污泥制备活性炭及其应用研究报告

污泥制备活性炭及其应用研究报告
污泥制备活性炭及其应用研究报告

科技大学高新学院

科目:化工安全

:泽根

学号:1204060229

班级:安单1201

污泥制备活性炭及其应用研究

[摘要]国污水处理事业的迅猛发展使得城市污水污泥数量与日俱增。若污泥处理处置不当,必将造成严重的二次污染。因此必须高度重视污水污泥的科学处理处置问题。分析污泥的来源与组分,对污泥制备活性炭的国外研究现状及实际应用进行研究,提出了污泥制备活性炭目前存在的问题。

近年来,活性炭在环境保护领域的应用越来越广泛,吸附工艺也越来越成熟,同时活性炭的需求量也越来越大。我国是活性炭生产大国,1997年活性炭产量仅次于美国,位居世界第二。但是我国的活性炭质量一直都比较低,并且以煤和木材为原材料的话活性炭加工工艺对环境破坏非常大。而城市污水处理厂大规模兴起和生物处理发的迅速发展,必将产生大量活性污泥。作为污水处理的副产物,城市污泥是一类特殊的固体废物,其产生量大,成分复杂,由胶体、无机颗粒、有机残片、细菌菌体等组成,是组成非常复杂的非均质体,含有60%~80%的有机物,被世界水环境组织命名为“生

物固体”,表明了污泥具有资源化的潜质。将污泥制成活性炭是很有发展前景的污泥资源化的处置方式之一,它在保证了污泥不会造成二次污染的基础之上,还能制得活性炭吸附材料。

1污泥的来源与组分从元素的角度来讲,污泥中的有机物主要包含碳(C)、氢(H)、氧(0)、氮(N)、硫(S)、氯(C l)等六种元素。从化学组成的角度来讲,污泥中的有机物组成包含毒性有机物、有机生物质和有机官能团化合物和微生物。污水处理厂的剩余活性污泥的主要组成成分为有机物,粗蛋白质大概占60%~70%,碳水化合物大约占25%左右,其无机灰分的含量仅为5%左右。

2污泥制备活性炭的国外研究现状污泥基活性炭的活化方法主要有物理活化、化学活化和化学-物理联合活化等。

2.1物理活化法物理活化法主要包括直接热解法和气体活化法。

2.1.1直接热解法直接热解法是指在氮气气氛的保护作用下,将污泥置于电阻炉中,将污泥加

热至热解温度后保持恒温一段时间,再经后续处理得到粉末状污泥基吸附剂。F a n等利用X X市污水处理厂产生的厌氧消化污泥为原材料,用氮气作保护气,以15℃/m i n的升温速率升至500℃,并在此温度下直接热解3h,制得的污泥基活性炭主要以中孔和大孔为主。新加坡学者L u等采用直接热解法制备污泥基吸附剂,由研究可以得出,在较低的温度围,随着热解温度的升高与停留时间的延长,污泥基吸附剂的比表面积也呈现出逐渐增加的趋势;当温度在550~650℃之间时,随着热解温度的升高,其比表面积却呈现出了下降的趋势;当热解温度超过850℃以后,比表面积逐渐减小。

2.1.2气体活化法气体活化法制备污泥基活性炭是指先对污水污泥直接进行高温热解,然后利用水蒸汽、C O2、O2等活化气体,在600~1200℃下对碳进行弱的氧化作用,疏通材料的孔径,使其发生造孔与扩孔的现象,进而形成碳基吸附剂的多孔微晶结构。有研究结果表明,热解温度、热解时间和气体流量会影响污泥基吸附剂的孔径分布,改变活化气体中C O2与H2O比例可以控制吸附剂的孔径分布。J i n d a r o m等利用污泥制备活性炭吸附材料,采用二氧化碳气体作为保护气体,于750℃

下活化30m i n,升温速率为20℃/m i n,制得的污泥基活性炭的比表面积为61m2/g。Mén d e z等利用污水处理厂产生的厌氧与好氧消化污泥作为原材料,采用气体活化法制备污泥基活性炭。在隔绝空气的条件下采用氮气作为保护气,在450℃下热解1h,制得的污泥基活性炭的比表面积分别为16m2/g和81m2/g。为了进一步提高污泥基活性炭的吸附性能,在N2和O2的混合气流下,以10℃/m i n的升温速率升温至275℃,并在此温度下活化4h,其中,O2与N2的体积比为1:29,流量为150m L/m i n。碳化-气体活化后的污泥基活性炭的比表面积分别增加至102m2/g和105m2/g。由此实验结果可以得出,气体活化法可以显著的提高两种污泥基活性炭的比表面积值,其中对于厌氧消化污泥制备的污泥基活性炭吸附性能的提高效果更为显著。

2.2化学活化法化学活化法对于制备高比表面积污泥基吸附剂具有显著优势,目前采用的化学活化剂主要有H2S O4、H3P O4、Z n C l2、N a O H和K O H 等。在污泥的热解工艺中,由于污水污泥的来源和特性不同,活化剂的选择显得非常重要,选择出合适的化学活化剂不仅可以提高污泥基吸附剂的产率与碳含量,还可以缩短制备过程中的活化时间,

更可以大幅度的提高污泥基吸附剂的吸附性能。

2.2.1硫酸活化法目前,国外大多数的采用硫酸作为活化剂制备污泥基吸附剂研究均采用先将污泥在各种不同浓度的H2S O4溶液中浸渍24~48h,然后在N2氛围下热解一定时间,热解温度对制得的污泥基吸附剂的比表面积会产生一定的影响。B a g r e e v等采用肥料厂产生的含水率为5%的污泥作为原材料,于300℃下制备的污泥基吸附剂比表面积值很低,仅为26m2/g;当活化温度增加到600℃时,污泥基吸附剂的比表面积有了明显的提高,由原来的26m2/g增加到了170m2/g。Z h a n g等利用有机污泥制备污泥基吸附剂,当热解温度为650℃、热解时间为60m i n时,实验测得污泥基吸附剂的比表面积为408m2/g,为直接热解法制备的污泥基吸附剂的2.97倍。由二者的对比可以得出,污水污泥的来源和特性对于污泥基吸附剂的比表面积有很大的影响,采用H2S O4作为化学活化法制得的污泥基吸附剂吸附性能明显优于直接热解法和气体活化法。2.2.2氯化锌活化法采用Z n C l2作为化学活化剂制备污泥基吸附剂是目前国外研究常采用的方法之一。在高温热解活化过程中,Z n C l2主要起润涨、脱水以及缩合的作用,

对纤维素的降解产生促进作用,避免热解过程中焦油的产生以提高吸附剂含碳量,从而制备具有孔隙结构发达的吸附剂。当Z n C l2浓度较小时,污泥基吸附剂主要孔隙结构是微孔,随着氯化锌浓度的增大,微孔逐渐转变为中孔。过长的浸渍时间和过大的浸渍浓度会导致微孔变成中孔甚至形成大孔。有研究表明,较高的氯化锌浓度可以提高污泥基吸附剂的产率。采用氯化锌作为化学活化剂可以制得比表面积较高的污泥基吸附剂。Z n C l2对污泥的化学活化作用很明显,是一种效果很好的化学活化剂。制得的污泥基吸附剂中含有的氯化锌晶体可以通过酸洗和水洗去除。

2.2.3磷酸活化法磷酸作为活化剂时,在活化过程中同时起到脱水和酸催化的作用。采用H3P O4作为化学活化剂,活化温度650℃下制得的污泥基吸附剂的比表面积为289m2/g。但是,磷酸具有很强的腐蚀性,会严重的腐蚀设备,因此限制了它在工业化生产中的应用,而且,采用磷酸作为化学活化剂时,所采用的污泥的化学成分有一定的限制。

2.2.4氢氧化钾活化法K O H作为活化剂时,在氧化反应中其自身具有一定的催化作用。有研究表明,在采用“碳化-浸渍活化”两段法制备污泥基

吸附剂的过程中,采用K O H作为化学活化剂时,污泥基吸附剂的比表面积较高。一般认为,K O H 的活化原理为:4K O H+C→K2C O3+K2O+2H2R ód e n a s等采用“碳化-浸渍活化”两段法制备污泥基吸附剂,其比表面积为1900m2/g。其中,碳化阶段制得的污泥基吸附剂的比表面积为7m2/g,而经过K O H活化后制得的污泥基吸附剂的比表面积增加了大约270倍。由此可以得出,K O H作为化学活化剂制备的污泥基吸附剂的比表面积较高,其造孔效果明显。黄正宏等采用K O H作为化学活化剂制备粘胶基活性炭纤维,实验结果表明:试验中所采用的两种活化方法制备的粘胶基活性炭纤维均以微孔为主,但是,K O H活化制得的粘胶基活性炭纤维的孔径分布不同于其他方法制备的粘胶基活性炭纤维,具有更窄的孔径分布。总之,不同的化学活化剂在活性炭吸附材料的制备过程中所起的作用是不同的。目前,H2S O4、Z n C l2应用的最多,H3P O4和K O H应用的相对少一些。

2.3化学物理联合活化法化学-物理联合活化法是指将化学活化法与物理活化法有效地结合起来,通过调整活化气体流量以及污泥与活化剂的质量比来获得满意的污泥基活性炭。由化学活化法制

备的活性炭以微孔为主,由物理活化法制备的活性炭主要是多孔微晶结构,由化学-物理联合活化法制备的污泥基活性炭以中孔为主,比表面积大,而且表面形成了特殊化学官能团。

3污泥基活性炭的实际应用污泥基活性炭的吸附性能良好,但是由于污泥基活性炭中含有重金属以及其比表面积的限制,目前主要应用于环境污染控制领域,主要集中在废水和废气的治理方面。

3.1在废水处理中的应用目前,污泥基活性炭在废水处理方面的应用主要包括以下几个方面:吸附废水中的重金属离子,吸附废水中的染料,吸附苯酚或苯酚类化合物,在“活性污泥―活性炭粉末”处理工艺中的应用,吸附其他污染物,如C O D、苯甲酸、四氯化碳等。在利用污泥基活性炭吸附废水中的各种污染物时,不仅要考虑污泥基活性炭的孔径结构和比表面积,同时还要考虑其表面官能团的化学作用。方平等采用Z n C l2作为化学活化剂对污泥进行高温热解制备污泥基活性炭,并将其应用于废水中P b2+的去除。O t e r o等利用污泥制备活性炭,并对此活性炭去除有机废水中水晶紫

(C16H8N2O8S2)、靛青红(C25H30C l N3)和苯酚等三种污染物的效果进行了研究。还有研究将污泥基吸附剂应用于废水中苯酚的去除,实验结果表明,当苯酚的浓度在100m g/L~2000m g/L围,吸附剂的质量浓度为0.5%,温度为25℃时,苯酚的平衡吸附容量为55m g/g,吸附平衡时间为4h。

3.2污泥基活性炭在废气处理中的应用目前,污泥基活性炭在废气处理中主要应用于恶臭气体H2S、二氧化硫等气体的去除。污泥基活性炭吸附去除H2S的主要机理为污泥基活性炭表面附着的一些金属氧化物对于H2S转化为S单质的催化氧化作用,主要与污泥基活性炭表面的空隙结构和污泥基活性炭表面催化剂的分布、位置及其与活性炭的结合方式有关,其中污泥基活性炭表面的空隙结构决定了反应产物固态硫的存储和转移,后者则决定了催化反应发生的程度。中孔结构较为发达的污泥基活性炭有利于氧化产物固态硫的储存,而且污泥基活性炭表面的金属氧化物有催化氧化作用,因此,对于H2S气体的去除,污泥基活性炭比商品活性炭更具有优势。有研究表明,当污泥基活性炭用于去除H2S时,其吸附容量为商品活性炭的2~3倍,平均100g的污泥基活性炭就可以吸附10g H2S

气体。污泥基活性炭吸附二氧化硫时首先发生的是物理吸附过程,二氧化硫被吸附到活性炭表面以后继续被氧化为三氧化硫,最后与水反应生成硫酸,硫酸再与污泥基活性炭中的无机氧化物发生反应,生成可溶性的硫酸盐,当污泥基活性炭中的活性无机组分消耗完毕时,反应停止。

4城市污泥制活性炭的优势和劣势

城市污水污泥是污水处理的产物,成分很复杂,含有比污水中数量更多的有害物质,它包括混入生活污水或工业废水中的泥砂、纤维、动植物残体等固体颗粒及其凝结的絮状物、由多种微生物形成的菌胶团及其吸附的有机物、细菌、原生动物(如带柄的原生动物、自由游动的原生动物、鞭毛状原生动物、腐生原生动物等)和虫卵(如蛔虫卵、绦虫卵等)以及重金属元素和盐类等综合固体物质。污泥的主要特性是含水率高(可高达80%以上),有机物含量高,细菌等微生物组成复杂,容易腐化发臭,并且颗粒较细,比重较小,体积大,呈胶体液状。大量堆积的污泥,不仅占用土地,而且其中的有害成分如重金属、病原菌、寄生虫、有机污染物及臭气等,都成为影响城市环境卫生的一大公害。如果处理不当排放后,不但降低了污水处理系统的

有效处理能力,而且对生态环境和人类活动构成了较严重的威胁。因此,寻求科学、有效的污泥减量化、稳定化、无害化、资源化利用途径势在必行。

活性污泥的组成可用分子是C5H7N O2表示,其理论含碳量为5%,从客观上具备了制取活性炭的条件。在一定的高温下,以污泥为原料,通过改性可以制得含碳吸附剂。由污泥制成的活性炭吸附剂对C O D及某些重金属离子有很高的去除率,是一种优良的有机废水处理剂。用过的吸附剂若不能再生,可以用作燃料,在控制尾气条件下,进行燃烧,通过选择污泥的最佳炭的活化条件,可以提高污泥活性炭的质量且降低成本。

表1污泥制取吸附剂技术优缺点比较

采用不同添加剂来提高污泥中的含碳量及控制污泥中重金属的含量能大大提高污泥活性炭的质量并拓宽其适用围。

5结语将城市污水处理厂产生的污水污泥制备成孔隙结构发达的污泥基活性炭,既可以解决污泥的处理处置问题,又可以充分利用污泥中丰富的有机质,达到污泥资源化的目的。然而,不同物理活化剂和化学活化剂之间在污泥热解过程中存在不同的相互作用,探明活化剂之间的相互作用机理,对确定物理活化剂与化学活化剂的最优组合很关键,有待进一步深入研究。污泥基活性炭的制备过程中,挥发一定的有毒有害气体,需要研究其净化方法,以防止二次污染的发生。

[参考文献][1]谷晋川,文举,雍毅.城市污水厂污泥处理与资源化[M].第一版,:化学工业,2008.[2]B u r t o n F.L.,S t e n s e l H.

D.,e t a l.W a s t e w a t e r E n g i n e e r i n g T r e a t m e n t a n d R e u s e,4t h E d i t i o n[M].N e w Y o r k.M c G r a w H i l l B o o k p a n y,2002.[3]何品晶,顾国维,笃中等.城市污泥处理与利用[M].:科学,2003.

[4]万洪云.利用活性污泥制造活性炭的研究.干旱环境监测,2000,14(4):202~206.[5]F a n X D,Z h a n g X K.A d s o r p t i o n p r o p e r t i e s o f a c t i v a t e d c a r b o n f r o m s e w a g e s l u d g e t o a l k a l i n e-b l a c k[J]. M a t e r i a l s L e t t e r s.2008,62(10-11):1704~1706.

[6]L u G Q,L o w J C F,L i u C Y,e t a l.S u r f a c e

a r e a d e v e l o p m e n t o f s e w a g e s l u d g e d u r i n g p y r o l y s i s[J].F u e l.1995,74(3):344~348.

污泥制备活性炭及其应用研究报告

科技大学高新学院 结 课 论 文 科目:化工安全 :泽根 学号:1204060229 班级:安单1201

污泥制备活性炭及其应用研究 [摘要]国污水处理事业的迅猛发展使得城市污水污泥数量与日俱增。若污泥处理处置不当,必将造成严重的二次污染。因此必须高度重视污水污泥的科学处理处置问题。分析污泥的来源与组分,对污泥制备活性炭的国外研究现状及实际应用进行研究,提出了污泥制备活性炭目前存在的问题。 近年来,活性炭在环境保护领域的应用越来越广泛,吸附工艺也越来越成熟,同时活性炭的需求量也越来越大。我国是活性炭生产大国,1997年活性炭产量仅次于美国,位居世界第二。但是我国的活性炭质量一直都比较低,并且以煤和木材为原材料的话活性炭加工工艺对环境破坏非常大。而城市污水处理厂大规模兴起和生物处理发的迅速发展,必将产生大量活性污泥。作为污水处理的副产物,城市污泥是一类特殊的固体废物,其产生量大,成分复杂,由胶体、无机颗粒、有机残片、细菌菌体等组成,是组成非常复杂的非均质体,含有60%~80%的有机物,被世界水环境组织命名为“生

物固体”,表明了污泥具有资源化的潜质。将污泥制成活性炭是很有发展前景的污泥资源化的处置方式之一,它在保证了污泥不会造成二次污染的基础之上,还能制得活性炭吸附材料。 1污泥的来源与组分从元素的角度来讲,污泥中的有机物主要包含碳(C)、氢(H)、氧(0)、氮(N)、硫(S)、氯(C l)等六种元素。从化学组成的角度来讲,污泥中的有机物组成包含毒性有机物、有机生物质和有机官能团化合物和微生物。污水处理厂的剩余活性污泥的主要组成成分为有机物,粗蛋白质大概占60%~70%,碳水化合物大约占25%左右,其无机灰分的含量仅为5%左右。 2污泥制备活性炭的国外研究现状污泥基活性炭的活化方法主要有物理活化、化学活化和化学-物理联合活化等。 2.1物理活化法物理活化法主要包括直接热解法和气体活化法。 2.1.1直接热解法直接热解法是指在氮气气氛的保护作用下,将污泥置于电阻炉中,将污泥加

活性炭再生技术的发展(一)

活性炭再生技术的发展(一) 摘要:活性炭是废水处理中常用的一种有效吸附剂,其再生具有重要意义。对热再生法、生物再生法等活性炭再生的传统方法进行了回顾,同时也对目前新兴的活性炭再生技术,如电化学法、超临界流体法、催化湿式氧化法和超声波法等进行了介绍与讨论。 关键词:活性炭再生水处理 活性炭是一种无毒无味,具有发达细孔结构和巨大比表面积的优良吸附剂。20世纪60年代初,欧美各国开始大量使用活性炭吸附法处理城市饮用水和工业废水。目前,活性炭吸附法已成为城市污水、 工业废水深度处理和污染水源净化的一种有效手段。我国于20世纪60年代已将活性炭用于二硫化碳废水处理,自20世纪70年代初以来,采用粒状活性炭处理工业废水,不论是在技术上,还是在应用范围和处理规模上都发展很快,如在炼油废水、炸药废水、印染废水、化工废水和电镀废水处理等方面都已有了较大规模的应用,并取得了满意的效果。 随着活性炭的应用范围日趋广泛,活性炭的回收开始得到了人们的重视。如果用过的活性炭无法回收,除了每吨废水的处理费用将会增加0.83~0.90元外1],还会对环境造成二次污染。因此,活性炭的再生具有格外重要的意义。 1传统活性炭再生方法 1.1热再生法 热再生法是目前应用最多,工业上最成熟的活性炭再生方法2,3]。处理有机废水后的活性炭在再生过程中,根据加热到不同温度时有机物的变化,一般分为干燥、高温炭化及活化三个阶段。在干燥阶段,主要去除活性炭上的可挥发成分。高温炭化阶段是使活性炭上吸附的一部分有机物沸腾、汽化脱附,一部分有机物发生分解反应,生成小分子烃脱附出来,残余成分留在活性炭孔隙内成为“固定炭”。在这一阶段,温度将达到800~900°C,为避免活性炭的氧化,一般在抽真空或惰性气氛下进行。接下来的活化阶段中,往反应釜内通入CO2、CO、H2或水蒸气等气体,以清理活性炭微孔,使其恢复吸附性能,活化阶段是整个再生工艺的关键。热再生法虽然有再生效率高、应用范围广的特点,但在再生过程中,须外加能源加热,投资及运行费用较高。 1.2生物再生法 生物再生法是利用经驯化过的细菌,解析活性炭上吸附的有机物,并进一步消化分解成H2O和CO2的过程1,2]。生物再生法与污水处理中的生物法相类似,也有好氧法与厌氧法之分。由于活性炭本身的孔径很小,有的只有几纳米,微生物不能进入这样的孔隙,通常认为在再生过程中会发生细胞自溶现象,即细胞酶流至胞外,而活性炭对酶有吸附作用,因此在炭表面形成酶促中心,从而促进污染物分解,达到再生的目的。 生物法简单易行,投资和运行费用较低,但所需时间较长,受水质和温度的影响很大。微生物处理污染物的针对性很强,需就特定物质专门驯化。且在降解过程中一般不能将所有的有机物彻底分解成CO2和H2O,其中间产物仍残留在活性炭上,积累在微孔中,多次循环后再生效率会明显降低。因而限制了生物再生法的工业化应用。 1.3湿式氧化再生法 在高温高压的条件下,用氧气或空气作为氧化剂,将处于液相状态下活性炭上吸附的有机物氧化分解成小分子的一种处理方法,称为湿式氧化再生法4]。再生条件一般为200~250°C,3~7MPa,再生时间大多在60min以内。湿式氧化再生法处理对象广泛,反应时间短,再生效率稳定,再生开始后无需另外加热。但对于某些难降解有机物,可能会产生毒性更大的中间产物。同济大学环境学院以苯酚吸附等温线的变化为评价标准,系统地研究了活性炭湿式氧化再生过程中的主要影响因素,并从理论上探讨了其规律性;探讨了各主要因素之间的协同作用;考察了饱和炭多次循环再生的可能性;并对活性炭自身结构在湿式氧化过程中的变化情况进行了研究。实验获得的活性炭最佳再生条件为:再生温度230°C,再生时间1h,充氧pO20.6MPa,

活性炭的生产方法及工艺

活性炭的生产方法及工艺 作者:易择活性炭 上文我们分享了目前市场上有哪些活性炭:按材质分主要有煤质活性炭、木质活性炭、果壳活性炭、椰壳活性炭等;按形状分类有不定型颗粒炭、柱状活性炭、蜂窝活性炭、粉末活性炭等。 那么活性炭是如何生产的?是经过怎样的生产工艺得到的呢?这次我们以煤质活性炭的生产过程为例,来聊聊活性炭的生产方法和工艺。 01原料选择 按原理来说,所有的煤炭都可以生产制作成活性炭。但因不同的煤质生产的出来的活性炭品质有很大差异,为了更好的适应市场和让资源得到合理的利用,目前国内煤质活性炭的生产原料,主要采用山西大同地区的弱粘结性烟煤和宁夏的太西无烟煤。 此外,新疆烟煤也适宜制作活性炭。近几年受新疆地区煤层开发和经济发展的影响,现在采用新疆烟煤生产活性炭的厂家也越来越多。另外陕西神木地区也有部分企业使用当地烟煤生产活性炭,但活化出来的产品吸附值普遍较低,碘吸附值主要在400-700mg/g(国标87标)。 02炭化活化工段 “活性炭是一种含碳材料经过炭化、活化处理后的炭质吸附剂”,据此句定义可知生产活性炭有两个必备的工段,就是炭化和活化。 炭化是活性炭制造过程中的主要热处理工艺之一,常采用的设备主要有流态化炉、回转炉和立式炭化炉。

煤质活性炭通常炭化的温度在350-600℃。在炭化过程中大部分非碳元素——氢和氧因原料的高温分解首先以气体形式被排除,排除了原料中的挥发分和水分,而获释的元素碳原子则组合成通称为基本石墨微晶的有序结晶生成物,使得炭颗粒形成了初步孔隙,具备了活性炭原始形态的结构。原料经过炭化之后,我们称之为炭化料,炭化料已经具备了一定的吸附能力,但吸附能力极低,经检测一般炭化料碘吸附值只有200mg/g左右。 活化方法根据活化剂的不同分为物理活化法(也称气体活化法)和化学活化法。 煤质活性炭常用的活化方法是物理活化法,以水蒸气、烟道气(水蒸气、CO2、N2等的混合气)、CO2或空气等作为活化气体、在800-1000℃的高温下与炭化料接触进行活化(实际生产过程中最常使用烟道气)。 活化过程通过开放原来闭塞的孔隙、扩大原有孔隙和形成新的孔隙三个阶段达到造孔的目的。活化主要是通过活化炉设备进行活化反应造孔,当下主流有斯列普炉(SLEP)、斯克特炉(STK)、耙式炉、回转炉,目前在国内斯列普炉是使用最多的气体活化法炉型。 03成品工段 成品工段主要是根据应用需要制作成粒度不同的产品,对于颗粒炭,主要有破碎、筛分和包装三个过程。 破碎设备通常是采用双辊式破碎机,通过调节双辊之间的间隙大小,控制产品的粒度大小,以提高合格粒度筛分的得率。 筛分设备通常采用振动筛,将破碎后的物料筛分成粒度较大、合格和粒度较大的三种。在实际生产过程中往往会在振动筛上加多层筛网筛出几种粒度范围内的产品,最后将粒度合格的产品进行包装销售。工业应用中通常采用500kg/包和25kg/包的方式进行包装。另外在生产过程中,对于特殊用途的产品也会用去石机和除铁机以降低产品的灰分。 对于粉末活性炭,主要是通过磨粉和包装两个过程。磨粉现在基本上大多工厂都是采用雷蒙磨设备生产,通过调节磨机的分析器可以生产出粒度为200目和325目的成品粉炭。 04深处理工段 针对某些特殊用途的产品,会将成品炭再进行酸洗、碱洗、水洗等深加工处理。

环境专业开题报告

环境专业开题报告 开题报告,就是当课题方向确定之后,课题负责人在调查研究 的基础上撰写的报请上级批准的选题计划。下面是环境专业开题报告,欢迎参考阅读! 论文题目:农业秸秆制备活性炭及其性能研究 学院:生物与环境工程学院 专业班级:08环境工程一班 一选题依据 1.设计题目:农业秸秆制备活性炭及其性能研究 2.研究领域:固体废弃物处理与处置 3.设计工作的理论意义和应用价值: 我国农业在我国产业结构中处于基础地位,在农业生产过程中 也不乏废弃物的产生,其中秸秆就是农业生产的主要固体废弃物,这就需要我们对其进行处理。焚烧秸秆现象不仅严重污染环境,还存在严重的安全隐患,特别是造成烧伤甚至死亡,更是得不偿失。因此,我们利用农业秸秆制备活性炭,既将农业秸秆有效的处理了,减少了固体废弃物,节约了资源,也制备了具有良好吸附性能、也可以作为燃料的活性炭,满足了人们对活性炭的需求。处理了固体废弃物,较好的保护了环境,减少了环境污染。 4.目前研究的概况和发展趋势: 目前,利用农业秸秆类废料制备活性炭是一种既可以减少环境 污染,又可以拓宽能源渠道的新模式。制备活性炭的秸秆有:玉米杆、

稻壳、稻杆、剑麻杆、黄麻杆、蚕豆杆等。不同的秸秆可以使用不同的方法来制备活性炭。如稻壳类活性炭的制备方法包括:NaOH法、磷酸法、氯化锌法。稻杆类活性炭的制备方法有:化学方法、微波辐照法。近几年来,利用廉价易得的农业废弃物—秸秆来制备活性炭在国内外得到了大量的研究。制得的活性炭具有吸附性,还可以作为燃料来燃烧。 虽然我国拥有巨大的农业秸秆类资源,但现阶段对其应用还十 分有限,对于很多秸秆制备活性炭还处于实验研究阶段,对于真正的大规模工业化生产和利用,还需要不断地探索和推进。利用农业秸秆制备活性炭,不仅可以扩大废弃资源的利用,而且可以保护环境,真正实现“建设环境友好型、资源节约型社会”。活性炭在生产和人类生活中应用越来越广泛,如何制备质优低廉的活性炭变得越来越重要。随着科技的发展,研究的深入,将来可能生产出更优质的低廉的活性炭。 二毕业设计研究的内容 1.重点解决的问题: (1)制备工艺的选取,活化剂的选择 (2)活性炭性能的研究 (3)活性炭灰份去除 2.拟开展研究的几个方面: (一)、使用何种活化剂 (二)、活性炭的性能研究

_响应面法优化甘蔗渣-污泥复合活性炭的制备工艺

第8卷第12期 环境工程学报 Vol.8,No.122014年12月 Chinese Journal of Environmental Engineering Dec .2014 响应面法优化甘蔗渣-污泥复合 活性炭的制备工艺 项国梁 1 喻泽斌 1,2* 陈颖 1 杨瓯蒙 1 (1.广西大学环境学院,南宁530004;2.广西华蓝设计(集团)有限公司, 南宁530011)摘要为了提高污泥活性炭的吸附性能以提升其实际应用价值,提出在污泥中掺杂甘蔗渣制备复合活性炭,并采用 Plackett-Burman 联用响应面法对影响复合活性炭碘值的条件进行筛选优化。通过Plackett-Burman 实验筛选出热解温度、热 解时间和甘蔗渣与污泥干重比为主要影响因素,对这3个因素进行Box-Behnken 实验,经响应面优化得到影响碘值的二次 响应曲面模型,模型显示热解温度与热解时间、热解温度与干重比的交互作用显著,并确定了最佳制备条件:热解温度550?、热解时间30min 和干重比50%,此时复合活性炭碘值为814mg /g ,优于未优化条件下制备的复合活性炭。通过比表面积、孔结构和碘值的测定以及元素和扫描电镜分析得出,甘蔗渣的掺杂提高了复合活性炭的比表面积、微孔体积、碘值及含碳量。研究结果表明,甘蔗渣掺杂和制备条件优化是提高污泥活性炭吸附性能的有效手段。 关键词Plackett-Burman 设计响应面法剩余污泥甘蔗渣活性炭中图分类号 X705 文献标识码 A 文章编号1673- 9108(2014)12-5475-08Optimizing the preparation of sugarcane bagasse-sludge compositional activated carbon by response surface methodology Xiang Guoliang 1 Yu Zebin 1, 2 Chen Ying 1Yang Oumeng 1 (1.School of the Environment ,Guangxi University ,Nanning 530004,China ;2.Guangxi Hualan Design and Consulting Group Co.Ltd.,Nanning 530011,China ) Abstract Sugarcane bagasse was added into sludge to prepare compositional activated carbons (CACs ),and Plackett-Burman combining with response suraface methodology was employed to sieve and optimize the con-ditions affecting the iodine adsorption value of CACs.The Plackett-Burman results show that pyrolysis tempera-ture ,pyrolysis time and dried weight ratio of sugarcane bagasse to sludge are the main influencing factors.Using these three factors as variables ,a second order model of the iodine adsorption value of CACs was obtained by Box-Behnken design and response surface methodology analysis.The model shows that the interactions of pyroly-sis temperature and pyrolysis time ,pyrolysis temperature and dried weight ratio are significant ,and determines that the optimal pyrolysis temperature is 550?,pyrolysis time is 30min and dried weight ratio is 50%.The io-dine adsorption value of CAC prepared under this condition is 814mg /g ,being higher than other CACs ’.The effects of sugarcane bagasse addition on the physicochemical properties of CACs were investigated by analyzing surface area ,pore structure ,iodine adsorption value and carbon content ,which indicate that the addition of sugar-cane bagasse increases the surface area ,micro-pore volume ,iodine adsorption value and carbon content.The re-sults indicate that addition of sugarcane bagasse and optimization of preparation conditions are effective methods to improve the adsorption properties of sludge based activated carbon. Key words Plackett-Burman design ;response surface methodology ;sewage sludge ;sugarcane bagasse ; activated carbon 收稿日期:2013-11-11;修订日期:2013-12-14 作者简介:项国梁(1990—),男,硕士研究生,研究方向为环境污染 控制。E-mail :osmand1102@sina.com *通讯联系人,E-mail :xxzx7514@hotmail.com 随着我国城市化的快速发展,全国污水处理厂 的数量在不断增加,作为污水处理后的产物———污泥的产量也就随之不断加大 [1] ,数量巨大的污泥的 处理处置特别是其资源化利用一直是研究热点。由于污泥中含有一定量的碳质有机物,具有作为活性炭制备原料的客观条件,因此自20世纪90年代起 便有学者对此展开了研究 [2-5] ,但是大多数纯污泥 活性炭微孔含量少且比表面积小[6] ,限制了其应

污泥基活性炭制备方法研究

污泥基活性炭制备方法研究 1 引言 随着城市污水处理厂剩余污泥产量的不断增加,其处理处置问题亟待解决.以剩余污泥为原料制备活性炭,是实现污泥资源化利用的有效途径之一.国内外很多学者针对污泥基活性炭(SAC)的制备方法开展了研究(Li et al., 2011; Wang et al., 2008;Ding et al., 2012;李刚等,2012;李志华等,2012),并对SAC的理化性质及其除污染性能进行了考察和评价,发现SAC对部分有机物及重金属有较高的去除效率.Jeyaseelan等(1998)采用物理活化法、炭化法及化学活化法来制备SAC,发现当采用化学活化法,以ZnCl2为活化剂时制得的活性炭比表面积最大.Kang等(2006)研究了以KOH为活化剂制备SAC的方法,发现当炭化温度为400 ℃时,所制备的SAC比表面积达到1002 m2 · g-1.国内有研究表明,SAC表面含有大量的酸性官能团,对 Cu(Ⅱ)、Pb(Ⅱ)、Cr(VI)、Cd(Ⅱ)都有良好的吸附效果,吸附量分别达到了9.9、8.9、8.2和5.4 mg · g-1,远高于对照的市售商品活性炭(包汉峰等,2012);夏畅斌等(2006)研究了SAC对水溶液中Pb(Ⅱ)和Ni(Ⅱ)的吸附效果,发现吸附去除率分别为80%和60%;Rozada等(2003)研究发现,SAC对亚甲基蓝的吸附效果良好,可应用于染料废水的处理;文青波等(2010)研究制备的SAC比表面积为238 m2 · g-1,对甲醛有较好的吸附效果,当空气中甲醛浓度分别为498 mg · m-3和0.41 mg · m-3时,SAC对其最大去除率分别为83.72%和89.56%;李道静(2011)研究了SAC对硝基苯及苯酚的吸附性能,发现苯酚和硝基苯的吸附动力学数据均符合假二级吸附动力学方程,SAC对硝基苯的吸附值大于对苯酚的吸附值.但已有的研究都是针对粉末污泥基活性炭(PSAC),其在使用过程中容易形成粉尘,且回收困难,不易与水分离,因此,影响了SAC在实际工程中的推广应用.如何实现SAC的颗粒化是其实用化的关键.剩余污泥中富含有机质,本身具有较高的粘结性(王菲等,2013;冯源等,2013;饶宾期等,2012),因此,以剩余污泥为原料制备柱状污泥基活性炭(CSAC)可以不用粘结剂,节约了材料成本.但CSAC制备成型后,其表面的理化性质(如比表面积和孔隙率、官能团等)和除污染性能是否会受到影响目前还缺乏相应的研究.基于此,本实验拟以城市污水厂剩余污泥为原料来制备CSAC,通过正交实验确定CSAC的最佳制备工艺条件,并对所制备的CSAC的除污染性能进行考察分析. 2 材料与方法 2.1 污泥来源与成分 实验污泥取自北京市北小河污水处理厂未经消化的脱水污泥,该厂采用MBR工艺,污泥的成分分析见表 1.污泥中的重金属含量见表 2. 表1 污泥的成分分析 表2 污泥中重金属的含量

活性炭的再生方法

活性炭的再生方法 1、热再生法:热再生是目前应用最多、工业上最成熟的活性炭再生方法,其原理是将湿炭用高温气体慢慢干燥,在加热过程中,被吸附的有机物.. 1、热再生法: 热再生是目前应用最多、工业上最成熟的活性炭再生方法,其原理是将湿炭用高温气体慢慢干燥,在加热过程中,被吸附的有机物按其性质不同,通过水蒸气蒸馏、解吸或热分解这些过程,以解吸、炭化、氧化的形式从活性炭的基质上消除。活性炭在再生过程中,根据加热到不同温度时有机物的变化,一般分为干燥、高温炭化及活化3 个阶段。热再生操作简单,成本低,但是其不能完全消除活性炭中的污染物,并且吸附性能没有得到很大的提高;同时由于所需温度较高,烧失也较大,造成得率较低。 2、生物再生法: 生物再生是利用微生物将吸附在活性炭上的污染物质氧化降解。微生物的分解效果在于:在活性炭颗粒周围生长了一层嫌气性生物膜,分解被吸附的高分子物质或者生物分解度低的物质。通过这种作用使难于被吸附的分解产物解吸,再通过外侧的好气性微生物而被氧化。生物法简单易行,投资和运行费用较低,但所需时间较长,受水质和温度的影响很大。微生物处理污染物的针对性很强,需特定物质专门驯化。且在降解过程中一般不能将所有的有机物彻底分解成CO2 和H2O,其中间产物仍残留在活性炭上,积累在微孔中,多次循环后再生效率会明显降低。 3、湿式氧化再生法: 活性炭湿式氧化再生是在高温高压条件下,用氧气或空气作为氧化剂,将处于液相状态下活性炭上吸附的有机物氧化分解成小分子的一种处理方法。湿式氧化再生法处理对象广泛,反应时间短,再生效率稳定。利用失效炭本身氧化热来维持反应系统温度,再生过程中无需另外加热。但湿式再生氧化也存在不足: 1) 随吸附种类不同,氧化难易程度相差很大,需选用催化剂,增加了成本; 2) 降低活性炭吸附性能,氧化液和废气需进一步处理; 3) 最佳氧化温度不易控制; 4) 所需设备需耐腐蚀、耐高压。

活性炭再生问题总结复习进程

活性炭再生问题总结

1、活性炭来源 活性炭产品种类很多,按生产原料不同可分为:煤基活性炭、木质活性炭、果壳活性炭和、 合成活性炭等。一般活性炭产品的比表面积可达500-1200m2/g. 按孔径分: 国际纯粹与应用化学联合台(IuPAcl972)依据不同尺寸孔限中分子吸附的不同,将孔分为三类: w>50nm的为大孔 2nm<W<50nm的为中孔; w<2nm的为微孔。 2、活性炭再生 a)必要性 活性炭再生是活性炭制备的重要组成之一。活性炭使用一段时间后会吸附饱 和,从而丧失吸附能力成为“废炭”。若直接将吸附饱和的炭丢弃不仅会增 加应用成本,还可能会导致二次污染,因此从经济和环保两方面考虑,活性 炭的“再生”意义重大。 b)方法分类及其优缺点 ●热再生法 热再生法虽然有再生效率高、应用范围广的特点,但在再生过程中,须外 加能源加热,投资及运行费用较高。 ●生物再生法 ●催化再生法 ●微波再生法 c)具体工艺(微波再生,重在流程)

活性炭补充: 微波再生(机器约30万一台) 是在热再生法的基础上发展起来的新型活性炭再生技术 通过SEM照片可以很明显的看出原始活性炭与微波改性后的活性炭的差别.原始活性炭表面杂质较多,并且很多孔道被杂质堵塞;经微波处理后,活性炭表面的杂质被去除,孔道更加通畅从而保证了甲苯更加容易进入活性炭的中孔和微孔,也

情况下,会有一部分孔道因收缩而失去吸附能力,从而导致高温改性的活性炭物理吸附能力的下降,但由于高温改性会增加碱性基团的含量,因此相应的化学吸附能力会有所提高.实验中850℃改性的活性炭吸附能力最高就是证明.但由于到达一定温度(一般高于1 000℃)后活性炭表面酸性基团基本分解完毕,此时的活性炭化学吸附能力不会再有明显提高,但继续升温会导致孔道不断变小,从而导致吸附能力下降,因此一味提高改性温度是不经济也是不合理的. 4. 1 微波对活性炭的改性作用 首先活性炭是一种很好的微波吸收材料[54],它的吸附性能主要由它的孔隙结构和表面化学性质决定,活性炭本身能够有效地吸收微波能量,会烧失一部分炭成分,从而使活性炭的孔径扩大。另外,在微波的辐射下,体系温度迅速升高,以致活性炭孔道中吸附焦化废水的有机物由于在高温挥发或炭化分解,最终矿化产生CO2、水蒸气等气体重新造孔,从而使活性炭恢复到原来的吸附活性,再次吸附物质,即活性炭再生[55-57]微波再生的活性炭接近于单层吸附,原因是微波使活性炭的孔容发生变化的主要是中孔,这些再生的中孔有利于焦化废水中的小分子物质进入活性炭内部; 其次,微波辐射对活性炭表面结构也有一定的影响: 酸性官能团、酚羟基和羧基大量减少,碱性官能团增加,这些变化均有利于物质的吸附 4. 2 微波与活性炭协同作用

活性炭的制备与应用

活性炭的制备与应用 宋阿娜1 (北京林业大学,材料科学与技术学院林产化工系) 摘要:近些年来,活性炭已经成为我们生活中以及工业中常见的吸附剂,它具有比表面积大,选择性吸附强等特点。活性炭的制备方法分为物理活化法(即气体吸附法)和化学活化法。气体活化中的气体活化剂有水蒸气、二氧化碳以及它们的混合气体,化学活化法中的化学药品活化剂有氯化锌、磷酸和碱。活性炭在工业、农业、食品、医药等领域都有广泛应用。根据吸附和运用对象的不同,可以分为气相吸附,液相吸附,作为催化剂和催化剂载体的应用以及在医疗方面的应用。活性炭可以多次重复再生使用,对环保起到了重要作用,并且有很好的发展前景。 关键词:活性炭;制备;应用;活化;净化 1.概述 活性炭是具有孔隙结构发达、比表面积大、选择性吸附能力强的碳质吸附材料。在一定的条件下,对液体或气体的某一或某些物质进行吸附脱除、净化、精制或回收,从而实现产品的精制和环境的净化(蒋剑春,2010)。时至今日,活性炭已经被广泛应用于工业、农业、国防、交通、食品、医药、环境保护等各个领域,并且活性炭使用失效后可以用各种办法进行多次反复再生。 活性炭主要是以木炭、木屑、各种果壳、煤炭和石油焦等高含碳物质为原料,经碳化和活化而制得的多孔性吸附剂。活性炭的吸附大多数是物理吸附,即范德华吸附,也有化学吸附。 活性炭基本上是非结晶性物质,它由微细的石墨状结晶和将它们联系在一起的碳氢化合物构成,固体部分之间的间隙形成孔隙,赋予活性炭特有的吸附功能。一般认为活性炭的孔由大孔、中孔和微孔组成,大孔孔径为50~2000nm,中孔为2~50nm,微孔孔径小于2nm。 2.活性炭的制备 2.1制备原理 活性炭是通过把木材、煤、泥炭等许多来自植物的、成为碳前驱体的原材料,在几百摄氏度的温度下炭化以后,在进行活化而制成的。炭化在惰性氛围气中进行,原材料经过热分解放出挥发分而变成炭化产物,此刻的炭化产物的比表面积只有每克几十平方米左右。而具有发达的孔隙及其相应比表面积的活性炭是再需将该炭化产物用水蒸汽、二氧化碳或化学药品(如氯化锌)在高温条件下进一步活化而制得([日]立本英机,安部郁夫,2002)。活化后的活性炭再根据需要制成不同形状和大小的产品。其中活化是很重要的一步。 2.2制备方法 2.2.1气体活化法

污泥活性炭制备及其吸附性能研究_伍昌年

第44卷第1期2015年1月 应用化工Applied Chemical Industry Vol.44No.1Jan.2015 櫴櫴櫴櫴櫴櫴櫴櫴櫴櫴櫴櫴櫴櫴櫴櫴櫴櫴毷 毷 毷 毷 科研与开发 收稿日期:2014-09-26修改稿日期:2014-10-17基金项目:国家自然科学基金项目(31070100);国家科技支撑计划子课题(2011BAJ03B04-3-2);安徽省科技攻关计划子课题(1301032137-4);国家级大学生科技创新基金项目(201310878056)作者简介:伍昌年(1973-),男,安徽无为人,安徽建筑大学讲师,博士,主要从事污染控制与水处理技术研究。电话:0551-63828251, E -mail :wucnustc@126.com 污泥活性炭制备及其吸附性能研究 伍昌年,张贤芳,凌琪,王莉,唐玉朝,陶勇, 徐丽,徐畅,黄蒸 (安徽建筑大学环境与能源工程学院,安徽合肥230601) 摘 要:以城市污水处理厂剩余污泥作为原料,采用化学活化法(ZnCl 2作为活化剂)和微波辐照制备污泥活性炭, 研究其对亚甲基蓝的吸附效果和吸附等温过程。结果表明,当pH 值3、投加量1g /L 、吸附时间120min 和温度35?时,亚甲基蓝的吸附率都在98%以上。等温吸附过程很好的符合Langmuir 模型。关键词:污泥活性炭;制备;染料废水;吸附中图分类号:TQ 610.9;X 703 文献标识码:A 文章编号:1671-3206(2015)01-0001-03 Study on preparation and adsorption performance of sludge activated carbon WU Chang-nian ,ZHANG Xian-fang ,LING Qi ,WANG Li ,TANG Yu-chao ,TAO Yong , XU Li ,XU Chang ,HUANG Zheng (School of Environment and Energy Engineering ,Anhui Jianzhu University ,Hefei 230601,China ) Abstract :The excess sludge of sewage treatment plant chosen as raw material ,sludge activated carbon was prepared by the chemical activation method (ZnCl 2as an activator )and microwave radiation.Methyl-ene blue (MB )was used to simulate dyeing water.The removal ratio of MB and the isotherms adsorption process were investigated.The results showed that the removal ration was above 98%under the experi-mental conditions (pH value 3,dosage of 1g /L ,time of 120min and temperature of 35?).The adsorp-tion process could be described by Langmuir formula. Key words :sludge activated carbon ;preparation ;dyeing wastewater ;adsorption 染料废水的处理难点是COD 高,可生化性差,色度高,组分复杂。由于吸附法具有工艺简单、易于操作且吸附剂的种类多等优点,所以是现在较多采用的染料废水的处理方法,对于高浓度的染料废水 及其它低浓度废水均有较好的效果 [1-2] 。城市污水处理厂处理水量也日益增多, 污泥是城市污水厂的污水处理过程中的副产物,污泥是城市污水厂的污 水处理过程中的副产物, 污泥中含有大量碳质有机物,是制造活性炭所需的原料成分,将污泥作为原料 制备活性炭[3-5],这样不仅节约了煤和木材等珍贵资 源, 还解决了污泥的处理处置这一环境难题,实现了污泥的资源化,变废为宝,达到以废治废的目的。以污泥为原料,采用氯化锌活化法和微波辐照制取污 泥活性炭,以模拟染料亚甲基蓝的脱色率为衡量指标。考察污泥活性炭制备条件及实验操作条件(污泥活性炭投加量、pH 、吸附时间、吸附温度)对印染废水的脱色效果等影响,结合实验结果,确定污泥活性炭制备和实验操作的最佳条件,为实际应用提供一定的依据。 1 实验部分 1.1 材料与仪器 盐酸、氢氧化钠、亚甲基蓝、氯化锌均为分析纯;污泥为合肥市经开区污水处理厂未消化污泥。DHG-9076A 型电热恒温鼓风干燥箱;HH-4数 显恒温水浴锅;MM721NG1- PS 美的微波炉;721可

活性炭溶剂法再生研究实验报告

邯郸学院化学系综合设计实验报告 题目活性炭溶剂法再生研究实验 学生杨永博刘艳凯 指导教师王建森教授 年级2009 级 专业化学本科 邯郸学院化学系 邯郸学院化学系 2011年7月 活性炭溶剂法再生研究实验

杨永博刘艳凯2009级化学本科班指导教师:王建森教授 一.实验目的与原理 目的:了解活性炭性质及再生方法,掌握活性炭溶剂再生法;探索一种经济效益高的活性炭再生方法,增强活性炭的再生利用价值。 原理:溶剂再生法是利用活性炭、溶剂与被吸附质三者之间的相平衡关系 , 通过改变温度、溶剂的pH值等条件,打破吸附平衡,将吸附质从活性炭上脱附下来[1]。溶剂再生法比较适用于那些可逆吸附,如对高浓度、低沸点有机废水 的吸附。它的针对性较强,往往一种溶剂只能脱附某些污染物,而水处理过 程中的污染物种类繁多,变化不定,因此一种特定溶剂的应用范围较窄 [2]。 二.实验试剂及仪器 试剂:工业盐酸、分析纯盐酸、阳离子交换树脂、去离子水、亚甲基蓝、硫酸铜溶液、邻二氮菲、盐酸羟氨等。 仪器:分析天平、马弗炉、721型分光光度仪、MYB型调温电热套、烘箱、称量天平等。 三.实验步骤 1.溶剂法再生主要流程 (1)对废弃活性炭样品进行性质检测,包括测定铁含量、灰分含量、亚甲基蓝吸附值等; (2)摸索活性炭溶剂法再生需要的具体物质比例; (3)确定具体物质的比例,进行再生实验研究; (4)对再生后的活性炭样品进行性质检测,包括测定铁含量、灰分含量、亚甲基蓝吸附值等; (5)对再生前后的活性炭样品性质数据进行对比、分析。 2.具体步骤 2.1根据国家活性炭标准测定方法[3]对废弃活性炭样品进行铁含量、灰分含量、亚甲基蓝吸附值测定。 2.1.1标准曲线的测绘分别吸取铁液 0、1.0、2.0、 3.0、 4.0、 5.0、 6.0、 7.0mL于8只50mL容量瓶中,加入乙酸-乙酸钠缓冲溶液5mL,盐酸羟胺溶液 2.5mL, 1,10-菲啰啉溶液1mL,用水稀释至标线,摇匀放置10min,用分光光度计在波长 510nm,光径1cm比色皿中测定吸光度。以铁标准溶液的使用量( mL) 为横坐标,以吸光 度为纵坐标绘制标准曲线。

活性炭的制备及再生研究进展.

013,V o l .30N o .12化学与生物工程 C h e m i s t r y &B i o e n g i n e e r i n g 基金项目:广东省科技计划项目(2012A 020602061收稿日期:2013-08-13 作者简介:周琴(1987-,女,江苏宿迁人,硕士研究生,研究方向:生物质转化和开发利用;通讯作者:黄敏,教授,E -m a i l :m i n _h u a n g @1 63.c o m 。d o i :10.3969/j .i s s n .1672-5425.2013.12.003活性炭的制备及再生研究进展 周琴1,2 ,沈健1,黄敏2 (1.辽宁石油化工大学,辽宁抚顺113000;2.广东石油化工学院,广东茂名525000 摘要:活性炭具有吸附-脱附速率快、可再生等特点,是人们关注的热点。综述了目前活性炭的制备和再生方法,分析了它们的优缺点。指出随着人们环保意识的加强、对低能耗技术要求的提高,微波技术因其节能、省时、环保,在活性炭的制备和再生方面均具有广阔的应用前景。 关键词:活性炭;制备;再生 中图分类号:T Q 424.1文献标识码:A 文章编号:1672-5425(201312-0010-04 活性炭具有发达的孔隙结构和较高的比表面积,

表面可附加特殊官能团,具有吸附性能良好、化学性质 稳定、容易再生等优点[1,2] ,作为吸附剂、催化剂、催化 剂载体、 储存气体及电能、双电层电容器电极材料广泛应用于食品、医药、化工、环保等领域[ 3- 7]。随着人们生活水平的提高及环保意识的加强, 对活性炭的性能也提出了更新、 更高的要求,这也是活性炭未来发展的必然趋势[ 8] 。目前,活性炭产品除了常规的粉状炭、粒状炭、破碎炭、 柱状炭、纤维活性炭以外,还出现了超细活性炭粉末、蜂窝状活性炭、磁性活性炭、板状活性炭、球状活 性炭等[3] 。活性炭的制备原料十分广泛,几乎所有含 碳物质都可用来制备活性炭,主要可以分为木质和煤质,国内制备活性炭的最常用原材料是煤和椰子壳 [9,10] 。近年来,随着人们环保意识的加强、资源的短

2020年环境执法开题报告范文

环境执法开题报告范文 一选题依据 1.设计题目:农业秸秆制备活性炭及其性能研究 2.研究领域:固体废弃物处理与处置 3.设计工作的理论意义和应用价值: 我国农业在我国产业结构中处于基础地位,在农业生产过程中也不乏废弃物的产生,其中秸秆就是农业生产的主要固体废弃物,这就需要我们对其进行处理。焚烧秸秆现象不仅严重污染环境,还存在严重的安全隐患,特别是造成烧伤甚至死亡,更是得不偿失。因此,我们利用农业秸秆制备活性炭,既将农业秸秆有效的处理了,减少了固体废弃物,节约了资源,也制备了具有良好吸附性能、也可以作为燃料的活性炭,满足了人们对活性炭的需求。处理了固体废弃物,较好的保护了环境,减少了环境污染。 4.目前研究的概况和发展趋势: 目前,利用农业秸秆类废料制备活性炭是一种既可以减少环境污染,又可以拓宽能源渠道的新模式。制备活性炭的秸秆有:玉米杆、稻壳、稻杆、剑麻杆、黄麻杆、蚕豆杆等。不同的秸秆可以使用不同的方法来制备活性炭。如稻壳类活性炭的制备方法包括:NaOH法、磷酸法、氯化锌法。稻杆类活性炭的制备方法有:化学方法、微波辐照法。近几年来,利用廉价易得的农业废弃物—秸秆来制备活性炭在国内外得到了大量的研究。制得的活性炭具有吸附性,还可以作为燃料来燃烧。

虽然我国拥有巨大的农业秸秆类资源,但现阶段对其应用还十 分有限,对于很多秸秆制备活性炭还处于实验研究阶段,对于真正的大规模工业化生产和利用,还需要不断地探索和推进。利用农业秸秆制备活性炭,不仅可以扩大废弃资源的利用,而且可以保护环境,真正实现“建设环境友好型、资源节约型社会”。活性炭在生产和人类生活中应用越来越广泛,如何制备质优低廉的活性炭变得越来越重要。随着科技的发展,研究的深入,将来可能生产出更优质的低廉的活性炭。 二毕业设计研究的内容 1.重点解决的问题: (1)制备工艺的选取,活化剂的选择 (2)活性炭性能的研究 (3)活性炭灰份去除 2.拟开展研究的几个方面: (一)、使用何种活化剂 (二)、活性炭的性能研究 (三)、采用哪种方法 (四)、最佳工艺条件 3.本设计预期取得的成果: 制得具有吸附性能和可以作为燃料的活性炭,将秸秆有效的利用,减少了固 体废物,减少了环境污染,保护了环境。

污泥制备活性炭及其应用研究进展

污泥制备活性炭及其应用研究进展- 污泥处置 [摘要] 分析污泥的来源与组分,对污泥制备活性炭的国内外研究现状及实际应用进行研究,提出了污泥制备活性炭目前存在的问题。作为污水处理的副产物,城市污泥是一类特殊的固体废物,其产生量大,成分复杂,由胶体、无机颗粒、有机残片、细菌菌体等组成,是组成非常复杂的非均质体,含有60%~80%的有机物,被世界水环境组织命名为“生物固体”,表明了污泥具有资源化的潜质。将污泥制成活性炭是很有发展前景的污泥资源化的处置方式之一,它在保证了污泥不会造成二次污染的基础之上,还能制得活性炭吸附材料。 1 污泥的来源与组分 从元素的角度来讲,污泥中的有机物主要包含碳(C)、氢(H)、氧(0)、氮(N)、硫(S)、氯(Cl)等六种元素。从化学组成的角度来讲,污泥中的有机物组成包含毒性有机物、有机生物质和有机官能团化合物和微生物。污水处理厂的剩余活性污泥的主要组成成分为有机物,粗蛋白质大概占60%~70%,碳水化合物大约占25%左右,其无机灰分的含量仅为5%左右[4]。 2 污泥制备活性炭的国内外研究现状 污泥基活性炭的活化方法主要有物理活化、化学活化和化学-物理联合活化等。 2.1 物理活化法 物理活化法主要包括直接热解法和气体活化法。 2.1.1 直接热解法

直接热解法是指在氮气气氛的保护作用下,将污泥置于电阻炉中,将污泥加热至热解温度后保持恒温一段时间,再经后续处理得到粉末状污泥基吸附剂。Fan等[5]利用天津市污水处理厂产生的厌氧消化污泥为原材料,用氮气作保护气,以15 ℃/min的升温速率升至500℃,并在此温度下直接热解3 h,制得的污泥基活性炭主要以中孔和大孔为主。新加坡学者Lu等[6]采用直接热解法制备污泥基吸附剂,由研究可以得出,在较低的温度范围内,随着热解温度的升高与停留时间的延长,污泥基吸附剂的比表面积也呈现出逐渐增加的趋势;当温度在550~650℃之间时,随着热解温度的升高,其比表面积却呈现出了下降的趋势;当热解温度超过850℃以后,比表面积逐渐减小。 2.1.2 气体活化法 气体活化法制备污泥基活性炭是指先对污水污泥直接进行高温热解,然后利用水蒸汽、CO2、O2等活化气体,在600~1200℃下对碳进行弱的氧化作用,疏通材料的孔径,使其发生造孔与扩孔的现象,进而形成碳基吸附剂的多孔微晶结构。有研究结果表明,热解温度、热解时间和气体流量会影响污泥基吸附剂的孔径分布,改变活化气体中CO2与H2O比例可以控制吸附剂的孔径分布。 Jindarom等利用污泥制备活性炭吸附材料,采用二氧化碳气体作为保护气体,于750℃下活化30 min,升温速率为20℃/min,制得的污泥基活性炭的比表面积为61 m2/g。Méndez等利用污水处理厂产生的厌氧与好氧消化污泥作为原材料,采用气体活化法制备污泥基活性炭。在隔绝空气的条件下采用氮气作为保护气,在450℃下热解1h,

再生活性炭项目可行性研究报告

再生活性炭项目可行性研究报告 中咨国联出品

目录 第一章总论 (9) 1.1项目概要 (9) 1.1.1项目名称 (9) 1.1.2项目建设单位 (9) 1.1.3项目建设性质 (9) 1.1.4项目建设地点 (9) 1.1.5项目负责人 (9) 1.1.6项目投资规模 (10) 1.1.7项目建设规模 (10) 1.1.8项目资金来源 (12) 1.1.9项目建设期限 (12) 1.2项目建设单位介绍 (12) 1.3编制依据 (12) 1.4编制原则 (13) 1.5研究范围 (14) 1.6主要经济技术指标 (14) 1.7综合评价 (16) 第二章项目背景及必要性可行性分析 (17) 2.1项目提出背景 (17) 2.2本次建设项目发起缘由 (19) 2.3项目建设必要性分析 (19) 2.3.1促进我国再生活性炭产业快速发展的需要 (20) 2.3.2加快当地高新技术产业发展的重要举措 (20) 2.3.3满足我国的工业发展需求的需要 (21) 2.3.4符合现行产业政策及清洁生产要求 (21) 2.3.5提升企业竞争力水平,有助于企业长远战略发展的需要 (21) 2.3.6增加就业带动相关产业链发展的需要 (22) 2.3.7促进项目建设地经济发展进程的的需要 (22) 2.4项目可行性分析 (23) 2.4.1政策可行性 (23) 2.4.2市场可行性 (23) 2.4.3技术可行性 (23) 2.4.4管理可行性 (24) 2.4.5财务可行性 (24) 2.5再生活性炭项目发展概况 (24) 2.5.1已进行的调查研究项目及其成果 (25) 2.5.2试验试制工作情况 (25) 2.5.3厂址初勘和初步测量工作情况 (25)

相关文档
最新文档