复变函数练习册(全套)

复变函数练习册(全套)
复变函数练习册(全套)

第一章 复数与复变函数

一、选择题

1.当i

i

z -+=

11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1-

2.设复数z 满足arg(2)3z π+=,5arg(2)6z π

-=,那么=z ( )

(A )i 31+- (B )i +-3 (C )i 2321+-

(D )i 2

1

23+- 3.一个向量顺时针旋转3

π

,对应的复数为i 31-,则原向量对应的复数( )

(A )2 (B )i 31+ (C )i -3 (D )i +3 4.使得2

2z z =成立的复数z 是( )

(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 5.方程232=-+i z 所代表的曲线是( )

(A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周

6.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是( )

(A )),(y x u 在),(00y x 处连续 (B )),(y x v 在),(00y x 处连续 (C )),(y x u 和),(y x v 在),(00y x 处连续 (D )),(),(y x v y x u +在),(00y x 处连续

学号:____________ 姓名:______________ 班级:_____________

二、填空题

1.设)

2)(3()

3)(2)(1(i i i i i z ++--+=

,则=z

2.设)2)(32(i i z +--=,则=z arg

3.复数2

2

)3sin 3(cos )5sin 5(cos θθθθi i -+的指数表示式为

4.方程i z i z +-=-+221所表示的曲线是连接点 和 的线 段的垂直平分线

5.=+++→)21(lim 421z z i

z

三、将下列复数化为三角表达式和指数表达式:

(1)i (2)13i -+

四、求下列各式的值: (1)5(

3)i - (2)100100(1)(1)i i ++- (3)1i +

五、解方程:5

()1z i +=

六、设复数1≠z ,且满足,1||=z ,试证2

1]11Re[=-z .

七 、证明复平面上的直线方程可写成:

0,(0a z a z c a ++=≠其中为复常数,c 为实常数)

八、证明复平面上的圆周方程可写成:

0,(z z a z az c a +++=其中为复常数,c 为实常数)

九 、函数1

w z

=

把下列z 平面上的曲线映成w 平面中的什么曲线? (1) y

x = (2) 224x y +=

十、)0(),(21)(≠-=

z z

z

z z i z f 试证当0→z 时)(z f 的极限不存在。

第二章 解析函数

一、判断题

(1)若)(z f 在点0z 不连续,则)(z f 在点0z 不可导.( )

(2)若

)(z f 在点0z 可导,则)(z f 在点0z 解析.( )

(3)若v u ,在区域D 内满足柯西-黎曼方程,则iv u z f +=)(在D 内解析.( )

(4)指数函数z

e 是以i π2为周期的函数.( ) (5)z sin 在整个复平面上有界. ( )

二、选择题

1.函数22)(iy x z f +=在点0=z 处是( )

(A )解析的 (B )可导的

(C )不可导的 (D )既不解析也不可导 2.假设点0z 是函数)(z f 的奇点,则函数)(z f 在点0z 处( ) (A )不可导 (B )不解析

(C )不连续 (D )以上答案都不对 3.下列函数中,为整个复平面上解析函数的是( ) (A )xyi y x 222-- (B )xyi x +2 (C ))33(332323y y x y i x xy x ++-++- (D )Z 4.函数)Re()(z z z f =在0=z 处的导数( ) (A )等于0 (B )等于1 (C )等于1- (D )不存在

三、填空题

学号:____________ 姓名:______________ 班级:_____________

1.设)1

sin()2cos()(z

i z z f +=,则=dz df 2.复数=)Ln(2

1

i

3.=-)}43Im{ln(

i 4.方程01=--z e 的全部解为

四、证明区域D 内满足下列条件之一的解析函数必为常数. (1)若)(z f 也在D 内解析; (2) 若()f z 在D 内为常数;

(3) ,au bv c +=其中a,b 与c 为不全为零点实常数。

五、讨论下列函数的解析性:

(1) z z 2||2+ (2)y ix xy 22+ (3) )sin (cos x i x e y +- 六、求

2z e 和2

z Arge

七、求下列初等函数的值。 (1))

4

2(i e π

+ (2)i 2sin ;

(3) ()Ln i - (4) (1)i i +

(5) ln(34)i -+

八、解方程:

(1)0cos sin =+z z ;

(2)i iz 2

2)2ln(π

+=; (3) cos 0z =

九、当,,l m n 取何值时3232()()f z my nx y i x lxy =+++在复平面上

处处解析?

第三章 复变函数的积分

一、 判断题 1. 积分

?=--r

a z dz a z 1

的值与半径)0(>r r 的大小无关。( ) 2. 若在区域D 内有)()(z g z f =',则在D 内)(z g '存在且解析。( ) 3. 若)(z f 在10<

4. 设21,v v 在区域D 内均为u 的共轭调和函数,则必有21v v =。( )

5. 解析函数的实部是虚部的共轭调和函数。( )

6. 以调和函数为实部与虚部的函数是解析函数。( ) 二、选择题:

1.设c 为从原点沿x y =2至i +1的弧段,则=+?c

dz iy x )(2( )

(A )i 6561- (B )i 6561+- (C )i 6

561-- (D )i 6561+

2.设c 为不经过点1与1-的正向简单闭曲线,则dz z z z

c

?

+-2

)1)(1(为

( )

(A )

2i π (B )2

i π- (C )0 (D )(A)(B)(C)都有可能 3.设c 为正向圆周2=z ,则=-?

dz z z

c

2

)

1(cos ( ) (A )1sin - (B )1sin (C )1sin 2i π- (D )1sin 2i π

学号:____________ 姓名:______________ 班级:_____________

4.设c 为正向圆周21

=

z ,则=

--?dz z z z c

2

3)1(21

cos

( )

(A ))1sin 1cos 3(2-i π (B )0 (C )1cos 6i π (D )1sin 2i π-

5.设ξξξξ

d z

e z

f ?=-=4

)(,其中4≠z ,则=')i f π(( ) (A )i π2- (B )1- (C )i π2 (D )1 6.设c 是从0到i 2

+

的直线段,则积分=?c

z dz ze ( )

(A )

2

1e

π- (B) 2

1e

π-

- (C)i e

2

1π+

(D) i e

2

1π-

7.设),(y x v 在区域D 内为),(y x u 的共轭调和函数,则下列函数中为D 内解析函数的是( )

(A )),(),(y x iu y x v + (B )),(),(y x iu y x v - (C )),(),(y x iv y x u - (D )x

v

i x u ??-?? 三、填空题

1.设C 为正向圆周1||=z ,则=?C

z z d

2.设C 为正向圆周14=-z ,则20

153sin 2

d ππ

θθ=+?

3.设?

=-=2)

2sin()(ξξξξπ

d z z f ,其中2≠z ,则=')3(f 4.设c 为正向圆周3=z ,则=+?

c

dz z

z

z 5.解析函数在圆心处的值等于它在圆周上的

6.若函数23),(axy x y x u +=为某一解析函数的虚部,则常数=a 四、利用牛顿-莱布尼兹公式计算下列积分.

(1)

240

i

z

e dz π

?

(2)2

sin i

i

zdz ππ-? (3)1

sin z zdz ?

五、计算下列复积分,圆周均为正向 (1)

11

()(2)2

z dz i z z =-+?

; (2)

2

322

1

iz

z i e dz z -=

+?

, (3)

2232

(1)(4)z dz z z =

++?; (4) ?=-45)(z z

dz i z e π

六、计算积分

3

1

2(1)

z

c

e dz i

z z π-?,其中c 为下列正向圆周: (6)12z =

(2)1

12

z -= (3)2z =

七、已知下列各调和函数,试求解析函数()f z u iv =+

(1) 22, ()1u x xy y f i i =+-=-+,

(2) 22, (2)u xy y f i =-=-,

八、设)(z f 在)1(>

复变函数与积分变换复习题.

第一章 一、选择题 1. 一个向量顺时针旋转 3 π,向右平移3个单位,再向下平移1个单位, 对应的复数为1-,则原向量对应的复数是(A ) A. 2 B. 1 C. i D. i + 2. 设z 为复数,则方程2z z i +=+的解是(B ) A. 34i - + B. 34i + C. 3 4 i - D. 34i -- 3. 方程23z i +-= C ) A. 中心为23i - 的圆周 B. 中心为23i -+,半径为2的圆周 C. 中心为23i -+ D. 中心为23i -,半径为2的圆周 4. 15()1, 23, 5f z z z i z i =-=+=-则 12()f z z -=(C ) A. 44i -- B. 44i + C. 44i - D. 44i -+ 5. 设z C ∈,且1z =,则函数21()z z f z z -+=的最小值是(A ) A. -3 B. -2 C. -1 D. 1 二、填空题 1.不等式225z z -++<所表示的区域是曲线_________________的内部。(椭圆 22 22153()()22 x y +=) 2. 复数 2 2 (cos5sin 5) (cos3sin 3)θθθθ+-的指数表示式为_______________.( 16i e θ) 3. 方程 2112(1)z i i z --=--所表示曲线的直角坐标方程为__________________.(221x y +=) 4. 满足5|2||2|≤-++z z 的点集所形成的平面图形为, 以±2为焦点 ,长半轴 为25 的椭圆,该图形是否为区域 否 . 5.复数 () i i z --= 11 32 的模为_________,辐角为____________. (5/12π- )

复变函数积分方法总结

复变函数积分方法总结The final revision was on November 23, 2020

复变函数积分方法总结 经营教育 乐享 [选取日期] 复变函数积分方法总结 数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,也就会有相应的积分函数求解方法。就复变函数: z=x+iy i2=-1 ,x,y分别称为z的实部和虚部,记作x=Re(z),y=Im(z)。arg z=θθ称为主值 -π<θ≤π,Arg=argz+2kπ。利用直角坐标和极坐标的关系式x=rcosθ,y=rsinθ,故z= rcosθ+i rsinθ;利用欧拉公式 e iθ=cosθ+isinθ。z=re iθ。 1.定义法求积分: 定义:设函数w=f(z)定义在区域D内,C为区域D内起点为A终点为B 的一条光滑的有向曲线,把曲线C任意分成n个弧段,设分点为A=z0,

z 1,…,z k-1,z k ,…,z n =B ,在每个弧段z k-1 z k (k=1,2…n)上任取一点k 并作和式S n =∑f( k )n k?1(z k -z k-1)= ∑f( k )n k?1z k 记 z k = z k - z k-1,弧段z k-1 z k 的长 度 δ=max 1≤k≤n {S k }(k=1,2…,n),当 δ→0时,不论对c 的分发即k 的取法如何,S n 有唯一的极限,则称该极限值为函数f(z)沿曲线C 的积分为: ∫f(z)dz c =lim δ 0 ∑f(k )n k?1z k 设C 负方向(即B 到A 的积分记作) ∫f(z)dz c?.当C 为闭曲线时,f(z)的积分记作∮f(z)dz c (C 圆周正方向为逆时针方向) 例题:计算积分1)∫dz c 2) ∫2zdz c ,其中C 表示a 到b 的任一曲线。 (1) 解:当C 为闭合曲线时,∫dz c =0. ∵f(z)=1 S n =∑f(k)n k?1(z k -z k-1)=b-a ∴lim n 0 Sn =b-a,即1)∫dz c =b-a. (2)当C 为闭曲线时,∫dz c =0. f(z)=2z;沿C 连续,则积分∫zdz c 存在,设k =z k-1,则 ∑1= ∑Z n k?1(k ?1)(z k -z k-1) 有可设k =z k ,则 ∑2= ∑Z n k?1(k ?1)(z k -z k-1) 因为S n 的极限存在,且应与∑1及∑2极限相等。所以 S n = (∑1+∑2)= ∑k?1n z k (z k 2?z k?12)=b 2-a 2 ∴ ∫2zdz c =b 2-a 2 定义衍生1:参数法: f(z)=u(x,y)+iv(x,y), z=x+iy 带入∫f(z)dz c 得:

《复变函数》总结

复变小结 1.幅角(不赞成死记,学会分析) .2 argtg 20,0,0,0,arctg 0,0,20,arctg arg ππ πππ<<-???? ?????=<≠<±≠=±>=x y y x y x x y y x x x y z 其中 -∏

b.对于P12例题 1.11可理解为高中所学的平面上三点(A,B,C )共线所满足的公式: (向量) OC=tOA+(1-t )OB=OB+tBA c.对于P15例题1.14中可直接转换成X 和Y 的表达式后判断正负号来确定其图像。 d.判断函数f(z)在区域D 内是否连续可借助课本P17定义1.8 4.解析函数,指数,对数,幂、三角双曲函数的定义及表达式,能熟练计算,能熟练解初等函数方程 a.在某个区域内可导与解析是等价的。但在某一点解析一定可导,可导不一定解析。 b.柯西——黎曼条件,自己牢记:(注意那个加负那个不加) c.指数函数:复数转换成三角的定义。 d.只需记住:Lnz=ln[z]+i(argz+2k π) e.幂函数:底数为e 时直接运算(一般转换成三角形式) 当底数不为e 时,w= z a = e aLnz (幂指数为Ln 而非ln) 能够区分: 的计算。 f.三角函数和双曲函数: 只需记住: 及 其他可自己试着去推导一下。 反三角中前三个最好自己记住,特别 iz iz i z -+-=11Ln 2Arctg 因为下一章求积分会用到 11)(arctan ,2+=z z (如第三章的习题9) 5.复变函数的积分 ,,,i e e i i e i ππ+)15.2(.2e e sin ,2e e cos i z z iz iz iz iz ---=+=???????=-==+=--y i i iy y iy y y y y sh 2e e sin ch 2e e cos

(完整版)复变函数第六章留数理论及其应用知识点总结

第六章留数理论及其应用 §1.留数 1.(定理6.1 柯西留数定理): ∫f(z)dz=2πi∑Res(f(z),a k) n k=1 C 2.(定理6.2):设a为f(z)的m阶极点, f(z)= φ(z) (z?a)n , 其中φ(z)在点a解析,φ(a)≠0,则 Res(f(z),a)=φ(n?1)(a) (n?1)! 3.(推论6.3):设a为f(z)的一阶极点, φ(z)=(z?a)f(z),则 Res(f(z),a)=φ(a) 4.(推论6.4):设a为f(z)的二阶极点 φ(z)=(z?a)2f(z)则 Res(f(z),a)=φ′(a) 5.本质奇点处的留数:可以利用洛朗展式 6.无穷远点的留数: Res(f(z),∞)= 1 2πi ∫f(z)dz Γ? =?c?1 即,Res(f(z),∞)等于f(z)在点∞的洛朗展式中1 z 这一项系数的反号 7.(定理6.6)如果函数f(z)在扩充z平面上只有有限个孤立奇点(包括无穷远点在内),设为a1,a2,…,a n,∞,则f(z)在各点的留数总和为零。 注:虽然f(z)在有限可去奇点a处,必有Res(f(z),∞)=0,但是,如果点∞为f(z)的可去奇点(或解析点),则Res(f(z),∞)可以不为零。 8.计算留数的另一公式:

Res (f (z ),∞)=?Res (f (1t )1t 2,0) §2.用留数定理计算实积分 一.∫R (cosθ,sinθ)dθ2π0型积分 → 引入z =e iθ 注:注意偶函数 二.∫P(x)Q(x)dx +∞?∞型积分 1.(引理6.1 大弧引理):S R 上 lim R→+∞zf (z )=λ 则 lim R→+∞∫f(z)dz S R =i(θ2?θ1)λ 2.(定理6.7)设f (z )=P (z )Q (z )为有理分式,其中 P (z )=c 0z m +c 1z m?1+?+c m (c 0≠0) Q (z )=b 0z n +b 1z n?1+?+b n (b 0≠0) 为互质多项式,且符合条件: (1)n-m ≥2; (2)Q(z)没有实零点 于是有 ∫ f (x )dx =2πi ∑Res(f (z ),a k )Ima k >0 +∞ ?∞ 注:lim R→R+∞ ∫f(x)dx +R ?R 可记为P.V.∫f(x)dx +∞?∞ 三. ∫P(x)Q(x)e imx dx +∞?∞ 型积分 3.(引理6.2 若尔当引理):设函数g(z)沿半圆周ΓR :z =Re iθ(0≤θ≤π,R 充分大)上连续,且 lim R→+∞g (z )=0 在ΓR 上一致成立。则 lim R→+∞ ∫g(z)e imz dz ΓR =0 4.(定理6.8):设g (z )=P (z )Q (z ),其中P(z)及Q(z)为互质多项式,且符合条件:

复变函数考试试题与答案各种总结

《复变函数》考试试题(一) 一、 判断题(20分): 1.若f(z)在z 0的某个邻域内可导,则函数f(z)在z 0解析. ( ) 2.有界整函数必在整个复平面为常数. ( ) 3.若 } {n z 收敛,则 } {Re n z 与 } {Im n z 都收敛. ( ) 4.若f(z)在区域D 内解析,且 0)('≡z f ,则C z f ≡)((常数). ( ) 5.若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( ) 6.若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点. ( ) 7.若 ) (lim 0 z f z z →存在且有限,则z 0是函数f(z)的可去奇点. ( ) 8.若函数f(z)在是区域D 内的单叶函数,则)(0)('D z z f ∈?≠. ( ) 9. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=? C dz z f . ( ) 10.若函数f(z)在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数.( ) 二.填空题(20分) 1、 =-?=-1||0 0)(z z n z z dz __________.(n 为自然数) 2. =+z z 22cos sin _________. 3.函数z sin 的周期为___________. 4.设 11 )(2+= z z f ,则)(z f 的孤立奇点有__________. 5.幂级数 n n nz ∞ =∑的收敛半径为__________. 6.若函数f(z)在整个平面上处处解析,则称它是__________. 7.若ξ =∞ →n n z lim ,则= +++∞→n z z z n n (i) 21______________. = )0,(Re n z z e s ,其中n 为自然数.

第一章复变函数习题及解答

第一章 复变函数习题及解答 1.1 写出下列复数的实部、虚部;模和辐角以及辐角的主值;并分别写成代数形式,三角形式和指数形式.(其中,,R αθ为实常数) (1)1-; (2) ππ2(cos isin )33-; (3)1cos isin αα-+; (4)1i e +; (5)i sin R e θ ; (6)i + 答案 (1)实部-1;虚部 2;辐角为 4π 2π,0,1,2,3k k +=±±;主辐角为4π 3; 原题即为代数形式;三角形式为 4π4π2(cos isin )33+;指数形式为4π i 32e . (2)略为 5π i 3 5π5π 2[cos sin ], 233i e + (3)略为 i arctan[tan(/2)][2sin()]2c e αα (4)略为 i ;(cos1isin1)ee e + (5)略为:cos(sin )isin(sin )R R θθ+ (6)该复数取两个值 略为 i i isin ),arctan(1isin ),πarctan(1θθ θθθθθθ+=+=+ 1.2 计算下列复数 1)() 10 3 i 1+-;2)()3 1i 1+-; 答案 1)3512i 512+-;2) ()13π/42k π i 6 3 2e 0,1,2k +=; 1.3计算下列复数 (1 (2 答案 (1) (2)(/62/3) i n e ππ+ 1.4 已知x 的实部和虚部.

【解】 令 i ,(,)p q p q R =+∈,即,p q 为实数域(Real).平方得到 2 2 12()2i x p q xy +=-+,根据复数相等,所以 22 1,(p q pq p x q x ?-=??=??=±==±+ 即实部为 ,x ± 虚部为 说明 已考虑根式函数是两个值,即为±值. 1.5 如果 ||1,z =试证明对于任何复常数,a b 有| |1 az b bz a +=+ 【证明】 因为||1,11/z zz z z =∴=∴=,所以 1() ()1||||| |||||||1()az b az b az b z az b az b z bz a bz a z z bzz az b az b az +++++=====+++++ 1.6 如果复数b a i +是实系数方程 ()011 10=++++=--n n n n a z a z a z a z P 的根,则b a i -一定也是该方程的根. 证 因为0a ,1a ,… ,n a 均为实数,故00a a =,11a a =,… ,n n a a =.且()() k k z z =, 故由共轭复数性质有:()()z P z P =.则由已知()0i ≡+b a P .两端取共轭得 ()( ) 00i i =≡+=+b a P b a P 即()0i ≡-b a P .故b a i -也是()0=z P 之根. 注 此题仅通过共轭的运算的简单性质及实数的共轭为其本身即得证.此结论说明实系数多项式的复零点是成对出现的.这一点在代数学中早已被大家认识.特别地,奇次实系数多项式至少有一个实零点. 1.7 证明: 2222 121212||||2(||||)z z z z z z ++-=+,并说明其几何意义. 1.8 若 (1)(1)n n i i +=-,试求n 的值.

复变函数积分方法总结

复变函数积分方法总结 经营教育 乐享 [选取日期] 复变函数积分方法总结 数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,也就会有相应的积分函数求解方法。就复变函数: z=x+iy i2=-1 ,x,y分别称为z的实部和虚部,记作x=Re(z),y=Im(z)。arg z=θ? θ?称为主值-π<θ?≤π,Arg=argz+2kπ。利用直角坐标和极坐标的关系式x=rcosθ,y=rsinθ,故z= rcosθ+i rsinθ;利用欧拉公式 e iθ=cosθ+isinθ。z=re iθ。 1.定义法求积分: 定义:设函数w=f(z)定义在区域D内,C为区域D内起点为A终点为B 的一条光滑的有向曲线,把曲线C任意分成n个弧段,设分点为A=z0,z1,…,

z k-1,z k,…,z n=B,在每个弧段z k-1 z k(k=1,2…n)上任取一点?k并作和式S n=?(z k-z k-1)=??z k记?z k= z k- z k-1,弧段z k-1 z k的长度 ={?S k}(k=1,2…,n),当0时,不论对c的分发即?k的取法如何,S n 有唯一的极限,则称该极限值为函数f(z)沿曲线C的积分为: =??z k 设C负方向(即B到A的积分记作).当C为闭曲线时,f(z)的积分记作(C圆周正方向为逆时针方向) 例题:计算积分,其中C表示a到b的任一曲线。(1)解:当C为闭合曲线时,=0. ∵f(z)=1 S n=?(z k-z k-1)=b-a ∴=b-a,即=b-a. (2)当C为闭曲线时,=0. f(z)=2z;沿C连续,则积分存在,设?k=z k-1,则 ∑1= ()(z k-z k-1) 有可设?k=z k,则 ∑2= ()(z k-z k-1) 因为S n的极限存在,且应与∑1及∑2极限相等。所以 S n= (∑1+∑2)==b2-a2 ∴=b2-a2 1.2 定义衍生1:参数法: f(z)=u(x,y)+iv(x,y), z=x+iy带入得:

(完整版)复变函数积分方法总结

复变函数积分方法总结 [键入文档副标题] acer [选取日期]

复变函数积分方法总结 数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,也就会有相应的积分函数求解方法。就复变函数: z=x+iy i2=-1 ,x,y 分别称为z 的实部和虚部,记作x=Re(z),y=Im(z)。 arg z =θ? θ?称为主值 -π<θ?≤π ,Arg=argz+2k π 。利用直角坐标和极坐标的关系式x=rcos θ ,y=rsin θ,故z= rcos θ+i rsin θ;利用欧拉公式e i θ=cos θ+isin θ。z=re i θ。 1.定义法求积分: 定义:设函数w=f(z)定义在区域D 内,C 为区域D 内起点为A 终点为B 的一条光滑的有向曲线,把曲线C 任意分成n 个弧段,设分点为A=z 0 ,z 1,…,z k-1,z k ,…,z n =B ,在每个弧段z k-1 z k (k=1,2… n)上任取一点ξk 并作和式S n =∑f(ξk )n k?1(z k -z k-1)= ∑f(ξk )n k?1?z k 记?z k = z k - z k-1,弧段z k-1 z k 的长度 δ=max 1≤k≤n {?S k }(k=1,2…,n),当 δ→0 时,不论对c 的分发即ξk 的取法如何,S n 有唯一的极限,则称该极限值为函数f(z)沿曲线C 的积分为: ∫f(z)dz c =lim δ 0 ∑f(ξk )n k?1?z k 设C 负方向(即B 到A 的积分记作) ∫f(z)dz c?.当C 为闭曲线时,f(z)的积分记作∮f(z)dz c (C 圆周正方向为逆时针方向) 例题:计算积分1)∫dz c 2) ∫2zdz c ,其中C 表示a 到b 的任一曲线。 (1) 解:当C 为闭合曲线时,∫dz c =0.

复变函数总结完整版

第一章 复数 1 2i =-1 1-=i 欧拉公式 z=x+iy 实部Re z 虚部 Im z 2运算 ① 2121Re Re z z z z =?≡ 21Im Im z z = ②()()()()()2121212121Im Im Re Re Im Re z z z z z z z z z z ++±=±+±=± ③ ()()()() 122121212112212122112 1y x y x i y y x x y y y ix y ix x x iy x iy x z z ++-=-++=++=? ④ ()()()()2 2 222 1212222212122222211222121y x y x x y i y x y y x x iy x iy x iy x iy x z z z z z z +-+++=-+-+== ⑤iy x z -= 共轭复数 ()() 22y x iy x iy x z z +=-+=? 共轭技巧 运算律 P1页 3代数,几何表示 iy x z += z 与平面点()y x ,一一对应,与向量一一对应 辐角 当z ≠0时,向量z 和x 轴正向之间的夹角θ,记作θ=Arg z=πθk 20+ k=±1±2±3… 把位于-π<0θ≤π的0θ叫做Arg z 辐角主值 记作0θ=0arg z 4如何寻找arg z 例:z=1-i 4 π - z=i 2π z=1+i 4 π z=-1 π 5 极坐标: θcos r x =, θsin r y = ()θθsin cos i r iy x z +=+= 利用欧拉公式 θθθ sin cos i e i +=

复变函数积分方法总结

复变函数积分方法总结内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

复变函数积分方法总结 经营教育 乐享 [选取日期] 复变函数积分方法总结 数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,也就会有相应的积分函数求解方法。就复变函数: z=x+iy i2=-1 ,x,y 分别称为z 的实部和虚部,记作x=Re(z),y=Im(z)。 arg z =θ? θ?称为主值 -π<θ?≤π ,Arg=argz+2k π 。利用直角坐标和极坐标的关系式x=rcos θ ,y=rsin θ,故z= rcos θ+i rsin θ;利用欧拉公式e iθ=cos θ+isin θ。z=re i θ。 1.定义法求积分: 定义:设函数w=f(z)定义在区域D 内,C 为区域D 内起点为A 终点为B 的一条光滑的有向曲线,把曲线C 任意分成n 个弧段,设分点为A=z 0 ,z 1,…,z k-1, z k ,…,z n =B ,在每个弧段z k-1 z k (k=1,2…n)

S n =∑f (?k )n k ?1(z k -z k-1)= ∑f (?k )n k ?1?z k 记?z k = z k - z k-1,弧段z k-1 z k 的长度 δ=max 1≤k ≤n {?S k }(k=1,2…,n),当 δ→0时,不论对c 的分发即?k 的取法如何,S n 有唯一的极限,则称该极限值为函数f(z)沿曲线C 的积分为: ∫f (z )dz c =lim δ 0 ∑ f (?k )n k ?1 ?z k 设C 负方向(即B 到A 的积分记作) ∫f (z )dz c ?.当C 为闭曲线时,f(z)的积分记作∮f (z )dz c (C 圆周正方向为逆时针方向) 例题:计算积分1)∫dz c 2) ∫2zdz c ,其中C 表示a 到b 的任一曲线。 (1) 解:当C 为闭合曲线时,∫dz c =0. ∵f(z)=1 S n =∑f (?k )n k ?1(z k -z k-1)=b-a ∴lim n 0 Sn =b-a,即1)∫dz c =b-a. (2)当C 为闭曲线时,∫dz c =0. f(z)=2z;沿C 连续,则积分∫zdz c 存在,设?k =z k-1,则 ∑1= ∑Z n k ?1(k ?1)(z k -z k-1) 有可设?k =z k ,则 ∑2= ∑Z n k ?1(k ?1)(z k -z k-1) 因为S n 的极限存在,且应与∑1及∑2极限相等。所以 S n = (∑1+∑2)= ∑k ?1n z k (z k 2?z k ?12)=b 2-a 2 ∴ ∫2zdz c =b 2-a 2 1.2 定义衍生1:参数法: f(z)=u(x,y)+iv(x,y), z=x+iy 带入∫f (z )dz c 得: ∫f (z )dz c = ∫udx c - vdy + i ∫vdx c + udy 再设z(t)=x(t)+iy(t) (α≤t ≤β)

复变函数论第三版课后习题答案

第一章习题解答 (一) 1 .设z ,求z 及Arcz 。 解:由于3i z e π-== 所以1z =,2,0,1, 3 Arcz k k ππ=-+=±。 2 .设121z z =,试用指数形式表示12z z 及12 z z 。 解:由于6412,2i i z e z i e ππ -==== 所以()6 46 41212222i i i i z z e e e e π πππ π --=== 54()14612 26 11222i i i i z e e e z e πππππ +-===。 3.解二项方程44 0,(0)z a a +=>。 解:1 244 4 (),0,1,2,3k i i z a e ae k ππ π+====。 4.证明2 2 21212122()z z z z z z ++-=+,并说明其几何意义。 证明:由于2 2 2 1212122Re()z z z z z z +=++ 2 2 2 12 12122Re()z z z z z z -=+- 所以2 2 21212 122()z z z z z z ++-=+ 其几何意义是:平行四边形对角线长平方和等于于两边长的和的平方。 5.设z 1,z 2,z 3三点适合条件:0321=++z z z ,1321===z z z 。证明z 1,z 2,z 3 是内 接于单位圆 1 =z 的一个正三角形的顶点。 证 由于1 321 ===z z z ,知 321z z z ?的三个顶点均在单位圆上。 因为 3 33 31z z z == ()[]()[]212322112121z z z z z z z z z z z z +++=+-+-= 21212z z z z ++= 所以, 1212 1-=+z z z z , 又 ) ())((1221221121212 21z z z z z z z z z z z z z z +-+=--=- ()322121=+-=z z z z

(完整版)复变函数测验题库第一章复数与复变函数

第一章 复数与复变函数 一、 选择题 1.当i i z -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1- 2.设复数z 满足3)2(π =+z arc ,6 5)2(π=-z arc ,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2321+- (D )i 2123+- 3.复数)2( tan πθπθ<<-=i z 的三角表示式是( ) (A ))]2sin()2[cos(sec θπθπθ+++i (B ))]2 3sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos( sec θπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 4.若z 为非零复数,则22z z -与z z 2的关系是( ) (A )z z z z 222≥- (B )z z z z 222=- (C )z z z z 222≤- (D )不能比较大小 5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹是( ) (A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转3 π,向右平移3个单位,再向下平移1个单位后对应的复数为i 31-,则原向量对应的复数是( ) (A )2 (B )i 31+ (C )i -3 (D )i +3

7.使得2 2z z =成立的复数z 是( ) (A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 8.设z 为复数,则方程i z z +=+2的解是( ) (A )i +-43 (B )i +43 (C )i -4 3 (D )i --43 9.满足不等式 2≤+-i z i z 的所有点z 构成的集合是( ) (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域 10.方程232=-+i z 所代表的曲线是( ) (A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周 11.下列方程所表示的曲线中,不是圆周的为( ) (A )22 1=+-z z (B )433=--+z z (C ) )1(11<=--a az a z (D ))0(0>=-+++c c a a z a z a z z 12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ( ) (A )i 44-- (B )i 44+ (C )i 44- (D )i 44+- 13.0 0)Im()Im(lim 0z z z z x x --→( ) (A )等于i (B )等于i - (C )等于0 (D )不存在 14.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是( ) (A )),(y x u 在),(00y x 处连续 (B )),(y x v 在),(00y x 处连续 (C )),(y x u 和),(y x v 在),(00y x 处连续(D )),(),(y x v y x u +在),(00y x 处连续

复变函数总结完整版

第一章 复数 12i =-1 1-=i 欧拉公式 z=x+iy 实部Rez 虚部 Im z 2运算①212 1Re Re z z z z =?≡21Im Im z z = ②()()()()()2121212121Im Im Re Re Im Re z z z z z z z z z z ++±=±+±=± ③ ()()()() 122121212112212122112 1y x y x i y y x x y y y ix y ix x x iy x iy x z z ++-=-++=++=? ④ ()()()()2 2 222 1212222212122222211222121y x y x x y i y x y y x x iy x iy x iy x iy x z z z z z z +-+++=-+-+== ⑤iy x z -= 共轭复数 ()() 22y x iy x iy x z z +=-+=? 共轭技巧 运算律 P1页 3代数,几何表示 iy x z += z 与平面点()y x ,一一对应,与向量一一对应 辐角 当z ≠0时,向量z 和x 轴正向之间的夹角θ,记作θ=Arg z=πθk 20+ k=±1±2±3… 把位于-π<0θ≤π的0θ叫做Arg z 辐角主值 记作0θ=0arg z 4如何寻找arg z 例:z=1-i 4 π - z=i 2 π z=1+i 4 π z=-1 π 5 极坐标:θcos r x =, θsin r y =()θθsin cos i r iy x z +=+= 利用欧拉公式 θθθ sin cos i e i += 可得到 θ i re z =

第1章复变函数习题答案习题详解

第一章习题详解 1. 求下列复数z 的实部与虚部,共轭复数、模与辐角: 1) i 231+ 解: () ()() 13 234 9232323231231i i i i i i -=+-=-+-= + 实部:133231 = ??? ?? +i Re 虚部:132231- =??? ?? +i Im 共轭复数:1323231 i i +=? ?? ?? + 模: 13 113 232312 2 2= += +i 辐角:πππk arctg k arctg k i i Arg 232213 3 13 22231231+?? ? ??-=+-=+?? ? ??+=??? ??+arg 2) i i i -- 131 解: () ()() 2 532 3321 133******** i i i i i i i i i i i i i i -= -+-= ++-- -=+-+- =-- 实部:23 131=??? ??-- i i i Re 虚部:25 131-=??? ??-- i i i Im 共轭复数:2 53131i i i i +=? ?? ??-- 模: 2 344 342 531312 2 2= = += -- i i i 辐角:πππk arctg k arctg k i i i i i i Arg 2352232 52131131+??? ??-=+??? ? ? ??-=+?? ? ??--=??? ??--arg

3) ()() i i i 25243-+ 解: ()()()2 2672 2672 72625243i i i i i i i --= -+= --= -+ 实部:()()2725243-=? ? ? ??-+i i i Re 虚部:()()1322625243-=- =?? ? ??-+i i i Im 共轭复数:()()226725243i i i i +-= ?? ? ??-+ 模: ()() 292 522627252432 2= ? ? ? ??-+??? ??-= -+i i i 辐角:()()ππk arctg k arctg i i i Arg 27262272 26 25243+??? ??=+??? ? ? ??--=?? ? ??-+ 4) i i i +-2184 解:i i i i i i 31414218-=+-=+- 实部:()14218=+-i i i Re 虚部:()3421 8 -=+-i i i Im 共轭复数:()i i i i 314218+=+- 模:103 142 221 8 =+=+-i i i 辐角:()()πππk arctg k arctg k i i i i i i Arg 23213244218218+-=+?? ? ? ?- =++-=+-arg 2. 当x 、y 等于什么实数时,等式() i i y i x +=+-++13531成立? 解:根据复数相等,即两个复数的实部和虚部分别相等。有: ()()()i i i y i x 8235131+=++=-++ ? ? ?=-=+832 1y x ???==?111y x 即1=x 、11=y 时,等式成立。

相关文档
最新文档