地震时饱和砂土液化机理及统计判别法

地震时饱和砂土液化机理及统计判别法
地震时饱和砂土液化机理及统计判别法

岩土工程中的砂土液化判别

岩土工程中的砂土液化判别 摘要:简要介绍岩土工程勘察中,砂土掖化判别与原位测试 关键词:砂土液化;原位测试;试验 引言 与河流冲洪积有关的地貌,地基土层均可能有粉土、粉砂等组成,各土层物理性质差异较大。现今,城区的建筑越来越多,结构复杂、荷载大,对地基土层的粉土、粉砂承掖化判别要求严格,岩土工程勘察工作就显得尤为重要。以下按勘察工作(详勘)的地基土层的粉土、粉砂承掖化判别各个环节应注意的问题。 1原位测试 河流冲洪积地貌有明显的沉积韵律,往往有卵石、砾砂、粗砂、中砂、细砂、粉土、粉质黏土,粘土。且砂土常有互层、隔层出现。多数地下水较浅。 1.1标准贯入试验 粉土、砂土层试验目的(用途)是判别地基液化可能性及液化等级,在粉土、粉砂层中试验时应对标贯器内的扰动土取样,做颗粒分析试验,以求得粘粒含量进行液化判别;在进行标准贯入试验时,如有卵石、砾砂塌孔应及时下如套管,确认无井内无掉块和无扰动下做实验。若多次采取率较低时也不易做试验,否则易使试验结果失真,室内试验与测试结果差异大。粉土、粉砂实验深度可根据其他钻孔编录资料确定。 1.2静力触探试验 静力触探试验已是不可缺少的测试手段,无卵石、砾砂层均适宜进行静力触探试验,试验目的(用途)包括判别土层均匀性和划分土层、选择桩基持力层、估算单桩承载力、估算地基土承载力和压缩模量、判断沉桩可能性、判别地基土液化等。应选择双桥探头,同时测出锥尖阻力qc、侧壁摩阻力fs及摩阻比Rf,利用qc值进行液化判别,据公式ps=qc+0.00641×fs计算出比贯入阻力,利用ps 值进行估算地基土承载力。 2用标准贯入试验判别砂土掖化 按规范 4.3.4条需进一步进行液化判别时,用标准贯入试验法判别, 标准贯入试验实际锤击数与临界值小于或等于临界值时,应判为液化。液化判别式:Ncr=N0β[㏑﹙0.6 ds +1.5﹚-0.1dw]√3/ρc β=1.05 在粉土、粉砂层中试验时,记录标准贯入试验锤击数后,还应对标贯器内的扰动土取样,做颗粒分析试验,以求得粘粒含量进行液化判别。按《建筑抗震设

砂土地震液化判别

3.4砂土地震液化的判别 初判:饱和的砂土或粉土(不含黄土),当符合下列条件之一时,可初步判别为 不液化或可不考虑液化影响: 1 地质年代为第四纪晚更新世(Q3)及其以前时,7、8度时可判为不液化。 2 粉土的黏粒(粒径小于0.005mm的颗粒)含量百分率,7度、8度和9 度分别不小于10,13和16时,可判为不液化土。 注:用于液化判别的黏粒含量系采用六偏磷酸钠作分散剂测定,采用其他方法时应按有 关规定换算。 3 浅埋天然地基的建筑,当上覆非液化土层厚度和地下水位深度符合下列条件之一时,可不考虑液化影响: d u> do+ d b—2 dw> do+ d b —3 d u+ dw> 1.5do + 2d b—4.5 式中:dw――地下水位深度(m),宜按设计基准期内年平均最高水位采用,也可按近期内年最高水位采用; d u――上覆盖非液化土层厚度(m),计算时宜将淤泥和淤泥质土层扣除; db ---- 基础埋置深度(m),不超过2m时应采用2m d0 ---- 液化土特征深度(m),可按表1采用。 表1液化土特征深度(m) 复判:当饱和砂土、粉土的初步判别认为需进一步进行液化判别时,应采用 标准贯入试验判别法判别地面下20m范围内土的液化;但对本规范第421条规定可不进行天然地基及基础的抗震承载力验算的各类建筑,可只判别地面下15m 范围内土的液化。当饱和土标准贯人锤击数(未经杆长修正)小于或等于液化判别标准贯入锤击数临界值时,应判为液化土。当有成熟经验时,尚可采用其他判别方法。 在地面下20m深度范围内,液化判别标准贯入锤击数临界值可按下式计算: Ncr=No B [In(0.6ds+1.5)-0.ldw] .3/ p c 式中:Ncr――液化判别标准贯入锤击数临界值; No ――液化判别标准贯入锤击数基准值,可按表2采用; ds ――饱和土标准贯入点深度(m); dw ------- 地下水位(m); p c ---- 黏粒含量百分率,当小于3或为砂土时,应米用3; B ――调整系数,设计地震第一组取0.80,第二组取0.95,第三组取1.05。

砂土液化的判别

砂土液化判别基本原理

一、地震 地球内部,聚蓄的能量,在迅速释放时,使地壳产生快速振动,并以波的形式从震源向外扩散、传播称为地震。 诱发地震的因素很多,当地下岩浆活动、火山喷发、溶洞塌陷、山崩、泥石流、人工爆破、水库蓄水、矿山开采、深井注水等都会引起地震的发生。但是它们的强度和影响范围都较小,危害不太大;世界上绝大多数地震,是由地壳运动引起岩石受力发生弹性变形并储存能量(应力),当能量聚积达到一定的强度并超过岩石某一强度时,使岩层发生断裂、错动,这时蓄积的变形能量在瞬时释放所形成的构造地震;强烈的构造地震影响范围广、破坏性大,发生的频率高,占破坏性地震的90%以上。因此在《建筑抗震设计规范》中,仅限于讨论在构造地震作用下建筑的设防问题。 (一)地震波按其在地壳传播的位置不同,可分为体波、面波。1、体波 在地球内部传播的波为体波。体波又可分纵波和横波,纵波又称P 波,它是从震源向四周传播的压缩波。这种波的周期短、振幅小、波速快,它在地壳内传播的速度一般为200-1400m/s ;它主要引起地面垂直方向的振动。 横波又称s波,是由震源向四周传播的剪切波。这种波的周期长、振幅大、波速慢,在地壳内的波速一般为100-800m/s。它主要引起地面的水平方向的振动。 2、面波

在地球表面传播的波,又称L波。它是由于体波经过地层界面多次反射、折射所形成的次生波。它是在体波到达之后(纵波P首先到达,横波S次之),面波(L波)最后才传到地面。面波与横波一样,只有横向振动,没有纵向振动,其特点是波速较慢动、周期长、振动最强,对地面的破坏最强的一种。所以在岩土工程勘察中,我们主要关心的还是面波(L波)对场地土的破坏。 二、砂土液化对工程建筑的危害 地震时由于地震波的振动,会使埋深于地下水位以下的饱和砂土和粉土,土的颗粒之间有变密的趋势,孔隙水不能及时地排出,使土颗粒处于悬浮状态,呈现液体状。此时,土体内的抗剪强度暂时为零,如果建筑物的地基土没有足够的稳定持力层,会导致喷水、冒砂,使地基土产生不均匀沉陷、裂缝、错位、滑坡等现象。从而使地基土失去或降低承载能力,加剧震害程度。所以《岩土工程勘察规范》(GB50021-2001)5.7.5规定,抗震设防烈度为6度可以不考虑液化影响;但对沉陷敏感的乙类建筑可按7度进行液化判别;甲类建筑应专门进行液化勘察。 三、影响砂土液化的因素 场地土液化的因素有很多,需要根据多项指标综合分析,才能准确判别场地土是否发生液化现象。当某项指标达到一定值时,不论其它因素的指标如何,土都不会发生液化,也不会造成震害,这个指标数值称界限值。所以,了解影响液化因素及其的界限值具有实际意义。 (一)地质年代 地质年代的新老是体现土层沉积的时间长短,地质年代老的沉积土

砂土液化计算模板

8.2.1 砂土液化评价 小区划场地内河漫滩、Ⅰ级阶地地质时代为全新世。根据工程地质勘探结果,场地仅有钻孔ZK21揭示有粉土与粗砂层,粉土埋深在1.3~3.2m ,粗砂埋深在3.2—4.0m 。按照当地水文资料,荥河历史最高水位为751m ,相应地下水位埋深为2.15m ,部分粉土及全部粗砂层位于地下水位以下(图8.2.1-2)。 8.2.1.1 场地砂土液化判别分析方法 本次工作按照国家标准《建筑抗震设计规范》(GB 50011-2010)对饱和粉土及砂土进行液化评价。 (1)根据《建筑抗震设计规范》(GB50011-2010)第4.3.3条,符合下列条件之一的可初步判别为不液化土: 地质年代为第四纪晚更新世(Q 3)及其以前时,7、8度时可判为不液化; 粉土的粘粒(粒径小0.005mm 的颗粒)含量百分率,7度、8度、9度分别不小于10、13、16时,可判为不液化土。 根据《颗粒分析成果表》,场地内分布的粉土、粗砂,粘粒含量(粒径小0.005mm 的颗粒)百分率为3~9.97%,在7度、8度设防烈度下,初步判定为液化土。 (2)采用标准贯入试验判别法,计算液化判别标准贯入锤击数临界值,对场地内的饱和砂土进行液化判别。 在地面下20m 深度范围内,液化判别标准贯入锤击数临界值可按下式计算: () 0ln 0.6 1.50.1w cr s N N d d β=+-????N cr :液化判别标准贯入锤击数临界值; β:调整系数,设计地震第一组取0.80,第二组取0.95,第三组取1.05; N 0:液化判别标准贯入锤击数基准值(设计地震加速度0.10g 时,N 0取7, 设计地震加速度0.20g 时,N 0取12); d s :饱和土标准贯入点深度(m ); d w :地下水位(m ); ρc :粘粒含量百分率,当小于3或为砂土时,应采用3。 当饱和土标准贯入锤击数(未经杆长修正)小于或等于液化判别标准贯入锤击数临界值时,应判为液化土。 ①50年超越概率10%情况下,钻孔内饱和粉土、粗砂的标准贯入锤击数临界值计算见下表(表8.2-1): 表8.2-1 场地勘察钻孔标准贯入试验数据及粉土液化判别(50年超越概率10%)

砂土液化计算模板

821砂土液化评价 小区划场地内河漫滩、I级阶地地质时代为全新世。根据工程地质勘探结果,场地仅有钻孔ZK21揭示有粉土与粗砂层,粉土埋深在1.3?3.2m,粗砂埋深在3.2 —4.0m。按照当地水文资料,荥河历史最高水位为751m相应地下水位埋深为2.15m,部分粉土及全部粗砂层位于地下水位以下(图 8.2.1-2 )。 8.2.1.1场地砂土液化判别分析方法 本次工作按照国家标准《建筑抗震设计规范》(GB50011-2010)对饱和粉土及砂土进行液化评价。 (1)根据《建筑抗震设计规范》(GB50011-2010第433条,符合下列条件之一的可初步判别为不液化土: 地质年代为第四纪晚更新世(Q)及其以前时,7、8度时可判为不液化; 粉土的粘粒(粒径小0.005mm的颗粒)含量百分率,7度、8度、9度分别不小 于10、13、16时,可判为不液化土。 根据《颗粒分析成果表》,场地内分布的粉土、粗砂,粘粒含量(粒径小0.005mm 的颗粒)百分率为3?9.97%,在7度、8度设防烈度下,初步判定为液化土。 (2)采用标准贯入试验判别法,计算液化判别标准贯入锤击数临界值,对场地内的饱和砂土进行液化判别。 在地面下20m深度范围内,液化判别标准贯入锤击数临界值可按下式计算: N cr N 0 In 0.6d s 1.5 0.1d w3/ c N Cr :液化判别标准贯入锤击数临界值; B:调整系数,设计地震第一组取 0.80,第二组取0.95,第三组取1.05 ; N):液化判别标准贯入锤击数基准值(设计地震加速度0.10g时,N)取7, 设计地震加速度0.20g时,N)取12); d s:饱和土标准贯入点深度(m ; d w:地下水位(m ; P:粘粒含量百分率,当小于3或为砂土时,应采用3。 当饱和土标准贯入锤击数(未经杆长修正)小于或等于液化判别标准贯入锤击数临界值时,应判为液化土。 ①50年超越概率10%青况下,钻孔内饱和粉土、粗砂的标准贯入锤击数临界值计算见下表(表8.2-1 ): 表8.2-1场地勘察钻孔标准贯入试验数据及粉土液化判别(50年超越概率10%

砂土液化判别

N cr N o 2.4 0.1d s 15 ?20m 〈三〉地震效应分析 根据《建筑抗震设计规范》(GB50011-2001)的划分,并结合波速及地脉动 测试报告可知:场地位于基本烈度%度区,建筑物应按相应地震烈度进行抗震设 防。设计基本地震加速度值为0.10g ,卓越周期变化范围为0.02s ~0.21s ,场地 土类型整体为中硬土,局部区域为中软土,建筑场地类别为U 类,属于抗震不利 地段。 〈四〉场地砂土液化判别 拟建场地位于基本烈度%度区,依据《建筑抗震设计规范》(GB50011-2001 规范要求,须对场地内存在的饱和砂土进行液化判别。 根据勘察成果,场地地基土中2-3层为第四系冲洪积含粘性土中粗砂层, 松 散?稍密状,顶板埋深0.00?3.90m ,局部区域位于地下水位以上,未达饱和状 态;按%度区计算,该层大部份粘土含量达15%左右,故初步判别为不液化地层。 依据《建筑抗震设计规范》(GB50011-2001)规范要求,对位于地下水位以 下呈饱和状态的砂土,结合标贯击数判别该层是否发生液化,对于可液化砂土层, 再进一步计算液化指数,依据液化等级确定地基可能遭受的地质灾害危险性级 别。 砂土液化判别公式如下: N cr N o 0.9 0.1 d s d — 2 (适用于地面以下 15m 以内) 以内) 式中: d s —饱和土标准贯入点深度(m ; d w —地下水位深度(m P 。一粘粒含量百分率,小于3或为砂土时,取3。 N Cr 饱和土液化临界标准贯入锤击数; (适用于地面以下

N O—饱和土液化判别的基准标准贯入锤击数。 对于可液化土层,按下式计算的液化指数(l ie )来确定液化等级; 式中: l ie (1 u)d i W i i 1N cri l ie :液化指数; N :饱和土层中i点的实测标准贯入锤击数; N Cri :相应于Ni深度处的临界标准贯入锤击数; n :每个钻孔内15m深度范围内饱和土层中标准贯入点总数; 并按表4的标准进行砂土液化等级划分。 表4 砂土液化等级分级标准 表5 饱和含粘性土中粗砂层(层序2-3)液化判别及液化指数统计 根据工程勘察钻孔资料依据上述公式进行砂土液化计算(其计算结果见表 5)。冲洪积含粘性土中粗砂层(层序号 2-3)液化指数I IE为V O,均为无液化土层。因此综合判定本场地无可液化地层分布。

砂土液化判别

〈三〉地震效应分析 根据《建筑抗震设计规范》(GB50011-2001)的划分,并结合波速及地脉动测试报告可知:场地位于基本烈度Ⅶ度区,建筑物应按相应地震烈度进行抗震设防。设计基本地震加速度值为0.10g ,卓越周期变化范围为0.02s ~0.21s ,场地土类型整体为中硬土,局部区域为中软土,建筑场地类别为Ⅱ类,属于抗震不利地段。 〈四〉场地砂土液化判别 拟建场地位于基本烈度Ⅶ度区,依据《建筑抗震设计规范》(GB50011-2001)规范要求,须对场地内存在的饱和砂土进行液化判别。 根据勘察成果,场地地基土中2-3层为第四系冲洪积含粘性土中粗砂层,松散~稍密状,顶板埋深0.00~3.90m ,局部区域位于地下水位以上,未达饱和状态;按Ⅶ度区计算,该层大部份粘土含量达15%左右,故初步判别为不液化地层。 依据《建筑抗震设计规范》(GB50011-2001)规范要求,对位于地下水位以下呈饱和状态的砂土,结合标贯击数判别该层是否发生液化,对于可液化砂土层,再进一步计算液化指数,依据液化等级确定地基可能遭受的地质灾害危险性级别。 砂土液化判别公式如下: ()[]ρ o w s o cr d d N N 3 1.09.0-+= (适用于地面以下15m 以内) [] ρ o s o cr d N N 3 1.04.2-= (适用于地面以下15~20m 以内) 式中: d s —饱和土标准贯入点深度(m ); d w —地下水位深度(m ) ρo —粘粒含量百分率,小于3或为砂土时,取3。 N cr —饱和土液化临界标准贯入锤击数;

N o —饱和土液化判别的基准标准贯入锤击数。 对于可液化土层,按下式计算的液化指数(I ie )来确定液化等级; w d N N I i i n i cri i ie ) 1(1 ∑=- = 式中: I ie :液化指数; N i :饱和土层中i 点的实测标准贯入锤击数; N cri :相应于Ni 深度处的临界标准贯入锤击数; n :每个钻孔内15m 深度范围内饱和土层中标准贯入点总数; 并按表4的标准进行砂土液化等级划分。 表4 砂土液化等级分级标准 表 5)。冲洪积含粘性土中粗砂层(层序号2-3)液化指数I lE 为<0,均为无液化土层。因此综合判定本场地无可液化地层分布。

砂土液化的判别

砂 土 液 化 判 别 基 本 原 理 一、地震 地球内部,聚蓄的能量,在迅速释放时,使地壳产生快速振动,并以波的形式从震源向外扩散、传播称为地震。 诱发地震的因素很多,当地下岩浆活动、火山喷发、溶洞塌陷、山崩、泥石流、人工爆破、水库蓄水、矿山开采、深井注水等都会引起地震的发生。但是它们的强度和影响范围都较小,危害不太大;世界上绝大多数地震,是由地壳运动引起岩石受力发生弹性变形并储存能量(应力),当能量聚积达到一定的强度并超过岩石某一强度时,使岩层发生断裂、错动,这时蓄积的变形能量在瞬时释放所形成的构造地震;强

烈的构造地震影响范围广、破坏性大,发生的频率高,占破坏性地震的90%以上。因此在《建筑抗震设计规范》中,仅限于讨论在构造地震作用下建筑的设防问题。 (一)地震波按其在地壳传播的位置不同,可分为体波、面波。 1、体波 在地球内部传播的波为体波。体波又可分纵波和横波,纵波又称P波,它是从震源向四周传播的压缩波。这种波的周期短、振幅小、波速快,它在地壳内传播的速度一般为200-1400m/s ;它主要引起地面垂直方向的振动。 横波又称s波,是由震源向四周传播的剪切波。这种波的周期长、振幅大、波速慢,在地壳内的波速一般为100-800m/s。它主要引起地面的水平方向的振动。2、面波 在地球表面传播的波,又称L波。它是由于体波经过地层界面多次反射、折射所形成的次生波。它是在体波到达之后(纵波P首先到达,横波S次之),面波(L波)最后才传到地面。面波与横波一样,只有横向振动,没有纵向振动,其特点是波速较慢动、周期长、振动最强,对地面的破坏最强的一种。所以在岩土工程勘察中,我们主要关心的还是面波(L波)对场地土的破坏。 二、砂土液化对工程建筑的危害 地震时由于地震波的振动,会使埋深于地下水位以下的饱和砂土和粉土,土的颗粒之间有变密的趋势,孔隙水不能及时地排出,使土颗粒处于悬浮状态,呈现液体状。此时,土体内的抗剪强度暂时为零,如果建筑物的地基土没有足够的稳定持力层,会导致喷水、冒砂,使地基土产生不均匀沉陷、裂缝、错位、滑坡等现象。从而使地基土失去或降低承载能力,加剧震害程度。所以《岩土工程勘察规范》(GB50021-2001)5.7.5规定,抗震设防烈度为6度可以不考虑液化影响;但对沉陷敏感的乙类建筑可按7度进行液化判别;甲类建筑应专门进行液化勘察。

饱和砂土及饱和粉土液化判别与计算

饱和砂土及饱和粉土液化判别与计算

液化土的判别与计算 一、判别依据 《建筑抗震设计规范》GB50011-2010: 第4.3.1条:饱和砂土和饱和粉土(不含黄土)的液化判别和处理,6度时,一般情况下可不进行判别与处理,但对液化沉陷敏感的乙类建筑可按7度的要求进行判别与处理,7~9度时,乙类建筑可按本地区抗震设防烈度的要求进行判别与处理。 第4.3.2条(本人加注:此属强制性条文):地面下存在饱和砂土和饱和粉土时,除6度外,应进行液化判别;存在液化土层的地基,应根据建筑的抗震设防类别、地基的液化等级,结合具体情况采取相应的措施。(注:本条饱和土液化判别不含黄土、粉质粘土) 第4.3.4条:当饱和粉土、或饱和砂土的初步判别认为需要进一步进行液化判别时,应采用标准贯入试验判别法判别地面以下20m范围内土的液化;但对本规范第4.2.1条规定可不进行天然地基和基础的抗震承载力验算的各类建筑可 (不经杆长只判别地面以下15m范围内土的液化。当饱和土标准贯入锤击数N 修正)小于或等于液化判别标准贯入锤击数临界值时,应别为液化土。 【第4.2.1条:1本规范规定可不进行上部结构抗震验算的建筑;2地基主要受力层[系指条形基础底面下深度3b(b为基础底面宽度)、独立基础下1.5b,且厚度不小于5m的范围]范围内不存在软弱粘性土层(指7度、8度和9度时,地基承载力特征值分别小于80、100和120kpa的土层)的建筑:1)一般的单层厂房和单层空旷房屋、2)砌体房屋、3)不超过8层且高度在24m以下的一般民用框架和框架—抗震墙房屋、4)基础荷载与“3)项”相当的多层框架房屋和多层混凝土抗震墙房屋】 二、判别方法 第4.3.3条:饱和粉土及饱和砂土的液化判别 1、地质年代为晚更新世(Q3)及以前的地层,7、8度时可判别为不液化。 2、粉土的粘粒(粒径<0.005㎜的颗粒)含量百分率:7度、8度和9度分别不小于10、13和16时可判别为不液化。 3、浅埋天然地基的建筑,当上覆非液化土层厚度和地下水位深度符合下列条件之一时,可不考虑液化影响: 1)d u>d0+d b-2 2)d w> d u +d b-3 3)d u+ d w>1.5d0+2d b-4.5 式中d u--上覆非液化土层厚度(m),计算时宜将其内淤泥及淤泥质土层扣除; d w---地下水位深度(m),宜按设计基准期内年平均最高水位采用,也可按近期内年最高水位采用;当区域地下水位处于变动状态时,应按不利的情况考虑。

砂土地震液化总结

砂土地震液化总结 砂土液化是指饱和砂土在地震,动荷载或其他外动力作用下,砂土受到强烈振动后,致使土体丧失强度,土粒处于悬浮状态,造成地基失效的作用或现象。砂土液化可能引起的工程地质问题有涌砂、地基失效、滑塌、地面沉降及地面塌陷等。 一、砂土地震液化机制 1.砂土液化的机理 饱和砂土在地震力作用下有颗粒移动和变密的趋势,对应力的承受由砂土土体骨架转向水,由于砂土渗透性不良,孔隙水压力逐渐累积,有效应力下降,当孔隙水压力累计至总应力时,有效应力为零,土颗粒在水中处于悬浮状态。 2.砂土液化的影响因素 影响砂土地震液化的因素包括内因饱和砂土和外因地震作用两方面。其中饱和砂土包括土体类型和性质以及饱和砂层的埋藏条件。地震作用指地震强度和地震持续时间。 (1)土体类型和性质以以砂土的相对密度Dr以及砂土粒径和级配表征砂土液化条件。(如表1所示) 表1 影响砂土地震液化的因素之土体条件 因素指标对液化的影响 颗粒特性 粒径平均粒径d50细颗粒较容易液化,平均粒径在0.1mm 左右的粉细砂抗液化性最差 级配不均匀系数C u C u越小,抗液化性越差,黏性土含量愈 高,愈不容易液化 形状圆粒形砂比棱角形砂容易液化 密度相对密实度D r密度愈高,液化可能性愈小 渗透性渗透系数K 渗透性低的砂土易液化

结构性颗粒排 列胶结 程度均 匀性 原状土比结构破坏土不易液化,老砂层比 新砂层不易液化 压密状态超固结比OCR 超压密砂土比正常压砂土不易液化(2)饱和砂层的埋藏条件包括地下水埋深,砂土层上的非液化黏土层厚度。 表2 影响砂土地震液化的因素之埋藏条件 因素指标对液化的影响 上覆土层上覆土层有效压力上覆土层愈厚,土的上覆 土层有效压力愈大,愈不 容易液化 静止土压力系数k0 排水条件孔隙水向外排出的 渗透路径长度 液化砂层的厚度 排水条件良好有利于孔 隙水压力的消散,能减小 液化的可能性 边界土层的渗透性 地震历史 遭受过历史地震的砂土 比未遭受地震的砂土不 易液化,但曾发生过液化 又重新被压密的砂土却 易重新液化 (3)地震强度指实测地震时最大地面加速度,计算在地下某一深度由处于地震而产生的实际剪切力,再用以判定该深度处的砂层能否液化。 (4)地震持续时间指地震持续时间越长,其产生的等效剪应力循环次数N越多。 表3 影响砂土地震液化的因素之动荷条件 因素指标对液化的影响 地震烈度震动强 度 地面加速度地震烈度高,地面加速度大,越容易液化 持续时 间 等效循环次数 N 震动时间愈长,或震动次数愈多,越容易 液化 二、砂土地震液化的判别

地震液化不同判别方法的比较

地震液化不同判别方法的比较 摘要:本文通过通过某工程采用三种不同规范得出的液化判别的结果进行了对比分析,总结出三种抗震规范在进行液化判别式的差异,同时对目前不同的液化判别方法的优缺点进行了论述。 关键字:地震;液化;孔隙水压力;总应力;有效应力;标准贯入试验;抗震设防烈度;概率 1砂土液化的概念 液化是指饱和砂土或粉土,在周期地震荷载作用下,由于排水通道不畅,形成的孔隙水压力或超孔隙水压力不能及时消散,当土体内的孔隙水压力达到土中上覆总压力时,有效压力趋于零,土颗粒处于悬浮状态,土体会完全丧失抗剪强度和承载能力,变成象液体一样的状态,这种现象成为液化现象。砂土液化表示在静应力或周期应力作用下产生并保持很高的孔隙水压力,是有效应力降低到一个很小的数值,导致土体在很低的,不变的残余抗剪强度或没有残余抗剪强度的情况下发生连续的变形。砂土液化液化可用有效应力原理解释,即下式的表达方式:σ=σ′+μ 式中:σ—土中总应力; σ′—土中的有效应力; μ—土中的孔隙水压力 一般情况下,土体中的总应力是不变的,当在周期性振动荷载(一般为地震荷载)的作用下,孔隙水压力增大,有效应力减少,而土体中的抗剪强度τ=(σ-μ)tgυ(无粘性土);当(σ-μ)趋于零即土体中的总应力等于孔隙水压力时,抗剪强度亦趋于零,即发生饱和土体液化现象。 就液化机制而言,饱和砂土液化可分为两种类型。一种是渗透液化,即向上渗透的水流当其水力梯度大于土的浮重度时,使土处于悬浮状态。发生渗透液化的必要条件是由向上的水流流动。另一种是剪切液化,即在剪切力作用下砂土体积发生压缩,使其孔隙水压力升高到静有效应力,抗剪强度丧失,象液体那样不再能抵抗剪切作用。这里所说的剪切作用可以是静剪力作用,也可以是动剪力作用。一般说,象地震、爆炸等应起的剪切作用历时都很短。例如,地震的历时也就是几十秒。在这样短的时间内,排水作用是很小的。因此,地震时饱和砂土液化常被认为是在不排水条件下发生的。 室内试验研究表明,只有松散和中密状态的饱和砂土才具有典型的液化现象。即孔隙水压力升高到静有效压力后发生流动变形。密实状态的饱和砂土当孔隙水压力升高到静有效应力后只产生有限的剪切变形,不会发生流动变形。人们把密实砂的这种特性叫作循环流动性。这表明,密度状态不同的饱和砂土在动剪

砂土地震液化

砂土地震液化小结 1 砂土液化概述 1.1 定义 饱和砂土在地震、动力荷载或其他外力作用下,受到强烈震动而丧失抗剪强度,使砂砾处于悬浮状态,致使地基失效的作用或现象称为沙土液化。 1.2 危害 涌沙 地面沉降及地面塌陷 砂土液化 地基失效 滑塌 (1)涌沙:涌出的砂掩盖农田,压死作物,使沃土盐碱化、砂质化,同时造成河床、渠道、径井筒等淤塞,使农业灌溉设施受到严重损害。 (2)地面沉降及地面塌陷:饱水疏松砂因振动而变密,地面也随之而下沉,低平的滨海湖平原可因下沉而受到海湖及洪水的浸淹,使之不适于作为建筑物地基。 (3)地基失效:随粒间有效正应力的降低,地基土层的承裁能力也迅速下降,甚至砂体呈悬浮状态时地基的承栽能力完全丧失。 (4)滑塌:由于下伏砂层或敏感粘土层震动液化和流动,可引起大规模滑坡。 2 砂土地震液化机理 砂土是一种松散的物质,它主要依靠颗粒间的摩擦力承受外力和自身的稳定,而这种摩擦力取决于粒间法向压力: c tan +=?στ 式中σ为正应力,φ为内摩擦角,c 为黏聚强度,σtan φ为摩擦强度 饱和沙土是由水和砂复合体系,水的突出力学特性是体积难以压缩,能承受

极大的法向压力,但不能承受剪力。砂粒间可以承受剪力,但当水体饱和时,孔隙水压力增大,砂粒间的有效应力减小,在地震过程中反复振动,最终导致有效应力减为零,砂粒悬浮,发生沙土液化。 饱和砂土在强震作用下颗粒有移动和变密的趋势,应力的承受由砂土土体骨架转向水,由于砂土渗透性不良,孔隙水压力逐渐积累,有效应力下降,当孔隙水压力积累至总应力时,有效应力为零,土颗粒在水中处于悬浮状态。 3影响砂土地震液化因素 3.1 影响因素 砂土体类型和性质 土饱和砂土(内因) 地饱和砂层的埋藏条件 震地震强度 液地震作用(外因) 化地震持续时间 3.2 土体类型和性质 以砂土的性对密实度Dr以及砂土粒径和级配表征砂土液化条件 表1 影响砂土地震液化的因素之土性条件 因素指标对液化的影响 颗粒特征 粒径平均粒径d50 细颗粒较容易液化,平均粒径在0.1mm 左右的细砂抗液化性最差 级配 不均匀系数 Cu 不均匀系数越小,抗液化性愈差,粘性 土含量愈高,愈不容易液化 形状—圆粒形砂比棱角形砂易液化 密度 相对密实度 Dr 密度愈高,液化可能性愈小 渗透性渗透系数K 渗透性低的砂土容易液化 结构性颗粒排列胶 结程度均性 — 原状土比结构破坏土不易液化,老砂层 比新砂层不易液化

砂土液化及其工程处理措施

建筑结构抗震设计—课程论文 题目 结构抗震体系选择及延性改善措施 学生姓名徐健峰 学号09143524 院系工学院土木系 专业土木工程 课程教师梁超锋 完成日期2012-5-30

砂土液化及其工程处理措施 摘要: 文中介绍了砂土液化的机理及影响液化的因素,阐述了砂土地震液化的判别方法及出现的一些问题,并提出各类建筑工程的抗液化措施,以供参考借鉴。关键词:液化判别;液化指数;液化等级;抗液化措施 引言 饱和砂土在地震、动荷载或其外力作用下,受到强烈振动而丧失抗剪强度,使砂粒处于悬浮状态,致使地基失效的作用或现象为砂土液化。[1]我国地处环太平洋地震带和喜马拉雅一地中海地震带之间,属于地震易发区域。地震时,饱和砂土及粉土的液化常引起建筑物的沉降、倾斜、甚至毁灭性的破坏。近10 多年来,地球上发生的多起大地震,如1995 年神户大地震、1999年土耳其地震及2008 年我国四川汶川“5.12”大地震,都有大量的砂土液化发生,同时伴有不同程度的喷水冒砂,导致地面下沉、大规模滑坡以及结构地基基础破坏,给国家和人民群众带来了重大的损失。震害的经验表明,土壤液化是导致工程结构破坏的主要因素之一。 二、砂土液化的机理及影响液化的因素 1.液化的形成机理 一、砂土液化的机理饱和松散的砂土在强烈地震作用下会产生急剧的状态改变和强度丧失,导致地面和建筑物的破坏,此即所谓的液化现象。饱和砂土是由砂和水组成的复合体系,在振动作用下,饱和砂土的液化取决于砂和水的特性[2]。饱和状态的砂土,在承受一定强度的振动作用时,会由原来结构稳定状态向类似粘滞液状态变化。砂土液化的外观现象之一是喷砂冒水。喷砂点有的成群,有的成带。喷出的砂堆直径大者数米至十几米,小者仅数十厘米。由于地基液化,使高耸建筑物倾斜,民用房屋局部下沉。 2.影响砂土液化的主要因素 (1)土性:主要包括土的颗粒组成、颗粒形状、土的密度等。土的颗粒越粗,平均粒径越大,动力稳定性就越高。因此粗、中、细、粉砂的液化可能性逐级增大。同一级砂土中,颗粒的级配越好,即不均匀系数Cu 越大,动力稳定性

沙土地震液化判别方法

地震液化的判别方法 砂土地震液化的判别,从工程的抗震设计要求考虑,需要解决的问题首先是正确判定砂土能否液化,其次是采用什么措施预防或减轻液化引起的层害。工程设计需要的判别内容应该包活:1估计液化的可能性②估计液化的范围;③估计液化的后果。砂土地震液化的判别思路如下: 一、初判按照地震条件、地质条件、埋藏条件、土质条件的一些限界指标进行初判。地震条件方面,一般来说,震级在5级以上的才可以产生液化;也就是液化最低烈度为Ⅵ度。 地质条件方面,发生液化的多为全新世乃至近代海相及河湖相沉积平原、河口三角洲,特别是洼地、河流的泛滥地带、河漫滩、古河道、滨海地带及人工填土地带等。埋藏条件方面,一般液化判别应在地下15m的深度范围进行,最大液化深度可达20m。最大地下水埋深一般不超3m,《工业与民用建筑抗震设计规范》(TJ11-85)修订稿将液化最大地下水位埋深定位8m。土质条件方面,液化土有许多特性指标的界限值。比如回龙河水库全风化花岗岩坝基地震液化的初判,全风化花岗岩因母岩具混合岩化现象,风化后砂土粒度不均匀,细粒黑云闪长岩全风化砂土粒度较细,中粒黑云花岗岩全风化砂土粒度稍粗,其主要物理指标:粒径大于5 mm的平均颗粒含量%)小于70%,平均粘粒含量%)小于18%,平均塑性指数ΙP小于15,属少粘性土。工程区为强震区,地震动峰值加速度为 g、动反应谱特征周期为 s,地震基本烈度

为Ⅶ度,依据《水利水电工程地质勘察规范》,初判存在地震液化的可能性。为此,有必要对全风化花岗岩坝基地震液化可能性进行复判。 二、复判砂土地震液化复判方法种类繁多,大致可分为 2 种:①是依据室内试验;②是依据现场测试的经验方法。但由于影响砂土液化问题的复杂性;每种方法都有一定的运用范围和局限性。常用判别方法大致可归纳为现场试验、室内试验、经验对比、动力分析 4 大类:(1)现场试验方法。其判别法基本原理:在宏观地震液化和非液化区域,依据现场试验测得判别指标的数据,通过分析、统计和总结,建立与宏观地震灾害资料之间的关系,得出经验公式或液化分界线来判别液化与否。主要包括标准贯入临界击数判别法 (SPT)、静力触探法(CPT)、剪切波速法、瑞利波速法、能量判别法。此类方法比较直观且可以考虑多个影响饱和砂土液化的因素,避免了室内试验中土样扰动等问题具有较强的实用性和可靠性。但也存在一些不足:需要大量的地震现场统计样本,已经累计的各类土体液化现场试验数据还比较少;地基液化调查资料多是在自由场地取得的,一般说此类方法适用于自由场地的液化判别,此类方法建立在地震现场的液化实例基础上,具有区域性,通用性不够理想。(2)室内试验方法。这类方法根据室内试验模拟现场条件确定土体的抗液化强度,同时用设计地震资料计算地震动应力指标,比较两者大小判别液化与否。采用的主要室内试验有:各种类型的循

砂土地震液化判别的原理和思路

进行砂土地震液化判别的原理和思路1.砂土液化机理 饱和砂土在水平振动作用下,土体间位置将发生调整而趋于密实,土体变密实势必排除孔隙水。而在急剧的周期性动荷载作用下,如果土体的透水性不良而排水不畅的话,则前一周期的排水还未完成,后一周期又要排水,应排走的水来不及排出,而水又是不可压缩的,于是就产生了剩余孔隙水压力(或称超孔隙水压力)。此时砂土的抗剪强度τ为: 式中:σ为法向应力;Pw0为静孔隙水压力;Δpw为超孔隙水压力;υ为砂土的内摩擦角。 显然,此时砂土的抗剪强度大为减小。随振动时间延续,Δpw不断累积叠加而增大,最终可抵消σ而使土体的抗剪强度完全丧失,液化产生。其现象就是发生喷水冒砂、地表塌陷。 2.砂土地震液化的影响因素 根据国内震害现场调查和室内实验研究,影响饱和砂土液化的因素可以概括为以下4 点: (1)地震的强度以及动荷载作用。动荷载是引起饱和土体空隙水压力形成的外因。显然,动应力的幅值愈大,循环次数愈多,积累的孔隙水压力也愈高,越有可能使饱和砂土液化。根据我国地震文献记录,砂土液化只发生在地震烈度为6 度及 6 度以上地区。有资料显示5 级地震的液化区最大范围只能在震中附近,其距离不超过1km。 (2)土的类型和状态。中、细、粉砂较易液化,粉土和砂粒含量较高的砂砾也可能液化。砂土的抗液化性能与平均粒径的关系密切。易液化砂土的平均粒径在0.02~1.00mm 之间,在0.07mm 附近时最易液化。砂土中黏粒( d< 0.005mm)含量超过16%时很难液化。粒径较粗的土,如砾砂等因渗透性高,孔隙水压力消散快,难以积累到较高的孔隙水压力,

在实际中很少有液化。黏粒土由于有黏聚力,振动时体积变化很小,不容易积累较高的孔隙水压力,所以是非液化土。土的状态,即密度或相对密度D,是影响砂土液化的主要因素之一,所以也是衡量砂土能否液化的重要指标。砂越松散越容易液化。由于很难取得原状砂样,砂土的D 不易测定,工程中更多地用标准贯入度试验来测定砂土的密实度。调查资料表明:砂层中当标贯锤击数N<20,尤其是N<10 时,地震时易发生液化,而级配的好坏影响不大。地质形成年代对饱和砂层的抗液化能力有很大影响,年代老的砂层不易液化,新近沉积的则容易液化。 (3)初始应力状态。许多调查资料表明,饱和砂层上的有效覆盖压力σ0具有很好的抗液化作用。一般加压土层的厚度在3m 以上时,下面的砂层比较难以液化。此外在实际上,应该充分利用液化土层上的覆盖土层。 (4)土层的刚度。土层的刚度将决定场地的卓越周期。当建筑物的自振周期与场地卓越周期接近时,就会由于共振而导致震害产生。地震的震害调查结果显示周期约为0.5s 的木房屋,当建造在深厚30m 的软土层上时,破坏率高达30%;当它们建造在硬土和岩石上时,破坏率降低为1%。1988 年的墨西哥发生了强地震,首都墨西哥城距震中约400km,虽然远离震中,但市区高层建筑破坏严重,全部倒塌的房屋达400 多栋。在8 级左右的强地震下,远离震中400km 的,一般情况下不致引起破坏。墨西哥地震是远震时深厚软土层上高层建筑严重破坏的典型实例。类似的震害受土质条件影响的例子还很多。 3.砂土地震液化的判别 从工程的抗震设计要求考虑,需要解决的问题首先是正确判定砂土能否液化,其次是采用什么措施预防或减轻液化引起的层害。工程设计需要的判别内容应该包活: 估计液化的可能性②估计液化的范围;③估计液化的后果。 砂土地震液化的判别思路如下: 一、初判 按照地震条件、地质条件、埋藏条件、土质条件的一些限界指标进行初判。 地震条件方面,一般来说,震级在5级以上的才可以产生液化;也就是液化最低烈度为Ⅵ度。

进行砂土震动液化判定的原理和思路

进行砂土震动液化判定的原理和思路 (××××××) 摘要:砂土的震动液化也是一种不良地质条件,假如发生,将会对建于其上的建筑物造成严重的损失。因此,在工程选址设计中,应当首先准确得判别震动液化地点是否存在,然后尽量远离液化地,或者采取必要的设防措施。本文试从以下几个方面,简单介绍判别砂土震动液化的原理和思路。 关键字:砂土震动液化标准贯入静力触探剪切波速液化程度 饱和的疏松粉、细砂土体在振动作用下有颗粒移动和变密的趋势,对应力的承受由砂土骨架转向水,由于粉、细砂土的渗透性不良,孔隙水压力急剧上升。当达到总应力值时,有效正应力下降到0,颗粒悬浮在水中,砂土体即发生振动液化,完全丧失强度和承载能力。 在地质条件、地震强度及持续时间两方面都有可能产生砂土液化的地方,工程地质勘察时就需要判定某一地点、某一深度处沙土层液化的可能性。通常的判别程序是先按地震条件、地质条件、埋藏条件、土质条件的一些限界指标进行初步判别,经初步判别为液化的场地应进一步通过现场测试、剪应力对比或地震反应分析等方法进行定量判别。各种判别指出可能性后,还应进一步判定后果的严重程度,通常是用液化指数划分液化的严重程度,以便为设防措施提供依据。 一、震动液化初判的限界指标 1.地震条件 (1).液化最大震中距 液化最大震中距(D max)与震级(M)有如下关系: D max =0.82 × 100.862(M-5) 由此可知,当M = 5,则也hue范围限于震中附近1km之内。 (2).液化最低地震烈度 震级为5级震中烈度为VI度,故液化最低烈度为VI度。 2.地质条件 发生震动液化处多为全新世乃至近代海相及河湖相沉积平原、河口三角洲,特别是洼地、河流的泛滥地带、河漫滩、古河道、滨海地带及人工填土地带等。 3.埋藏条件 (1).最大液化深度

相关文档
最新文档