对非欧几何的认识

对非欧几何的认识
对非欧几何的认识

非欧几何的诞生及其给我们的启示

摘要:

非欧几何的创立是数学史上最光辉的篇章,也是人类历史上一次伟大的思想解放的典范,它不仅带来了数学思想的深刻变革,也使人们的思想发生了极大的变化,使人们对真理、时空等一系列重大的哲学问题有了新的认识,对人类文化的发展产生了非同寻常的影响。数学史上,非欧几何占有特殊的地位.以非欧几何的发明过程为基本线索,探讨了其对数学学科本身、人类文化、哲学思想的影响;对数学科研者、数学教育工作者及高校学生的启示.

关键词:

非欧几何;罗巴切夫斯基几何;黎曼几何;几何原本;

1 非欧几何的发展史

1.1 问题的提出

非欧几何的发展源于2 000 多年前的古希腊数学家的欧几里得的《几何原本》.其中公设五是欧几里得自己提出的,它的内容是“若一条直线与两直线相交,且若同侧所交两内角之和小于两直角,则两直线无限延长后必相交于该侧的一点”.这一公设引起了广泛的讨论,因为它不如其他公理、公设那样简明,欧几里得本人也不满意这条公设,他在证完了所有不需要平行公设的定理后才使用它,怀疑它可能不是一个独立的公设,或许能用其它公设或公理代替.从古希腊时代开始到19 世纪的2000 多年来数学家们始终对这条公设耿耿于怀,孜孜不倦的试图解决这个问题.数学家们主要沿2 条研究途径前进:一条途径是寻找一条更为自明的命题代替平行公设;另一条途径是试图从其他9 条公理、公设推导出平行公设来.沿第一条途径找到的第五公设最简单的表述是1795 年苏格兰数学家普雷菲尔(J.Playfair 1748-1819)给出的:“过

直线外一点,有且只有一条直线与原直线平行”也就是我们今天中学课本里使用的平行公理.但实际上古希腊数学家普罗克鲁斯在公元5 世纪就陈述过它.然而问题是,所有这些替代公设并不比原来的第五公设更好接受,更“自然”.历史上第一个证明第五公设的重大尝试是古希腊天文学家托勒玫(Ptolemy,约公元150 年)做出的,后来普罗克鲁斯指出托勒玫的“证明”无意中假定了过直线外一点只能作一条直线与已知直线平行,这就是上面提到的普雷菲尔公设.

1.2 问题的解决

1.2.1 非欧几何的萌芽

沿第二条途径论证第五公设的工作在18 世纪取得突破性进展.首先是意大利人萨凯里(Saccharin 1667-1733)提出用归谬法证明第五公设,萨凯里从四边形ABCD 开始,如果角A 和角B 是直角,且AC=BD,容易证明角C等于角D.这样第五公设便等价于角C 和角D 是直角这个论断.萨凯里提出另2 个假设:(1)钝角假设:角C 和角D 都是钝角;(2)锐角假设:角C 和角D 都是锐角.最后在锐角假设下,萨凯里导出了一系列结果,因为与经验认识违背,使他放弃了最后结论.但是从客观上为非欧几何的创立提供了极有价值的思想方法,开辟了一条不同于前人的新途径.其后瑞士数学家兰伯特(Lambert1728-1777)所做的工作与萨凯里相似.他也考察了一类四边形,其中3 个角为直角,而第5 个角有3 种可能性:直角、钝角和锐角.他同样在锐角假设下得到“三角形的面积取决于其内角和;三角形的面积正比于平角与内角和的差.他认为只要一组假设相互没有矛盾,就提供了一种几何的可能.著名的法国数学家勒让德(A.M.Legendar1752-1833)对平行公设问题也十分关注,他得到的一个重要定理:“三角形内角之和不能大于两直角”.这预示着可能存在着一种新几何.19 世纪初,德国人萨外卡特(schweikart 1780-1859)使这种思想更加明朗化.他通过对“星形几何”的研究,指出:“存在两类几何:狭义的几何(欧氏几何)星形几何.在后一个里面,三角形有一个特点,就是三角形内角之和不等于两直角”.

1.2.2 非欧几何的诞生

前面提到的一些数学家尤其是兰伯特,都是非欧几何的先驱,但是他们都没有正式提出一种新几何并建立其系统的理论.而著名的数学家高斯(Gauss 1777-1855)、波约(Bolyai 1802-1860)、罗巴切夫斯基(Lobatchevsky1793-1856)就这样做了,成为非欧几何的创始人.高斯是最早指出欧几里得第五公设独立于其他公设的人.早在1792 年他就已经有一种思想,去建立一种逻辑几何学,其中欧几里得第五公设不成立.1794 年高斯发现在他的这种几何中,四边形的面积正比于2 个平角与四边形内角和的差,并由此导出三角形的面积不超过一个常数,无论其顶点相距多远.后来他进一步发展了他的新几何,称之为非欧几何.他坚信这种几何在逻辑上是无矛盾的,并且是真实的,能够应用的,为此他还测量了3个山峰构成的三角形内角,他相信内角和的亏量只有在很大的三角形中才能显露出.但他的测量因为仪器的误差而宣告失败.遗憾的是高斯在生前没有任何关于非欧几何的论著.人们是在他逝世后,从他与朋友的来往函件中得知了他关于非欧几何的研究结果和看法.匈牙利青年数学家波约在研究欧几里得第五公设的基础上建立了一种新几何,他称之为“绝对空间中的几何”,并写了一篇26 页的论文《绝对空间的科学》.本论文出版时作为附录附于其父的书《为好学青年的数学原理论著》.当时的波约已建立起非欧几何的思想,并且相信新几何不是自相矛盾的,在1823-11-23 给他父亲的信中,波约写道:“我已得到如此奇异的发现,使我自己也为之惊讶不止”,在非欧几何的3 个发明人中,只有罗巴切夫斯基最早且系统地发表了自己的研究成果.罗巴切夫斯基曾卓越的指出:“直到今天,几何学中的平行线理论还是不完善的,从欧几里得时代以来,两千多年来徒劳无益的努力,促使我们怀疑在概念本身之中并未包括那样的真实情况,它是大家想要证明的,也是可以像别的物理规律一样单用实验(如天文检测)来检验.最后,我肯定了推测的真实性,而且认为困难的问题完全解决了”,“不论是如何给出的,只可以认为是说明,而且数学证明的完整意义不是不应该获得尊重的”.他的工作是在前人的基础上,引用与欧氏第

五公设相矛盾的命题,即直线外1 点可作2 条平行线为假设,并且把他同欧氏几何中其它公设和公理相联系.经过推理后,得出3 个结论:(1)用欧氏几何其它公设和公理不能证明欧氏第五公设,即第五公设是独立的;(2)与第五公设相矛盾的公设同欧氏几何其它公设、公理相结合,展开一系列推理,获得了许多在逻辑上无矛盾的定理,构成了不同于欧氏几何的新的几何学;(3)这种逻辑上无矛盾的几何学的真理性同物理学中的定理一样,只能凭实验,例如用天文观测来检验.这3条结论显然与欧氏几何不同,是一种全新的几何体系,是罗氏独创性思维的结晶.他的结论是在1826 年2 月的一次学术报告上以《简要叙述平行定理的一个严格证明》为题报告的.由于罗巴切夫斯基对非欧几何的特殊贡献,人们把这种几何称为罗氏几何.

1.2.3 非欧几何的发展与确认

非欧几何要获得人们的普遍接受,需要确实的建立非欧几何自身的无矛盾性和现实意义.罗巴切夫斯基终其一身努力最后并没有实现这个目标.1854 年,黎曼(G.F.B.Riemann 1826-1866)摆脱高斯等前人把几何对象局限在3 维欧几里得空间的曲线和曲面的束缚,从维度出发,建立了更一般的抽象几何空间.黎曼仿照传统的微分几何定义流形上2 点之间的距离、流形上的曲线和曲线之间的夹角.并以这些概念为基础,展开对n 维流形几何性质的研究.在n 维流形上他也定义类似于高斯在研究一般曲面时刻画曲面弯曲程度的曲率.他指出对于3维空间,有以下3 种情形:(1)曲率为正常数;(2)曲率为负常数;(3)曲率恒等于0.黎曼指出后两种情形分别对应于罗巴切夫斯基的非欧几何和通常的欧氏几何学,而第一种情形则是黎曼本人的创造,它对应于另一种非欧几何学.黎曼创造的几何中的一条基本规定是:在同一平面内任何2 条直线都有公共点(交点).在黎曼几何学中不承认平行线的存在.它的另一条公设讲:直线可以无限延长,但总的长度是有限的.黎曼几何的模型是一个经过适当“改进”的球面.19 世纪70 年代以后,意大利数学家贝尔特拉米、德国数学家克莱茵和法国数学家庞加莱等人先后在欧几里得空间中给出了非欧几何的直观模型,从而揭示出非欧几何的现实意义.贝尔特拉米的

模型是一个叫“伪球面”的曲面,它由平面曳物线绕其渐近线旋转一周而得.贝尔特拉米证明,罗巴切夫斯基平面片上的所有几何关系与适当的“伪球面”片上的几何关系相符合:也就是说,对应于罗巴切夫斯基几何的每一断言,就有一个伪球面上的内蕴几何事实.这使罗巴切夫斯基几何立刻就有了现实意义.克莱茵的模型比贝尔特拉米的简单明了.在普通欧氏平面上取一个圆,并且只考虑整个圆的内部.他约定把圆的内部叫“平面”,圆的弦叫“直线”(根据约定将弦的端点除外).可以证明,这种圆内部的普通(即欧氏)几何事实就变成罗巴切夫斯基几何的定理,而且反过来,罗巴切夫斯基几何中的每个定理都可以解释成圆内部的普通几何事实.在克莱茵之后,庞加莱也对罗巴切夫斯基几何给出了模型:在欧氏平面内划一条直线,而使之分为上、下两个平面,把不包括这条直线在内的上半平面作为罗氏平面,其上的欧氏点当作罗氏几何的点,把以该直线上任一点为中心,任意长为半径所做出的半圆作为罗氏几何的直线,然后对如此规定了的罗氏元素一一验证罗氏几何诸公理全部成立.这样一来,如果罗氏系统在今后出现了正、反2 个相互矛盾的命题的话,则只要按上述规定之几何元素之间的对应名称进行翻译,立即成为相互矛盾的两个欧氏几何定理,从而欧氏几何就有矛盾了.因此,只要承诺欧氏几何是无矛盾的,那么罗氏几何一定也是相容的,这就把罗氏几何的相容性证明通过上述庞家莱模型转化为欧氏系统的相容性证明.由于人们承认欧氏几何是相容的,因此,罗氏几何也是相容的.这样一来,就使非欧几何具有了至少与欧氏几何同等的真实性.至此,历经2 000 余年,非欧几何学作为一种几何的合法地位可以说充分建立起来了,也真正获得了广泛的理解,人们最初的愿望终于变成了现实.

非欧几何的诞生,是自希腊时代以来数学中一个重大的革新步骤.在这里我们将沿着事物的历史发展过程来叙述这一历史的重要意义.M.克莱茵(M. Klein)在评价这一段历史的时候说:“非欧几何的历史以惊人的形式说明数学家受其时代精神影响的程度是那么厉害.当时萨凯里曾拒绝过欧氏几何的奇异定理,并且断定欧氏几何是唯一正确的.但在一百年后,高斯、罗巴切夫斯基和波约满怀信心地接受了新几何”.

2.1 对数学学科本身

2.1.1 数学发展的相对独立性

通过逻辑演绎法建立的非欧几何体系为数学的发展提供了一种模式,使人们清楚地看到数学可以有自己的逻辑体系存在,从而独立发展.数学发展的相对独立性突出表现为:数学理论的发展往往具有超前性,它可以独立于物理世界而进行,可以超前于社会实践,并反作用于社会实践,推动数学乃至于整个科学向前发展.19 世纪前,数学始终与应用数学紧密结合在一起,即数学不能离开实用学科而独立发展,研究数学的最终目的是为了解决实际问题.但是非欧几何第一次使数学的发展领先于实用科学,超越人们的经验.非欧几何为数学创造了一个全新的世界:人类可以利用自己的思维,按照数学的逻辑要求自由自在的进行思考.于是数学被认为应当是那些并不是直接地或间接地由于研究自然界的需要而产生出来的任意结构.这种观点逐渐被人们了解,于是造成了今天的纯粹数学与应用数学的分裂.

2.1.2 数学的本质在于它的充分自由

非欧几何的创立,使一直为人们意识到但未曾清楚地认识的区别呈现出来了即数学空间与物理空间的不同.数学家创造出几何理论,然后由此决定他们的空间观.这种建立在数学理论基础上的空间观、自然观,一般并不能否定客观世界的存在等内容,它仅仅强调这样一些事实:人们关于空间的判断所获得的一系列结论纯粹是自己的创造.物质世界现实与这种现实的理论,永远是两回事.正因为如此,人类探索知识、建立理论的认识活动才永远没有尽头.非欧几何的创立使人们认识到数学是人的精神的创造物,而不是对客观现实的直接临摹,这样就使数学获得了极大的自由,同时也使数学丧失了对现实的确定性.数学从自然界和科学中解脱出来,继续着它自己的行程.对此,M.克莱茵说:“数学史的这一阶段,使数学摆脱了与现实的紧密联系,并使数学本身从科学中分离出来了,就如同科学从哲学中分离出来,哲学从宗教中分离出来,宗教从万物有灵论和迷信中分离出来一样.现在可以利用乔治.康托的话了:“数学的本

质在于它的充分自由”.

2.1.3 几何观念的更新

非欧几何的出现打破了欧氏几何一统天下的局面,使几何学的观念得到更新.传统欧氏几何认为空间是唯一的,而非欧几何的出现打破了这种观念,促使人们对欧氏几何乃至整个几何学的基础问题作深入探讨.非欧几何是敢于向传统挑战、勇于为科学献身的人类精神的产物高斯、波约、罗巴切夫斯基几乎同时发现了非欧几何,但三人对待新几何的态度是不同的.高斯很早就意识到了新几何的存在,但他没有向世人公布他的新思想,他受康特(Kant)唯心思想的影响,不敢向传统几何学界达2 000 余年之久的欧氏几何挑战,以致推迟了非欧几何的诞生.波约致力于平行公设的研究,终于发现了新几何.这其中还有一个故事,当高斯决定将自己的发现秘而不宣时,波约却急切的想通过高斯的评价将自己的研究公诸于世,然而高斯回信给他的父亲F.波约中说:“夸奖他就等于称赞我自己.整篇文章的内容,你儿子采取的思路和获得的结果,与我在30 至35 年前的思考不谋而合”,波约对高斯的回答深感失望,认为高斯想剽窃自己的成果,特别是在罗巴切夫斯基关于非欧几何的著作出版后,他更决定从此不再发表论文.罗巴切夫斯基在1826 年公开新几何思想后,并没有得到同代人的理解与赞扬,反而遭到讽刺和攻击,“可是没有任何力量可以动摇罗巴切夫斯基的信心,他像屹立在大海中的灯塔,惊涛骇浪的冲击,十足显出他刚毅的意志,他一生始终为新思想而斗争”.在他双目失明时,还口授完成了《泛几何学》.

人们发现新几何的过程启示我们:只有突破了对传统、对权威的迷信,才能充分发挥科学的创造性;只有不畏艰难困苦,勇于为科学献身,才能追求、捍卫超越时代的真理.一般认为高斯、波约、罗巴切夫斯基3 人们同时发现了新几何,这是人们对历史的公正,但人们更喜欢称新几何为罗氏几何,这正是人们对罗巴切夫斯基为科学献身精神的高度赞扬.非欧几何精神促使人们树立宽容、包容一切的产物非欧几何的创立,解放了人类思想,新

见解、新观点不断涌现,“数学显现为人类思想的自由创造物”.数学的发展使康托由衷的说道:“数学的本质在于其自由”.这种思想活跃而且民主的艺术气氛,使数学以前所未有的速度向前发展.非欧几何曲折的创建历程及其所带来的数学的发展,使人们意识到自由创造、百家争鸣对科学发展的重要性,促使人们树立宽容、包容一切的精神与美德.

2.3 哲学思想方面

2.3.1 认识论的变革

法国哲学家、数学家彭加莱(Henri Poincare)说过:非欧几何的发现,是认识论一次革命的根源.简单讲,人们可以说,这一发现已经胜利的打破了那个为传统逻辑所要求的,束缚住任何理论的两难论题:即科学的原理要么(感官观察的事实).他指出:原理可能是简单的任意约定,但是这些约定决不是同我们的心灵和自然界无关的,它们只能靠着一切人的默契才能存在,它们并且紧密地依赖着我们所生活的环境中的实际外界条件.事实上正是由于这一点,对于探索未知或目前无法感知的事物,我们可对自然界的认识作某种“默契约定”,这是认识一切事物的开始和基础.另外,我们在理论评判中,放弃非彼即此的评判,爱因斯坦就说过[8]:这种非彼即此的评判是不正确的.这些评判家、数学家的评判无疑是非欧几何创立后,其对思想、理论建立,特别是对认识论有最为直接的影响;更进一步的近代的理论和技术的进步均离不开它的内在影响,像“相对论”的产生、特别是对时空的进一步认识,集合论、现代分析基础、数理逻辑、量子力学等学科建立与发展均可以看成是非欧几何的直接结果.非欧几何的创立所产生的震荡至今余波未消.

2.3.2 打破人类的传统思维方式

分析和评价一种理论的首要依据应该是看其是否有“相容性”,即它是否有或会得出自相矛盾的结论.如果一个理论尚不能“自圆其说”,说明这一理论要么还只是人类经验的一种简

单表述和列举,还没有进化到“理论”的高度;要么至少还需要进一步完善和改进.本来非欧几_何与欧氏几何理论建立的前提是矛盾的,而欧氏几何已被普遍接受.是否接受非欧几何势必产生这样的问题,矛盾的前提是否一定能够导出矛盾的结果?传统的思维方式认为这是一定的,即矛盾的前提必然导致矛盾的结果.接受非欧几何就意味着要冲破这一传统思维方式的束缚.随着时间的推移,特别是非欧几何的成果的广泛应用,使人们认识到:我们在建立理论的过程中不能保证矛盾的前提一定能导出矛盾的结果.因此,在理论的建立过程中,相容性是必须具备的,特别是在导出某个结论的过程中,我们必须清醒的认识到建立的理论体系是否具有无矛盾性、是否具有排中性.

2.4.数学科研者的认识

2.4.1 敢于挑战

勇敢面对在科学探索路途上的暴风雨在科学探索的征途上,一个人经得住一时的挫折和打击并不难,难的是勇于长期甚至终生在逆境中奋斗.罗巴切夫斯基的新学说,违背了2 000 多年来的传统思想,动摇了欧氏几何“神圣不可侵犯”的权威基础,同时也违背了人们的“常识”.他的学说一发表,社会上的嘲弄、攻击,甚至侮辱、谩骂,暴雨般地袭来:科学院拒绝接受他的论文;大主教宣布他的学说是“邪说”;大多数的权威们称罗巴切夫斯基的学说是“伪科学”,是一场“笑话”;即使那些心肠比较好的人最多也只能抱着“对一个错误的怪人的宽容和惋惜态度”;连不少著名的文学家也起来反对这种新的几何,如德国诗人歌德,在他的名著(浮士德)中写下了这样的诗句:“有几何兮,名曰:‘非欧’,自己嘲笑,莫名其妙”.面对种种攻击、嘲笑,罗巴切夫斯基毫不畏惧,寸步不让,他像屹立在大海中的灯塔,表现出一个科学家“追求科学需要的特殊勇敢”.罗巴切夫斯基坚信自己学说的正确性,为此奋斗一生.从1826 年发表了非欧几何体系后,又陆续出版了《关于几何原本》等8本著作.在他逝世前他的眼睛差不多瞎了,还口述,用俄、法2 种文字写成他的名著《泛几何学》.罗巴切夫斯基就是在逆境中奋

斗终生的勇士.同样,一名数学工作者,特别是声望较高的学术专家,正确识别出那些已经成熟的或具有明显现实意义的科技成果并不难,难的是及时识别出那些尚未成熟或现实意义尚未显露出来的科学成果.数学的发展决不是一帆风顺的,在更多的情况下是充满犹豫、徘徊,要经历艰难曲折甚至会面临更多危机的.我们每一位科学工作者,既应当作一名勇于在逆境中顽强点头的科学探索者,又应当成为一个科学领域中新生事物的坚定支持者.

2.4.2 正确对待数学领域里的成就

数学是一门历史性或者说积累性很强的学科.重大的数学理论总是在继承和发展原有理论的基础上建立起来的,它们不仅不会推翻原有的理论,而且总是包含原先的理论.如非欧几何可以看成是欧氏几何的拓广.因此,有的数学史家认为“在大多数的学科里,一代人的建筑为下一代人所拆毁,一个人的创造被下一个人所破坏.惟独数学,每一代人都在古老的大厦上添加一层楼”.克莱茵在考察第五公设研究的历史特别是从18~19 世纪非欧几何由“潜”到“显”转变的100 多年的历史过程时指出:“任何较大的数学分支或较大的特殊成果,都不会只是个人的工作,充其量,某些决定性步骤或证明可以归功于个人.这种数学积累特别适用于非欧几何”.事实上,自从《几何原本》以后到19 世纪,第五公设问题就像一块磁石一样广泛地吸引和激励着各个时代有才华的数学家为之奋斗.这就形成了一个在科学史上时间跨度最长、成员最多,并以传播和研究第五公设为范式的数学共同体.在这个共同体中,数学家相互交流思想,交换研究成果,对研究成果进行评议,形成不断竞争和激励的体制.罗巴切夫斯基也是从前人和自己的失败得到启迪,使他大胆思索问题的相反提法:可能根本就不存在第五公设的证明.于是,他便调转思路,着手寻求第五公设不可证的解答.罗巴切夫斯基正是沿着这个途径,在试证第五公设不可证的过程中发现一个新的几何世界的.也可以说,罗氏几何的出现应归功与萨凯里、兰伯特等对第五公设的研究.在今天分支越来越细的数学领域里,精通多个领域的知识的数学家也越来越少.对此,数学科研者应团结,相互进行交流;用平和的心态对待已取得的

成绩,不骄不躁.

2.5 对数学教师和数学学习者

2.5.1 在质疑问难中培养创新思维

罗巴切夫斯基认为,作为一名优秀的数学教师,讲授数学必须叙述精确、严密,所有概念都应当完全清晰.因为在他看来,数学课程是以概念为基础的,几何学尤其如此.所以他在备课中,通过对欧氏几何的逻辑结构的全面思考,发现了其逻辑体系的缺陷,使他感到非常困惑.他决心在自己的教学实践中消除那些缺陷.后来他确实编写了一本几何教科书《几何学教程》.他不仅在教材中形成并贯彻了他的非欧几何思想,而且他关于非欧几何的研究,始终是和教学活动相结合的.他关于非欧几何的许多定理都是在授课过程中推导出来的,在学生中交流、修改和完善的.我们可以肯定的说,他创立非欧几何的伟大成果是从几何教育改革的角度切入的,是一个数学教育家取得伟大突破的成功范例.正如数学史家鲍尔加斯指出的“罗巴切夫斯基希望建立起在教学法意义上无可指责的几何学”,“这是促使他改革新几何的重要原因”.“他对教学法的探讨,获得了出色的、开创几何学发展新阶段的、作为人类研究和征服周世界围新方法的科学结论”.所以作为一名21 世纪的数学教师,在平时的教学过程中要不断的学习这个时代的新的知识,要勇于质疑你已经掌握的知识;教学中要引导学生广开思路,重视发散思维;教师要精选一些典型问题,鼓励学生标新立异、大胆猜想、探索,培养学生的创新意识.

2.5.2 在教学中训练学生的创新思维

罗巴切夫斯基刚开始是循着前人的思路,试图给出第五公设的证明.在仅存下来的他的学生听课笔记中,就记载着他在1816-1817 学年度几何教学中给出的几个证明.但他很快就意识到证明是错误的.前人和自己的失败从反面启迪了他,使他大胆思索问题的相反提法:可能根本就不存在第五公设的证明.于是,他便调转思路,着手寻求第五公设不可证的解答.罗巴切

夫斯基正是沿着这个途径,在试证第五公设不可证的过程中发现一个新的几何世界的.“学起于思,思源于疑”,我们在探索知识的思维过程总是从问题开始,又在解决问题中得到发展.教师不仅要善于设问,还要激发学生质疑问难.教学中,要鼓励学生在学习过程中碰到的问题提出来并和同学讨论,让学生存在一个充分表现的机会.先对不同问题提供同一思路来解决,之后提出个别条件的变化,要求用新的思路解决,以打破原来的思维定势,使思维灵活而富有创造性.

2.5.3 非欧几何的历史对高校学生学习数学的意义

高校学生可通过对数学文化的学习,了解人类社会发展与数学发展的相互作用,认识数学发生、发展的必然规律;了解人类从数学的角度认识客观世界的过程;发展求知、求实、勇于探索的情感和态度;体会数学的系统性、严密性、应用的广泛性,了解数学真理的相对性;提高学习数学的兴趣.非欧几何的诞生和发展过程曲折而又艰辛,而数学家们也为之付出了巨大的努力.它于现今和以后的数学学习者有着深远而又积极的意义和影响.知识的学习和研究永无止境,只有通过不断的创新和探索,才有新的知识的创造和新知识领域的发现.“读史使人明智”,学习非欧几何学发展史对于揭示数学知识的现实来源和应用,对于引导学生体会真正的数学思维过程,创造一种探索与研究的数学学习气氛,对于激发学生对数学的兴趣,培养探索精神,都有重要意义.

参考文献:

[1]克莱茵M. 古今数学思想. 上海: 上海科学技术出版社,2002.

[2]亚历山大洛夫. 数学—它的内容、方法和意义(第3卷). 北京: 科学出版社, 1984.

[3]李文林. 数学珍宝. 北京: 科学出版社, 1998.

[4]梁宗巨. 世界数学史简编. 沈阳: 辽宁出版社, 1989.

[5]丁石孙, 张组贵. 数学与教育. 长沙: 湖南教育出版社,1989.

[6]伊夫斯H. 数学史上的里程碑. 北京: 科学技术出版社,1990.

[7]菲力普?弗兰克. 科学的哲学. 上海: 上海人民出版社,1985.

[8]赵晓芬. 从非欧几何的产生看数学对人类文化的影响. 长春师范学院学报, 2004.

对非欧几何的认识

非欧几何的诞生及其给我们的启示 摘要: 非欧几何的创立是数学史上最光辉的篇章,也是人类历史上一次伟大的思想解放的典范,它不仅带来了数学思想的深刻变革,也使人们的思想发生了极大的变化,使人们对真理、时空等一系列重大的哲学问题有了新的认识,对人类文化的发展产生了非同寻常的影响。数学史上,非欧几何占有特殊的地位.以非欧几何的发明过程为基本线索,探讨了其对数学学科本身、人类文化、哲学思想的影响;对数学科研者、数学教育工作者及高校学生的启示. 关键词: 非欧几何;罗巴切夫斯基几何;黎曼几何;几何原本; 1 非欧几何的发展史 1.1 问题的提出 非欧几何的发展源于2 000 多年前的古希腊数学家的欧几里得的《几何原本》.其中公设五是欧几里得自己提出的,它的内容是“若一条直线与两直线相交,且若同侧所交两内角之和小于两直角,则两直线无限延长后必相交于该侧的一点”.这一公设引起了广泛的讨论,因为它不如其他公理、公设那样简明,欧几里得本人也不满意这条公设,他在证完了所有不需要平行公设的定理后才使用它,怀疑它可能不是一个独立的公设,或许能用其它公设或公理代替.从古希腊时代开始到19 世纪的2000 多年来数学家们始终对这条公设耿耿于怀,孜孜不倦的试图解决这个问题.数学家们主要沿2 条研究途径前进:一条途径是寻找一条更为自明的命题代替平行公设;另一条途径是试图从其他9 条公理、公设推导出平行公设来.沿第一条途径找到的第五公设最简单的表述是1795 年苏格兰数学家普雷菲尔(J.Playfair 1748-1819)给出的:“过

直线外一点,有且只有一条直线与原直线平行”也就是我们今天中学课本里使用的平行公理.但实际上古希腊数学家普罗克鲁斯在公元5 世纪就陈述过它.然而问题是,所有这些替代公设并不比原来的第五公设更好接受,更“自然”.历史上第一个证明第五公设的重大尝试是古希腊天文学家托勒玫(Ptolemy,约公元150 年)做出的,后来普罗克鲁斯指出托勒玫的“证明”无意中假定了过直线外一点只能作一条直线与已知直线平行,这就是上面提到的普雷菲尔公设. 1.2 问题的解决 1.2.1 非欧几何的萌芽 沿第二条途径论证第五公设的工作在18 世纪取得突破性进展.首先是意大利人萨凯里(Saccharin 1667-1733)提出用归谬法证明第五公设,萨凯里从四边形ABCD 开始,如果角A 和角B 是直角,且AC=BD,容易证明角C等于角D.这样第五公设便等价于角C 和角D 是直角这个论断.萨凯里提出另2 个假设:(1)钝角假设:角C 和角D 都是钝角;(2)锐角假设:角C 和角D 都是锐角.最后在锐角假设下,萨凯里导出了一系列结果,因为与经验认识违背,使他放弃了最后结论.但是从客观上为非欧几何的创立提供了极有价值的思想方法,开辟了一条不同于前人的新途径.其后瑞士数学家兰伯特(Lambert1728-1777)所做的工作与萨凯里相似.他也考察了一类四边形,其中3 个角为直角,而第5 个角有3 种可能性:直角、钝角和锐角.他同样在锐角假设下得到“三角形的面积取决于其内角和;三角形的面积正比于平角与内角和的差.他认为只要一组假设相互没有矛盾,就提供了一种几何的可能.著名的法国数学家勒让德(A.M.Legendar1752-1833)对平行公设问题也十分关注,他得到的一个重要定理:“三角形内角之和不能大于两直角”.这预示着可能存在着一种新几何.19 世纪初,德国人萨外卡特(schweikart 1780-1859)使这种思想更加明朗化.他通过对“星形几何”的研究,指出:“存在两类几何:狭义的几何(欧氏几何)星形几何.在后一个里面,三角形有一个特点,就是三角形内角之和不等于两直角”.

欧几里得与欧几里得几何

欧几里得与欧几里得几何 亚历山大里亚的欧几里得(约公元前330年—前275年),古希腊数学家,被称为“几何之父”。他活跃于托勒密一世(公元前323年-前283年)时期的亚历山大里亚,他最著名的著作《几何原本》是欧洲数学的基础,提出五大公设,发展欧几里得几何,被广泛的认为是历史上最成功的教科书。欧几里得也写了一些关于透视、圆锥曲线、球面几何学及数论的作品。 欧几里得是古希腊著名数学家、欧氏几何学的开创者。欧几里得生于雅典,当时雅典就是古希腊文明的中心。浓郁的文化气氛深深地感染了欧几里得,当他还是个十几岁的少年时,就迫不及待地想进入“柏拉图学园”学习。他在有攀滋入学园之后,便全身心地沉潜在数学王国里。他潜心求索,以继器粕拉图的学术为奋斗目标,除此之外,他哪儿也不去,什么也不干。熬翻阅和研究了柏拉图的所有著作和手稿,可以说,连柏拉图的亲传攀擎也没有谁能像他那样熟悉柏拉图的学术思想、数学理论。经过对柏拉图思想的深入探究,他得出结论:图形是神绘制的,所有一切籀象的逻辑规律都体现在图形之中。因此,对智慧的训练,就应该从戡图形为主要研究对象的几何学开始。他确实领悟到了柏拉图思想的要旨,并开始沿着柏拉图当年走过的道路,把几何学的研究作为自醺羽主要任务,并最终取得了世人敬仰的成就。 最早的几何学兴起于公元前7年的古埃及,后经古希腊等人传到古希腊的都城,又借毕达哥拉斯学派纂糯典。在欧几里得以前,人们已经积累了许多几何学的知识,然黔这些知识当中,存在一个很大的缺点和不足,就是缺乏系统性。大多数是片断、零碎的知识,公理与公理之问、证明与证明之间并没有什么很强的联系性,更不要说对公式和定理进行严格的逻辑论证和说明。因此,随着社会经济的繁荣和发展,特别是随着农林畜牧业的发展、土地开发和利用的增多,把这些几何学知识加以条理化和系统化,成为一整套可以自圆其说、前后贯通的知识体系,已经是刻不容缓,成为科学进步的大势所趋。欧几里得通过早期对柏拉图数学思想,尤其是几何学理论系统而周详的研究,已敏锐地察觉到了几何学理论的发展趋势。他下定决心,要在有生之年完成这一工作。为了完成这一重任,欧几里得不辞辛苦,长途跋涉,从爱琴海边的雅典古城,来到尼罗河流域的埃及新埠—亚历山大城,为的就是在这座新兴的,但文化蕴藏丰富的异域城市实现自己的初衷。在此地的无数个日日夜夜里,他一边收集以往的数学专著和手稿,向有关学者请教,一边试着著书立说,阐明自己对几何学的理解,哪怕是尚肤浅的理解。经过欧几里得忘我的劳动,终于在公元前300年结出丰硕的果实,这就是几经易稿而最终定形的《几何原本》一书。这是一部传世之作,几何学正是有了它,不仅第一次实现了系统化、条理化,而且又孕育出一个全新的研究领域——欧几里得几何学,简称欧氏几何。 不朽的平面几何学著作 《几何原本》是一部集前人思想和欧几里得个人创造性于一体的不朽之作。传到今天的欧几里得著作并不多,然而我们却可以从这部书详细的写作笔调中,看出他真实的思想底蕴。 全书共分13卷。书中包含了5条“公理”、5条“公设”、23个定义和467个命题。在每一卷内容当中,欧几里得都采用了与前人完全不同的叙述方式,即先提出公理、公设和定义,然后再由简到繁地证明它们。这使得全书的论述更加紧凑和明快。而在整部书的内容安排上,也同样贯彻了他的这种独具匠心的安排。它由浅到深,从简至繁,先后论述了直边形、圆、比例论、相似形、数、立体几何以及穷竭 法等内容。其中有关穷竭法的讨论,成为近代微积分思想的来源。仅仅从这些卷帙的内容安排上,我们就不难发现,这部书已经基本囊括了几何学从公元前7世纪的古埃及,一直到公元前4世纪——欧几里得生活时期——前后总共400多年的数学发展历史。这其中,颇有代表性的便是在第1卷到第4卷中,欧几里得对直边形和圆的论述。正是在这几卷中,他总结和发挥了前人的思维成果,巧妙地论证了毕达哥拉斯定理,也称“勾股定理”。即在一直角三角形中,斜边上的正方形的面积等于两条直角边上的两个正方形的面积之和。他的这一证明,从此确定了勾股定理的正确性并延续了2000多年。《几何原本》是一部在科学史上千古流芳的巨著。它不仅保存了许多古希腊

几何学基础简介

几何学基础简介 Lex Li 几何原本简介 古希腊大数学家欧几里德是与他的巨著——《几何原本》一起名垂千古的。这本书是世界上最著名、最完整而且流传最广的数学著作,也是欧几里德最有价值的一部著作。欧几里德把人们公认的一些事实列成定义和公理,以形式逻辑的方法,用这些定义和公理来研究各种几何图形的性质,从而建立了一套从公理、定义出发,论证命题得到定理得几何学论证方法,形成了一个严密的逻辑体系——几何学。而这本书,也就成了欧式几何的奠基之作。 作为基础的五条公理和公设 五条公理 1.等于同量的量彼此相等; 2.等量加等量,其和相等; 3.等量减等量,其差相等; 4.彼此能重合的物体是全等的; 5.整体大于部分。 五条公设 1.过两点能作且只能作一直线; 2.线段(有限直线)可以无限地延长; 3.以任一点为圆心,任意长为半径,可作一圆; 4.凡是直角都相等; 5.同平面内一条直线和另外两条直线相交,若在直线同侧的两个内角之和小于180°,则这两条直线经无限延长后在这一侧一定相交。 《几何原本》的主要内容 欧几里得的《几何原本》共有十三卷。 目录 第一卷几何基础 第二卷几何与代数 第三卷圆与角 第四卷圆与正多边形 第五卷比例

第六卷相似 第七卷数论(一) 第八卷数论(二) 第九卷数论(三) 第十卷无理量 第十一卷立体几何 第十二卷立体的测量 第十三卷建正多面体 各卷简介 第一卷:几何基础。重点内容有三角形全等的条件,三角形边和角的大小关系,平行线理论,三角形和多角形等积(面积相等)的条件,第一卷最后两个命题是毕达哥拉斯定理的正逆定理; 第二卷:几何与代数。讲如何把三角形变成等积的正方形;其中12、13命题相当于余弦定理。 第三卷:本卷阐述圆,弦,切线,割线,圆心角,圆周角的一些定理。 第四卷:讨论圆内接和外切多边形的做法和性质; 第五卷:讨论比例理论,多数是继承自欧多克斯的比例理论,被认为是"最重要的数学杰作之一" 第六卷:讲相似多边形理论,并以此阐述了比例的性质。 第五、第七、第八、第九、第十卷:讲述比例和算术的理论;第十卷是篇幅最大的一卷,主要讨论无理量(与给定的量不可通约的量),其中第一命题是极限思想的雏形。 第十一卷、十二、十三卷:最后讲述立体几何的内容. 从这些内容可以看出,目前属于中学课程里的初等几何的主要内容已经完全包含在《几何原本》里了。因此长期以来,人们都认为《几何原本》是两千多年来传播几何知识的标准教科书。 《几何原本》的意义和影响 在几何学发展的历史中,欧几里得的《几何原本》起了重大的历史作用。这种作用归结到一点,就是提出了几何学的“根据”和它的逻辑结构的问题。在他写的《几何原本》中,就是用逻辑的链子由此及彼的展开全部几何学,这项工作,前人未曾作到。《几何原本》的诞生,标志着几何学已成为一个有着比较严密的理论系统和科学方法的学科。 论证方法上的影响 关于几何论证的方法,欧几里得提出了分析法、综合法和归谬法。所谓分析法就是先假设所要求的已经得到了,分析这时候成立的条件,由此达到证明的步骤;综合法是从以前证明过的事实开始,逐步的导出要证明的事项;归谬法是在保留命题的假设下,否定结论,从结论的反面出发,由此导出和已证明过的事实相矛盾或和已知条件相矛盾的结果,从而证实原来命题的结论是正确的,也称作反证法。

非欧几何创始人

非欧几里得几何学的创始人:黎曼 非欧几里得几何学的创始人——[德国]黎曼(1826~1866)德国有名的数学家希尔伯特在老年时曾被人问到一个有趣的问题:“假定你去世后一两千年能复活,您会做什么呢?”希尔伯特毫不犹豫且满脸认真地回答道:“我会先问‘黎曼猜想’是否已经解决了?”原来他在1900年时就把这问题列为20世纪数学家所面对的一个重要难题如果他死能复活,当然关心的是这个问题是否解决了? 在此,读者一定会自然而然地想到所谓“黎曼猜想”的作者正是本文的主人翁——黎曼。 数学奇才 格奥尔格?弗里德里希?伯恩哈德?黎曼(Gcorg Ffiedrich Bernhard№e㈣)是德国数学家。1826年9月17日他出生在德国汉诺威的一个叫布雷斯伦茨的小村庄,父亲伯恩哈德?黎曼是当地的牧师。他家人口够,全家共有6个小孩,他排行第二。黎曼天资聪明,为人友善,深得父母的喜爱。 5岁时,他对历史表现出了强烈的兴趣,常常因沉迷于古代战争故事而难以自拔。对于非正义的事他嫉恶如仇,对于被压抑的民族,他常常抱以深切的同情,他特别同情波兰人被外国侵略者统治的命运。一年之后,他的兴趣逐渐转移,他开始学习算术,算术给这个敏感的孩子提供了一些不太困难的东西去细想。从此,他天生的数学才能开始表现出来,他不但解决了别人留给他的所有题目,甚至还常出一

些困难的题目去考他的兄弟姐妹。有个故事足可以证明他的数学天赋。据黎曼中学时的数学老师回忆说:“黎曼在16岁时曾经向我借数学书看,并且很谦虚地说希望有一本不太容易看懂的书。我对他说只要你喜欢,书架上的书任你挑选,结果他选了法国数学家勒让德的《数论》。这是一本长达859页、难度非常大的大四开本书。我对黎曼说:‘试试,看你能读懂里面多少东西。’6天后,他把书送回来了。我问他读懂了多少?他竟回答说:‘这本书写得非常奇妙,我已全部懂了。’此后,黎曼就再也没有看这本书了。在后来的‘数论’毕业考试中老师拿勒让德那本书里的一些问题来考黎曼,出乎老师的意料,他的回答是那样的精彩,好像他是特意读了那本书准备考试一样。数论对他是那样有特别的吸引力,后来,黎曼又读了勒让德写的其他几何书,并从几何书中选了许多题目来做。这说明,还在中学时代,黎曼就已显示出他是一个数学天才了,他具有很强的数学直观能力及抽象思维能力。” 1846年黎曼进入哥廷根大学研读哲学和神学。实际上,神学并非他的兴趣所在。他只是为了让他的父亲高兴,想尽快得到一个有报酬的工作,以便在经济上支援家庭,才选择了神学。然而,他的心思仍然扑在数学上,他丢不开斯特恩的方程论和定积分,高斯的最小二乘法及戈尔德斯米特的地磁学。黎曼的父亲不忍心看他学得那么辛苦,最终还是让他选择了数学专业。

非欧几何简介

非欧几何简介 欧氏几何与球面几何的区别与联系 比较球面上的几何图形与平面上的几何图形的性质,我们可以总结出以下显著的差别,见表6-1: 表6-1 球面上的几何图形与平面上的几何图形的性质差异 ,其中A、B、C 为单位球面上三角形的三个内角(弧度 制) 通过上面的比较,我们看到,球面上的几何是与平面几何不同的一种几何理论。平面几何最早由希腊数学家欧几里德(Euclid,公元前300年左右)整理成

系统的理论。他的不朽之作《几何原本》不仅包含了平面几何,也包含了立体几何。为了纪念他对人类做出的伟大贡献,后来就把这种几何称为欧氏几何。球面上的几何是与欧氏几何不同的几何,所以叫做非欧几何。 球面上的几何与欧氏几何有不相同之处,但他们之间也有一些共同特征,见表6-2。 表6-2 球面上的几何与欧氏几何的共同特征 两种几何的这些相同之处,说明它们之间应该有某种内在的联系。 首先分析一下球面三角形的面积公式 把这个公式改写成 这个等式的左端称为球面三角形的角超,它反映出球面上的几何与平面几何的差距。在平面几何中三角形三内角之和等于,角超等于零。在球面上的几何中角超大于零。 不难看出当球面半径R无限增大时,球面逐渐趋向于平面,越来越小, 即三角形的角超越来越小,球面三角形逐渐趋向于平面三角形,球面几何的性质逐渐接近于平面几何的性质。所以我们可以说: 当球面半径趋向于无穷大时,球面上的几何以平面几何为极限。 因为地球的半径非常大,当我们研究的范围相对于地球半径很小时,三角形的角超就一定很小。因此,可以用平面几何的知识来代替球面几何知识,所产生的误差很小。 另一种非欧几何 通过前一小节的分析,我们发现三角形的三个内角之和的大小,在很大程度上反映了平面欧氏几何与球面几何的差别。当三角形的三个内角之和等于时,就是欧氏几何,当三角形的三个内角之和大于时,就反映出球面几何的主要特征。 有没有三角形三个内角之和小于的几何呢? 我们简单回顾一段几何发展史。在十七世纪以前,人们认为只有一种几何,就是欧氏几何,它是一切科学的基础。但是到了十七、十八世纪,数学家在对几何理论的基础进行深入研究时,首先把注意力集中在“平行公理”上。

欧几里得几何与非欧几何

欧几里得几何与非欧几何 摘要:欧几里得的《几何原本》奠定了几何学发展的基础, 随着逻辑推理的理论发展, 非欧几何在艰难中产生发展起来;其中少不了欧几里得、罗巴切夫斯基与黎曼在几何学上的巨大贡献,且两者几何学之间存在着严密的辩证关系。 关键词:欧几里得几何、几何原本、非欧几何、辩证关系 欧氏几何是人类创立的第一个完整的严密的(相对而言) 科学体系。它于公元前三世纪由古希腊数学家欧几里得完成,后来经历了两千多年的发展,对科学和哲学的影响是极其深远的。十九世纪二十年代,几何学发展史上出现了新的转折点,德国数学家高斯、匈牙利数学家亚·鲍耶和俄国数学家罗巴切夫斯基分别在1824年、1825年1826年各自独立地创立了非欧几何,其中以罗巴切夫斯基所发表的内容最完善,因此取名为罗氏几何学。1854年,德国数学家黎曼创立了黎曼几何。十九世纪末,德国数学家阂可夫斯基发展了黎曼几何,创立了四维空时几何学。1915年,爱因斯坦利用非欧几何——四维空间几何学作为工具创立了广义相对论, 不久广义相对论连同非欧几何为天文观察等科学实践所证实。从此,人们确认非欧几何是人类发现的伟大的自然科学真理。 一、欧几里得几何的发展 (一)古希腊前期几何学的发展为欧几里得几何的产生奠定了基础 在欧几里得时代以前,数学家与学者们就已经获得许多几何方面的成果,但大多数是零星的,有的对部分内容也作过一些整理加工,但不系统。面对前人留下的材料以及一些证明方法,欧几里得认真进行了总结、提练、筛选,以及分析、综合、归纳、演绎,集前人工作之大成,系统整理加工成巨著《几何原本》,所以说古希腊前期的几何学的发展为欧几里得几何的产生奠定了基础。 最早研究几何的一批人是爱奥尼亚学派,它的创始人是泰勒斯,据传他曾用一根已知长度的杆子,通过同时测量竿影和金字塔影之长,求出了金字塔的高度。人也把数学之成为抽象理论和有些定理演绎证明归功于他,如圆被直径二等分,等腰三角形两底角相等,两直线相交对顶角相等,两角及夹边对应相等的两个三角形全等,内接于半圆的角是直角等的论证。 对几何从经验上升到理论作出重要贡献的有毕达哥拉斯学派。他们注意研究抽象的数学概念,尤其对整数的性质有出色的研究。雅典的巧辩学派以著名的三等分任意角、化圆为方和倍立方三大难题为其研究中心。 柏拉图是那个时代影响最大的哲学家。柏拉图及其后继者把数学概念看作抽象图。柏拉图说数学概念不依赖于经验而自有其实在性。它们只能为人所发现,并非为人所发明或塑造。他是第一个把严密推理法则加以系统化的人,希腊人最早坚持数学里必须用演绎推理作求证的唯一方法,并使数学有别于所有其他知识领域或研究领域。柏拉图学派的最重要发现是圆锥曲线。还对不可公度量作过一些研究。这些都为欧几里得的研究开辟了道路。 欧多克斯是古希腊时代最大的数学家,他在数学上的第一个大贡献是关于比

欧式几何

欧式几何VS非欧几何 1什么是欧式几何? 2.欧式几何的来源?欧几里得 3欧式几何公理有哪些? 4欧式几何的缺陷——出现非欧几何 5什么是非欧几何? 包括?罗巴切夫斯基(俄)———罗式几何黎曼(德)————黎曼几何 6三种几何的关系

导出命题 第五条公理称为平行公理,可以导出下述命题: 通过一个不在直线上的点,有且仅有一条不与该直线相交的直线。平行公理并不像其他公理那么显然。许多几何学家尝试用其他公理来证明这条公理,但都没有成功。19世纪,通过构造非欧几里德几何,说明平行公理是不能被证明的。(若从上述公理体系中去掉平行公理,则可以得到更一般的几何,即绝对几何。) 从另一方面讲,欧式几何的五条公理并不完备。例如,该几何中的有定理:任意线段都是三角形的一部分。他用通常的方法进行构造:以线段为半径,分别以线段的两个端点为圆心作圆,将两个圆的交点作为三角形的第三个顶点。然而,他的公理并不保证这两个圆必定相交。因此,许多公理系统的修订版本被提出,其中有希尔伯特公理系统。 非欧氏几何 非欧氏几何产生于非欧式空间,而非欧式空间可以理解成扭曲了的欧式空间,可能它的坐标轴不再是直线,或者坐标轴之间并不 正交(即不成90度) 例子:欧式空间中的球面,对于在球面上爬行的蚂蚁来说就是非欧式空间的平面,它们在爬行的过程中不会感觉到球面的弯曲。当然在这样的一个球面上,欧式几何也不再成立,譬如:三角形的内角和不再是180度,而球面上两点之间的最短距离也不再是两点之间的连线(因为这时两点之间的的线段根本经 过球面)欧氏几何是平面,非欧几何是在一个不规则曲面上的 非欧几何学是一门大的数学分支,一般来讲,他有广义、狭义、通常意义这三个方面的不同含义。所谓广义式泛指一切和欧几里的几何学不同的几何学,狭义的非欧几何只是指罗式几何来说的,至于通常意义的非欧几何,就是指罗式几何和黎曼几何这两种几何。 欧几里得的《几何原本》提出了五条公设,长期以来,数学家们发现第五公设和前四个公设比较起来,显得文字叙述冗长,而且也不那么显而易见。 有些数学家还注意到欧几里得在《几何原本》一书中直到第二十九个命题中才用到,而且以后再也没有使用。也就是说,在《几何原本》中可以不依靠第五公设而推出前二十八个命题。 因此,一些数学家提出,第五公设能不能不作为公设,而作为定理?能不能依靠前四个公设来证明第五公设?这就是几何发展史上最著名的,争论了长达两千多年的关于“平行线理论”的讨论。 由于证明第五公设的问题始终得不到解决,人们逐渐怀疑证明的路子走的对不对?第五公设到底能不能证明? 到了十九世纪二十年代,俄国喀山大学教授罗巴切夫斯基在证明第五公设的过程中,他走了另一条路子。他提出了一个和欧式平行公理相矛盾的命题,用它来代替第五公设,然后与欧式几何的前四个公设结合成一个公理系统,展开

关于麦克斯韦方程组

麦克斯韦方程组▽-----乐天10518 关于热力学的方程,详见“麦克斯韦关系式”。麦克斯韦方程组(英语:Maxwell's equations)是英国物理学家麦克斯韦在19世纪建立的描述电磁场的基本方程组。它含有四个方程,不仅分别描述了电场和磁场的行为,也描述了它们之间的关系。 麦克斯韦方程组Maxwell's equations 麦克斯韦方程组是英国物理学家麦克斯韦在19世纪建立的描述电场与的四个基 本方程。 方程组的微分形式,通常称为麦克斯韦方程。在方程组中,电场和磁场已经成 为一个不可分割的整体。该方程组系统而完整地概括了电磁场的基本规律,并预言了 电磁波的存在。 麦克斯韦提出的涡旋电场和假说的核心思想是:变化的磁场可以激发涡旋电场, 变化的电场可以激发涡旋磁场;电场和磁场不是彼此孤立的,它们相互联系、相互激 发组成一个统一的电磁场。麦克斯韦进一步将电场和磁场的所有规律综合起来,建立 了完整的体系。这个电磁场理论体系的核心就是麦克斯韦方程组。 麦克斯韦方程组在中的地位,如同牛顿运动定律在力学中的地位一样。以麦克斯韦方 程组为核心的电磁理论,是经典物理学最引以自豪的成就之一。它所揭示出的的完美 统一,为物理学家树立了这样一种信念:物质的各种相互作用在更高层次上应该是统 一的。另外,这个理论被广泛地应用到技术领域。 [] 历史背景

1845年,关于电磁现象的三个最基本的实验定律:库仑定律(1785年),安培—毕奥—萨伐尔定律(1820年),法拉第定律(1831-1845年)已被总结出来,法拉第的“电力线”和“磁力线”概念已发展成“电磁场概念”。 概念的产生,也有麦克斯韦的一份功劳,这是当时物理学中一个伟大的创举,因为正是场概念的出现,使当时许多物理学家得以从牛顿“超距观念”的束缚中摆脱出来,普遍地接受了电磁作用和引力作用都是“近距作用”的思想。 1855年至1865年,麦克斯韦在全面地审视了、—毕奥—萨伐尔定律和法拉第定律的基础上,把数学分析方法带进了电磁学的研究领域,由此导致麦克斯韦电磁理论的诞生。 [] 积分形式 麦克斯韦方程组的积分形式: 麦克斯韦方程组的积分形式: 这是1873年前后,麦克斯韦提出的表述电磁场普遍规律的四个方程。 (1)描述了电场的性质。在一般情况下,电场可以是库仑电场也可以是变化磁场激发的感应电场,而感应电场是涡旋场,它的电位移线是闭合的,对封闭曲面的通量无贡献。 (2)描述了磁场的性质。磁场可以由传导电流激发,也可以由变化电场的位移电流所激发,它们的磁场都是涡旋场,磁感应线都是闭合线,对封闭曲面的通量无贡献。 (3)描述了变化的磁场激发电场的规律。 (4)描述了变化的电场激发磁场的规律。 变化场与稳恒场的关系: 当 时, 方程组就还原为静电场和稳恒磁场的方程:

欧几里德几何

欧几里德几何 简称“欧氏几何”。几何学的一门分科。公元前3世纪,古希腊数学家欧几里德把人们公认的一些几何知识作为定义和公理,在此基础上研究图形的性质,推导出一系列定理,组成演绎体系,写出《几何原本》,形成了欧氏几何。在其公理体系中,最重要的是平行公理,由于对这一公理的不同认识,导致非欧几何的产生。按所讨论的图形在平面上或空间中,分别称为“平面几何”与“立体几何”。 欧几里德几何指按照欧几里德的《几何原本》构造的几何学。 欧几里德几何有时就指平面上的几何,即平面几何。三维空间的欧几里德几何通常叫做立体几何。高维的情形请参看欧几里德空间。 数学上,欧几里德几何是平面和三维空间中常见的几何,基于点线面假设。数学家也用这一术语表示具有相似性质的高维几何。 公理描述 [编辑本段] 欧几里德几何的传统描述是一个公理系统,通过有限的公理来证明所有的“真命题”。 欧几里德几何的五条公理是: 任意两个点可以通过一条直线连接。 任意线段能无限延伸成一条直线。 给定任意线段,可以以其一个端点作为圆心,该线段作为半径作一个圆。 所有直角都全等。 若两条直线都与第三条直线相交,并且在同一边的内角之和小于两个直角,则这两条直线在这一边必定相交。 第五条公理称为平行公理,可以导出下述命题: 通过一个不在直线上的点,有且仅有一条不与该直线相交的直线。 平行公理并不像其他公理那么显然。许多几何学家尝试用其他公理来证明这条公理,但都没有成功。19世纪,通过构造非欧几里德几何,说明平行公理是不能被证明的。(若从上述公理体系中去掉平行公理,则可以得到更一般的几何,即绝对几何。) 从另一方面讲,欧几里德几何的五条公理并不完备。例如,该几何中的有定理:任意线段都是三角形的一部分。他用通常的方法进行构造:以线段为半径,分别以线段的两个端点为圆心作圆,将两个圆的交点作为三角形的第三个顶点。然而,他的公理并不保证这两个圆必定相交。因此,许多公理系统的修订版本被提出,其中有希尔伯特公理系统。 欧几里德还提出了五个“一般概念”,也可以作为公理。当然,之后他还使用量的其他性质。

数学史的文化意义

浅谈数学史与数学 内容提要: 数学的很多方法是有辩证性的,比如具体与抽象;演绎与归纳;发现与证明;分析与综合;这些方法之间有联系又有区别。数学是人类最古老的科学知识之一,它主要是研究现实生活中数与数、形与形,以及数与形之间相互关系的一门学科。他们发展也经历的很多的坎坷,在磨砺中他也得以不断的成长。说到数学美,人们自然会联想到令人心驰神往的优美而和谐的黄金分割;雄伟壮丽的科学宫殿的欧几里得平面几何;数学皇冠上的明珠“哥德巴赫猜想”……。数学的一种文化表现形式,就是把数学溶入语言之中。在数学的发展中,形成许多哲学的观点,有以罗素为代表的逻辑主义,以布劳威尔为代表的直觉主义,以希尔伯特为代表的形式主义三大学派。 关键字: 数学方法数学发展三次数学危机数学美数学与哲学 浅谈数学史与数学文化 经济管理学院经济0901李迎 一、情深意浓——学习数学的心得和感想 从小就对数学有着浓厚的兴趣,数学能给我带来一直奇妙的神奇的感觉,而学习数学更是让我学到很多东西。在思维上,逻辑的严谨,和思考的妙趣,是其他学科不能给我的。在求学的态度上,数学教给我的是脚踏实地。对数学的感觉有时不能用语言来描述,我相信很多和我一样喜欢数学的都对数学有着奇妙的感情。当同学表示学数学的枯燥时我很不能理解,在我看来数学是最实在,有趣味的,他就像是一个老朋友,等着去解读。 汉克尔曾说数学科学的特点是:高度的抽象性,体系的严谨性,应用的广泛性,发展的延续性。我懂得数学的高深,想来我没有足够的能力去深入的解读去体味,因而高考没有选数学专业。现在又有一次机会让我可以接触数学,领悟数学和数学家的神奇,美妙,毫不犹豫的选了数学文化,对数学的很多感受现在可以通过这次机会表达一二。 二、智慧展现——数学方法和数学思想 数学方法和数学思想将数学的智慧和魅力展现得淋漓尽致,这些凝聚了数学家们智慧的知识不是几句话就能说明白。数学的方法是贯穿了整个数学,也是学习数学的基础。在此我将我所学到的和我心中所想的一些数学方法和思想写出略表我对数学的解读。 数学的很多方法是有辩证性的,比如具体与抽象;演绎与归纳;发现与证明;分析与综合;这些方法之间有联系又有区别。 (一)、具体与抽象 具体是社会实践,是客观存在的东西,因为数学是源于社会实践的。同时数学是一种利用自身已有的概念、定理、公设,借助已知的相互关系,通过推理、计算而获得新发现的学科。数学的概念是抽象的,数学的方法也是抽象的。爱因斯坦相对论的发现恰恰是借助于数学的方法论路径去实现的,如果没有非欧几何人类可能还要在牛顿的时空观中走过许多年才能寻找到相对论。数学方法的抽象是借助数学概念、公理、定理、公设等,把所有涉及研究对象的概念以及研究对

《数学史概论》读书报告

《数学史概论》读书报告 数学源自于人类早期的生产活动,早期古希腊、古巴比伦、古埃及、古印度及中国古代都对数学有所研究。数学是研究数量、结构、变化以及空间模型等概念的一门学科。通过抽象化和逻辑推理的运用,由计数、计算、量度和对物体形状及运动的观察中产生。数学的基本要素是:逻辑和直观、分析和推理、共性和个性。以下对李文林著《数学史概论》作一个读后的总结。 一、《数学史概论》简介及其特点 《数学史概论(第2版)》以重大数学思想的发展为主线,阐述了从远古到现代数学的历史。书中对古代希腊和东方数学有精炼的介绍和恰当的分析;同时充分论述了文艺复兴以来近现代数学的演进与变革,尤其是20世纪数学的概观,内容新颖。《数学史概论(第2版)》中西合炉,将中国数学放在世界数学的背景中述说,更具客观性与启发性。《数学史概论(第2版)》脉络分明,重点突出,并注意引用生动的史实和丰富的图片。 本书共分十五章,其中第一章“数学的起源与早期发展”介绍了人类在蒙昧时期由于生产生活的需要,逐渐形成了数与形的概念,从最早的手指计数到石头计数,再到结绳计数直到距今大约五千多年前,出现了书写计数以及相应的计数系统。在灿烂的“河谷文明”中,重点介绍了埃及数学和美索不达米亚数学。第二章“古代希腊数学”,介绍了雅典时期和亚历山大时期的数学,其中重点对数学家泰勒斯、毕达哥拉斯、欧几里得、阿基米德及阿波罗尼奥斯及其成就作了详尽的介绍。第三章“中世纪的中国数学”,从古代著作《世本》中提到的黄帝使“隶首作算数”,殷商甲骨文中使用的完整的十进制计数,到两汉时期、魏晋南北朝时期以及宋元时期达到了发展的高潮。介绍的著作主要有《周髀算经》,《九章算术》,《算经十书》,介绍了刘徽的“割圆术”和他在面积、体积公式推证的成就,祖冲之父子推算“圆周率”,在推导几何图形体积公式时提出了“出入相补”及“祖氏原理”;第四章“印度与阿拉伯的数学”;第五章“近代数学的兴起”,讲述了中世纪的欧洲,从代数学、三角学、透视学、射影几何等方面的发展向近代数学的过渡,以至解析几何的诞生;第六章“微积分的创立”,分别介绍了牛顿和莱布尼茨从不同的角度提出的微积分原理;第七章“分析时代”;第八章至第十章,分别以代数、几何、分析这三大领域的变革为主要线索,介绍了19世纪数学的发展;第十一章至十三章是“20世纪数学概观”,分别介绍了纯粹数学的主要趋势、空前发展的应用数学、现代数学成果十例;第十四章“数学与社会”,第十五章“中国现代数学的开拓”。 本书有以下几个特点:1、与同类书相比,有着最大的空间跨度和时间跨度,从上古的巴比伦、希腊、中国、印度、阿拉伯世界,到中世纪的欧洲,以至20世纪的近代数学、当代数学,遍及世界各地对于数学的贡献地位与影响,都有中肯的评论。2、本书不仅对史实有详尽而忠实的介绍,而且兼有史评史论的作用,更有精辟的历史观。例如作者认为古希腊的数学是一种论证数学,而说中国的古代数学,在南北朝三国时期,也进入到论证数学,刘徽即为其杰出代表之一。至于中世纪欧洲数学的崛起,微积分的创立以及近代数学的诞生史,对于它们的历史背景与社会根源,作者都有敏锐的评论。作者对整个数学的发展有着明确的数学史观。3、本书不仅对数学家和他们的学术成就作了概括的介绍,而且对于一些重要成就,不惜花费篇幅,作了较详细的忠实于原始创造的说明。例如阿基米德对于球体积与抛物线弓形面积的计算,刘徽对于 的计算原理和方法,牛顿与莱布尼茨关于微积分的发现过程,以至较近代如康托关于非可数集合的发现等等,都作了较详细的介绍。这让读者不仅可以了解历史的发展,而且还能深入体会数学大师们原始创造的艰苦历程与来龙去脉。4、本书除了数学家们的传统故事外,还介绍了许多有趣的奇闻轶事。 二、对数学的认识有了进一步的提高

非欧几何的诞生及其给我们的启示论文

非欧几何的诞生及其给我们的启示 摘要:数学史上,非欧几何占有特殊的地位.以非欧几何的发明过程为基本线索,探讨了其对数学学 科本身、人类文化、哲学思想的影响;对数学科研者、数学教育工作者及高校学生的启示. 关键词:非欧几何;罗巴切夫斯基几何;黎曼几何 1 非欧几何的发展史 1.1 问题的提出 非欧几何的发展源于2 000 多年前的古希腊数学家的欧几里得的《几何原本》.其中公设五是欧几里得自己提出的,它的内容是“若一条直线与两直线相交,且若同侧所交两内角之和小于两直角,则两直线无限延长后必相交于该侧的一点”.这一公设引起了广泛的讨论,因为它不如其他公理、公设那样简明,欧几里得本人也不满意这条公设,他在证完了所有不需要平行公设的定理后才使用它,怀疑它可能不是一个独立的公设,或许能用其它公设或公理代替.从古希腊时代开始到19 世纪的2000 多年来数学家们始终对这条公设耿耿于怀,孜孜不倦的试图解决这个问题.数学家们主要沿2 条研究途径前进:一条途径是寻找一条更为自明的命题代替平行公设;另一条途径是试图从其他9 条公理、公设推导出平行公设来.沿第一条途径找到的第五公设最简单的表述是1795 年苏格兰数学家普雷菲尔(J.Playfair 1748-1819)给出的:“过直线外一点,有且只有一条直线与原直线平行”也就是我们今天中学课本里使用的平行公理.但实际上古希腊数学家普罗克鲁斯在公元5 世纪就陈述过它.然而问题是,所有这些替代公设并不比原来的第五公设更好接受,更“自然”.历史上第一个证明第五公设的重大尝试是古希腊天文学家托勒玫(Ptolemy,约公元150 年)做出的,后来普罗克鲁斯指出托勒玫的“证明”无意中假定了过直线外一点只能作一条直线与已知直线平行,这就是上面提到的普雷菲 尔公设. 1.2 问题的解决 1.2.1 非欧几何的萌芽 沿第二条途径论证第五公设的工作在18 世纪取得突破性进展.首先是意大利人萨凯里(Saccharin 1667-1733)提出用归谬法证明第五公设,萨凯里从四边形ABCD

非欧几何发展中的若干认识论问题

第20卷,第3期 科学技术与辩证法Vol.20 No.3 2003年6月 Science,Technology and Dialectics J un.,2003 非欧几何发展中的若干认识论问题 冯 进 (常熟高等专科学校数学系,江苏常熟215500) 摘 要:非欧几何在数学史上具有重要而特殊的地位.本文从认识论的角度,论述非欧几何发展中第一次遇到的数学对象的存在性、数学理论的相容性、数学体系的和谐性以及数学结论的真理性等问题,从中折射出它对数学发展的巨大推动作用。 关键词:非欧几何;认识论;存在性;相容性;和谐性;真理性 中图分类号:N033;N09 文献标识码:A 文章编号:1003-5680(2003)03-0057-06 19世纪30年代非欧几何的诞生,标志着长达两千多年的关于欧氏几何第五公设问题探索取得了突破性进展,对现代数学及相对论的发展具有极其重大的推动作用。非欧几何思想的发展有众多论著专门论述,它在数学史及科学史上的意义几乎是其他数学知识所无法相比的,对此,美国著名数学史家M?克莱因这样评述:“在19世纪所有复杂的技术创造中间,最深刻的一个,非Euclid几何学,在技术上是最简单的,这个创造引起数学的一些重要新分支,但它的最重要的影响是迫使数学家们从根本上改变对数学的性质的理解,以及它和物质世界的关系的理解,并引出关于数学基础的许多问题,这些问题在20世纪仍然在进行着争论。”[1]数学知识的增长,包括数学概念的提出、数学命题的证明、数学理论的建立等,是数学发展的重要表现,同时,也是人们对数学的不断理解与认识的过程;反之,对数学的深入理解,以及对数学思想的透彻认识,同样也推动着数学的发展,有时甚至会产生革命性的变革。非欧几何的诞生正是具有这种意义,甚至“在整个思想史中,从来没有发生过具有如此强烈影响的事件”[2]。本文着重于认识的角度,从数学对象的存在性、数学理论的相容性、数学体系的和谐性、数学结论的真理性四个方面,论述非欧几何对数学发展的这种双重影响。这四个方面,是非欧几何产生后引起的数学上,更重要的是认识上的问题,也是有史以来(至19世纪初)数学界第一次遇到的关于数学的全新的认识论问题。 一 第五公设问题探索:二千年努力引来 对数学及其性质看法的本质变化 经典数学几乎都是以现实世界为基本模型,数学结论总体上直接反映了客观事物的基本性质与运动规则,大量的生产、生活、天文观察实践,以及对这些实践的理性思考,使古代数学家确信宇宙万物是由数字构成的,甚至幻想整个世界就是数学,从毕达哥拉斯提出“万物皆数”,到柏拉图的“理念世界”,以及中世纪后的“上帝按数学方式设计宇宙”,无一不是将数学作为是自然的本质。 坚持“自然的数学设计”信念的原因来自两大方面,一是古希腊人创立的逻辑推理方法,以及由此而产生的严谨的欧氏几何体系。逻辑思维方法的创立是古希腊人对人类文明的最大贡献,欧氏几何不仅是理性思维的经典蓝本,且它的不证自明的公理、及由此推出的一系列让人不得不接受的结论,为数学设计构建了坚实的基础;二是18世纪以前几乎所有的科学实践都佐证了“自然的数学设计”。毕达哥拉斯时代就已经精确地知道弦发出的声音与弦长的关系;开普勒坚信上帝按某个简单、优美的数学方案设计了世界,他的行星运动三定律将哥白尼的理论作了最大简化,准确地描述了行星运动规律;牛顿的万有引力及力学三定律则将数学设计的信念推崇之极点,他为自己的工作能揭示无所不在的上帝之秘密而倍感欣慰。所有这些实践,事实上都是以欧氏几何为基本空间框架构建的。因此,二千多年来的理性思维活动、科学研究实践以及传统习惯感受,都把欧几里得体系当作神圣不可侵犯的“圣书”,以至于“神明”之士宁愿对着欧几里得定理发誓,而不愿对着“圣经”发誓。几乎所有的人都深信:欧氏几何就是真理。 然而,由于欧氏几何是建立在直观自明的公理基础上的,其“自明性”要求与古希腊人追求理性的一贯”天性”,使 【收稿日期】 2002-08-08 【作者简介】 冯 进(1958-),男,江苏常熟人,常熟高等专科学校数学系副教授,从事数学教育、数学思想史的学习与研究。 75

08 三角形三内角和——欧氏几何、罗氏几何、黎曼几何的比较

三角形三内角和 ——欧氏几何、罗氏几何、黎曼几何的比较 1840年,俄国数学家罗巴切夫斯基发表了一种新几何学.尽管高斯、波尔约和罗巴切夫斯基几乎同时各自独立地发现了这种新几何学,但由于罗巴切夫斯基第一个无所畏惧地公开发表了他的结果,所以,今天人们把这种新几何称为“罗氏几何”. 罗巴切夫斯基从1815年开始试图证明平行公理,几年的努力都失败了,失败使他逐渐认识到证明平行公理或第五公设是不可能的.1826年,身为大学教授的年轻的罗巴切夫斯基勇敢地抛弃了第五公设,提出了与欧几里得几何(简称欧氏几何)完全相反的公设:“过一点至少可以引两条直线与已知直线平行.”后来人们把这个公设叫做“罗氏公理”.由罗氏公理很容易推出以下结论:“过已知直线外一点可以引无数条直线与已知直线平行.” 罗巴切夫斯基保留了除平行公理以外的欧几里得的全部公理.如果不涉及与平行有关的内容,罗巴切夫斯基的新几何与欧几里得几何学没有任何不同.但是只要与平行有关,那么结果就相差甚远.下表对罗巴切夫斯基几何(简称罗氏几何)、欧氏几何不同的定理作了说明. 图7-11

欧氏几何说:“三角形的三内角和等于180 o.”现实生活中有没有这种几何模型呢?有!平面上的三角形的内角和就等于180 o,如图7-12左图.罗氏几何说“三角形的三内角和小于180o”.难道现实生活中也会有这样的几何模型吗?有!1868年意大利数学家贝特拉米找到了一种曲面,人们给它起名叫“伪球面”.在“伪球面”上可以证明:“三角形内角和小于180 o”,如图7-12中间的图. 图7-12 现实生活中有没有“三角形的内角和大于180 o”的几何学?有!这是德国著名数学家黎曼于1854年提出来的,如图7-12右图. 黎曼生于德国汉诺威,父亲是牧师,他遵照父亲的愿望进入哥廷根大学学习哲学和神学.可是进哥廷根大学后,他很快被数学所吸引.于是就放弃神学专攻数学,并成为大数学家高斯的学生.1851年他获得数学博士学位,博士论文受到高斯极高的评价.1859年他成为哥廷根大学的教授,1866年因患肺结核死于意大利,年仅40岁. 黎曼提出了一种与前两种几何完全不同的新几何,叫做“黎曼几何”.黎曼几何的模型是球面,在黎曼几何中“三角形内角之和大于180 o.” 后来,人们把罗氏几何和黎曼几何合在一起统称“非欧几何”.非欧几何在现代物理中,特别是相对论提出之后找到了具体用处,使得非欧几何并不像有些人说的是“想象中的几何”,而成了有着重要现实意义的几何学.

关于欧氏几何的第5公设及非欧几何

关于欧氏几何的第5公设及非欧几何 谢裕华秦敏雁施培成 摘要:本文综述了由欧氏几何到非欧几何的发展历史;评述了非欧几何的思想及其伟大意义;论述了欧氏几何,罗氏几何,黎曼几何的对立统一关系。比较了三种几何的主要特征及适用范围。 关键词:第五公设,欧氏几何,罗氏几何,黎曼几何。 一、关于Euclid的《Elements》 欧几里得的《几何原本》早已失传,现存的有: 1、公元四世纪末(400年左右)泰恩(Thon)的《原本》修订本。 2、18世纪在梵蒂冈图书馆发现的一个第十世纪的《原本》希腊文手抄本,可能比泰恩本更早些。 3、现代版本最早的是1482在威尼斯印刷的,依据泰恩修订本的版本。 4、现在看到的各种版本(一千多种版本)均非欧几里得手稿的传本,而是依据后人的修订本,注释本,翻译本重新整理出来的。 5、1794年法国数学家勒让德(A.M.Legendre,1752-1833)为使《几何原本》更便于教和学,曾对《原本》作了较大的修改,如删去了《原本》中的非几何部分内容,并将几何部分重新整理和编写。把“命题”中的定理和问题加以明确区分,还把第5公设换为与它等价的平行公理;“过直线外一点,有而且只有一条直线与原直线平行”等等,编成了《新欧几里得几何原本》。于是自19世纪开始,初等几何课本一般都是以此为兰本的改编本。 6、中国最早的汉译本是1607年(明万历35年丁未)意大利传教士利玛窦(Matteo Ricci,1552-1610)和徐光启(1562-1633)的合译本(前6卷),称之为“明译本”底本系德国人的拉丁文本15卷。

二百五十年之后,1857年,后9卷由英人伟烈亚 (A.Wylie,1815-1887)和李善兰(1811-1882)合译,称之为“清译本”底本是英文版第15卷。 由于它们均系文言,并且名词,术语和现代有很大的差异,不易看懂,故现代新译本于1990年由陕西科技出版社出版。 二、关于第5公设 古希腊对于数学的最杰出的贡献就是“根据公理体系来建立数学”的观念,即:一个合乎逻辑的学科,应当是由一组原始定义和原始命题(公设,公理)出发,通过演绎推理导出这一学科的其他所有命题。所以《原本》是一部在定义,公设和公理的基础上,按演绎推理方法建立起来的命题系统。 《原本》第1卷有首先给出了23个定义,如: 点是没有部分的;线是没有宽度的长度,……等等。此外,还有平面,直角,垂直……等定义。 定义之后是5个公设: 1)从任一点到任一别的点(可)引一直线; 2)有限直线(可)循直线延长; 3)以任一点为中心,任意长为半径(可)做一圆; 4)开直角都相等; 5)若一直线与另外两直线相交,且在同侧二内角(同旁内角)之和小于二直角。则这两直线无限延长后相交于该侧的一点。 五个定理: 1)等于同一量的量彼此相等; 2)等量加等量其和相等; 3)等量减等量其差相等; 4)互相重合的量彼此相等; 5)整体大于部分。

相关文档
最新文档