全国高考数学复习微专题:传统不等式的解法

全国高考数学复习微专题:传统不等式的解法
全国高考数学复习微专题:传统不等式的解法

传统不等式的解法

一、基础知识

1、一元二次不等式:()200ax bx c a ++>≠

可考虑将左边视为一个二次函数()2f x ax bx c =++,作出图像,再找出x 轴上方的部分即可——关键点:图像与x 轴的交点 2、高次不等式

(1)可考虑采用“数轴穿根法”,分为以下步骤:(令关于x 的表达式为()f x ,不等式为

()0f x >)

①求出()0f x =的根12,,x x L ② 在数轴上依次标出根

③ 从数轴的右上方开始,从右向左画。如同穿针引线穿过每一个根 ④ 观察图像,()0f x >? 寻找x 轴上方的部分 ()0f x

(2)高次不等式中的偶次项,由于其非负性在解不等式过程中可以忽略,但是要验证偶次项为零时是否符合不等式 3、分式不等式

(1)将分母含有x 的表达式称为分式,即为

()

()

f x

g x 的形式 (2)分式若成立,则必须满足分母不为零,即()0g x ≠ (3)对形如

()

()

0f x g x >的不等式,可根据符号特征得到只需()(),f x g x 同号即可,所以将分式不等式转化为()()()0

f x

g x g x ?>???≠?? (化商为积),进而转化为整式不等式求解

4、含有绝对值的不等式 (1)绝对值的属性:非负性

(2)式子中含有绝对值,通常的处理方法有两种:一是通过对绝对值内部符号进行分类讨论(常用);二是通过平方

(3)若不等式满足以下特点,可直接利用公式进行变形求解: ① ()()f x g x >的解集与()()f x g x >或()()f x g x <-的解集相同 ② ()()f x g x <的解集与()()()g x f x g x -<<的解集相同

(4)对于其它含绝对值的问题,则要具体问题具体分析,通常可用的手段就是先利用分类讨论去掉绝对值,将其转化为整式不等式,再做处理 5、指对数不等式的解法:

(1)先讲一个不等式性质与函数的故事

在不等式的基本性质中,有一些性质可从函数的角度分析,例如:a b a c b c >?+>+,可发现不等式的两边做了相同的变换(均加上c )

,将相同的变换视为一个函数,即设()f x x c =+,则()(),a c f a b c f b +=+=,因为()f x x c =+为增函数,所以可得:()()a b f a f b >?>,即a b a c b c >?+>+成立,再例如:

0,0,c ac bc

a b c ac bc >>?>??

<

,可设函数()f x cx =,可知0c >时,()f x 为增函数,0c <时,()f x 为减函数,即()()()()

0,0,c f a f b a b c f a f b >>??>??

<

在这种想法的支持下,我们可以对不等式的变形加以扩展,例如:a b >,则11

,a b

的关系如何?设()1f x x =

,可知()f x 的单调减区间为()(),0,0,-∞+∞,由此可判断出:当,a b 同号时,11

a b a b

>?<

(2)指对数不等式:解指对数不等式,我们也考虑将其转化为整式不等式求解,那么在指对数变换的过程中,不等号的方向是否变号呢?先来回顾指对数函数的性质:无论是x

y a

=还是()log 0,1a y x a a =>≠,其单调性只与底数a 有关:当1a >时,函数均为增函数,当01a <<时,函数均为减函数,由此便可知,不等号是否发生改变取决于底数与1的大小,规律如下:

1a >时,x y >

log log (,0)x y

a a a a x y x y ?>?>>

01a <<时,x y >

log log (,0)

x y

a a a a x y x y ?

进而依据这两条便可将指对不等式转化为整式不等式求解了 (3)对于对数的两个补充

① 对数能够成立,要求真数大于0,所以在解对数不等式时首先要考虑真数大于0这个条

件,如当1a >时,()()()()()()

0log log 0a a f x f x g x g x f x g x >??

>?>??

>?

② 如何将常数转化为某个底的对数。可活用“1”:因为1log a a =,可作为转换的桥梁 例如:(

)22.5log =?

2.5222

2.5 2.51 2.5log 2log 2log =?=?==

某些不等式虽然表面形式复杂,但如果把其中一部分视为一个整体,则可对表达式进行简化,进而解决问题,例如:()

2

2

3240x x -?->,可将为2x 视为一个整体,令2x t =,

则0t >,则不等式变为()()2

3404104t t t t t -->?-+>?>,24x ∴>,两边可同取以2为底对数2log 42x >= 6、利用换元法解不等式

(1)换元:属于化归时常用的一种方法,本质是研究对象的选取,不受题目所给字母的限制,而是选择合适的对象能把陌生问题进行化归,转化为能够解决的问题。如上一个例子中,通过将2x

视为整体,从而将不等式转化为一元二次不等式进行求解

(2)在换元的过程中,用新字母代替原来的字母和式子,将问题转化为新字母的问题,从而要先了解新字母的取值范围。即若换元,则先考虑新元的初始范围 (3)利用换元法解不等式的步骤通常为:

①选择合适的对象进行换元:观察不等式中是否有相同的结构,则可将相同的结构视为一个整体

②求出新元的初始范围,并将原不等式转化为新变量的不等式 ③解出新元的范围

④在根据新元的范围解x 的范围

二、典型例题:

例1:解下列一元二次不等式:

(1)2

340x x --< (2)2

410x x -+> (3)2

450x x -+> (4)2

4

x --解(1)2340x x --<()()410x x ?-+<

即()234f x x x =--与x 轴的交点为1,x x =-=由图像可得满足()0f x <的x 的范围为14x -<<

∴ 不等式的解集为()1,4-

(2) 令()2

41f x x x =-+,则()0f x = 可解得:422

x ±=

=± 作图观察可得:2x <-或2x >+

∴ 不等式的解集为(()

,22-∞-++∞U

(3)令()2

45f x x x =-+,则()0f x =中,0?<

则()f x 与x 轴无公共点,即恒在x 轴上方,x R ∴∈

注:由(1)(2)我们发现,只要是0a >,开口向上的抛物线与x 轴相交,其图像都是类似的,在小大根之间的部分()0f x <,在小大根之外的部分()0f x >,发现这个规律,在解一元二次不等式时便有了更为简便的口诀 ① 让最高次项系数为正

② 解()0f x =的方程,若方程有解,则()0f x >的解集为小大根之外,()0f x <的解集为小大根之间,若方程无解,则作出图像观察即可

(4)解:先将最高次项系数变为正数:2

2

430430x x x x --+ 方程2

430x x +-=的根为422

x -±=

=-±∴ 不等式的解集为(()

,22-∞---+∞U

例2:解下列高次不等式:(1)()()()1230x x x ---> (2)()(

12x x +-(1)解:()()()()123f x x x x =--- 则()0f x =的根1231,2,3x x x === 作图可得:12x << 或3x >

∴不等式的解集为()()1,23,+∞U

(2)思路:可知()2

20x -≥,所以只要2x ≠,则()2

2x -恒正,所以考虑先将恒正恒负的因式去掉,只需解()()13020

x x x +-

-≠? ,可得13x -<<且2x ≠

∴不等式的解集为()()1,22,3-U

小炼有话说:在解高次不等式时,穿根前可考虑先将恒正恒负的项去掉,在进行穿根即可。 穿根法的原理:它的实质是利用图像帮助判断每个因式符号,进而决定整个式子的符号,图像中的数轴分为上下两个部分,上面为()0f x > 的部分,下方为()0f x <的部分。以例2(1)为例,当3x >时,每一个因式均大于0,从而整个()f x 的符号为正,即在数轴的上方(这也是为什么不管不等号方向如何,穿根时一定要从数轴右上方开始的原因,因为此时()f x 的符号一定为正),当经过3x = 时,()3x -由正变负,而其余的式子符号未变,所以()f x 的符号发生一次改变,在图像上的体现就是穿根下来,而后经过下一个根时,

()f x 的符号再次发生改变,曲线也就跑到x 轴上方来了。所以图像的“穿根引线”的实

质是()f x 在经历每一个根时,式子符号的交替变化。

例3:解下列分式不等式:(1)

21

03

x x -≥+ (2)2243068x x x x -+≤-+ 解:(1)不等式等价于()()()21301,,3230x x x x -+≥???

?∈+∞-∞?

??+≠???U ∴不等式的解集为()1,,32??

+∞-∞????

U

(2)不等式等价于()()()()()()222

4368013240

24680

x x x x x x x x x x x x ?-+-+≤----≤?????

≠≠-+≠???且 解得:1234

24x x x x ≤≤≤≤??

≠≠?

或且

∴不等式的解集为[)[)1,23,4U

例4:(1)

21

13x x -≥+ (2)221

x x +≥+ (3)21612

x

x x ≥-+

分式不等式在分母符号不定的情况下,千万不要用去分母的方式变形不等式(涉及到不等号方向是否改变),通常是通过移项,通分,将其转化为

()

()

0f x g x >再进行求解 解:(1)

2121

11033

x x x x --≥?-≥++ ()()4304

04330

x x x x x x -+≥?-∴

≥??≥?++≠?或3x < ∴不等式的解集为()[),34,-∞+∞U

(2)2

21

x x +

≥+ ()()()221212200001111

x x x x x x

x x x x x -++--?-+≥?≥?≥?≥++++

()()110101

110

x x x x x x x +-≥?-≤≤≥?∴???≠-+≠??或

∴不等式的解集为(][)1,01,-+∞U

(3)思路:观察发现分母()2

2

612330x x x -+=-+>很成立,所以考虑直接去分母,

不等号的方向也不会改变,这样直接就化为整式不等式求解了 解:

22

1612612

x

x x x x x ≥?≥-+-+ ()()27120340x x x x ∴-+≤?--≤ 34x ∴≤≤

∴不等式的解集为[]3,4

例5:解不等式:

(1)23x x x +≤ (2)22x x x x

--> 解:(1)方法一:

所解不等式可转化为2

2

2

34033023x x x x or x x x x x x x x x

?+≥-≤-≥??-≤+≤????≤≤+≤??? 02x ∴≤≤

方法二:观察到若要使得不等式23x x x +≤成立,则300x x ≥?≥,进而2x x +内部恒为正数,绝对值直接去掉,即只需解2

3x x x +≤即可。解得02x ≤≤

∴不等式的解集为[]0,2

(2)思路:观察可发现不等号左右两端式子相同,一个数的绝对值大于它本身,则这个数一定是负数,所以直接可得:

2

002x x x

-

小炼有话说:含绝对值的不等式要注意观察式子特点,选择更简便的方法 例6:解不等式:(1)125x x -++< (2)2120x x ---< 解:(1)含多个绝对值的问题,可通过“零点分段法”来进行分类讨论

令两个绝对值分别为零,解得:2,1x x =-=,作出数轴,将数轴分为三部分,分类讨论 ①1x > 不等式变为1252x x x -++

②21x -<≤时,不等式变为12535x x -++- 32x ∴-<≤- 综上所述:不等式的解集为()3,2-

小炼有话说:零点分段法的好处在于,一段范围可将所有的绝对值一次性去掉,缺点在于需要进行分类讨论,对学生书写的规范和分类讨论习惯提出了要求,以及如何整理结果,这些细节部分均要做好,才能保证答案的正确性

(2)思路:本题依然可以仿照(1)的方式进行零点分段,再解不等式,但从另一个角度观察,所解不等式为212x x -<-,两边均是绝对值(非负数),所以还可以考虑两边平方(所用不等式性质:2

2

0a b a b >≥?>)一次将两个绝对值去掉,再进行求解。

解:212x x -<-

()()22

2221244144x x x x x x ∴-<-?-+<-+

23311x x ∴

例7:解下列不等式:

(1)23

212

2x x

--??< ?

??

(2) ()

221

0.20.04x x -->

(3)()

22log 23x x -< (4)()()

21log 21x x x +-->

解:(1)23

212

2x x

--??

< ?

??

(2)()

221

0.20.04x x -->

2

322

2

x x

--?< ()

265

20.20.2x x --?>

2

32x x ?-<- 2

652x x ?--< 2

230x x ?--> 2

670x x ?--< 3x ?>或1x <- 17x ?-<<

∴不等式的解集为()(),13,-∞-+∞U ∴不等式的解集为()1,7-

(3)()

22log 23x x -<

()2

222

log 2log 820

x x x x ?-?? 2228242002x x x x x x x ?-?<>??或

20x ∴-<<或24x <<

∴不等式的解集为()()2,02,4-U

(4)()(

)

2

1log 21x x x +-->

()()()()211log 2log 1x x x x x ++∴-->+

22211120x x x x x x ?-->+?∴+>??-->? 或2221

01120x x x x x x ?--<+?∴<+? ∴ 可解得:3x >

∴不等式的解集为()3,+∞

例8:解下列不等式:

(1)943120x

x

-?-< (2)()

()112

1

log log 114x x ---> (3)12112682x

x --??

-?< ?

??

(4)2331x x --≤

(1)思路:()

2

93

x

x =,从而可将3x

视为一个整体,则所解不等式可看做关于3x

的二次不

等式,解出3x

的范围,再反求x 的范围即可 解:943120x

x

-?-< ()

2

3

43120x x -?-< 令3,0x t t =>

2

412006t t t ∴--

即3036log 6x

x <

∴不等式的解集为()3,log 6-∞

(2)思路:观察到不等式左侧的两项存在真数底数互换位置的特点,联想到对数公式:

1log log a b b a =

,从而选择一项进行变形(比如选择()11

log 4x -),再将()12

log 1x -视为一个整体解不等式,解出()12

log 1x -的范围后进而求出x 的范围

解:()

()112

1

log log 114x x ---> ()()()()11112242

101112

12log 11log 11log 1log 1x x x x x x x x ??

????->>??

?-≠?≠??????-->-->--???? 令()12

t log 1x =- 0t ≠

不等式转化为:()()222

100210t t t t t t t t

+--->?

2t <-或01t <<,即()12

log 12x -<-或()12

0log 11x <-<

可解得:5x >或

3

22

x << (3)121

12

682x

x --??-?< ?

??

()22121

628232822

x x x x -?-?

()2

262160x x ?-?-<

令2,0x

t t => 不等式转化为:2

616008t t t --

即0283x

x <

∴不等式的解集为(),3-∞

(4)思路:所解不等式等价于2

1331x x -≤--≤,本题可以考虑对x 的符号进行讨论,从而去掉绝对值解出不等式。但从另一方面,可发现2

2

x x =,从而所解不等式转化为:

22

331331

x x x x ?--≥-?

?--≤??,将x 视为一个整体,先解出x 范围,进而解出x 的范围 解:223311331x x x x --≤?-≤--≤

22

331331

x x x x ?--≥-?

??--≤?? 令0t x =≥,所解不等式转化为22331331t t t t ?--≥-??--≤??

即2233202

34004

t t t t t t ?+--≥?≥

???--≤?≤≤?

4t ≤≤

4x ≤≤

4x ∴-≤≤

4x ≤≤ ∴

不等式的解集为4,??

-??????

U 例9:已知不等式()

2

2log 362ax x -+>的解集为()(),1,+b -∞∞U ,则a =___,b =____

思路:所解不等式()22222360log 36log 4364

ax x ax x ax x ?-+>?

?-+>?-+>??,即22

360320ax x ax x ?-+>??-+>??,观察可得只要x 让第二个不等式成立,则第一个一定成立。所以只需解2

320ax x -+>。由已知可得此不等式的解集为()(),1,+b -∞∞U ,则1,x x b ==为2

320ax x -+=的两

根,代入1x =解得1a =,再解得2b = 答案:1,2a b ==

小炼有话说:解多个同时成立的不等式时,不妨观察它们之间是否存在“替代”关系,从而简化所解不等式的个数

例10:已知不等式()

22log 251ax x -+>的解集为R ,则a 的取值范围是________

思路:所给条件等价于2

2252250

ax x ax x ?-+>??-+>??的解集为R ,即2

230ax x -+>的解集为R ,由

此可得:04120

a a >???=->? 解得:1

03a <<

答案:1

03

a <<

2018年高考数学试题分类汇编-向量

1 2018高考数学试题分类汇编—向量 一、填空题 1.(北京理6改)设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的_________条件(从“充分而不必要”、“必要而不充分条件”、“充分必要”、“既不充分也不必要”中选择) 1.充分必要 2.(北京文9)设向量a =(1,0),b =(?1,m ),若()m ⊥-a a b ,则m =_________. 2.-1 3.(全国卷I 理6改)在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB = _________. (用,AB AC 表示) 3.3144 AB AC - 4.(全国卷II 理4)已知向量a ,b 满足||1=a ,1?=-a b ,则(2)?-=a a b _________. 4.3 5.(全国卷III 理13.已知向量()=1,2a ,()=2,2-b ,()=1,λc .若()2∥c a+b ,则λ=________. 5. 12 6.(天津理8)如图,在平面四边形ABCD 中,AB BC ⊥,AD CD ⊥,120BAD ∠=?,1AB AD ==. 若点E 为边CD 上的动点,则AE BE ?uu u r uu u r 的最小值为_________. 6. 2116 7.(天津文8)在如图的平面图形中,已知 1.2,120OM ON MON ==∠= ,2,2,BM MA CN NA == 则· BC OM 的值为_________. 7.6- 8.(浙江9)已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π 3,向量b 满足b 2?4e · b +3=0,则|a ?b |的最小值是_________. 8.3?1 9.(上海8).在平面直角坐标系中,已知点(1,0)A -,(2,0)B ,E 、F 是y 轴上的两个动点,且2EF = ,则AE BF ? 的最小值为_________. 9.-3

高考数学19个专题分章节大汇编

高考理科数学试题分类汇编:1集合 一、选择题 1 . (普通高等学校招生统一考试重庆数学(理)试题(含答案))已知全集{}1,2,3,4U =, 集合{}=12A , ,{}=23B ,,则()=U A B e( ) A. {}134, , B. {}34, C. {}3 D. {}4 【答案】D 2 . (普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知集合 {}{}4|0log 1,|2A x x B x x A B =<<=≤= ,则 A. ()01, B. (]02, C. ()1,2 D. (]12, 【答案】D 3 . (普通高等学校招生统一考试天津数学(理)试题(含答案))已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ?= (A) (,2]-∞ (B) [1,2] (C) [2,2] (D) [-2,1] 【答案】D 4 . (普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))设S,T,是R 的两个非空子集,如果存在一个从S 到T 的函数()y f x =满足:(){()|};()i T f x x S ii =∈ 对任意 12,,x x S ∈当12x x <时,恒有12()()f x f x <,那么称这两个集合“保序同构”. 以下集合 对不是“保序同构”的是( ) A. *,A N B N == B. {|13},{|8010}A x x B x x x =-≤≤==-<≤或 C. {|01},A x x B R =<<= D. ,A Z B Q == 【答案】D 5 . (高考上海卷(理))设常数a R ∈,集合{|(1)()0},{|1}A x x x a B x x a =--≥=≥-,若A B R ?=,则a 的取值范围为( ) (A) (,2)-∞ (B) (,2]-∞ (C) (2,)+∞ (D) [2,)+∞ 【答案】B. 6 . (普通高等学校招生统一考试山东数学(理)试题(含答案))已知集合A ={0,1,2},则集合B ={} ,x y x A y A -∈∈中元素的个数是

高三数学复习微专题之平面向量篇矩形大法教师

一、 知识清单 1. 极化恒等式:如图,+=AD AB AC 2 ① -=CB A B A C ②,则: ①2 +②2 得:AC AD BC AB +=+242 2 22 ;①2-②2 得:AC AD BC AB ?=-4422 推广:AC AB AC BC AB AB AC cosA ?=?=?+-2 222 速记方法:?==-+-a b a b a b 4()()22,=++=+-a b a b a b 2 ()()2222 2. 矩形大法:如图,由极化恒等式可得 +=+PO BD 2PD PB 42 2 22①+=+PO AC 2 PA PC 422 22 ② 因为BD=AC ,所以PD PB PA PC +=+2222, 速记方法:矩形外一点到矩形对角顶点的平方和相等。 推广1:若ABCD 为平行四边形,则有PA PC PD PB =+-+-AC 2 )(BD 2 2 2 2 22 =-?= -AC AM BC 4 422 =4 1 0,且对于边AB 上任一点P ,恒有?≥?PB PC P B PC 00 。则( ) A.∠=ABC 90 B. ∠=BAC 90 C.=AB AC D. =AC BC 解析:D 为BC 中点,由极化恒等式有:?=-PC PD BC 4 PB 422 则当PD 最小时,PB ????? ?PC ????? 最小, 所以过D 作AB 垂线,垂足即为P 0,作AB 中点E ,则CE ⊥AB ,即AC=BC 。 3. 已知向量a b e ,,是平面向量,e 是单位向量. ?-++===b e a b a b a ()12,3,0,求-a b 的范围? 解析:由?-++=b e a b a ()10,得-?-=e b e a ()()0 如图,===OA a OB b OE e ,, ,构造矩形ACBE ,由矩形大法有 +=+OE OC OA OB 222 2,则=OC ==∈-+=-+-AB CE OC OE OC OE a b [,] [2 3 1,231] 高三数学复习微专题之平面向量篇 第三讲:极化恒等式与矩形大法 解析:由极化恒等式有:AB 16推广2:若P 为平面外一点,上述性质仍成立。二、典型例题1.(2019浙江模拟卷)在?ABC 中,M 是BC 的中点,AM =3,BC =10,则A B A ? C =_________. 2.(2019山东模拟)在?ABC 中,P 0是边AB 上一定点,满足P B AB

高考数学微专题12答案

微专题12 例题1 证法1如图1,在四棱锥PABCD中, 取线段PD的中点M,连接FM,AM. 因为F为PC的中点,所以FM∥CD, 且FM=1 2CD. 因为四边形ABCD为矩形,E为AB的中点, 所以EA∥CD,且EA=1 2CD.所以 FM∥EA,且FM=EA. 所以四边形AEFM为平行四边形.所以EF∥AM. 又AM平面PAD,EF平面PAD, 所以EF∥平面PAD. 证法2如图2,在四棱锥PABCD中,连接CE并延长交DA的延长线于点N,连接PN. 因为四边形ABCD为矩形,所以AD∥BC. 所以∠BCE=∠ANE,∠CBE=∠NAE.又AE=EB, 所以△CEB≌△NEA.所以CE=NE. 又F为PC的中点,所以EF∥NP. 又NP平面PAD,EF平面PAD,所以EF∥平面PAD. 证法3如图3,在四棱锥PABCD中,取CD的中点Q,连接FQ,EQ.在矩形ABCD 中,E为AB的中点, 所以AE=DQ,且AE∥DQ. 所以四边形AEQD为平行四边形,所以EQ∥AD. 又AD平面PAD,EQ平面PAD, 所以EQ∥平面PAD.因为Q,F分别为CD,CP的中点, 所以FQ∥PD. 又PD平面PAD,FQ平面PAD,所以FQ∥平面PAD. 又FQ,EQ平面EQF,FQ∩EQ=Q, 所以平面EQF∥平面PAD. 因为EF平面EQF,所以EF∥平面PAD. (2)在四棱锥PABCD中,设AC,DE相交于点G(如图4). 在矩形ABCD中,因为AB=2BC,E 为AB的中点. 所以 DA AE= CD DA=2, 又∠DAE=∠CDA,所以△DAE∽△CDA, 所以∠ADE=∠DCA. 又∠ADE+∠CDE=∠ADC=90°, 所以∠DCA+∠CDE=90°. 由△DGC的内角和为180°,得∠DGC =90°. 即DE⊥AC. 因为点P在平面ABCD内的正投影O 在直线AC上, 所以PO⊥平面ABCD. 因为DE平面ABCD,所以PO⊥DE. 因为PO∩AC=O,PO,AC平面PAC,

2020高考理科数学不等式问题的题型与方法

专题三:高考数学不等式问题的题型与方法(理科) 一、考点回顾 1.高考中对不等式的要求是:理解不等式的性质及其证明;掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用;掌握分析法、综合法、比较法证明简单的不等式;掌握简单不等式的解法;理解不等式│a│-│b│≤│a+b│≤│a│+│b│。 2.不等式这部分内容在高考中通过两面考查,一是单方面考查不等式的性质,解法及证明;二是将不等式知识与集合、逻辑、函数、三角函数、数列、解析几何、立体几何、平面向量、导数等知识交汇起来进行考查,深化数学知识间的融汇贯通,从而提高学生数学素质及创新意识. 3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰. 4.证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.比较法的一般步骤是:作差(商)→变形→判断符号(值).5.在近几年全国各省市的高考试卷中,不等式在各种题型中都有出现。在解答题中,不等式与函数、数列与导数相结合,难度比较大,使用导数解决逐渐成为一般方法6.知识网络

其中:指数不等式、对数不等式、无理不等式只要求了解基本形式,不做过高要求. 二、 经典例题剖析 1.有关不等式的性质 此类题经常出现在选择题中,一般与函数的值域,最值与比较大小等常结合在一起 例1.(xx 年江西卷)若a >0,b >0,则不等式-b <1 x 1b D.x <1b -或x >1a 解析:-b <1x 1 a 答案:D 点评:注意不等式b a b a 1 1>? <和适用条件是0>ab 例2.(xx 年北京卷)如果正数a b c d ,,,满足4a b cd +==,那么( ) A.ab c d +≤,且等号成立时a b c d ,,,的取值唯一 B.ab c d +≥,且等号成立时a b c d ,,,的取值唯一 C.ab c d +≤,且等号成立时a b c d ,,,的取值不唯一 D.ab c d +≥,且等号成立时a b c d ,,,的取值不唯一 解析:正数a b c d ,,,满足4a b cd +==,∴ 4=a b +≥,即4ab ≤,当且仅当a =b =2时,“=”成立;又4=2 ( )2 c d cd +≤,∴ c+d ≥4,当且仅当c =d =2时,“=”成立;综上得ab c d +≤,且等号成立时a b c d ,,,的取值都为2 答案:A 点评:本题主要考查基本不等式,命题人从定值这一信息给考生提供了思维,重要不等式可以完成和与积的转化,使得基本不等式运用成为现实。 例3.(xx 年安徽)若对任意∈x R ,不等式x ≥ax 恒成立,则实数a 的取值范围是 (A)a <-1 (B)a ≤1 (C) a <1 (D )a ≥1 解析:若对任意∈x R ,不等式x ≥ax 恒成立,当x ≥0时,x ≥ax ,a ≤1,当x <0时,

高考数学试题分类汇编 算法初步

高考数学试题分类汇编算法初步 1.(天津理3)阅读右边的程序框图,运行相应的程序,则输出i的值为 A.3 B.4 C.5 D.6 【答案】B 2.(全国新课标理3)执行右面的程序框图,如果输入的N是6,那么输出的p是 (A)120 (B) 720 (C) 1440 (D) 5040 【答案】B 3.(辽宁理6)执行右面的程序框图,如果输入的n是4,则输出的P 是 (A)8 (B)5 (C)3 (D)2 【答案】C

4. (北京理4)执行如图所示的程序框图,输出的s 值为 A .-3 B .-12 C .13 D .2 【答案】D 5.(陕西理8)右图中, 1x ,2x ,3x 为某次考试三个评阅人对同一道题的独立评分,P 为该题的最终得分。当126,9.x x ==p=8.5时,3x 等于 A .11 B .10 C .8 D .7 【答案】C 6.(浙江理12)若某程序框图如图所示,则该程序运行后输出的k 的值是 。 【答案】5

Read a,b If a >b Then m←a Else m←b End If 7.(江苏4)根据如图所示的伪代码,当输入a,b分别为2,3时,最后输出的m的值是 【答案】3 8.(福建理11)运行如图所示的程序,输出的结果是_______。 【答案】3 9.(安徽理11)如图所示,程序框图(算法流程图)的输出结果是 . 【答案】15 10.(湖南理13)若执行如图3所示的框图,输入1 1 x= ,23 2,3,2 x x x ==-= , 则输出的数等于。 【答案】 2 3

11.(江西理13)下图是某算法的程序框图,则程序运行后输出的结果是 【答案】10 12.(山东理13)执行右图所示的程序框图,输入l=2,m=3,n=5,则输出的y的值是【答案】68

高考数学百大经典例题——不等式解法

典型例题一 例1 解不等式:(1)01522 3>--x x x ;(2)0)2()5)(4(3 2 <-++x x x . 分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或 0)(-+x x x 把方程0)3)(52(=-+x x x 的三个根3 ,2 5 , 0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分. ∴原不等式解集为? ?????><<-3025x x x 或 (2)原不等式等价于 ?? ?>-<-≠????>-+≠+?>-++2450)2)(4(0 50 )2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{} 2455>-<<--

①0 ) ( ) ( ) ( ) ( < ? ? < x g x f x g x f ②0 ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( < ? = ? ≤ ? ? ? ≠ ≤ ? ? ≤x g x f x f x g x f x g x g x f x g x f 或 或 (1)解:原不等式等价于 ? ? ? ≠ - + ≥ + - + - ? ≥ + - + - ? ≤ + - + + - ? ≤ + - - - + ? ≤ + - - ? + ≤ - )2 )( 2 ( )2 )( 2 )( 1 )( 6 ( )2 )( 2 ( )1 )( 6 ( )2 )( 2 ( 6 5 )2 )( 2 ( )2 ( )2 (3 2 2 3 2 2 3 2 x x x x x x x x x x x x x x x x x x x x x x x x x 用“穿根法” ∴原不等式解集为[)[) +∞ ? - ? - -∞,6 2,1 )2 , (。 (2)解法一:原不等式等价于0 2 7 3 1 3 2 2 2 > + - + - x x x x 2 1 2 1 3 1 2 7 3 1 3 2 2 7 3 1 3 2 )2 7 3 )( 1 3 2( 2 2 2 2 2 2 > < < < ? ?? ? ? ? < + - < + - ?? ? ? ? > + - > + - ? > + - + - ? x x x x x x x x x x x x x x x 或 或 或 ∴原不等式解集为) ,2( )1, 2 1 ( ) 3 1 , (+∞ ? ? -∞。 解法二:原不等式等价于0 )2 )(1 3( )1 )(1 2( > - - - - x x x x )2 ( )1 3 )( 1 )( 1 2(> - ? - - - ?x x x x 用“穿根法” ∴原不等式解集为) ,2( )1, 2 1 ( ) 3 1 , (+∞ ? ? -∞ 典型例题三

2018年高考数学立体几何试题汇编

2018年全国一卷(文科):9.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A .217 B .25 C .3 D .2 18.如图,在平行四边形ABCM 中,3AB AC ==,90ACM =?∠,以AC 为折痕将△ACM 折起,使点M 到达点 D 的位置,且AB DA ⊥. (1)证明:平面ACD ⊥平面ABC ; (2)Q 为线段AD 上一点,P 为线段BC 上一点,且2 3 BP DQ DA == ,求三棱锥Q ABP -的体积. 全国1卷理科 理科第7小题同文科第9小题 18. 如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点 P 的位置,且PF BF ⊥.(1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值. 全国2卷理科: 9.在长方体1111ABCD A B C D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为

A .1 B . 5 C . 5 D . 2 20.如图,在三棱锥P ABC -中,22AB BC ==,4PA PB PC AC ====,O 为AC 的中点. (1)证明:PO ⊥平面ABC ; (2)若点M 在棱BC 上,且二面角M PA C --为30?,求PC 与平面PAM 所成角的正弦值. 全国3卷理科 3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是 19.(12分) 如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点. (1)证明:平面AMD ⊥平面BMC ; (2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值. 2018年江苏理科:

全国统考2022高考数学一轮复习素养提升微专题2_抽象函数的定义域的类型及求法学案理含解析北师大版2

抽象函数的定义域的类型及求法 抽象函数是指没有明确给出具体解析式的函数,其有关问题对同学们来说具有一定难度,特别是求其定义域时,许多同学解答起来总感觉棘手,下面结合实例具体探究一下抽象函数定义域问题的几种题型及求法. 类型一已知f (x )的定义域,求f [g (x )]的定义域 其解法是:若f (x )的定义域为[a ,b ],则在f [g (x )]中,令a ≤g (x )≤b ,从中解得x 的取值X 围即为f [g (x )]的定义域. 【例1】已知函数f (x )的定义域为[-1,5],求f (3x-5)的定义域. 【解题指导】该函数是由u=3x-5和f (u )构成的复合函数,其中x 是自变量,u 是中间变量,由于f (x )与f (u )是同一个函数,因此这里是已知-1≤u ≤5,即-1≤3x-5≤5,求x 的取值X 围. 解∵f (x )的定义域为[-1,5], ∴-1≤3x-5≤5,∴43≤x ≤103, 故函数f (3x-5)的定义域为43,10 3. 类型二已知f [g (x )]的定义域,求f (x )的定义域 其解法是:若f [g (x )]的定义域为m ≤x ≤n ,则由m ≤x ≤n 确定的g (x )的X 围即为f (x )的定义域. 【例2】已知函数f (x 2-2x+2)的定义域为[0,3],求函数f (x )的定义域.

【解题指导】令u=x 2-2x+2,则f (x 2-2x+2)=f (u ), 由于f (u )与f (x )是同一函数,因此u 的取值X 围即为f (x )的定义域. 解由0≤x ≤3,得1≤x 2-2x+2≤5. 令u=x 2-2x+2,则f (x 2-2x+2)=f (u ),1≤u ≤5. 故f (x )的定义域为[1,5]. 类型三已知f [g (x )]的定义域,求f [h (x )]的定义域 其解法是:先由f [g (x )]的定义域求得f (x )的定义域,再由f (x )的定义域求f [h (x )]的定义域. 【例3】函数y=f (x+1)的定义域是[-2,3],则y=f (2x-1)的定义域是() A.0,52 B.[-1,4] C.[-5,5] D.[-3,7] 答案A 解析因为f (x+1)的定义域是[-2,3],即-2≤x ≤3,所以-1≤x+1≤4,则f (x )的定义域是[-1,4].由-1≤2x-1≤4,得0≤x ≤52,所以f (2x-1)的定义域是0,5 2.故选A . 类型四运算型的抽象函数

全国高考数学复习微专题:函数的图像

函数的图像 一、基础知识 1、做草图需要注意的信息点: 做草图的原则是:速度快且能提供所需要的信息,通过草图能够显示出函数的性质。在作图中草图框架的核心要素是函数的单调性,对于一个陌生的可导函数,可通过对导函数的符号分析得到单调区间,图像形状依赖于函数的凹凸性,可由二阶导数的符号决定(详见“知识点讲解与分析”的第3点),这两部分确定下来,则函数大致轮廓可定,但为了方便数形结合,让图像更好体现函数的性质,有一些信息点也要在图像中通过计算体现出来,下面以常见函数为例,来说明作图时常体现的几个信息点 (1)一次函数:y kx b =+,若直线不与坐标轴平行,通常可利用直线与坐标轴的交点来确定直线 特点:两点确定一条直线 信息点:与坐标轴的交点 (2)二次函数:()2 y a x h k =-+,其特点在于存在对称轴,故作图时只需做出对称轴一侧的图像,另一侧由对称性可得。函数先减再增,存在极值点——顶点,若与坐标轴相交,则标出交点坐标可使图像更为精确 特点:对称性 信息点:对称轴,极值点,坐标轴交点 (3)反比例函数:1 y x = ,其定义域为()(),00,-∞+∞U ,是奇函数,只需做出正版轴图像即可(负半轴依靠对称做出),坐标轴为函数的渐近线 特点:奇函数(图像关于原点中心对称),渐近线 信息点:渐近线 注: (1)所谓渐近线:是指若曲线无限接近一条直线但不相交,则称这条直线为渐近线。渐近线在作图中的作用体现为对曲线变化给予了一些限制,例如在反比例函数中,x 轴是渐近线,那么当x →+∞,曲线无限向x 轴接近,但不相交,则函数在x 正半轴就不会有x 轴下方的部分。 (2)水平渐近线的判定:需要对函数值进行估计:若x →+∞(或-∞)时,()f x →常

高考数学真题分类汇编集合专题(基础题)

高考数学真题分类汇编集合专题(基础题) 一、单选题 1.集合M={x|1<x+1≤3},N={x|x2﹣2x﹣3>0},则(?R M)∩(?R N)等于() A. (﹣1,3) B. (﹣1,0)∪(2,3) C. (﹣1,0]∪[2,3) D. [﹣1,0]∪(2,3] 2.已知R是实数集,M={x| <1},N={y|y= +1},N∩?R M=() A. (1,2) B. [0,2] C. ? D. [1,2] 3.已知集合,,若,则实数的值为() A. 1 B. C. 2 D. 4.已知集合,,则等于() A. B. C. D. 5.已知集合A={x|x>0},函数的定义域为集合B,则A∩B=() A. [3,+∞) B. [2,3] C. (0,2]∪[3,+∞) D. (0,2] 6.已知集合,,则() A. B. C. D. 7.已知集合A={x|x2﹣x+4>x+12},B={x|2x﹣1<8},则A∩(?R B)=() A. {x|x≥4} B. {x|x>4} C. {x|x≥﹣2} D. {x|x<﹣2或x≥4} 8.已知M={x|x2-2x-3>0},N={x|x2+ax+b≤0},若M∪N=R,M∩N=(3,4],则a+b=() A. 7 B. -1 C. 1 D. -7 9.已知集合A={2,4},B={2,3,4},,则C中元素个数是() A. 2 B. 3 C. 4 D. 5 二、填空题 10.集合,,则的子集个数是________. 答案 一、单选题 1.D 2.D 3. A 4. C 5.B 6. D 7.B 8. D 9.B 二、填空题 10. 2 第1 页共1 页

高考数学试题分类汇编个专题

2017年高考数学试题分类汇编及答案解析(22个专题)目录 专题一 集合 ............................................................................................................................................................................... 1 专题二 函数 ............................................................................................................................................................................... 6 专题三 三角函数...................................................................................................................................................................... 21 专题四 解三角形...................................................................................................................................................................... 32 专题五 平面向量...................................................................................................................................................................... 40 专题六 数列 ............................................................................................................................................................................. 48 专题七 不等式 ......................................................................................................................................................................... 68 专题八 复数 ............................................................................................................................................................................. 80 专题九 导数及其应用 .............................................................................................................................................................. 84 专题十 算法初步.................................................................................................................................................................... 111 专题十一 常用逻辑用语 ........................................................................................................................................................ 120 专题十二 推理与证明 ............................................................................................................................................................ 122 专题十三 概率统计 ................................................................................................................................................................ 126 专题十四 空间向量、空间几何体、立体几何 .................................................................................................................... 149 专题十五 点、线、面的位置关系 ........................................................................................................................................ 185 专题十六 平面几何初步 ........................................................................................................................................................ 186 专题十七 圆锥曲线与方程 .................................................................................................................................................... 191 专题十八 计数原理 .............................................................................................................................................................. 217 专题十九 几何证明选讲 ...................................................................................................................................................... 220 专题二十 不等式选讲 .......................................................................................................................................................... 225 专题二十一 矩阵与变换 ........................................................................................................................................................ 229 专题二十二 坐标系与参数方程 .. (230) 专题一 集合 1.(15年北京文科)若集合{}52x x A =-<<,{} 33x x B =-<<,则A B =I ( ) A .{} 32x x -<< B .{} 52x x -<< C .{} 33x x -<< D .{} 53x x -<< 【答案】A 考点:集合的交集运算. 2.(15年广东理科) 若集合{|(4)(1)0}M x x x =++=,{|(4)(1)0}N x x x =--=,则M N =I A .? B .{}1,4-- C .{}0 D .{}1,4

高考数学不等式解题方法技巧

不等式应试技巧总结 1、不等式的性质: (1)同向不等式可以相加;异向不等式可以相减:若,a b c d >>,则a c b d +>+(若,a b c d ><,则 a c b d ->-),但异向不等式不可以相加;同向不等式不可以相减; (2)左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若 0,0a b c d >>>>,则ac bd >(若0,0a b c d >><<,则 a b c d >); (3)左右同正不等式:两边可以同时乘方或开方:若0a b >>,则n n a b > >(4)若0ab >,a b >,则11a b <;若0ab <,a b >,则11a b >。 【例】(1)对于实数c b a ,,中,给出下列命题:①22,bc ac b a >>则若;②b a bc ac >>则若,22; ③22,0b ab a b a >><<则若;④b a b a 11,0< <<则若;⑤b a a b b a ><<则若,0; ⑥b a b a ><<则若,0;⑦b c b a c a b a c ->->>>则若,0;⑧11 ,a b a b >>若,则0,0a b ><。其中正确的命题是______(答:②③⑥⑦⑧); (2)已知11x y -≤+≤,13x y ≤-≤,则3x y -的取值范围是______(答:137x y ≤-≤); (3)已知c b a >>,且,0=++c b a 则 a c 的取值范围是______(答:12,2? ?-- ?? ?) 2. 不等式大小比较的常用方法: (1)作差:作差后通过分解因式、配方等手段判断差的符号得出结果;(2)作商(常用于分数指数幂的代数式);(3)分析法;(4)平方法;(5)分子(或分母)有理化;(6)利用函数的单调性;(7)寻找中间量或放缩法 ;(8)图象法。其中比较法(作差、作商)是最基本的方法。 【例】(1)设0,10>≠>t a a 且,比较 21log log 21+t t a a 和的大小(答:当1a >时,11log log 22 a a t t +≤(1t =时取等号);当01a <<时,11 log log 22 a a t t +≥(1t =时取等号)); (2)设2a >,1 2 p a a =+-,2422-+-=a a q ,试比较q p ,的大小(答:p q >); (3)比较1+3log x 与)10(2log 2≠>x x x 且的大小(答:当01x <<或4 3 x >时,1+3log x >2log 2x ;当 413x <<时,1+3log x <2log 2x ;当4 3 x =时,1+3log x =2log 2x ) 3. 利用重要不等式求函数最值时,你是否注意到:“一正二定三相等,和定积最大,积定和最小”这17字方 针。 【例】(1)下列命题中正确的是A 、1y x x =+的最小值是 2 B 、2y =的最小值是 2 C 、 423(0)y x x x =--> 的最大值是2- D 、4 23(0)y x x x =--> 的最小值是2-(答:C ); (2)若21x y +=,则24x y +的最小值是______ (答:; (3)正数,x y 满足21x y +=,则y x 1 1+的最小值为______ (答:3+; 4.常用不等式有:(1 2211 a b a b +≥≥+(根据目标不等式左右的运算结构选用) ; (2)a 、b 、c ∈R ,222 a b c ab bc ca ++≥++(当且仅当a b c ==时,取等号); (3)若0,0a b m >>>,则b b m a a m +<+(糖水的浓度问题)。 【例】如果正数a 、b 满足3++=b a ab ,则ab 的取值范围是_________(答:[)9,+∞)

全国高考数学复习微专题:函数的切线问题

函数的切线问题 一、基础知识: (一)与切线相关的定义 1、切线的定义:在曲线的某点A 附近取点B ,并使B 沿曲线不断接近A 。这样直线AB 的极限位置就是曲线在点A 的切线。 (1)此为切线的确切定义,一方面在图像上可定性的理解为直线刚好与曲线相碰,另一方面也可理解为一个动态的过程,让切点A 附近的点向A 不断接近,当与A 距离非常小时,观察直线AB 是否稳定在一个位置上 (2)判断一条直线是否为曲线的切线,不再能用公共点的个数来判定。例如函数3 y x =在 ()1,1--处的切线,与曲线有两个公共点。 (3)在定义中,点B 不断接近A 包含两个方向,A 点右边的点向左接近,左边的点向右接近,只有无论从哪个方向接近,直线AB 的极限位置唯一时,这个极限位置才能够成为在点 A 处的切线。对于一个函数,并不能保证在每一个点处均有切线。例如y x =在()0,0处, 通过观察图像可知,当0x =左边的点向其无限接近时,割线的极限位置为y x =-,而当 0x =右边的点向其无限接近时,割线的极限位置为y x =,两个不同的方向极限位置不相 同,故y x =在()0,0处不含切线 (4)由于点B 沿函数曲线不断向A 接近,所以若()f x 在A 处有切线,那么必须在A 点及其附近有定义(包括左边与右边) 2、切线与导数:设函数()y f x =上点()() 00,,A x f x ()f x 在A 附近有定义且附近的点 ()()00,B x x f x x +?+?,则割线AB 斜率为: ()()()()() 000000 AB f x x f x f x x f x k x x x x +?-+?-= = +?-? 当B 无限接近A 时,即x ?接近于零,∴直线AB 到达极限位置时的斜率表示为: ()()000 lim x f x x f x k x ?→+?-=?,

几种常见不等式的解法

题目高中数学复习专题讲座几种常见解不等式的解法 高考要求 不等式在生产实践和相关学科的学习中应用广泛,又是学习高等数学的重要工具,所以不等式是高考数学命题的重点,解不等式的应用非常广泛,如求函数的定义域、值域,求参数的取值范围等,高考试题中对于解不等式要求较高,往往与函数概念,特别是二次函数、指数函数、对数函数等有关概念和性质密切联系,应重视;从历年高考题目看,关于解不等式的内容年年都有,有的是直接考查解不等式,有的则是间接考查解不等式 重难点归纳 解不等式对学生的运算化简等价转化能力有较高的要求,随着高考命题原则向能力立意的进一步转化,对解不等式的考查将会更是热点,解不等式需要注意下面几个问题 (1)熟练掌握一元一次不等式(组)、一元二次不等式(组)的解法 (2)掌握用零点分段法解高次不等式和分式不等式,特别要注意因式的处理方法 (3)掌握无理不等式的三种类型的等价形式,指数和对数不等式的几种基本类型的解法 (4)掌握含绝对值不等式的几种基本类型的解法 (5)在解不等式的过程中,要充分运用自己的分析能力,把原不等式等价地转化为易解的不等式 (6)对于含字母的不等式,要能按照正确的分类标准,进行分类讨论 典型题例示范讲解 例1已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1,若m 、n ∈[- 1,1],m +n ≠0时 n m n f m f ++) ()(>0 (1)用定义证明f (x )在[-1,1]上是增函数; (2)解不等式 f (x + 21)<f (1 1-x ); (3)若f (x )≤t 2-2at +1对所有x ∈[-1,1],a ∈[-1,1]恒成立,求 实数t 的取值范围 命题意图 本题是一道函数与不等式相结合的题目,考查学生的分析能力与化归能力 知识依托 本题主要涉及函数的单调性与奇偶性,而单调性贯穿始终,把所求问题分解转化,是函数中的热点问题;问题的要求的都是变量的取值范围,不等式的思想起到了关键作用 错解分析 (2)问中利用单调性转化为不等式时,x + 21∈[-1,1],1 1-x ∈[-1,1]必不可少,这恰好是容易忽略的地方

相关文档
最新文档