大学物理答案第八章 西南交大版

大学物理答案第八章西南交大版

第八章相对论

8-1 选择题

v(1)一火箭的固有长度为L,相对于地面作匀速直线运动的速度为,火箭上有一个1

v人从火箭的后端向火箭前端上的一个靶子发射一颗相对于火箭的速度为的子弹。在火箭2上测得子弹从射出到击中靶的时间间隔是:

LL(A) (B) v,vv122

LL(C) (D) [B] 2v,v21,,v1,v/c11

v解:在火箭参考系中,子弹以速率,匀速通过距离L,所需的时间 2

L ,t,v2

(2)关于同时性有人提出以下一些结论,其中哪个是正确的,

(A)在一惯性系同时发生的两个事件,在另一惯性系一定不同时发生。 (B)在一惯性系不同地点同时发生的两个事件,在另一惯性系一定同时发生。 (C)在一惯性系同一地点同时发生的两个事件,在另一惯性系一定同时发生。 (D)在一惯性系不同地点不同时发生的两个事件,在另一惯性系一定不同时发生。

[C]

u,,,解:由洛仑兹变换,可知: ,t,,t,,x,,2c,,

,,t,0,,x,0,t,0当时,即在一个惯性系中同时同地发生的两个事件,在另一惯性系中一定同时发生;

,,t,0,,x,0,t,0当时即

在一个惯性系中的同时异地事件,在另一惯性系中必然不同时。

,,x,0,,t,0,t当时的大小有各种可能性,不是必然不为零的。 (3)一宇宙飞船相对地球以0.8c(c表示真空中光速)的速度飞行,一光脉冲从船尾传到船头,飞船上的观察者测得飞船长为90m,地球上的观察者测得脉冲从船尾发出和到达船头两个事件的空间间隔为

65

(A)90m (B)54m (C)270m (D)150m [C]

,,ss系,飞船系为系。系相对于系沿x轴方向以飞行,解:设地球系为

u,0.8css

1,, 21,0.8

90,,,s,x,90m系中, ,t,c

,,,,x,,x,ut由洛仑兹坐标变换得

,,,,,x,,,x,u,t

190,,,90,0.8c,,,2 c,,1,0.8

,270m

163.6,10J(4)某核电站年发电量为100亿度,它等于的能量,如果这是由核材料的

全部静止能转化产生的,则需要消耗的核材料的质量为 (A)0.4kg (B)0.8kg 77(C) (D) [A] ,,12,10kg1/12,10kg

2解:由质能关系 E,mc00

16E3.6,100 m,,,0.4kg0228c,,3,10

(5)设某微观粒子的总能量是它的静止能量的K倍,则其运动速度的大小

cc2(A) (B) 1,KK,1K

cc2(C) (D) [C] ,,K,1KK,2K,1K

22解:由质能关系 E,mc,E,mc00

Em ,,KEm00

m0m,又由质速关系 2u,,1,,,c,,

66

1,K 得 2u,,1,,,c,,

c2 u,k,1K

8-2 填空题

,6(1)子是一种基本粒子,在相对于子静止的坐标系中测得其寿命为。,,,,2,10s0

如果子相对于地球的速度为(c为真空中光速),则在地球坐标系中测出的

v,0.988c,,

,5,,1.29,10s子的寿命。

解:由时间膨胀效应

,6,2,10,50 ,,,1.29,10s,22v1,0.9881,2c

8,12.91,10m,s(2)牛郎星距离地球约16光年,宇宙飞船若以的匀速度飞行,将

用4年的时间(宇宙飞船上的钟指示的时间)抵达牛郎星。

,,t,4解:飞船时为固有时年

16光年16c,t,,地球时为测量时 uu

,,t,,,t由钟慢效应:

16c4即 ,2uu1,2c

168,1解得 u,c,2.91,10m,s,17

(3)一列高速火车以速度驶过车站时,固定在站台上的相距1m的两只机械手在车厢上u

2u,,1/1m,同时划出两个痕迹,则车厢上的观察者应测出这两个痕迹之间的距离为。 ,,c,,解:由洛仑兹坐标变换可得

,,,,x,,,x,u,t

,t,0,,x,1现知站台系中,可得火车系中

67

1, ,x,2u1,2c

m(4)已知一静止质量为的粒子,其固有寿命为实验室测量到的寿命的,则此

1/n0

2,,mcn,1粒子的动能是。 0

,t,t,,,t解:由 ,,,n0,t0又

22 E,mc,mcK0

22,,mc,mc00 22,,,,,mc,,1,mcn,1008-3 在下表中填入或补充相应的内容答:内容如下表:

68

内容牛顿力学狭义相对论力学

) 高速物体适用范围低速物体(v,,c

真空中光速随惯性系而异在所有惯性系中均为c

在所有惯性系中,力学定律的数学在所有惯性系中,物理定律的数学形式相对性原理形式不变不变

变换关系伽利略变换洛仑兹变换坐,,,,,,y,yx,,x,uty,yx,x,ut 正变换标,,t,t z,zu变,,,, z,z,t,t,x,,2换 c,,

,,,,,x,,x,uty,y, ,,y,yx,x,ut 逆变换

,,t,t z,zu,,,,, ,z,zt,t,x,,2c,,

2,,v,v,u ,,,,v,v,u/1,uv/cxxxxx速正变换 2,,v,v/[,(1,uv/c)]

v,vyyxyy度2,,v,v v,v/[,(1,uv/c)]变zzzzx

2换 ,,,v,v,u v(vu)/(1uv/c),,,xxxxx

逆变换 2,,,v,v/[,(1,uv/c)] v,vyyxyy

2,,,v,v vv/[,(1uv/c)],,zzzzx

,,,t,,t,L,,L时空量度同时性是相对的,原时最短,原长最长

1 22,,u 质量 ,, m,,m,m/1,00m,m为恒量 2,,0c,,

动ddvdmd运动方程 F,(mv),m,v F,(mv),ma力dtdtdtdt

学动量 p,mvp,mv,,mv0结1222Emv ,动能 E,mc,mckk0论 2

22 质能关系 E,mc,E,c,m

2p22224动量与能量的关系 E,cp,mcE ,0k2m

ct,m,a,F 不变量

x,y,z,vx,y,z,v,a,t,m,F 相对量

69

,,,,30S系中,与Ox轴成角,如果在系中测得该米尺与8-4 一根米尺静止放置在S

,,45S轴成角,那么系相对于系的速度为多大,系中测得米尺的长度是多少, OxSSu

解:由题意

,,y,tg30, (1) ,,x

,y, (2) ,tg45,x

,,S在系和系中测量米尺的长度分别用和SLL表示,

根据相对论“尺缩”效应,有

,,y,,y 题8-4 图

,,,Lsin30,Lsin45即 (3)

2u,,,及 (4) ,x,,x1,,,c,,

,tg30,1x,,由(1)、(2)有 ,,,xtg453

21u,,再与(4)式比较 1,,,,c3,,

2 u,c,0.816c3

由(3)式,S系中测量米尺的长度为

,sin302, L,L,,1,0.707(m),2sin45

2xOy8-5 观察者A测得与他相对静止的平面上一个圆的面积为12cm;另一观察者B

xOy相对于A以v,0.8c(为真空中光速)平行于平面作匀速直线运动,B测得这图形c

为一椭圆。试问其面积是多少,

解:B观测该图形,由于相对论效应,在与平行的方向上长度收缩,原来的半径Rv收缩为

70

2v,,,1 a,,R,1,,R,,c,,

此即椭圆的短半轴长度。而在与垂直的方向上,图形线度不变,即椭圆长半轴为 v

b,R

因此,椭圆面积为

2v,,2 S,,ab,1,,,R,,c,,

22,1,0.8,12,7.2(cm)

x,x,600m8-6 K惯性系中观测者记录的两事件的空间间隔和时间间隔分别是21 ,7,,和,为了使两事件对系来说是同时发生的,系必须以多大速度相

KKt,t,8,10s21

对于K系沿x方向运动,

,,解:设系相对于K系以速率沿轴方向运动。由洛仑兹变换,系测量两事件

KKux

的时间间隔为

u,,, ,,t,,t,,x,,2c,,

,,t,0 由题意

u即 ,t,,x,02c

得到

82,72(3,10),8,10c,t8,1 u,,,1.2,10(m,s),x600

,82.6,10s8-7 介子的固有寿命是。如果介子在实验室参考系中的速率是

0.8c,,,

那么(1)按经典理论,(2)按相对论理论,计算该介子在实验室参考系中的飞行

距离。

解:(1)按经典理论,介子飞行的距离为 ,

8,8 s,uT,0.8,3,10,2.6,10,6.24(m)

,8T,2.6,10s(2)已知介子的固有寿命,按相对论理论,实验室参考系中测得,, 介子的寿命为

,8T2.6,10,8, T,,T,,,4.33,10(s)221,0.8u,,1,,,c,,

介子的飞行距离为 ,

8,8,, s,uT,0.8,3,10,4.33,10,10.4(m)

71

介子衰变,在大气上层放出子。这些子8-8 宇宙射线和大气相互作用时能产生,,,

,62.2,10s的速度接近光速()。如果在实验室中测得静止子的平均寿命为,u,0.998c,试问在8000 m高空由介子衰变放出的子能否飞到地面, ,, ,6T,2.2,10s解:已知子的固有寿命,按照相对论理论,地面参考系中测出高空,

中子的平均寿命为 ,

,T,,T

子飞行的距离为 ,

86,0.998,3,10,2.2,10, s,uT,,uT,,10420(m),8000(m)21,0.998

所以子可以飞到地面。 ,

8-9 一宇宙飞船沿x方向离开地球(S系,以地心为原点),以速度航u,0.8c 8,,S行。宇航员观察到在自己的参考系中(系,原点在飞船上)在时刻

t,,6.0,10s,

1717,,,z,0处有一超新星爆发。他把这一观测通过无线电发x,1.80,

10m,y,1.20,10m,

回地球。在地球参考系中该超星爆发事件的时空坐标如何,假定飞船飞过地球时,其上的

钟与地球上的钟示值都指零。

解:由洛仑兹变换,地球上的观察者测量超新星爆发的时空坐标为

,,x,,(x,ut)

11788,[1.8,10,0.8,3,10,(,6,10)]

1,0.8

16,6.0,10(m)

17,y,y,1.20,10(m)

,z,z,0

u,,,, t,,t,x,,2c,,

10.8,,817,,6,10,,1.8,10,,823,10,,1,0.8

8,,0.2,10(s)

8-10 一米尺沿长度方向以0.8c速率相对于某观察者运动,试求这米尺始、末两端通

过观察者的时间间隔。

L,1m解:米尺的固有长度,由于相对论效应,观察者测量米尺的长度为 0 ,12L,,L,1,0.8,1,0.6(m) 0

米尺始末两端通过观察者的时间间隔为

72

L0.6,9 ,t,,,2.5,10(s)8u0.8,3,10

16s,4.3,10m8-11 半人马星座星是距离太阳系最近的恒星,它距离地球,设有,

一宇宙飞船自地球飞到半人马星座星,若宇宙飞船相对于地球的速度为,按v,0.999c,

地球上的时钟计算要用多少时间,如以飞船上的时钟计算,所需时间又为多少年,

解:按地球上的时钟计算,飞船飞到星所需时间(非固有时间)为 ,

16s4.3,10(年) ,t,,,4.558v0.999,3,10,365,24,3600用飞船上的钟测量,飞船飞到星所需时间(固有时间)为 ,

,12,t,,,t,1,0.999 ,4.55,0.203(年) 0

L,90m8-12 一艘宇宙飞船的船身固有长度为,相对于地面以,(c为真空

v,0.8c0

中光速)的匀速度在一观测站的上空飞过。问

(1)观测站测得飞船的船身通过观测站的时间间隔是多少,

(2)宇航员测得船身通过观测站的时间间隔是多少,

解:(1)由相对论效应,观测站测出船身的长度为

,12L,,L,1,0.8,90,54(m) 0

观测站测得飞船船身通过观测站的时间间隔为

L54,7 ,t,,,2.25,10(s)8v0.8,3,10

L(2)宇航员测得船身长度即固有长度,通过观测站的时间间隔为 0

L90,70 ,t,,,3.75,10(s)08v0.8,3,10

8-13 一隧道长为L,宽为d,高为h,拱顶为半圆,如图。设想一列车以极高的速度

v沿隧道长度方向通过隧道,若从列车上观察,

(1)隧道的尺寸如何,

l(2)设列车的长度为,它全部通过隧道的时间是多少, 0

解:(1)根据相对论效应,从列车上观察,隧道长度缩短,其它尺寸不变,长度变为

2v,,题8-13图 , L,L1,,,c,,

(2)从列车上观察,隧道以速率经过列车,全部通过所需时间为 v

73

2v,,Ll1,,,,0cl,L,,0, t,,,,vvv

8-14 在惯性系K中,有两件事件同时发生在x轴上相距1000m的两点,而在另一惯

,,性系(沿x方向相对K系运动)中测得这两个事件发生的地点相距2000m,求在系KK

中测得这两个事件的时间间隔。

,,t,0,,x,1000m,,x,2000m解:已知,所以有

,,x ,,,2,x

2v1,,,1 1,,,,,,c2,,

,从而得到系相对于K系运动的速度大小 K

33 v,c,c42

,根据洛仑兹变换,系中测量两个事件发生的时间间隔为 K

vv,,, ,t,,,t,,x,,,,x,,22cc,,

3,1000,62,,2,,,5.77,10(s) 83,10

,6,,,即 (事件2先发生) t,t,,,t,5.77,10(s)12,318-15 一电子(静止质量为)以0.99c的速率运动,问 m,9.11,10kg0

(1)电子的总能量是多少,

(2)电子的经典力学动能与相对论动能之比是多少, 解:(1)由相对论质能关系,电子的能量为

22E,mc,mc,0

1,3182,13,,9.11,10,(3,10),5.81,10(J)21,0.99

(2)按经典理论,电子的动能为

12 Emv,k002

按照相对论理论,电子的动能为

74

222 E,E,E,mc,mc,(,,1)mck000

1,,,7.09其中, 21,0.99

二者之比为

12mv220Ev0.99k02,,,,0.0806 22E2,6.09,,(,1)mc2(,1)ck0

Vm8-16 一体积为、质量为的立方体沿其一棱的方向相对于观察者A以速度v 运00

动。求观察者A测得其密度是多少,

解:按照相对论效应,观察者A测量该物体的长、宽、高分别为

,1y,yz,z x,x,000

质量为

m,,m 0

所以观察者A测得该物体的密度为

2mmm,,m000,,,, ,,12Vxyz,,xyz,v0000,,V1,02,,c,,

8-17 观察者甲以的速度(为真空中光速)相对于静止的观察者乙运动,若甲4c/5c

携带一长度为L、截面积为S、质量为m的棒,这根棒安放在运动方向上,试问:

(1)甲测得此棒的密度为多少,

(2)乙测得此棒的密度为多少,

解:(1)棒相对于观察者甲静止,甲测得此棒的密度为

m ,,LS

(2)根据相对论效应,乙测量棒的长度为

2v,,, L,1,L,,c,,

棒的质量为

m,m, 2v,,1,,,c,,

所以,乙测得棒的密度为

75

,mm1m,,,,,22,LSLS,,v4,,,,LS1,1,,,2,, 5c,,,,

25,,,2.78,9

8-18 在什么速度下粒子的动量等于其非相对论动量的两倍,又在什么速度下粒子的

动能等于其非相对论动能的两倍,

p,mvm解:(1)设粒子速度为v,静止质量为。则其经典动量大小为,相对论000 p,,mv动量大小为,令 0

p1,,,,2 2p0v,,1,,,c,,可得

3 v,c,0.866c2

12222(2)粒子的经典动能为,相对论动能为,EmvE,mc,mc,(,,1)mc,kk00002令2E(,,1)mck0,,2 1E2k0mv02

于是

21v ,1,22cv,,1,,,c,,

得到

5,1v,c,0.786c 2

E,3000MeV8-19 设快速运动的介子的能量约为,而这种介子在静止时的能量为,6E,100MeV,若这种介子的固有寿命是,求它运动的距离。(真空中光速,,2,10s008,1c,2.9979,10m,s)

解:由质能关系

76

22 E,mc,,mc0

2mc3000,,,,30 2100mc0

1又由 ,,2v1,2c

知介子的速率为

1188,1v,1,c,1,,2.997,10,2.9962,10(m,s) 22,30

这种介子的寿命在实验室测量为

,,,, 0

所以它能运动的距离为

86,,,,2.9962,10,30,2,10Lv,v,,0 4,1.80,10(m)

8,18,18-20 要使电子的速度从增加到,必须对它做v,1.2,10m,sv,2.4,10m,s12,31多少功,(电子静止质量) m,9.11,10kge

解由质点的动能定理,得到功为

22 A,,E,,E,mc,mck21

,,

,,

,,112,,mc0,,22vv,,,,,,211,1,,,,,,,cc,,,,,,

,,11,3182 s ,9.11,10,(3,10),,,22,,1,0.81,0.4,,

,145,4.72,10(J),2.95,10(eV)

77

大学物理答案第八章 西南交大版

大学物理答案第八章西南交大版 第八章相对论 8-1 选择题 v(1)一火箭的固有长度为L,相对于地面作匀速直线运动的速度为,火箭上有一个1 v人从火箭的后端向火箭前端上的一个靶子发射一颗相对于火箭的速度为的子弹。在火箭2上测得子弹从射出到击中靶的时间间隔是: LL(A) (B) v,vv122 LL(C) (D) [B] 2v,v21,,v1,v/c11 v解:在火箭参考系中,子弹以速率,匀速通过距离L,所需的时间 2 L ,t,v2 (2)关于同时性有人提出以下一些结论,其中哪个是正确的, (A)在一惯性系同时发生的两个事件,在另一惯性系一定不同时发生。 (B)在一惯性系不同地点同时发生的两个事件,在另一惯性系一定同时发生。 (C)在一惯性系同一地点同时发生的两个事件,在另一惯性系一定同时发生。 (D)在一惯性系不同地点不同时发生的两个事件,在另一惯性系一定不同时发生。 [C] u,,,解:由洛仑兹变换,可知: ,t,,t,,x,,2c,, ,,t,0,,x,0,t,0当时,即在一个惯性系中同时同地发生的两个事件,在另一惯性系中一定同时发生; ,,t,0,,x,0,t,0当时即 在一个惯性系中的同时异地事件,在另一惯性系中必然不同时。

,,x,0,,t,0,t当时的大小有各种可能性,不是必然不为零的。 (3)一宇宙飞船相对地球以0.8c(c表示真空中光速)的速度飞行,一光脉冲从船尾传到船头,飞船上的观察者测得飞船长为90m,地球上的观察者测得脉冲从船尾发出和到达船头两个事件的空间间隔为 65 (A)90m (B)54m (C)270m (D)150m [C] ,,ss系,飞船系为系。系相对于系沿x轴方向以飞行,解:设地球系为 u,0.8css 1,, 21,0.8 90,,,s,x,90m系中, ,t,c ,,,,x,,x,ut由洛仑兹坐标变换得 ,,,,,x,,,x,u,t 190,,,90,0.8c,,,2 c,,1,0.8 ,270m 163.6,10J(4)某核电站年发电量为100亿度,它等于的能量,如果这是由核材料的 全部静止能转化产生的,则需要消耗的核材料的质量为 (A)0.4kg (B)0.8kg 77(C) (D) [A] ,,12,10kg1/12,10kg 2解:由质能关系 E,mc00 16E3.6,100 m,,,0.4kg0228c,,3,10 (5)设某微观粒子的总能量是它的静止能量的K倍,则其运动速度的大小 cc2(A) (B) 1,KK,1K cc2(C) (D) [C] ,,K,1KK,2K,1K 22解:由质能关系 E,mc,E,mc00

西南交大大学物理CII作业 参考答案

?物理系_2015_09 《大学物理CII》作业No.7 热力学第二定律 班级________ 学号________ 姓名_________ 成绩_______ 一、判断题:(用“T”和“F”表示) [ F ] 1.在任意的绝热过程中,只要系统与外界之间没有热量传递,系统的温度就不 会发生变化。 此说法不对. 在绝热过程中,系统与外界无热量交换,Q=0.但不一定系统与外界无作功,只要系 统与外界之间有作功的表现,由热力学第一定律Q=E+W,可知,E=-W,即对应有内能的改 变.而由E=νC,T可知,有E,一定有T,即有温度的变化. [ F ] 2.在循坏过程中系统对外做的净功在数值上等于p-V图中封闭曲线所包围的面 积,因此封闭曲线包围的面积越大,循坏效率就越高。 有人说,因为在循环过程中系统对外做的净功在数值等于p-V图中封闭曲线所包围的面积,所以封闭曲线所包围的面积越大,循环效率就越高,对吗? 答:不正确,因为循环效率取决于系统对外做的净功和系统由高温热源吸收的热量,只 有在从高温热源吸收的热量一定的情况下,封闭曲线所包围的面积越大,即系统对外所 做的净功越多,循环效率越高,如果从高温热源吸收的热量不确定,则循环效率不一定 越高 [ F ] 3.系统经历一正循坏后,系统与外界都没有变化。 系统经历一正循环后,系统的状态没有变化;(2)系统经历一正循环后,系统与 外界都没有变化; (3)系统经历一正循环后,接着再经历一逆循环,系统与外界亦均无变化。 解说法(1)正确,系统经历一正循环后,描述系统状态的内能是单值函数,其内能 不变,系统的状态没有变化。 说法(2)错误,系统经过一正循环,系统内能不变,它从外界吸收热量,对外作功,由 热力学第二定律知,必定要引起外界的变化。 说法(3)错误,在正逆过程中所引起外界的变化是不能消除的。 [ F ] 4.第二类永动机不可能制成是因为违背了能量守恒定律。 解:第二类永动机并不违背能量守恒定律,但它违背了热力学第二定律。 [ F ] 5.一热力学系统经历的两个绝热过程和一个等温过程,可以构成一个循环过程解:循环构成了一个单热源机,这违反了开尔文表述。

大学物理课后习题答案第八章教学提纲

第八章 光的偏振 8.1 两偏振片组装成起偏和检偏器,当两偏振片的偏振化方向夹角成30o时观察一普通光源,夹角成60o时观察另一普通光源,两次观察所得的光强相等,求两光源光强之比. [解答]第一个普通光源的光强用I 1表示,通过第一个偏振片之后,光强为I 0 = I 1/2. 当偏振光通过第二个偏振片后,根据马吕斯定律,光强为I = I 0cos 2θ1 = I 1cos 2θ1/2. 同理,对于第二个普通光源可得光强为I = I 2cos 2θ2/2. 因此光源的光强之比I 2/I 1 = cos 2θ1/cos 2θ2 = cos 230o/cos 260o = 1/3. 8.2 一束线偏振光和自然光的混合光,当它通过一偏振片后,发现随偏振片的取向不同,透射光的强度可变化四倍,求入射光束中两种光的强度各占入射光强度的百分之几? [解答]设自然光强为I 1,线偏振光强为I 2,则总光强为I 0 = I 1 + I 2. 当光线通过偏振片时,最小光强为自然光强的一半,即I min = I 1/2; 最大光强是线偏振光强与自然光强的一半之和,即I max = I 2 + I 1/2. 由题意得I max /I min = 4,因此2I 2/I 1 + 1 = 4, 解得I 2 = 3I 1/2.此式代入总光强公式得 I 0 = I 1 + 3I 1/2. 因此入射光中自然光强的比例为I 1/I 0 = 2/5 = 40%. 由此可得线偏振光的光强的比例为I 2/I 0 = 3/5 = 60%. [讨论]如果I max /I min = n ,根据上面的步骤可得 I 1/I 0 = 2/(n + 1), I 2/I 0 = (n - 1)/(n + 1), 可见:n 的值越大,入射光中自然光强的比例越小,线偏振光的光强的比例越大. 8.3 水的折射率为1.33,玻璃的折射率为1.50,当光由水射向玻璃时,起偏角为多少?若光由玻璃射向水时,起偏角又是多少?这两个角度数值上的关系如何? [解答]当光由水射向玻璃时,水的折射率为n 1,玻璃的折射率为n 2,根据布儒斯特定律 tan i 0 = n 2/n 1 = 1.1278, 得起偏角为i 0 = 48.44o. 当光由玻璃射向水时,玻璃的折射率为n 1,水的折射率为n 2,根据布儒斯特定律 tan i 0 = n 2/n 1 = 0.8867, 得起偏角为i 0 = 41.56o. 可见:两个角度互为余角. 8.4 根据布儒斯特定律可测量不透明介质的折射率,今测得某釉质的起偏角为58o,则该釉质的折射率为多少? [解答]空气的折射率取为1,根据布儒斯特定律可得釉质的折射率为n = tan i 0 = 1.6003. 8.5 三个偏振片堆叠在一起,第一块与第三块偏振化方 向互相垂直,第二块与第一块的偏振化方向互相平行,现令第二块偏振片以恒定的角速度ω0绕光传播方向旋转,如图所 示.设入射自然光的光强为I 0,试证明:此自然光通过这一系 统后出射光强度为I = I 0(1 – cos4ωt )/16. [证明]自然光通过偏振片P 1之后,形成偏振光,光强为 I 1 = I 0/2. 经过时间t ,P 3的偏振化方向转过的角度为θ = ωt , 根据马吕斯定律,通过P 3的光强为I 3 = I 1cos 2θ. 由于P 1与P 2的偏振化方向垂直,所以P 2与P 3的偏振化方向的夹角为φ = π/2 – θ, 再根据马吕斯定律,通过P 2的光强为 I = I 3cos 2φ = I 3sin 2θ= I 0(cos 2θsin 2θ)/2 = I 0(sin 22θ)/8= I 0(1 – cos4θ)/16, 1P 3 2图8.5

大学物理(西南交大)作业参考答案1

NO.1 质点运动学和牛顿定律 班级 姓名 学号 成绩 一、选择 1. 对于沿曲线运动的物体,以下几种说法中哪种是正确的: [ B ] (A) 切向加速度必不为零. (B) 法向加速度必不为零(拐点处除外). (C) 由于速度沿切线方向,法向分速度必为零,因此法向加速度必为零. (D) 若物体作匀速率运动,其总加速度必为零. (E) 若物体的加速度a 为恒矢量,它一定作匀变速率运动. 2.一质点作一般曲线运动,其瞬时速度为V ,瞬时速率为V ,某一段时间内的平均速度为V ,平均速率为V , 它门之间的关系为:[ D ] (A )∣V ∣=V ,∣V ∣=V ; (B )∣V ∣≠V ,∣V ∣=V ; (C )∣V ∣≠V ,∣V ∣≠V ; (D )∣V ∣=V ,∣V ∣≠V . 3.质点作曲线运动,r 表示位置矢量,v 表示速度,a 表示加速度,S 表示路程,a τ表示切向加速度,下列表达式中, [ D ] (1) d /d t a τ=v , (2) v =t r d /d , (3) v =t S d /d , (4) d /d t a τ= v . (A) 只有(1)、(4)是对的. (B) 只有(2)、(4)是对的. (C) 只有(2)是对的. (D) 只有(1)、(3)是对的.(备注:经过讨论认为(1)是对的) 4.某物体的运动规律为t k t 2 d /d v v -=,式中的k 为大于零的常量.当0=t 时,初速为0v ,则速度v 与时 间t 的函数关系是 [ C ] (A) 0221v v += kt , (B) 0221 v v +-=kt , (C) 02121v v +=kt , (D) 0 2121v v + -=kt 5.质点作半径为R 的变速圆周运动时的加速度大小为(v 表示任一时刻质点的速率) [ D ] (A) t d d v .(B) 2 v R . (C) R t 2 d d v v +.(D) 2 /1242d d ??? ????????? ??+??? ??R t v v . 6.质点沿x 方向运动,其加速度随位置的变化关系为:a=3 1 +3x 2. 如在x=0处,速度v 0=5m.s -1,则在x=3m 处的速度为:[ A ] (A )9 m.s -1; (B )8 m.s -1; (C )7.8 m.s -1; (D )7.2 m.s -1 . 7.如图所示,假设物体沿着竖直面上圆弧形轨道下滑,轨道是光滑的,在从A 至C 的下滑过程中,下面哪个说法是正确的?[ E ] (A) 它的加速度大小不变,方向永远指向圆心. (B) 它的速率均匀增加. (C) 它的合外力大小变化,方向永远指向圆心. (D) 它的合外力大小不变. (E) 轨道支持力的大小不断增加. 8.物体作圆周运动时,正确的说法是:[ C ] (A )加速度的方向一定指向圆心; (B )匀速率圆周运动的速度和加速度都恒定不变; (C )必定有加速度,且法向分量一定不为零; (D )速度方向一定在轨道的切线方向,法向分速度为零,所以法向加速度一定为零; 9.以下五种运动形式,a 保持不变的运动是 [ E ] A

大学物理(西南交大)作业参考答案5

NO.5 电势、导体与※电介质中的静电场 (参考答案) 班级: 学号: 姓名: 成绩: 一 选择题 1.真空中一半径为R 的球面均匀带电Q ,在球心O 处有一带电量为q 的点电荷,如图所示,设无穷远处为电势零点,则在球内离球心O 距离为r 的P 点处的电势为: (A )r q 04πε; (B )(041 R Q r q +πε; (C )r Q q 04πε+; (D ))(0 41 R q Q r q -+ πε; 参考:电势叠加原理。 [ B ] 2.在带电量为-Q 的点电荷A 的静电场中,将另一 带电量为q 的点电荷B 从a 点移动到b ,a 、b 两点距离点电荷A 的距离分别为r 1和r 2,如图,则移动过程中电场力做功为: (A )(2 101 1Q --; (B )(2 101 14r r qQ -πε; (C ) )(2 1 114r r qQ --πε; (D ) ) (4120r r qQ --πε。 参考:电场力做功=势能的减小量。A=W a -W b =q(U a -U b ) 。 [ C ] 3.某电场的电力线分布情况如图所示,一负电荷从M 点移到N 点,有人根据这个图做出以下几点结论,其中哪点是正确的? (A )电场强度E M <E N ; (B )电势U M <U N ; (C )电势能W M <W N ; (D )电场力的功A >0。 [ C ] 4.一个未带电的空腔导体球壳内半径为R ,在腔内离球心距离为d (d <R )处,固定一电量为+q 的点电荷,用导线把球壳接地后,再把地线撤去,选无穷远处为电势零点,则球心O 处的点势为: (A )0; (B )d q 4πε; (C )-R q 04πε; (D ))(1 1 40 R d q - πε。 参考:如图,先用高斯定理可知导体内表面电荷为-q ,外表面无电荷(可分析)。虽然内表面电荷分布不均,但到O 点的距离相同,故由电势叠加原理可得。 [ D ] ※5.在半径为R 的球的介质球心处有电荷+Q ,在球面上均匀分布电荷-Q ,则在球内外处的电势分别为: (A )内r Q πε4+,外r Q 04πε-; (B )内r Q πε4+,0; 参考:电势叠加原理。注:原题中ε为ε0 (C )R Q r Q πεπε44-+内 ,0; (D )0,0 。 [ C ] r 2 (-Q)A b r 1 B a (q )

大学物理第八章习题及答案

V 第八章 热力学基础 8-1如图所示,bca 为理想气体绝热过程,b1a 和b2a 是任意过程,则上述两过程中气体做功与吸收热量的情况是:(B ) (A) b1a 过程放热,作负功;b2a 过程放热,作负功 (B) b1a 过程吸热,作负功;b2a 过程放热,作负功 (C) b1a 过程吸热,作正功;b2a 过程吸热,作负功 (D) b1a 过程放热,作正功;b2a 过程吸热,作正功 8-2 如图,一定量的理想气体由平衡态A 变到平衡态B ,且它们的压强相等,则在状态A 和状态B 之间,气体无论经过的是什么过程,气体必然( B ) (A)对外作正功 (B)内能增加 (C)从外界吸热 (D)向外界放热 8-3 两个相同的刚性容器,一个盛有氢气,一个盛氦气(均视为刚性分子理想气体),开始时它们的压强温度都相同,现将3J 热量传给氦气,使之升高到一定温度,若使氢气也升高同样温度,则应向氢气传递热量为( C ) (A) 6 J (B) 3 J (C) 5J (D) 10 J 8-4 有人想象了如题图四个理想气体的循环过程,则在理论上可以实现的为 ( ) (A) (B)

(C) (D) 8-5一台工作于温度分别为327o C和27o C的高温热源和低温源之间的卡诺热机,每经历一个循环吸热2 000 J,则对外作功( B ) (A) 2 000 J (B) 1 000 J (C) 4 000 J (D) 500 J 8-6 根据热力学第二定律( A ) (A) 自然界中的一切自发过程都是不可逆的 (B) 不可逆过程就是不能向相反方向进行的过程 (C) 热量可以从高温物体传到低温物体,但不能从低温物体传到高温物体 (D)任何过程总是沿着熵增加的方向进行 8-7 一定质量的气体,在被压缩的过程中外界对气体做功300J,但这一过程中气体的内能减少了300J,问气体在此过程中是吸热还是放热?吸收或放出的热量是多少? 解:由于外界对气体做功,所以:300J = W - 由于气体的内能减少,所以:J ?E = 300 - 根据热力学第一定律,得:J ? + =W = E Q 300- 600 300 = - -

《大学物理》 第二版 第八章课后习题答案解析

习题精解 8-1 一根无限长直导线有交变电流0sin i I t ω=,它旁边有一与它共面的矩形线圈ABCD ,如图8.3所示,长为l 的AB 和CD 两边与直导向平行,它们到直导线的距离分别为a 和b ,试求矩形线圈所围面积的磁通量,以及线圈中的感应电动势。 解 建立如图8.3所示的坐标系,在矩形平面上取一矩形面元dS ldx =,载流长直导线的磁场穿过该面元的磁通量为 02m i d B dS ldx x μφπ=?= 通过矩形面积CDEF 的总磁通量为 00ln 22b m a i il b ldx x a μμφππ==? 由法拉第电磁感应定律有 0ln cos 2m d il b t dt a φμωεωπ=- =- 8-2 有一无限长直螺线管,单位长度上线圈的匝数为n ,在管的中心放置一绕了N 圈,半径为r 的圆形小线圈,其轴线与螺线管的轴线平行,设螺线管内电流变化率为dI dt ,球小 线圈中感应的电动势。 解 无限长直螺线管内部的磁场为 0B nI μ= 通过N 匝圆形小线圈的磁通量为 20m NBS N nI r φμπ== 由法拉第电磁感应定律有 20m d dI N n r dt dt φεμπ=- =- 8-3 一面积为S 的小线圈在一单位长度线圈匝数为n ,通过电流为i 的长螺线管内,并与螺线管共轴,若0sin i i t ω=,求小线圈中感生电动势的表达式。 解 通过小线圈的磁通量为 0m BS niS φμ== 由法拉第电磁感应定律有 000cos m d di nS nSi t dt dt φεμμωω=- =-=- 8-4 如图8.4所示,矩形线圈ABCD 放在1 6.010B T -=?的均匀磁场中,磁场方向与线圈平面的法线方向之间的夹角为60α=?,长为0.20m 的AB 边可左右滑动。若令AB 边以速率1 5.0v m s -=?向右运动,试求线圈中感应电动势的大小及感应电流的方向。 解 利用动生电动势公式

西南交通大学大物A1-01作业解析

《大学物理AI 》作业 No.01运动的描述 班级 ________ 学号 ________ 姓名 _________ 成绩 _______ 一、判断题 【 F 】1、运动物体的加速度越大,其运动的速度也越大。 反例:如果加速度的方向和速度方向相反。 【 F 】2、匀加速运动一定是直线运动。 反例:抛体运动。 【 F 】3、在圆周运动中,加速度的方向一定指向圆心。 反例:变速率的圆周运动。 【T 】4、以恒定速率运动的物体,其速度仍有可能变化。 比如:匀速率圆周运动。 【 T 】5、速度方向变化的运动物体,其加速度可以保持不变。 比如:抛体运动。 二、选择题 1. B 2、B 3、C 4、D 5、C 6、C 4.一运动质点在某瞬时位于矢径()y x r , 的端点处,其速度大小为 [ D ] (A) t r d d (B) t r d d (C) t r d d (D) 22d d d d ?? ? ??+??? ??t y t x 解:由速度定义t r v d d = 及其直角坐标系表示j t y i t x j v i v v y x d d d d +=+=可得速度大小为 2 2d d d d ?? ? ??+??? ??=t y t x v 选D 6.一飞机相对空气的速度大小为1h km 200-?,风速为1 h km 56-?,方向从西向东。地面雷达测得飞机速度大小为1 h km 192-?,方向是 [ C ] (A) 南偏西16.3° (B) 北偏东16.3° (C) 向正南或向正北 (D) 西偏北16.3° (E) 东偏南16.3° 解:风速的大小和方向已知,飞机相对于空气的速度和飞机对地的 速度只知大 小,不知方向。由相对速度公式 地空气空气机地机→→→+=v v v 空气 机→v 地 机→v 地 空气→v 200 19256

大学物理第八章练习题

10题图 第八章 磁场 填空题 (简单) 1、将通有电流为I 的无限长直导线折成1/4圆环形状,已知半圆环的半径为R ,则圆心O 点的磁 感应强度大小为 。 2、磁场的高斯定律表明磁场是 ,因为磁场发生变化而引起电磁感应,所 产生的场是不同于回路变化时产生的 。相同之处是 。 3、只要有运动电荷,其周围就有 产生;而法拉弟电磁感应定律表明,只要 发生变 化,就有 产生。 4、(如图)无限长直导线载有电流I 1,矩形回路载有电流I 2,I 2回路的AB 边与长直导线平行。电 流I 1产生的磁场作用在I 2回路上的合力F 的大小为 ,F 的方向 。 (综合) , 5、有一圆形线圈,通有电流I ,放在均匀磁场B 中,线圈平面与B 垂直,I 则线圈上P 点将受到 , 力的作用,其方向为 ,线圈所受合力大小为 。(综合) 6、∑?==?n i i l I l d B 0 0μ 是 ,它所反映的物理意义是 。 7、磁场的高斯定理表明通过任意闭合曲面的磁通量必等于 。 8、电荷在磁场中 (填一定或不一定)受磁场力的作用。 9、磁场最基本的性质是对 有力的作用。 10、如图所示,在磁感强度为B 的均匀磁场中,有一半径为R 的半球面, B 与半球面轴线的夹角为α。求通过该半球面的磁通量为 。(综合) 11、当一未闭合电路中的磁通量发生变化时,电路中 产生感应电流;电路中 产生感应电动势(填“一定”或“不一定”) (综合) > 12、一电荷以速度v 运动,它既 电场,又 磁场。(填“产生”或“不产生”) 4题图 5题图

14题图 13、一电荷为+q ,质量为m ,初速度为0 的粒子垂直进入磁感应强度为B 的均匀磁场中,粒子将作 运动,其回旋半径R= ,回旋周期T= 。 14、把长直导线与半径为R 的半圆形铁环与圆形铁环相连接(如图a 、b 所示),若通以电流为I ,则 a 圆心O 的磁感应强度为 _____________; 图b 圆心O 的磁感应强度为 15、在磁场中磁感应强度B 沿 任意闭合路径的线积分总等于 。这一重要结论称为磁场的环路定理,其数学表达式为 。 16、磁场的高斯定理表明磁场具有的性质 。 17、在竖直放置的一根无限长载流直导线右侧有一与其共面的任意形状的平面线圈,直导线中的电流由上向下,当线圈以垂直于导线的速度背离导线时,线圈中的感应电动势 ,当线圈平行导线向上运动时,线圈中的感应电动势 。(填>0,<0,=0)(设顺时针方向的感应电动势为正) 18、在磁场空间分别取两个闭合回路,若两个回路各自包围载流导线的根数不同,但电流的代数和相同,则磁感应强度沿两闭合回路的线积分 ,两个回路的磁场分布 。(填“相同”或“不相同” ) ( 判断题 (简单) 1、安培环路定理说明电场是保守力场。 ( ) 2、安培环路定理说明磁场是无源场。 ( ) 3、磁场的高斯定理是通过任意闭合曲面的磁通量必等于零。 ( ) 4、电荷在磁场中一定受磁场力的作用。 ( ) 5、一电子以速率V 进入某区域,若该电子运动方向不改变,则该区域一定无磁场;( ) 6、在B=2特的无限大均匀磁场中,有一个长为L1=2.0米,宽L2=0.50米的矩形线圈,设线圈平 面的法线方向与磁场方向相同,则线圈的磁通量为1Wb 。 7、磁场力的大小正比于运动电荷的电量。如果电荷是负的,它所受力的方向与正电荷相反。 8、运动电荷在磁场中所受的磁力随电荷的运动方向与磁场方向之间的夹角的改变而变化。当电荷的运动方向与

大学物理第八章课后习题答案

大学物理第八章课后习 题答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第八章电磁感应电磁场 8 -1一根无限长平行直导线载有电流I,一矩形线圈位于导线平面内沿垂直于载流导线方向以恒定速率运动(如图所示),则() (A)线圈中无感应电流 (B)线圈中感应电流为顺时针方向 (C)线圈中感应电流为逆时针方向 (D)线圈中感应电流方向无法确定 分析与解由右手定则可以判断,在矩形线圈附近磁场垂直纸面朝里,磁场是非均匀场,距离长直载流导线越远,磁场越弱.因而当矩形线圈朝下运动时,在线圈中产生感应电流,感应电流方向由法拉第电磁感应定律可以判定.因而正确答案为(B). 8 -2将形状完全相同的铜环和木环静止放置在交变磁场中,并假设通过两环面的磁通量随时间的变化率相等,不计自感时则() (A)铜环中有感应电流,木环中无感应电流 (B)铜环中有感应电流,木环中有感应电流 (C)铜环中感应电动势大,木环中感应电动势小 (D)铜环中感应电动势小,木环中感应电动势大 2

3 分析与解 根据法拉第电磁感应定律,铜环、木环中的感应电场大小相等, 但在木环中不会形成电流.因而正确答案为(A ). 8 -3 有两个线圈,线圈1 对线圈2 的互感系数为M 21 ,而线圈2 对线圈1的互感系数为M 12 .若它们分别流过i 1 和i 2 的变化电流且t i t i d d d d 21<,并设由i 2变化在线圈1 中产生的互感电动势为ε12 ,由i 1 变化在线圈2 中产生的互感电动势为ε21 ,下述论断正确的是( ). (A )2112M M = ,1221εε= (B )2112M M ≠ ,1221εε≠ (C )2112M M =, 1221εε< (D )2112M M = ,1221εε< 分析与解 教材中已经证明M21 =M12 ,电磁感应定律 t i M εd d 12121=;t i M εd d 21212=.因而正确答案为(D ). 8 -4 对位移电流,下述四种说法中哪一种说法是正确的是( ) (A ) 位移电流的实质是变化的电场 (B ) 位移电流和传导电流一样是定向运动的电荷 (C ) 位移电流服从传导电流遵循的所有定律 (D ) 位移电流的磁效应不服从安培环路定理 分析与解 位移电流的实质是变化的电场.变化的电场激发磁场,在这一点位移电流等效于传导电流,但是位移电流不是走向运动的电荷,也就不服从焦耳热效应、安培力等定律.因而正确答案为(A ).

2016西南交大大学物理A1第八次作业答案

《大学物理AI 》作业No.08导体介质中的静电场班级________ 学号________ 姓名_________ 成绩_______ 一、判断题:(用“T ”和“F ”表示)[ F ] 1.达到静电平衡的导体,电场强度处处为零。 解:达到静电平衡的导体,内部场强处处为0,表面场强处处垂直于表面。 [ F ] 2.负电荷沿导体表面运动时,电场力做正功。 解:达到静电平衡的导体,表面场强与表面处处垂直,所以电场力做功为 0。 也可以这样理解:达到静电平衡的导体是个等势体,导体表面是个等势面,那么当电荷在导体表面运动时,电场力不做功(因为电场力做功数值上等于电势能增量的负值)。 [ F ] 3. 导体接地时,导体上的电荷为零。 解:导体接地,仅意味着导体同大地等电势。导体上的电荷是全部入地还是部分入地就要据实际情况而定了。[ F ] 4.电介质中的电场是由极化电荷产生的。 解:电介质中的电场是总场,是自由电荷和极化电荷共同产生的。[ T ] 5.将电介质从已断开电源的电容器极板之间拉出来时,电场力做负功。 解:拔出电介质,电容器的电容减少,而电容器已与电源断开,那么极板上的电量不变,电源不做功。此时,电容器储能变化为: 0222 ' 2 C Q C Q W ,即电容器储能是增加的, 而电场力做功等于电势能增量的负值,那么电场力应该做负功。 二、选择题: 1.把A ,B 两块不带电的导体放在一带正电导体的电场中,如图所示。设无限远处为电 势零点,A 的电势为U A ,B 的电势为U B ,则[ D ] (A) U B > U A ≠0(B) U B > U A = 0 (C)U B =U A (D) U B < U A 解:电力线如图所示,电力线指向电势降低的方向,所以U B < U A 。 2.半径分别为R 和r 的两个金属球,相距很远。用一根细长导线将两球连接在一起并使它们带电。在忽略导线的影响下,两球表面的电荷面密度之比为[ D ] (A) R/r (B)R 2 /r 2 (C) r 2/ R 2 (D) r/R 解:两个金属球用导线相接意味着它们的电势相等, 设它们各自带电为 21q q 、,选无穷远处为电势 0点,那么有: r q R q 0 2 14 4 ,我们对这个等式变下形

大学物理习题答案第八章

[习题解答] 8-2 在一个容器内盛有理想气体,而容器的两侧分别与沸水和冰相接触(热接触)。显然,当沸水和冰的温度都保持不变时,容器内理想气体的状态也不随时间变化。问这时容器内理想气体的状态是否是平衡态?为什么? 解不是平衡态,因为平衡态的条件有二:一是系统的宏观性质不随时间变化,二是没有外界的影响和作用。题目所说的情况不满足第二条。 8-3 氧气瓶的容积是32 dm3 ,压强为130 atm,规定瓶内氧气的压强降至10 atm时,应停止使用并必须充气,以免混入其他气体。今有一病房每天需用atm的氧气400 dm3 ,问一瓶氧气可用几天? 解当压强为、体积为时,瓶内氧气的质量M1为 ?. 当压强降至、体积仍为时,瓶内氧气的质量M2为 . 病房每天用压强为、体积为的氧气质量 m为 . 以瓶氧气可用n天: ?. 8-4在一个容积为10 dm3 的容器中贮有氢气,当温度为7℃时,压强为50 atm。由于容器漏

气,当温度升至17℃时,压强仍为50 atm,求漏掉氢气的质量。 解漏气前氢气的质量为M1 , 压强为, 体积为, 温度为 ,于是M1可以表示为 . 漏气后氢气的质量为M2, 压强为, 体积为, 温度为 , 于是M2可以表示为 . 所以漏掉氢气的质量为 ?. 计算中用到了氢气的摩尔质量。 8-5 气缸中盛有可视为理想气体的某种气体,当温度为T1 = 200 K时,压强和摩尔体积分别为p1 和V m1 。如果将气缸加热,使系统中气体的压强和体积同时增大,在此过程中,气体的压强p和摩尔体积V m满足关系p = ?V m,其中?为常量。 (1)求常量?; (2)当摩尔体积增大到2V m1 时,求系统的温度。 解 (1)? 1 mol理想气体的物态方程可以表示为 ,

西南交通大学大物A作业解析

?西南交大物理系_2013_02 《大学物理AI 》作业 No.03角动量 角动量守恒定律 班级 ________ 学号 ________ 姓名 _________ 成绩 _______ 一、判断题:(用“T ”和“F ”表示) [ F ] 1.如果一个刚体所受合外力为零,其合力矩一定为零。 [ F ] 2.一个系统的动量守恒,角动量一定守恒。 [ T ] 3.一个质点的角动量与参考点的选择有关。 [ F ] 4.刚体的转动惯量反映了刚体转动的惯性大小,对确定的刚体,其转动惯量是一定值。 [ F ] 5.如果作用于质点的合力矩垂直于质点的角动量,则质点的角动量将不发生变化。 二、选择题: 1.有两个半径相同、质量相等的细圆环A 和B 。A 环的质量分布均匀,B 环的质量分布不均匀。它们对通过环心并与环面垂直的轴的转动惯量分别为A J 和B J [ C ] (A) A J >B J (B) A J

大学物理第8章试卷答案

第8章电磁感应作业题答案 一、选择题 1. 圆铜盘水平放置在均匀磁场中,B 的方向垂直盘面向上,当铜盘绕通过中心垂直于盘面的轴沿图示方向转动时, (A) 铜盘上有感应电流产生,沿着铜盘转动的相反方向流动。 (B) 铜盘上有感应电流产生,沿着铜盘转动的方向流动。 (C) 铜盘上有感应电流产生,铜盘中心处电势最高。 (D) 铜盘上有感应电流产生,铜盘边缘处电势最高。 答案(D) 2.在尺寸相同的铁环和铜环所包围的面积中穿过相同变化率的磁通量,则两环中A.感应电动势相同,感应电流相同; B.感应电动势不同,感应电流不同; C.感应电动势相同,感应电流不同; D.感应电动势不同,感应电流相同。 答案(C) 3.两根无限长的平行直导线有相等的电流,2. 但电流的流向相反如右图,而电流的变化 率均大于零,有一矩形线圈与两导 线共面,则 A.线圈中无感应电流; B.线圈中感应电流为逆时针方向; C.线圈中感应电流为顺时针方向; D.线圈中感应电流不确定。 答案: B (解:两直导线在矩形线圈处产生的磁场方向均垂直向里,且随时间增强,由楞次定律可知线圈中感应电流为逆时针方向。) ,棒与直导线垂直且共面。(a)、(b)、 4.如图所示,在长直载流导线下方有导体细棒 以速度向右滑动。设(a)、(b)、(c)、(d) (c)处有三个光滑细金属框。今使 四种情况下在细棒

A.?a =?b =?c ?d C.?a =?b =?c =?d D.?a >?b

大学物理第8章答案

第8章 磁场 8-10一均匀密绕直螺线管的半径为 ,单位长度上有 匝线圈,每匝线圈中的电流为 ,用毕奥—萨伐尔定律求此螺线管轴线上的磁场。 分析:由于线圈密绕,因此可以近似地把螺线管看成一系列圆电流的紧密排列,且每一匝圆电流在轴线上任一点的磁场均沿轴向。 解: 取通过螺线管的轴线并与电流形成右旋的方向(即磁场的方向)为x 轴正向,如习题8-10图解(a )所示。在螺线管上任取一段微元dx ,则通过它的电流为dI nIdx =,把它看成一个圆线圈,它在轴线上O 点产生的磁感应强度dB 为 20 2232 2()R nIdx dB R x μ=+ 由叠加原理可得,整个螺线管在O 点产生的磁感应强度B 的大小为 21 202232 2 ()x L x R nI dx B dB R x μ== +?? 021 2212 2212 21[ ]2 ()()nI x x R x R x μ= -++ 由图可知121222122212 12cos os ()() x x R x R x ββ= =++ c ,代入上式并整理可得 021(cos cos )2 nI B μββ= - 式中12ββ和分别为x 轴正向与从O 点引向螺线管两端的矢径r 之间的夹角。 讨论: (1)若螺线管的长度远远大于其直径,即螺线管可视为无限长时,20β=,1βπ=,则有 nI B 0μ= 上式说明,无限长密绕长直螺线管内部轴线上各点磁感应强度为常矢量。理论和实验均证明:在整个无限长螺线管内部空间里,上述结论也适用。即无限长螺线管内部空间里的磁场为均匀磁场,其磁感应强度B 的大小为0nI μ,方向与轴线平行; (2)若点O 位于半无限长载流螺线管一端,即

大学物理知识总结习题答案(第八章)振动与波动

第八章 振动与波动 本章提要 1. 简谐振动 · 物体在一定位置附近所作的周期性往复运动称为机械振动。 · 简谐振动运动方程 ()cos x A t ω?=+ 其中A 为振幅,ω 为角频率,(ωt+?)称为谐振动的相位,t =0时的相位? 称为初相位。 · 简谐振动速度方程 d ()d sin x v A t t ωω?= =-+ · 简谐振动加速度方程 2 2 2d ()d cos x a A t t ωω?= =-+ · 简谐振动可用旋转矢量法表示。 2. 简谐振动的能量 · 若弹簧振子劲度系数为k ,振动物体质量为m ,在某一时刻m 的位移为x ,振动速度为v ,则振动物体m 动能为 2 12k E mv = · 弹簧的势能为 2 12p E kx = · 振子总能量为 P 2 2 2 22 211()+() 22 1=2 sin cos k E E E m A t kA t kA ωω?ω?=+=++ 3. 阻尼振动 · 如果一个振动质点,除了受弹性力之外,还受到一个与速度成正比的阻

尼作用,那么它将作振幅逐渐衰减的振动,也就是阻尼振动。 · 阻尼振动的动力学方程为 2 2 2d d 20d d x x x t t β ω++= 其中,γ是阻尼系数,2m γ β= 。 (1) 当22ωβ>时,振子的运动一个振幅随时间衰减的振动,称阻尼振动。 (2) 当22ωβ=时,不再出现振荡,称临界阻尼。 (3) 当22ωβ<时,不出现振荡,称过阻尼。 4. 受迫振动 · 振子在周期性外力作用下发生的振动叫受迫振动,周期性外力称驱动力 · 受迫振动的运动方程为 2 2 P 2d d 2d d cos x x F x t t t m β ωω++= 其中,2k m ω=,为振动系统的固有频率;2C m β=;F 为驱动力振幅。 · 当驱动力振动的频率p ω等于ω时,振幅出现最大值,称为共振。 5. 简谐振动的合成与分解 (1) 一维同频率的简谐振动的合成 若任一时刻t 两个振动的位移分别为 111()cos x A t ω?=+ 222()cos x A t ω?=+ 合振动方程可表示为 ()cos x A t ω?=+ 其中,A 和? 分别为合振动的振幅与初相位 A = 11221122 sin sin tan cos cos A A A A ?????+= +

西南交大 大学物理 2014版NO.6详细解答

?物理系_2014_09 《大学物理AII 》作业 No.6 光的衍射 班级 ________ 学号 ________ 姓名 _________ 成绩 _______ 一、判断题:(用“T ”和“F ”表示) [ F ] 1.无线电波能绕过建筑物,而可见光波不能绕过建筑物。这是因为光是沿直 线传播的。 解:无线电波能绕过建筑物,是因为它的波长长,而可见光不能绕过,是由于其波长同障碍物比起来,数量级差太多,衍射现象不明显。 [ F ] 2.光的夫琅和费单缝衍射图样的特点是各级亮条纹亮度相同。 解:单缝夫琅和费衍射条纹的亮度是非均匀的,中央亮纹最亮,其余明纹随着级次增加亮度减弱。 [ T ] 3.光学仪器的分辨率与仪器的通光孔径成正比,与入射光的波长成反比。 解:光学仪器的分辨率为:λ ?D 22.111=Δ,从上式知道题目所述正确。 [ F ] 4.用半波带法处理单缝夫琅禾费衍射时,就是将单缝分成若干个缝宽为2λ的半 波带。 解:用半波带法处理单缝夫琅禾费衍射时,是将衍射角为?的一束平行光的在缝外的最大光程差用2λ 去分,这样,对应的单缝也被分成若干个半波带,并不是说每个半波带的缝宽是2λ,而是只相邻的两个半波带的对应光线在缝外引起的光程差是2λ 。 [ F ] 5.光栅的分辨率与其光栅常数成正比。 解:教材P.140,光栅的分辨率为:kN R =,即:光栅的分辨率与谱线的级次k 和光栅的总缝数N 成正比,与光栅常数d 无关。 二、选择题: 1.根据惠更斯--菲涅耳原理, 若已知光在某时刻的波阵面为S , 则S 的前方某点P 的光强度取决于波阵面S 上所有面积元发出的子波各自传到P 点的 [ D ] (A) 振动振幅之和 (B) 振动振幅之和的平方 (C) 光强之和 (D) 振动的相干叠加 解:教材126页。

最新大学物理第八章课后习题答案

第八章电磁感应电磁场 8 -1一根无限长平行直导线载有电流I,一矩形线圈位于导线平面内沿垂直于载流导线方向以恒定速率运动(如图所示),则() (A)线圈中无感应电流 (B)线圈中感应电流为顺时针方向 (C)线圈中感应电流为逆时针方向 (D)线圈中感应电流方向无法确定 分析与解由右手定则可以判断,在矩形线圈附近磁场垂直纸面朝里,磁场是非均匀场,距离长直载流导线越远,磁场越弱.因而当矩形线圈朝下运动时,在线圈中产生感应电流,感应电流方向由法拉第电磁感应定律可以判定.因而正确答案为(B). 8 -2将形状完全相同的铜环和木环静止放置在交变磁场中,并假设通过两环面的磁通量随时间的变化率相等,不计自感时则() (A)铜环中有感应电流,木环中无感应电流 (B)铜环中有感应电流,木环中有感应电流 (C)铜环中感应电动势大,木环中感应电动势小 (D)铜环中感应电动势小,木环中感应电动势大 分析与解根据法拉第电磁感应定律,铜环、木环中的感应电场大小相等,但在木环中不会形成电流.因而正确答案为(A). 8 -3有两个线圈,线圈1 对线圈2 的互感系数为M21,而线圈2 对线圈1

的互感系数为M 12 .若它们分别流过i 1 和i 2 的变化电流且t i t i d d d d 21<,并设由i 2变化在线圈1 中产生的互感电动势为ε12 ,由i 1 变化在线圈2 中产生的互感电动势为ε21 ,下述论断正确的是( ). (A )2112M M = ,1221εε= (B )2112M M ≠ ,1221εε≠ (C )2112M M =, 1221εε< (D )2112M M = ,1221εε< 分析与解 教材中已经证明M21 =M12 ,电磁感应定律t i M εd d 12121=;t i M εd d 21212=.因而正确答案为(D ). 8 -4 对位移电流,下述四种说法中哪一种说法是正确的是( ) (A ) 位移电流的实质是变化的电场 (B ) 位移电流和传导电流一样是定向运动的电荷 (C ) 位移电流服从传导电流遵循的所有定律 (D ) 位移电流的磁效应不服从安培环路定理 分析与解 位移电流的实质是变化的电场.变化的电场激发磁场,在这一点位移电流等效于传导电流,但是位移电流不是走向运动的电荷,也就不服从焦耳热效应、安培力等定律.因而正确答案为(A ). 8 -5 下列概念正确的是( ) (A ) 感应电场是保守场 (B ) 感应电场的电场线是一组闭合曲线 (C ) LI Φm =,因而线圈的自感系数与回路的电流成反比 (D ) LI Φm =,回路的磁通量越大,回路的自感系数也一定大 分析与解 对照感应电场的性质,感应电场的电场线是一组闭合曲线.因而 正确答案为(B ). 8 -6 一铁心上绕有线圈100匝,已知铁心中磁通量与时间的关系为

相关文档
最新文档