subplot(1, 2, 1); imshow(I, []); title('By lyqmath 原图', 'FontWeight', 'Bold', 'Color', 'r'); subplot(1, 2, 2); imshow(J, []); title('By lyqmath 彩色图', 'FontWeight', 'Bold', 'Color', 'r'); 二. I = imread('q.jpg'); GS8=grayslice(I,8); GS64=grayslice(I,64); subplot(1,3,1), imshow(I), title('原始灰度图像'); subplot(1,3,2), subimage(GS8,hot(8)), title('分成8层伪彩色'); subplot(1,3,3), subimage(GS64,hot(64)), title('分成64层伪彩色');

k=imread('q.jpg'); [x y z]=size(k); % z should be one for the input image k=double(k); for i=1:x for j=1:y if k(i,j)>=0 & k(i,j)<50 m(i,j,1)=k(i,j,1)+5; m(i,j,2)=k(i,j)+10; m(i,j,3)=k(i,j)+10; end if k(i,j)>=50 & k(i,j)<100 m(i,j,1)=k(i,j)+35; m(i,j,2)=k(i,j)+28; m(i,j,3)=k(i,j)+10; end if k(i,j)>=100 & k(i,j)<150 m(i,j,1)=k(i,j)+52; m(i,j,2)=k(i,j)+30; m(i,j,3)=k(i,j)+15; end if k(i,j)>=150 & k(i,j)<200 m(i,j,1)=k(i,j)+50;

图像灰度化

图像灰度化 颜色可分为黑白色和彩色。黑白色指颜色中不包含任何的色彩成分,仅由黑色和白色组成。在RGB颜色模型中,如果R=G=B,则颜色(R, G, B)表示一种黑白颜色;其中R=G=B的值叫做灰度值,所以黑白色又叫做灰度颜色。彩色和灰度之间可以互相转化,由彩色转化为灰度的过程叫做灰度化处理;由灰度化转为彩色的过程称为伪彩色处理。 相应地,数字图像可分为灰度图像和彩色图像。通过灰度化处理和伪彩色处理,可以使伪彩色图像与灰度图像相互转化。 灰度化就是使彩色的R,G,B分量值相等的过程。由于R,G,B的取值范围是0 ~ 255,所以灰度的级别只有256级,即灰度图像仅能表现256种颜色(灰度)。 灰度化的处理方法主要有如下3种[6]: (1)最大值法:使R,G,B的值等于3值中最大的一个,即 R=G=B=max(R,G,,B) (2-3 ) 最大值法会形成亮度很高的灰度图像。 (2)平均值法:使R,G,B的值求出平均值,即 R=G=B=(R+G+B)/3 (2-4 )平均值法会形成比较柔和的灰度图像。 (3)加权平均值法:根据重要性或其他指标给R,G,B赋予不同的权值,并使R,G,B的值加权平均,即 R=G=B=(W r R + W g G + W b B)/3 (2-5 )其中W r,W g,W b分别为R,G,B的权值。W r,W g,W b取不同的值,加权平均值法就形成不同的灰度图像。由于人眼对绿色的敏感度最高,红色次之,对蓝色最低,因此使W g>W r>W b将得到比较合理的灰度图像。实验和理论推导证明,但W r= 0.30,W g =0.59,W b=0.11时,即当 V gray=0.30R + 0.59G + 0.11B R=G=B= V gray(2-6 )时,能得到最合理的灰度图像。 本文采用方法(3)实现灰度转化,有比较好的效果,结果如图所示。

图像处理灰度变换实验

一. 实验名称:空间图像增强(一) 一.实验目的 1.熟悉和掌握利用matlab工具进行数字图像的读、写、显示、像素处理等数字图像处理的基本步骤和流程。 2.熟练掌握各种空间域图像增强的基本原理及方法。 3.熟悉通过灰度变换方式进行图像增强的基本原理、方法和实现。 4.熟悉直方图均衡化的基本原理、方法和实现。 二.实验原理 (一)数字图像的灰度变换 灰度变换是图像增强的一种经典而有效的方法。灰度变换的原理是将图像的每一个像素的灰度值通过一个函数,对应到另一个灰度值上去从而实现灰度的变换。常见的灰度变换有线性灰度变换和非线性灰度变换,其中非线性灰度变换包括对数变换和幂律(伽马)变换等。 1、线性灰度变换 1)当图像成像过程曝光不足或过度,或由于成像设备的非线性和图像记录设备动态范围太窄等因素,都会产生对比度不足的弊病,使图像中的细节分辨不清,图像缺少层次。这时,可将灰度范围进行线性的扩展或压缩,这种处理过程被称为图像的线性灰度变换。对灰度图像进行线性灰度变换能将输入图像的灰度值的动态范围按线性关系公式拉伸扩展至指定范围或整个动态范围。 2)令原图像f(x,y)的灰度范围为[a,b],线性变换后得到图像g(x,y),其灰度范围为[c,d],则线性灰度变换公式可表示为

a y x f b y x f a b y x f c c a y x f a b c d d y x g <≤≤>?????+---=),(),(),(, ,]),([,),( (1) 由(1)式可知,对于介于原图像f (x,y )的最大和最小灰度值之间的灰度值,可通过线性变换公式,一一对应到灰度范围[c,d]之间,其斜率为(d-c)/(b-a);对于小于原图像的最小灰度值或大于原图像的最大灰度值的灰度值,令其分别恒等于变换后的最小和最大灰度值。变换示意图如图1所示。 图1 线性灰度变换示意图 当斜率大于一时,变换后的灰度值范围得到拉伸,图像对比度得到提高;当斜率小于一时,变换后的灰度值范围被压缩,最小与最大灰度值的差变小,图像对比度降低;当斜率等于一时,相当于对图像不做变换。 3)由上述性质可知,线性灰度变换能选择性地加强或降低特定灰度值范围内的对比度,故线性灰度变换同样也可做分段处理:对于有价值的灰度范围,将斜率调整为大于一,用于图像细节;对于不重要的灰度范围,将图像压缩,降低对比度,减轻无用信息的干扰。最常用的分段线性变换的方法是分三段进行线性变换。 在原图像灰度值的最大值和最小值之间设置两个拐点,在拐点处,原图像的灰度值分别为r 1,r 2,该拐点对应的变换后的图像的灰度值分别为s 1,s 2,另外,取原图像灰度的最小值为r 0,最大值为r m ,对应的变换后的灰度值分别为s 0,s m 。

matlab图像的灰度变换

实验二 图像的灰度变换 一、实验目的 1、 理解数字图像处理中点运算的基本作用; 2、 掌握对比度调整与灰度直方图均衡化的方法。 二、实验原理 1、对比度调整 如果原图像f (x , y )的灰度范围是[m , M ],我们希望对图像的灰度范围进行线性调整,调整后的图像g (x , y )的灰度范围是[n , N ],那么下述变换: []n m y x f m M n N y x g +---=),(),(就可以实现这一要求。 MATLAB 图像处理工具箱中提供的imadjust 函数,可以实现上述的线性变换对比度调整。imadjust 函数的语法格式为: J = imadjust(I,[low_in high_in], [low_out high_out]) J = imadjust(I, [low_in high_in], [low_out high_out])返回原图像I 经过直方图调整后的新图像J ,[low_in high_in]为原图像中要变换的灰度范围,[low_out high_out]指定了变换后的灰度范围,灰度范围可以用 [ ] 空矩阵表示默认范围,默认值为[0, 1]。 不使用imadjust 函数,利用matlab 语言直接编程也很容易实现灰度图像的对比度调整。但运算的过程中应当注意以下问题,由于我们读出的图像数据一般是uint8型,而在MATLAB 的矩阵运算中要求所有的运算变量为double 型(双精度型)。因此读出的图像数据不能直接进行运算,必须将图像数据转换成双精度型数据。 2、直方图均衡化 直方图均衡化的目的是将原始图像的直方图变为均衡分布的形式,即将一已知灰度概率密度分布的图像,经过某种变换变成一幅具有均匀灰度概率密度分布的新图像,从而改善图像的灰度层次。 MATLAB 图像处理工具箱中提供的histeq 函数,可以实现直方图的均衡化。 三、实验内容及要求 1、 用MATLAB 在自建的文件夹中建立example2.m 程序文件。在这个文件的程序中,将girl2.bmp 图像文件读出,显示它的图像及灰度直方图(可以发现其灰度值集中在一段区

彩色空间转换

实验五彩色空间转换一、 实验目的 掌握MATLAB 中彩色空间的转换 二、实验步骤 1、由RGB 空间转换到YIQ: 读入5.jpg 图像; clc;clear; f = imread('5.jpg') yiq_image=rgb2ntsc(f); imshow(yiq_image) 显示结果如下: 2、由YIQ 彩色空间转换到RGB 空间下: rgb_image=ntsc2rgb(yiq_image); figure,imshow(rgb_image) 转换结果如图:

2、YCbCr 和RGB 彩色空间的相互转换 ycbcr_image=rgb2ycbcr(f); figure,imshow(ycbcr_image) rgb_image=ycbcr2rgb(ycbcr_image); figure,imshow(rgb_image) 效果如下图: 3、HSV 和RGB 彩色空间的相互转换 >> hsv_image=rgb2hsv(f); >> figure,imshow(hsv_image); >> rgb_image=hsv2rgb(hsv_image); >> figure,imshow(rgb_image); 效果如下图: 4、CMY 和RGB 彩色空间的相互转换 >> cmy_image=imcomplement(f); >> figure,imshow(cmy_image); >> rgb_image=imcomplement(cmy_image); >> figure,imshow(rgb_image); 效果如下图:

5、RGB 彩色空间到HSI 彩色空间的转换 hsi=rgb2hsi(f); figure,subplot(141),imshow(hsi) subplot(142),imshow(hsi(:,:,1)) subplot(143),imshow(hsi(:,:,2)) subplot(144),imshow(hsi(:,:,3)) 效果如下图: 三、实验总结 通过本次实验我掌握了MATLAB 中彩色空间的转换的基本方法。本次实验与上次实验联系比较紧密。但本次实验于上次实验相比,难度上有了一些变化,尤其是在RGB 彩色空间到HSI 彩色空间的转换的时候,出现了一点问题。由于在系统中本身没有rgb2hsi这个函数,所以运行时出现了错误,但通过,上网查找资料终于解决了这一问题。总体来说本次实验收获还是比较大的。

图像灰度化

图像灰度化 图像灰度化原理:关于YUV空间的彩色图像,其Y的分量的物理意义本身就是像素点的亮度,由该值反映亮度等级,因此可根据RGB和YUV颜色空间的变化关系建立亮度Y与R、G、B三个颜色分量的对应:Y=0.299R+0.587G+0.114B,以这个亮度值表达图像的灰度值 图像处理结果: 程序代码: char *pmydata; //定义一个指针用来指向位图图像数据在内存中的存储区域

//long wide, high; BITMAP bm; pbmp->GetBitmap(&bm); pmydata=new char[bm.bmWidthBytes*bm.bmHeight]; //根据位图的高度 宽度初始化一下 pbmp->GetBitmapBits(bm.bmWidthBytes*bm.bmHeight,pmydata); //将位 图对象的数据COPY到pmydata指向的区域,m_bm是位图对象,bm是位图结构, 可参考上一篇文章的定义 for(int i=0;iSetBitmapBits(bm.bmWidthBytes*bm.bmHeight,pmydata); //将处 理后的数据COPY进位图对象 DrawBmp(); 图像均值化 图像均值化原理:图通常是最能说明问题的东西,非常明显的,这个3*3区域像 素的颜色值分别是5,3,6,2,1,9,8,4,7那么中间的1这个像素的过滤后的值就是这些值的平均 值,也就是前面的计算方法:(5+3+6+2+1+9+8+4+7)/9=5, 图像处理结果:

数字图像处理代码Ch5《彩色图像处理》

例5.1 函数说明。 clc,clear,close all; %函数demo f=imread('Fig0604(a)(iris).tif'); subplot 131;imshow(f);title('(a)RGB图像'); [X1,map1]=rgb2ind(f,8,'nodither'); subplot 132;imshow(X1,map1);title('(b)未经抖动处理的颜色数减少到8的图像'); [X2,map2]=rgb2ind(f,8,'dither'); subplot 133;imshow(X2,map2);title('(c)经抖动处理的颜色数减少到8的图像'); g=rgb2gray(f); g1=dither(g); figure;subplot 121;imshow(g); title('(d)使用函数rgb2gray得到的图(a)的灰度图像'); subplot 122;imshow(g1); title('(e)抖动处理后的灰度图像(二值图像)'); 运行结果:

例5.2 RGB转化为HSI。 clc,clear,close all; %从RGB转化到HSI f=imread('Fig0602(b)(RGB_color_cube).tif'); subplot 221;imshow(f); title('(a)RGB图像'); f1=rgb2hsi(f); H=f1(:,:,1); S=f1(:,:,2); I=f1(:,:,3); subplot 222;imshow(H);title('(b)色调图像'); subplot 223;imshow(S);title('(c)饱和度图像'); subplot 224;imshow(I);title('(d)亮度图像'); 运行结果:

图像灰度变换增强

图像灰度变换增强 摘要:灰度变换是基于点操作的增强方法,它将每一个像素的灰度值按照一定的数学变换公式转换为一个新的灰度值,如增强处理中的对比度增强。对比度增强可以采用线性拉伸和非线性拉伸。线性拉伸可以将原始输入图像中的灰度值不加区别地扩展。如果要求对局部扩展拉伸某一范围的灰度值,或对不同范围的灰度值进行不同的拉伸处理时,采用分段线性拉伸。非线性拉伸常采用对数扩展和指数扩展。对数扩展拉伸低亮度去,压缩高亮度区;指数扩展拉伸了高亮区,压缩了低亮度区。 关键词:图像增强,灰度变换,线性变换,分段线性变换,非线性变换 一. 概述 影响系统图像清晰程度的因素很多,例如室外光照度不够均匀就会造成图像灰度过于集中;由CCD (摄像头)获得的图像经过A/D (数/模转换,该功能在图像系统中由数字采集卡来实现)转换、线路传送都会产生噪声污染等等。因此图像质量不可避免的降低了,轻者表现为图像不干净,难于看清细节;重者表现为图像模糊不清,连概貌也看不出来。因此,在对图像进行分析之前,必须要对图像质量进行改善,一般情况下改善的方法有两类:图像增强和图像复原。图像增强不考虑图像质量下降的原因,只将图像中感兴趣的特征有选择的突出,而衰减不需要的特征,它的目的主要是提高图像的可懂度。图像复原技术与增强技术不同,它需要了解图像质量下降的原因,首先要建立"降质模型",再利用该模型,恢复原始图像。 根据图像增强处理过程所在的空间不同,图像增强可分为空余增强法和频域增强法两大类。频域增强是在图像的某种变换域内,对图像的变换系数值进行运算,即作某种修正,然后通过逆变换获得增强了的图像。空域增强则是指直接在图像所在的二维空间进行增强处理,既增强构成图像的像素。空域增强法主要有灰度变换增强,直方图增强,图像平滑和图像锐化等。 图像的灰度变换处理是图像增强处理技术中一种非常基础,直接的空间域图像处理法,也是图像数字化软件和图像显示软件的一个重要组成部分。灰度变换是指根据某种目标条件按一定变换关系逐点改变原图像中每一个像素灰度值的方法。目的是为了改善画质,使图像的显示效果更加清晰。 二. 灰度变换处理 灰度变换的过程可表示为:)],([),(y x f T y x g ,它是指将输入图像中每个像素

数字图像处理之灰度化处理程序

数字图像处理之灰度化处理程序 BOOL CDib::Blackwhite() { long int DataSizePerLine; DataSizePerLine =(m_pBIH->biWidth * m_pBIH->biBitCount /8+3)/4*4; if( m_pDib == NULL ) return( FALSE ); int temp; if(m_nPaletteEntries != 0) { for (int i=0; ibiHeight * m_pBIH->biWidth; unsigned char * temppale = new unsigned char [BitsCount] ; int i = 0; for ( int k=0; kbiHeight ; k++) { for (int j=0; jbiWidth; j++) { temp = * ( m_pDibBits + k* DataSizePerLine + j*3 )

相关文档
最新文档