视觉检测原理介绍

视觉检测原理介绍
视觉检测原理介绍

技术细节

本项目应用了嵌入式中央控制及工业级图像高速传输控制技术,基于CCD/CMOS与DSP/FPGA的图像识别与处理技术,成功建立了光电检测系统。应用模糊控制的精选参数自整定技术,使系统具有对精确检测的自适应调整,实现产品的自动分选功能。

图1 控制系统流程图

光电检测系统主要通过检测被检物的一些特征参数(灰度分布,RGB分值等),从而将缺陷信息从物体中准确地识别出来,通过后续的系统进行下一步操作,主要分为以下几部分

CCD/CMOS图像采集部分

系统图像数据采集处理板中光信号检测元件CCD/CMOS采用进口的适合于高精度检测的动态分析单路输出型、保证实际数据输出速率为320MB/s的面阵CCD/CMOS。像素分别为4000*3000和1600*1200,帧率达到10FPS。使用CCD/CMOS 作为输入图像传感器,从而实现了图像信息从空间域到时间域的变换。为了保证所需的检测精度,需要确定合理的分辨率。根据被检测产品的大小,初步确定系统设计分辨率为像素为0.2mm。将CCD/CMOS接收的光强信号转换成电压幅值,再经过A/D转换后由DSP/ FPGA芯片进行信号采集,即视频信号的量化处理过程,图像采集处理过程如图所示:

图2 图像采集处理过程

数据处理部分

在自动检测中,是利用基于分割的图像匹配算法来进行图像的配对为基础的。图像分割的任务是将图像分解成互不相交的一些区域,每一个区域都满足特定区域的一致性,且是连通的,不同的区域有某种显著的差异性。分割后根据每个区域的特征来进行图像匹配,基于特征的匹配方法一般分为四个步骤:特征检测、建立特征描述、特征匹配、利用匹配的“特征对”求取图像配准模型参数。

算法基本步骤如下:

1)利用图像的色彩、灰度、边缘、纹理等信息对异源图像分别进行分割,提取区域特征;

2)进行搜索匹配,在每一匹配位置将实时图与基准图的分割结果进行融合,得到综合分割结果;

3)利用分割相似度描述或最小新增边缘准则找出正确匹配位置。

设实时图像分割为m个区域,用符号{A1,A2,… Am}表示,其异源基准图像分割为n个区域,用符号{B1,B2,…Bn}表示。分割结果融合方法如下: 在每一个匹配位置,即假设的图像点对应关系成立时,图像点既位于实时图中,又位于其异源基准图像中,则融合后区域点的标识记为:(A1B1,A1B2,…,A2B1,A2B2,…)。标识AiBj表示该点在实时图中位于区域i,在基准图中位于区域j。算法匹配过程如下图所示:

其中图(a)为实时图,被分割为{A1,A2,A3}三个区域;图(b)为异源基准图,被分割为{B1,B2,B3}三个区域;分割结果间存在区域合并、过分割现象;图(c)是正确匹配位置上的分割融合结果;图(d)是某一错误匹配位置上的分割融合结果。比较图(c)、(d)可以看出,在正确的匹配位置,融合的结果是对同一景象的最小分割,即最简单的描述假设。为了将正确匹配和错误匹配区分开来,采用了最大区域重合度准则。

设某次比较的实时图被分为n个区域,基准图被分割为m个区域,根据像素所属的融合区域统计二维直方图,得到下图中的所有。

通过对此二维直方图分析可以估计基准图分割和实时图分割的相似程度。最大区域重合度S定义如下。

由于匹配时,实时图窗口的图像是不变的,是在基准图不同位置取窗口图像,S的物理意义是统计每一个基准图区域被实时图各个区域分割所保留的最大主

区域的像素个数之和。在正确的匹配位置,S应取最大值。当实时图区域与基准图区域一一对应时,分割相似度S达到理论上最大值,为窗口像素总数。

下图是最大区域重合度匹配的匹配系数图,纵轴坐标表示最大区域重合度计算的像素数。大量的现场应用表明,本算法具有良好的分割与匹配效果。

缺陷识别是一个典型的多通道随机信号检测系统,对于产品的检测内容而言,需要根据颜色、面积、形状等参数制定缺陷识别标准,此外算法还要设计为多级分选系统,每组CCD/CMOS+DSP/FPGA图像数据采集处理板可以按照不同的等级要求定制,每组分选系统根据不同缺陷的等级定制不同的控制算法。系统提供多种控制算法并固化到系统的内部存储器中,每种算法作为系统参数显示在菜单上。

模糊控制的精选参数自整定信号识别

系统假定每个有用信号为近似的高斯单脉冲信号,下图即为同一通道中两个有用信号输入、输出的时间关系图。

当采样数据大于设置的有用信号开始阀值V1时,表示一个有用信号的开始,也是输出脉冲延时记时的开始;而当采样数据小于设置的有用信号结束阀值V2时,表示一个有用信号的结束。上图中的Tg,Td 和Tw 分别表示两个有用信号之间的时间间隔、设定的输出脉冲的延时和宽度时间。为各通道引入有用信号标志位变量Record_k 及记录当前有用信号的数目变量Num_k 。

系统中每个通道输出信号时间的控制包括延时时间及脉冲宽度时间两个内容。给各通道引入延时时间变量Delay_time_k 。,根据各通道当前有用信号记录数目来记录各有用信号的延时时间,从各有用信号开始时刻开始其延时记时,在延时到达给定值时停止延时记时。并取消该信号的记录。据此上述信号记数的算法应修正为:

给各通道引入记录当前需要宽度处理的信号数目变量WidthNo_k以及对应的输出脉冲宽度变量WidthTime_k,则由前文可以得出输出脉冲宽度时间计时的算法为:

当设定的宽度时间大于有用信号出现的时间间隔时,每个通道输出状态和所有信号的延时及宽度确定的状态有关引入延时状态临时变量DelayState_k,记录各有用信号由延时及宽度确定的临时状态值。当延时达到设定值时,将其置“1”;当该信号的宽度时间达到设定值时,则置为“0”。确定各通道状态的状态变量State_k的值由当前所有的临时变量DelayState_k值逻辑求和得到,其控制算法为:

欢迎您的下载,

资料仅供参考!

致力为企业和个人提供合同协议,策划案计划书,学习资料等等

打造全网一站式需求

机器视觉检测系统简述及系统构成

机器视觉检测系统简述及系统构成 1机器视觉检测的一般模式 机器视觉检测的目标千差万别,检测的方式也不尽相同。农产品如苹果、玉米等通常是检测其成熟度,大小,形态等,工业产品如工业零件,印刷电路板通常是检测其几何尺寸,表面缺陷等。不同的应用场合,就需要采用不同的检测设备和检测方法。如有的检测对精度要求高,就需要选择高分辨率的影像采集装置;有的检测需要产品的彩色信息,就需要采用彩色的工业相机装置。正是由于不同检测环境的特殊性,目前世界上还没有一个适用于所有产品的通用机器视觉检测系统。虽然各个检测系统采用的检测设备和检测方法差异很大,但其检测的一般模式却是相同的。机器视觉检测的一般模式是首先通过光学成像和图像采集装置获得产品的数字化图像,再用计算机进行图像处理得到相关检测信息,形成对被测产品的判断决策,最后将该决策信息发送到分拣装置,完成被测产品的分拣。 机器视觉检测的一般模式如图1所示: 图1机器视觉检测的一般模式 1.1图像获取 图像获取是机器视觉检测的第一步,它影响到系统应用的稳定性和可靠性。图像的获取实际上就是将被测物体的可视化图像和内在特征转换成能被计算机处理的图像数据。机器视觉检测系统一般利用光源,光学镜头,相机,图像采集卡等设备获取被测物体的数字化图像。 1.2视觉检测 视觉检测通过图像处理的方法从产品图像中提取需要的信息,做出结果处理并发送相应消息到分拣机构。通常这部分功能由机器视觉软件来完成。优秀的机器视觉软件可对图像中的目标特征进行快速准确地检测,并最大限度地减少对硬件系统的依赖性,而算法设计不够成熟的机器视觉软件则存在检测速度慢,误判率高,对硬件依赖性强等特点。在机器视觉检测系统中视觉信息的处理主要依赖于图像处理方法,它包括图像增强,数据编码和传输,平滑,边缘锐化,分割,特征提取,目标识别与理解等内容。 1.3分拣 对于一个检测系统而言,最终是要实现次品(含不同种类的次品)与合格品的分离即分拣,这部分功能由分拣机构来完成。分拣是机器视觉检测的最后一个也是最为关键的一个环节"对于不同的应用场合,分拣机构可以是机电系统!液压系统!气动系统中的某一种。但无论是哪一种,除了其加工制造和装配精度要严格保证以外,其动态特性,特别是快速性和稳定性也十分重要,必须在设计时予以足够的重视。 2机器视觉检测系统的构成 一个典型的机器视觉检测系统主要包括光源、光学镜头、数字相机、图像采集卡、图像处理模块、分拣机构等部份。其构成如图2所示。 图2典型的机器视觉检测系统 3光源

机器视觉检测

机器视觉检测 一、概念 视觉检测是指通过机器视觉产品(即图像摄取装置,分 CMOS 和CCD 两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。 机器视觉检测的特点是提高生产的柔性和自动化程度。 2、典型结构 五大块:照明、镜头、相机、图像采集卡、软件 1.照明 照明是影响机器视觉系统输入的重要因素,它直接影响输入数据的质量和应用效果。目前没有通用的照明设备,具体应用场景选择相应的照明装置。照射方法可分为: 分类具体说明优点 背向照明被测物放在光源和摄像机之 间能获得高对比度的图像 前向照明光源和摄像机位于被测物的 同侧 便于安装 结构光将光栅或线光源等投射到被 测物上,根据它们产生的畸 变,解调出被测物的三维信 息 频闪光照明将高频率的光脉冲照射到物

体上,摄像机拍摄要求与光 源同步 2.镜头 镜头的选择应注意以下几点:焦距、目标高度、影像高度、放大倍数、影响至目标的距离、中心点/节点、畸变。 3.相机 按照不同标准可分为:标准分辨率数字相机和模拟相机等。 要根据不同的实际应用场合选不同的相机和高分辨率相机:线扫描CCD 和面阵CCD;单色相机和彩色相机。 为优化捕捉到的图像,需要对光圈、对比度和快门速度进行调整。 4.图像采集卡 图像采集卡是图像采集部分和图像处理部分的接口。将图像信号采集到电脑中,以数据文件的形式保存在硬盘上。通过它,可以把摄像机拍摄的视频信号从摄像带上转存到计算机中。 5.软件 视觉检测系统使用软件处理图像。软件采用算法工具帮助分析图像。视觉检测解决方案使用此类工具组合来完成所需要的检测。是视觉检测的核心部分,最终形成缺陷的判断并能向后续执行机构发出指令。常用的包括,搜索工具,边界工具,特征分析工具,过程工具,视觉打印工具等。 3、关键——光源的选择 1.光源选型基本要素: 对比度机器视觉应用的照明的最重要的任务就是使需要被观察的特征与需要被忽略的图像特征之间产生最大的对比度,从而易于特

机器人视觉传感技术及应用doc汇总

机器人视觉传感技术及应用 摘要:机器人视觉技术是指机器人工作时通过视觉传感器对环境物体获取视觉信息,让机器人识别物体来进行各种工作。本文介绍了机器人技术中所常用的视觉传感器的种类、结构。原理和功能。介绍了弧焊机器人视觉传感技术较为前沿的一些应用和研究,包括焊缝跟踪和获取熔池信息。简要说明了视觉技术在农业采摘机器人方面的应用。 关键词:机器人、视觉、弧焊、采摘机器人 1.绪论 机器人视觉是使机器人具有视觉感知功能的系统。机器人视觉可以通过视觉传感器获取环境的一维、二维和三维图像,并通过视觉处理器进行分析和解释,进而转换为符号,让机器人能够辨识物体,并确定其位置及各种状态。机器人视觉视觉侧重于研究以应用为背景的专用视觉系统,只提供对执行某一特定任务相关的景物描述。机器人视觉硬件主要包括图像获取和视觉处理两部分,而图像获取由照明系统、视觉传感器、模拟-数字转换器和帧存储器等组成。根据功能不同,机器人视觉可分为视觉检验和视觉引导两种,广泛应用于电子、汽车、机械等工业部门和医学、军事领域。 2. 机器人常用的视觉传感器 2.1光电二极管与光电转换器件 图2.1是pn型光电二级管的结构。如果让光子射入半导体的pn结边界耗尽层,就会激励起新的空穴。利用电场将空穴和电子分离到两侧,就可以的到与光子量成比例的反向电流。Pn型元件的优点是暗电流小,所以被广泛用于照度计和分广度计等测量装置中。

图2.1 pn型光电二极管结构 在高响应的发光二极管中pin结型与雪崩型。前者在pn结边界插入一个本征半导体i 层取代其耗尽层。给它施加反向偏压,可以减少结电容,获得高速响应;而后者是在pn结上加100伏左右的反向偏置电压产生强电场,激励载流子加速,与原子碰撞产生电子雪崩现象。这些高速型二极管的响应速度很快,能用于高速光通信等。 2.2 PSD PSD(Position Sensitive Detector,位置敏感探测器)是测定入射光位置的传感器,由发光二级管、表面电阻膜、电极组成。入射光产生的光电流通过电阻膜到达元件两端的电极,流入各个电极的电流与电阻值存在对应关系,而电阻值又与光的入射位置及到各个电极距离成比例,因此根据电流值就能检测到光入射的位置。PSD元件中有一维和二维两种,它们都具有高速性,但要注意入射到开口部分的散射光的影响。 2.3CCD图像传感器 电荷耦合器件(CCD:Charge Coupled Device)图像传感器是由多个光电二极管传送储存电荷的装置。它有多个MOS(Metal Oxide Semiconductor)结构的电极,电荷传送的方式是通过向其中一个电极上施加与众不同的电压,产生所谓的势阱,并顺序变更势阱来实现的。根据传送电荷需要的脉冲信号的个数,施加电压的方法有两相方式和三相方式。 CCD图像传感器有一维形式的,是将发光二极管和电荷传送部分一维排列制成的。此外还有二维形式的,它可以代替传统的硒化镉光导摄像管和氧化铅光电摄像管二维传感器。二维传感器属于水平和垂直传送电荷传感器,传送方式有行间传送、帧—行间传送、帧传送及全帧传送四种方式。 图2.2所示为行间传送方式,采取一维摄像区域(接收部分)与传送区域平行布置结构

浅谈机器人视觉技术

浅谈机器人视觉技术 摘要 机器人视觉是使机器人具有视觉感知功能的系统,是机器人系统组成的重要部分之一。机器人视觉可以通过视觉传感器获取环境的二维图像,并通过视觉处理器进行分析和解释,进而转换为符号,让机器人能够辨识物体,并确定其位置。机器人视觉广义上称为机器视觉,其基本原理与计算机视觉类似。计算机视觉研究视觉感知的通用理论,研究视觉过程的分层信息表示和视觉处理各功能模块的计算方法。而机器视觉侧重于研究以应用为背景的专用视觉系统,只提供对执行某一特定任务相关的景物描述。机器人视觉硬件主要包括图像获取和视觉处理两部分,而图像获取由照明系统、视觉传感器、模拟-数字转换器和帧存储器等组成。本文介绍了机器人的发展以及视觉计算理论和视觉的关键技术。 关键词:机器人、视觉、计算、关键技术 一、机器人发展概述 科学技术的发展,诞生了机器人。社会的进步也提出要求,希望创造出一种能够代替人进行各种工作的机器,甚至从事人类不能及的事情。自从1959年诞生第一台机器人以来,机器人技术取得了很大的进步和发展,至今已成为一门集机械、电子、计算机、控制、传感器、信号处理等多学科门类为一体的综合性尖端科学。当今机器人技术的发展趋势主要有两个突出的特点:一个是在横向上,机器人的应用领域在不断扩大,机器人的种类日趋增多;另一个是在纵向上,机器人的性能不 断提高,并逐步向智能化方向发展。前者是指应用领域的横向拓宽,后者是在性能及水平上的纵向提高。机器人应用领域的拓宽和性能水平的提高,二者相辅相成、相互促进。 智能机器人是具有感知、思维和行动功能的机器,是机构学、自动控制、计算机、人工智能、微电子学、光学、通讯技术、传感技术、仿生学等多种学科和技术的综合成果阎。智能机器人可获取、处理和识别多种信息,自主地完成较为复杂的操作任务,比一般的工业机器人具有更大的灵活性、机动性和更广泛的应用领域。要使机器人拥有智能,对环境变化做出反应,首先,必须使机器人具有感知

KUKA机器人与视觉相关小文档

第一部分:提问 1.KUKA机器人中,怎样理解S,T参数? 2.实际操作中,首次运动编程怎样确定S,T参数? 3.在一条连续曲线轨迹运动中,S,T两参数会改变吗? 4.S,T两参数反映的是静态姿态还是运动过程的姿态?如果是动态的,哪么当机器人TCP移到目标点的过程中由各轴都在转动(即改变角位置),那怎能保证所定义的S,T值不不变呢?既然S,T值会变化,哪定义S,T 的值又有什么义意呢? 5.结构POS中的整数型变量S和T用于明确地定义一个轴的位置。 6.触摸屏与机器人的通讯问题,触摸屏输入参数怎样与机器人内存进行通讯? 7.机器人内存地址与硬件输入输出端子在名称上的对应关系? 8.在KUKA机器人编程中怎样实现两个向量的相减运算? 9.KUKA机器人能进行两个向量的相减运算编程吗? 10.标记的作用是什么?循环标记是标记中的一种吗?它能理解为PLC中的中间(辅助)继电器吗?比如S7-200 PLC中的M位? 11.循环标记的作用是什么?什么情况下使用循环标记? 12.循环标记以多长时间启动一次?是受某个定时器影响吗? 13.循环标记启动周期与程序扫描周期是什么关系?两周期是相同吗,还是循环标志的扫描周期独立于程序的扫描周期? 14.子程序,函数(表达式)的调用由循环标记来调用吗? 15.定时器的工作原理(过程)是什么?它与PLC的定时器类似吗?比如可以给它赋值?做延时断开或延时接通? 16.定时器计时时其时间值是递增还是递减? 17.定时器的变数$TIMER_STOP[1]?是什么?其作用是什么? 18.定时器的$TIMER_FLAG[1]?是什么标记?其作用是什么? 19.KUKA的工件座标,工具座标怎么设置? 20.请演示TCP座标测量的几种方法,如XYZ4点法,XYZ参照法,已知工具尺寸直接输入法? 21.通过ABC世界座标法,ABC两点法确定TCP座标姿态后也确定了S,T两参数值吗?怎样查询出已确定好的S,T两参数的值?在做运动编程时首次确定S,T两参数值就能用此参数吗? 22.TCP座标测量问题,如下图所示 23. 24.什么是外部TCP,其原理与作用是什么?什么场合使用? 25.在初始默认状态,TCP座标在第六轴的法兰盘中心吗?那基座标(工件座标)又在哪里?除了TCP座标和基座标可以改变外还有哪几个座标可以改变? 26.已知的TCP座标可以移动吗?实际编程时怎样编程移动? 27.KUKA机器人指系统中有相对移动(旋转)的指令吗?如在当前姿态绕TCP的X轴旋转30度,沿Y轴

机器视觉与人工智能的特点说明

一、机器视觉的定义 机器视觉是人工智能正在快速发展的一个分支。简单说来,机器视觉就是用机器代替人眼来做测量和判断。 互联网的高速发展,使得物流业走势迅猛,不仅是每年一度的京东购物节和淘宝节让物流人员高压负重,喘不过气,就连现在的日常外卖派送,超市派送也使得快递人员人手不断速增,美团外卖布局无人物流,京东机器人物流拣货已开始应用,机器人工作,为人们的生活带来了巨大的便利性。机器人逐渐成为市场的宠儿。 如今,我们的身边已然充斥着各种类型的机器人,在制造、运输、生活等各领域起着非常重要的作用。比如机器人代步车,扫地机器人等。而让这些机器人拥有一双“智慧”双眼的正是机器视觉技术,得益于机器人产业的规划发展,机器视觉技术的应用就有非常广阔的空间。 机器视觉的定义机器视觉是人工智能正在快速发展的一个分支。简单说来,机器视觉就是用机器代替人眼来做测量和判断。机器视觉基于仿生的角度发展而来,比如模拟眼睛是通过视觉传感器进行图像采集,并在获取之后由图像处理系统进行图像处理和识别。 二、机器视觉的分类 机器视觉主要分为三类: 单目视觉技术,即安装单个摄像机进行图像采集,一般只能获取到二维图像。单目视觉广泛应用于智能机器人领域。然而,由于该技术受限于较低图像精度以及数据稳定性的问题,因此需要和超声、红外等其它类型传感器共同工作。 双目视觉技术,是一种模拟人类双眼处理环境信息的方式,通过两个摄像机从外界采集一副或者多幅不同视角的图像,从而建立被测物体的三维坐标。双目视觉技术大致分为机械臂视觉控制、移动机器人视觉控制、无人机无人船视觉控制等方向。 多目视觉技术,是指采用了多个摄像机以减少盲区,降低错误检测的机率。该技术主要用于物体的运动测量工作。在机械臂手眼协调方面,多目视觉技术能够克服物体捕捉的盲区,使机械臂进行抓取更加有效。在工业机器人进行装配领域,多目视觉也能够精确识别和定位被测物体,进而提高装配机器人的智能程度和定位精度。 三、机器视觉的应用 机器视觉的应用主要有检测和机器人视觉两个方面:

机器视觉图像处理系统实验室设备

机器视觉图像处理系统实验室设备 机器视觉图像处理系统在我国起步较晚,最早只是用于工业领域,如工业检测、图像分析处理、尺寸测量、定位等等,国内的机器视觉厂商只限于代理一些国外工业相机、工业镜头、机器视觉光源的硬件产品及一些现成的机器视觉软件,难有集成度很高的的机器视觉产品出现,经过近十几年的不断探索与潜心研究,维视图像公司目前的机器视觉硬件及系统集成能力都已达到国内先进,与国际大品牌不相上下。 伴随着机器视觉技术的高速发展,机器视觉技术迅速进入科研领域,有大批的高校已开设开设或即将开设专门的机器视觉课程,进行专门的研究,为我国培养机器视觉软硬件人才,但由于机器视觉涉及面很广,用途相当广泛,更重要的是这种技术发起于企业,高校对于如何开展机器视觉教学、科研等工作没有可参照的依据和现成的机器视觉图像处理系统实验室设备。 一直以来专业的机器视觉图像处理系统实验室设备在我国仍处于空白,如何能让机器视觉的前沿技术快速全面的得到广大学生的认识、学习、应用、研究、发展,成为摆在我们面前的一大难题,维视图像根据自身十多年的研发和推广经验,深入高校调研,听取师生意见,聘请知名教授作为机器视觉图像处理系统实验室设备的专业顾问,指导编写实验指导书,使产品更加符合高校的教育教学要求。先后推出了很多适合高校机器视觉教学、科研的实验室设备、机器视觉系统及机器视觉平台,涵盖运动控制,图像处理,三维立体扫描,结构光立体视觉,双目立体视觉,模拟工业现场、工业检测等方面,拥有上百种实验项目。

维视图像机器视觉图像处理系统实验室设备具有跨度大、集成度高、设计专业、稳定性高的优势,是适合本科、研究生、博士生不同阶段的实验的最佳选择。 维视机器视觉图像处理系统实验室设备具体如下: 机器视觉教学研究开发平台实验室设备整体解决方案内容: 一、机器视觉创新教学实验室设备 二、机器视觉运动控制实验室设备 三、双远心光学系统研究开发平台实验室设备 四、嵌入式机器视觉图像处理实验室设备 五、机器视觉双目实验研发平台 六、激光三维扫描实验室设备 维视图像愿和大家一起,共同学习,为我国的机器视觉技术发展做出贡献!

智能视觉检测系统

3.3智能视觉检测系统 汽车注塑件是汽车的重要组成部分,在出厂前要进行形状和尺寸检测,表面质量检测等,如凹陷,翘曲,飞边等。由于人工检测的效率低,准确性差,成本高,不能满足实际质量检测的需求。机器视觉检测系统则有以下优势: 1. 非接触式检测,不损伤注塑件; 2 .检测质量高,高分辨率镜头可达到高精度检测; 3. 高检测效率,工业相机的帧率达每秒百帧; 4. 实时性强,不出现漏检情况; 5. 现场抗干扰能力强; 6. 可靠性高,长时间稳定工作。 3.3.1组成部分 机器视觉检测系统由三部分组成:图像的获取、图像的处理、输出显示。 图像获取设备包括光源、工业摄像机(配套镜头)等,光源可以使注塑件的表面特征得以完整显现,如表面缺陷,飞边等。摄像机可突出注塑件的关键特征,其部件CCD实现将图像光信号转换成电信号(模拟信号)的目的。 图像处理设备包括相应的软件和硬件系统。图像采集卡将得到的模拟信号转变为数字信号,然后供计算机软件系统处理。图像采集卡是一种可获得数字化视频图像信息存储并高速播放出来的设备。普通的传输接口无法满足图像信号的高速传输,因此需要专用的图像采集设备来实现。软件系统利用滤波算法对噪声滤除,然后进行图像匹配,得到尽可能最真实的图像。 输出显示设备与过程相连,包括监视界面,过程控制器和报警装置等。摄像数据通过计算机对标准和故障图像的分析和比较,若发现不合格产品,则通过NG信号告警,由PLC 自动将其排除出生产线。机器视觉检测的结果可以作为计算机辅助质量CAQ (Computer Aided Quality)系统的信息来源,也可以和其它控制系统集成。 3.3.2. 系统设计

工业机器人视觉检测

项目一认识机器视觉系统 任务一连接视觉系统的周边设备 活动一连接相机 活动二连接光源 活动三连接手柄 活动四连接电源 活动五连接显示器 任务二调节相机 活动一调节相机 任务三调节光源 活动二调节光源 活动三操作手柄 任务三运行视觉软件 活动一运行软件 活动二修改语言 活动三创建一个新设定 任务四运行视觉系统的仿真 活动一安装软件 活动二注册图像 活动三运行仿真 任务五基恩士视觉与机器人通讯连接活动一确定本机通讯方式 活动二选择通讯方式 活动三通讯线安装 活动四连接通讯线 任务六基恩士与机器人通讯软件设置活动一进入通讯设置界面 活动二选择正确的通讯数据 活动三通讯测试 项目二基恩士视觉识别颜色

任务一进入新的设置 活动一创建新的设定窗口 活动二进入相机设定 活动三注册图像 任务二识别颜色的窗口设定 活动一设定前的准备 活动二设定检测范围 活动三设定判断值 活动四条件设定 任务三输出设置 活动一选择通讯方式 活动二设置判断值 任务四机器人控制概述 活动一机器人视觉控制指令运行 活动二机器人运行控制指令运行 活动三机器人运行控制编程 任务五整体编程运行 活动一两种颜色中确定所选颜色 活动二三种颜色中确定所选颜色 活动三四种颜色中确定两种所选的颜色项目三基恩士视觉识别大小 任务一进入新的设置 活动一创建新的设定窗口 活动二进入相机设定 活动三注册图像 任务二识别大小的窗口设定 活动一设定前的准备 活动二设定检测范围 活动三设定判断值 活动四条件设定

任务三输出设置 活动一选择通讯方式 活动二设置判断值 任务四在仿真中识别图像大小设置 活动一建立识别图像大小的仿真 活动二设置识别大小的仿真 活动三思考与原机的区别 任务五整体编程运行 活动一两种大小不同的工件进行选择 活动二三种不同大小的工件进行选择 活动三两种不同大小不同颜色的工件进行选择活动四三种不同大小不同颜色的工件进行选择项目四基恩士视觉识别形状 任务一进入新的设置 活动一创建新的设定窗口 活动二进入相机设定 活动三注册图像 任务二识别形状的窗口设定 活动一设定前的准备 活动二设定检测范围 活动三设定测量值 活动四条件设定 任务三输出设置 活动一选择通讯方式 活动二设置测量值 任务四机器人控制概述 活动一机器人视觉控制指令运行 活动二机器人运行控制指令运行 活动三机器人运行控制编程 任务五整体编程运行

机器视觉检测技术简介及其特点

机器视觉检测技术简介及其特点 中国纸板商城https://www.360docs.net/doc/0f18300402.html,2012年3月2日机器视觉印刷质量检测是一种模拟人工检测方法和判断逻辑,但同时又具有更高检测精度和更好一致性的自动化检测方法。 一、机器视觉检测的特点 1、机器视觉检测技术简介 机器视觉,简而言之就是利用机器代替人工进行目标识别、判断与测量。它是现代光学、电子学、软件工程、信号处理与系统控制技术等多学科的交叉与融合。 光学采集设备:由工业摄像机、光源及配套图像采集卡等硬件组成。主要作用是获取通过采集位置的标签的数字图像,为后续的分析与处理提供素材,相当于人工检测的眼睛。 判断识别:由工业控制计算机及植入的图像处理与分析软件、控制软件构成。是视觉检测的核心部分,最终形成缺陷的判断并能向后续执行机构发出指令。 自动控制:最终将检测系统的结果变换成具体操作的硬件,比如常见的声光报警器、废品剔除装置或作标记的装置(如喷墨机、贴标机等)。 除此之外,印刷检测设备还必须有一套稳定的机械传输控制平台,对于安装在印刷机上的在线检测系统而言,传输平台就是印刷机;而对于离线检测系统,则需要单独配置传输平台,如复卷机、单张传输平台等。 2、印刷缺陷检测原理 印刷缺陷检测主要依靠图像比对的方法进行。如图2所示,上部图像是通过相机采集到的实时图像,而下部图像为事先采集并存储下来的标准图像。检测时,首先将两幅图像通过定位等方法使其重合,然后进行逐点(逐像素)对比颜色(或亮度差异)。当他们之间的差异超出事先设定的范围时即判为缺陷。 3、机器视觉检测特点 一套高品质的机器视觉检测系统,必须具备以下几个必备条件: 1)高品质的成像系统 成像系统被称为视觉检测设备的“眼睛”,因此“眼睛”识别能力的好坏是评价成像系统的最关键指标。通常,成像系统的评价指标主要体现在三个方面: 能否发现存在的缺陷 基于图像方法进行的检测,所能够依据的最原始也是唯一的资料即是所采到的图像上的颜色(或者亮度)变化,除此之外,没有其他资料可供参考。所以,一个高品质的成像系统首先应该是一个能充分表现被检

工业机器人视觉系统

工业机器人及机器人视觉系统 人类想要实现一系列的基本活动,如生活、工作、学习就必须依靠自身的器官,除脑以外,最重要的就是我们的眼睛了,(工业)机器人也不例外,要完成正常的生产任务,没有一套完善的,先进的视觉系统是很难想象的。 机器视觉系统就是利用机器代替人眼来作各种测量和判断。它是计算科的一个重要分支,它综合了光学、机械、电子、计算机软硬件等方面的技术,涉及到计算机、图像处理、模式识别、人工智能、信号处理、光机电一体化等多个领域。图像处理和模式识别等技术的快速发展,也大大地推动了机器视觉的发展。 机器视觉系统的应用 在生产线上,人来做此类测量和判断会因疲劳、个人之间的差异等产生误差和错误,但是机器却会不知疲倦地、稳定地进行下去。一般来说,机器视觉系统包括了照明系统、镜头、摄像系统和图像处理系统。对于每一个应用,我们都需要考虑系统的运行速度和图像的

处理速度、使用彩色还是黑白摄像机、检测目标的尺寸还是检测目标有无缺陷、视场需要多大、分辨率需要多高、对比度需要多大等。从功能上来看,典型的机器视觉系统可以分为:图像采集部分、图像处理部分和运动控制部分 工作过程 ?一个完整的机器视觉系统的主要工作过程如下: ?1、工件定位检测器探测到物体已经运动至接近摄像系统的视野中心,向图像采集部分发送触发脉冲。 ?2、图像采集部分按照事先设定的程序和延时,分别向摄像机和照明系统发出启动脉冲。 ?3、摄像机停止目前的扫描,重新开始新的一帧扫描,或者摄像机在启动脉冲来到之前处于等待状态,启动脉冲到来后启动一帧扫描。 ?4、摄像机开始新的一帧扫描之前打开曝光机构,曝光时间可以事先设定。

机器视觉检测系统

机器视觉检测系统 1机器视觉检测的一般模式 机器视觉检测的对象千差万别,检测的目的也不尽相同。农产品如柑橘、玉米等通常是检测其成熟度,大小,形态等,工业产品如工业零件,印刷电路板通常是检测其几何尺寸,表面缺陷等。不同的应用场合,就需要采用不同的检测设备和检测方法。如有的检测对精度要求高,就需要选择高分辨率的影像采集装置;有的检测需要产品的彩色信息,就需要采用彩色的影像采集装置。正是由于不同检测环境的特殊性,目前世界上还没有一个适用于所有产品的通用机器视觉检测系统。虽然各个检测系统采用的检测设备和检测方法差异很大,但其检测的一般模式却是相同的。机器视觉检测的一般模式是首先通过光学成像和图像采集装置获得产品的数字化图像,再用计算机进行图像处理得到相关检测信息,形成对被测产品的判断决策,最后将该决策信息发送到分拣装置,完成被测产品的分拣。 机器视觉检测的一般模式如图1所示: 图1 机器视觉检测的一般模式 1.1图像获取 图像获取是机器视觉检测的第一步,它影响到系统应用的稳定性和可靠性。图像的获取实际上就是将被测物体的可视化图像和内在特征转换成能被计算机处理的图像数据。机器视觉检测系统一般利用光源,光学镜头,相机,图像采集卡等设备获取被测物体的数字化图像。 1.2视觉检测 视觉检测通过图像处理的方法从产品图像中提取需要的信息,做出决策并发送相应消息到分拣机构。通常这部分功能由机器视觉软件来完成。优秀的机器视觉软件可对图像中的目标特征进行快速准确地检测,并最大限度地减少对硬件系统的依赖性,而算法设计不够成熟的机器视觉软件则存在检测速度慢,误判率高,对硬件依赖性强等特点。在机器视觉检测系统中视觉信息的处理主要依赖于图像处理方法,它包括图像增强,数据编码和传输,平滑,边缘锐化,分割,特征提取,目标识别与理解等内容。 1.3分拣 对于一个检测系统而言,最终是要实现次品(含不同种类的次品)与合格品的分离即分拣,这部分功能由分拣机构来完成。分拣是机器视觉检测的最后一个也是最为关键的一个环节"对于不同的应用场合,分拣机构可以是机电系统!液压系统!气动系统中的某一种。但无论是哪一种,除了其加工制造和装配精度要严格保证以外,其动态特性,特别是快速性和稳定性也十分重要,必须在设计时予以足够的重视。 2机器视觉检测系统的构成 一个典型的机器视觉检测系统主要包括光源、光学镜头、数字相机、图像采集卡、图像处理模块、分拣机构等部份。其构成如图2所示。 图2 典型的机器视觉检测系统

机器人视觉算法-参考标准答案

1.什么是机器视觉 【概述】 机器视觉就是用机器代替人眼来做测量和判断。机器视觉系统是指通过机器视觉产品(即图像摄取装置,分CMOS和CCD两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。 机器视觉系统的特点是提高生产的柔性和自动化程度。在一些不适合于人工作业的危险工作环境或人工视觉难以满足要求的场合,常用机器视觉来替代人工视觉;同时在大批量工业生产过程中,用人工视觉检查产品质量效率低且精度不高,用机器视觉检测方法可以大大提高生产效率和生产的自动化程度。而且机器视觉易于实现信息集成,是实现计算机集成制造的基础技术。 正是由于机器视觉系统可以快速获取大量信息,而且易于自动处理,也易于同设计信息以及加工控制信息集成,因此,在现代自动化生产过程中,人们将机器视觉系统广泛地用于工况监视、成品检验和质量控制等领域。【基本构造】 一个典型的工业机器视觉系统包括:光源、镜头、CCD照相机、图像处理单元(或图像捕获卡)、图像处理软件、监视器、通讯/输入输出单元等。 系统可再分为: 主端电脑(HostComputer) 影像撷取卡(FrameGrabber)与影像处理器影像摄影机CCTV镜头显微镜头照明设备:Halogen光源LED光源 高周波萤光灯源闪光灯源其他特殊光源影像显示器 LCD 机构及控制系统 PLC、PC-Base控制器 精密桌台伺服运动机台 【工作原理】 机器视觉检测系统采用CCD照相机将被检测的目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号,图像处理系统对这些信号进行各种运算来抽取目标的特征,如面积、数量、位置、长度,再根据预设的允许度和其他条件输出结果,包括尺寸、角度、个数、合格/不合格、有/无等,实现自动识别功能。 【机器视觉系统的典型结构】 一个典型的机器视觉系统包括以下五大块:1.照明 照明是影响机器视觉系统输入的重要因素,它直接影响输入数据的质量和应用效果。由于没有通用的机器视觉照明设备,所以针对每个特定的应用实例,要选择相应的照明装置,以达到最佳效果。光源可分为可见光和不可见光。常用的几种可见光源是白帜灯、日光灯、水银灯和钠光灯。可见光的缺点是光能不能保持稳定。如何使光能在一定的程

机器人视觉系统方案

机器人视觉系统 在现代工业自动化生产中,涉及到各种各样的检验、生产监视及零件识别应用,例如零配件批量加工的尺寸检查,自动装配的完整性检查,电子装配线的元件自动定位,IC上的字符识别等。通常人眼无法连续、稳定地完成这些带有高度重复性和智能性的工作,其它物理量传感器也难有用武之地。由此人们开始考虑利用光电成像系统采集被控目标的图像,而后经计算机或专用的图像处理模块进行数字化处理,根据图像的像素分布、亮度和颜色等信息,来进行尺寸、形状、颜色等的判别。这样,就把计算机的快速性、可重复性,与人眼视觉的高度智能化和抽象能力相结合,由此产生了机器视觉的概念。 一个成功的机器视觉系统是一个经过细致工程处理来满足一系列明确要求的系统。当这些要求完全确定后,这个系统就设计并建立来满足这些精确的要求。机器视觉的优点包括以下几点: ■精度高 作为一个精确的测量仪器,设计优秀的视觉系统能够对一千个或更多部件的一个进行空间测量。因为此种测量不需要接触,所以对脆弱部件没有磨损和危险。 ■连续性 视觉系统可以使人们免受疲劳之苦。因为没有人工操作者,也就没有了人为造成的操作变化。多个系统可以设定单独运行。 ■成本效率高 随着计算机处理器价格的急剧下降,机器视觉系统成本效率也变得越来越高。一个价值10000美元的视觉系统可以轻松取代三个人工探测者,而每个探测者每年需要20000美元的工资。另外,视觉系统的操作和维持费用非常低。 ■灵活性 视觉系统能够进行各种不同的测量。当应用变化以后,只需软件做相应变化或者升级以适应新的需求即可。 许多应用满意过程控制(SPC)的公司正在考虑应用机器视觉系统来传递持续的、协调的和精确的测量SPC 命令。在SPC中,制造参数是被持续监控的。整个过程的控制就是要保证这些参数在一定的围。这使制造者在生产过程失去控制或出现坏部件时能够调节过程参数。 机器视觉系统比光学或机器传感器有更好的可适应性。它们使自动机器具有了多样性、灵活性和可重组性。当需要改变生产过程时,对机器视觉来说“工具更换”仅仅是软件的变换而不是更换昂贵的硬件。当生产线重组后,视觉系统往往可以重复使用 机器视觉系统的构成 机器视觉技术用计算机来分析一个图像,并根据分析得出结论。现今机器视觉有两种应用。机器视觉系统可以探测部件,在此光学器件允许处理器更精确的观察目标并对哪些部件可以通过哪些需要废弃做出有效的决定;机器视觉也可以用来创造一个部件,即运用复杂光学器件和软件相结合直接指导制造过程。

机器视觉与视觉检测知识点归纳

一总介 使用机器视觉系统五个主要原因: 1.精确性(无人眼限制) 2.重复性(相同方法检测无疲惫) 3.速度(更快检测) 4.客观性(无情绪主观性) 5.成本(一台机器可承担好几人工作) 机器视觉系统构成: 光学:1.相机与镜头;2.光源; 过渡:3.传感器(判断被测对象位置及状态);4.图像采集卡(把相机图像传到电脑主机); 电学(计算机):5.PC平台;6.视觉处理软件;7.控制单元。 机器视觉系统一般工作过程:1.图像采集;2.图像处理;3.特征提取;4.判决和控制。 机器视觉系统的特点:1.非接触测量;2.具有较宽的光谱响应围;3.连续性;4.成本较低; 5.机器视觉易于实现信息集成; 6.精度高; 7.灵活性。 机器视觉应用领域两大类:科学研究和工业应用 科学研究主要对运动和变化的规律作分析; 工业方面主要是在线检测产品,机器视觉所能提供的标准检测功能主要有:有/无判断、面积检测、方向检测、角度测量、尺寸测量、位置检测、数量检测、图形匹配、条形码识别、字符识别、颜色识别等。 二机器视觉系统的构成 相机的主要特性参数: 分辨率:衡量相机对物象中明暗细节的分辨能力。 最大帧率:相机采集传输图像的速率。 曝光方式和快门速度;o(* ̄) ̄*)o? 像素深度:每一个像素数据的位数。 固定图像噪声:不随像素点的空间坐标改变的噪声。 动态围等 CCD相机和CMOS相机的区别: 1.设计:CCD是单一感光器,CMOS是感光器连接放大器。 2.灵敏度:同样面积下,CCD灵敏度高;CMOS由于感光开口小,灵敏度低。 3.成本:CCD线路品质影响程度高,成本高;CMOS由整合集成,成本低。 4.解析度:CCD连接复杂度低,解析度高;CMOS新技术解析度高。 5.噪点比:CCD信号单一放大,噪点低;CMOS百万放大(每个像素都有各自的 放大器),噪点高。

机器人视觉的应用

目录 1视觉传感器的应用 {1.1:视觉传感器在榴弹弹体图形识别检测系统上的应用 1.2:视觉传感器在汽车行业的应用 } 2:结论与展望

视觉传感器的应用 学号:200803120145 班级:机制一班姓名:刘仁仕 摘要:随着21 世纪的快速发展,视觉传感器在很多方面发挥了很重要的作用,本文选了了两方面对视觉传感器的进行了全面的阐述,一个是视觉传感器在榴弹弹体图形识别检测系统上的应用,二是在汽车行业中的应用。并对视觉传感器的未来进行了展望。 关键字:视觉传感器、应用 视觉传感的基本原理 光电传感器包含一个光传感元件,而视觉传感器具有从一整幅图像捕获光线的数以千计的像素。图像的清晰和细腻程度通常用分辨率来衡量,以像素数量表示。Banner 工程公司提供的部分视觉传感器能够捕获130 万像素。因此,无论距离目标数米或数厘米远,传感器都能“看到”十分细腻的目标图像。 在捕获图像之后,视觉传感器将其与内存中存储的基准图像进行比较,以做出分析。例如,若视觉传感器被设定为辨别正确地插有八颗螺栓的机器部件,则传感器知道应该拒收只有七颗螺栓的部件,或者螺栓未对准的部件。此外,无论该机器部件位于视场中的哪个位置,无论该部件是否在360 度范围内旋转,视觉传感器都能做出判断。 1.1视觉传感器在榴弹弹体图形识别检测系统上的应用 一:概述 1. 榴弹弹体直径做为其很重要的技术指标,早期检测依赖人工或者机械检测,效率低,并且容易出错,不利于大批量、高速度、高可靠性的现代化生产; 2. 随着图像识别的理论技术和应用可靠性以及检测精度的大幅提高,此一现代化的图像检测和识别技术大量应用到军工和民用产品的生产领域,以崭新的检测方法实现以前无法达到的复杂的检测目的; 3. 美国邦纳工程国际有限公司(Banner Engineering)长期专业致力于高端光电检测和视觉检测技术研发和制造,是此行业的全球领跑者,此次应用邦纳的130万像素的视觉检测系统用于检测榴弹弹体直径,是美国邦纳的专业视觉系统工程师经过长期丰富的经验积累和周密理论计算,并根据项目的具体特征而设计的解决方案,我们有充分的理论和大量的实际应用实践数据依据来证明方案的可行性; 4. 邦纳视觉系统内置多种检测工具,以强大的软件功能以简单的打包组态的开发形式由专用开发软件设置并经下载到视觉控制器,即可完成所有的预设检测任务;和目前的一些视觉系统不一样的是邦纳视觉系统无须软件底层复杂的二次开发工作,因此开发快速,软件和硬件可靠性极高;

智能视觉检测系统

3.3 智能视觉检测系统 汽车注塑件是汽车的重要组成部分,在出厂前要进行形状和尺寸检测,表面质量检测等,如凹陷,翘曲,飞边等。由于人工检测的效率低,准确性差,成本高,不能满足实际质量检测的需求。机器视觉检测系统则有以下优势: 1. 非接触式检测,不损伤注塑件; 2 . 检测质量高,高分辨率镜头可达到高精度检测; 3.高检测效率,工业相机的帧率达每秒百帧; 4.实时性强,不出现漏检情况; 5.现场抗干扰能力强; 6.可靠性高,长时间稳定工作。 3.3.1 组成部分 机器视觉检测系统由三部分组成:图像的获取、图像的处理、输出显示。 图像获取设备包括光源、工业摄像机(配套镜头)等,光源可以使注塑件的表面特征得以完整显现,如表面缺陷,飞边等。摄像机可突出注塑件的关键特征,其部件CCD 实现 将图像光信号转换成电信号(模拟信号)的目的。 图像处理设备包括相应的软件和硬件系统。图像采集卡将得到的模拟信号转变为数字信号,然后供计算机软件系统处理。图像采集卡是一种可获得数字化视频图像信息存储并高速播放出来的设备。普通的传输接口无法满足图像信号的高速传输,因此需要专用的图像采集设备来实现。软件系统利用滤波算法对噪声滤除,然后进行图像匹配,得到尽可能最真实的图像。 输出显示设备与过程相连,包括监视界面,过程控制器和报警装置等。摄像数据通过计算机对标准和故障图像的分析和比较,若发现不合格产品,则通过NG 信号告警,由PLC 自动将其排除出生产线。机器视觉检测的结果可以作为计算机辅助质量CAQ (Computer Aided Quality )系统的信息来源,也可以和其它控制系统集成。 3.3.2. 系统设计 注塑件生产线视觉检测系统采用国际先进的视觉传感器,高像素,可以记录多个不同物 件的标准画面,存储画面不合格物件图像,可以确定注塑件短射、飞边、裂纹、翘曲、气泡等多种不

机器人视觉18问——机器人视觉工程师必须知道

1.工业相机的丢帧的问题是由什么原因引起的? 经常会有一些机器视觉工程师认为USB接口的工业相机会造成丢帧现象。一般而言,工业相机丢帧与工业相机所采用的传输接口是没有关系的,无论是USB,还是1394、GigE、或者是CameraLink。设计不良的驱动程序或工业相机硬件才是造成丢帧的真正原因:设计不良的工业相机之所以会发生丢帧的现象,其实就是资料通道的堵塞,无法及时处理,所以新的图像进来时,前一张可能被迫丢弃,或是新的图像被迫丢弃。要解决这问题,需要设计者针对驱动程序与工业相机硬件资料传输的每个环节进行精密的设计。 2:工业相机输入、输出接口有哪些? 在机器视觉检测技术中,工业相机的输入、输出接口有Camera Link、IEEE1394、USB2.0、Ethernet、USB3.0几种; 3:知道被测物的长、宽、高以及要求的测量精度,如何来选择CCD相机和工业镜头,选择以上器件需要注意什么? 首先要选择合适的镜头。选择镜头应该遵循以下原则: 1).与之相配的相机的芯片尺寸是多大; 2).相机的接口类型是哪种的,C接口,CS接口还是其它接口; 3).镜头的工作距离; 4).镜头视场角; 5).镜头光谱特性; 6).镜头畸变率; 7).镜头机械结构尺寸; 选择CCD相机时,应该综合考虑以下几个方面: 1).感光芯片类型;CCD还是CMOS 2).视频特点;包括点频、行频。 3).信号输出接口; 4).相机的工作模式:连续,触发,控制,异步复位,长时间积分。 5).视频参数调整及控制方法:Manual、RS232. 同时,选择CCD的时候应该注意,l inch=16mm而不是等于25.4mm.

机器人视觉系统综述

机器人视觉系统综述 0843021037 晏林俐机制三班 一、概述 在现代工业自动化生产中,涉及到各种各样的检验、生产监视及零件识别应用,例如零配件批量加工的尺寸检查,自动装配的完整性检查,电子装配线的元件自动定位,IC上的字符识别等。通常人眼无法连续、稳定地完成这些带有高度重复性和智能性的工作,其它物理量传感器也难有用武之地。由此人们开始考虑利用光电成像系统采集被控目标的图像,而后经计算机或专用的图像处理模块进行数字化处理,根据图像的像素分布、亮度和颜色等信息,来进行尺寸、形状、颜色等的判别。这样,就把计算机的快速性、可重复性,与人眼视觉的高度智能化和抽象能力相结合,由此产生了机器视觉的概念。 二、机器视觉的优点 一个成功的机器视觉系统是一个经过细致工程处理来满足一系列明确要求的系统。当这些要求完全确定后,这个系统就设计并建立来满足这些精确的要求。机器视觉的优点包括以下几点:■精度高 作为一个精确的测量仪器,设计优秀的视觉系统能够对一千个或更多部件的一个进行空间测量。因为此种测量不需要接触,所以对脆弱部件没有磨损和危险。 ■连续性 视觉系统可以使人们免受疲劳之苦。因为没有人工操作者,也就没有了人为造成的操作变化。多个系统可以设定单独运行。 ■成本效率高 随着计算机处理器价格的急剧下降,机器视觉系统成本效率也变得越来越高。一个价值10000美元的视觉系统可以轻松取代三个人工探测者,而每个探测者每年需要20000美元的工资。另外,视觉系统的操作和维持费用非常低。 ■灵活性 视觉系统能够进行各种不同的测量。当应用变化以后,只需软件做相应变化或者升级以适应新的需求即可。 许多应用满意过程控制(SPC)的公司正在考虑应用机器视觉系统来传递持续的、协调的和精确的测量SPC命令。在SPC中,制造参数是被持续监控的。整个过程的控制就是要保证这些参数在一定的范围内。这使制造者在生产过程失去控制或出现坏部件时能够调节过程参数。 机器视觉系统比光学或机器传感器有更好的可适应性。它们使自动机器具有了多样性、灵活性和可重组性。当需要改变生产过程时,对机器视觉来说“工具更换”仅仅是软件的变换而不是更换昂贵的硬件。当生产线重组后,视觉系统往往可以重复使用。 三、机器视觉系统的构成 机器视觉技术用计算机来分析一个图像,并根据分析得出结论。现今机器视觉有两种应用。机器视觉系统可以探测部件,在此光学器件允许处理器更精确的观察目标并对哪些部件可以通过哪些需要废弃做出有效的决定;机器视觉也可以用来创造一个部件,即运用复杂光学器件和软件相结合直接指导制造过程。 尽管机器视觉应用各异,但都包括以下几个过程; ■图像采集 光学系统采集图像,图像转换成模拟格式并传入计算机存储器。 ■图像处理 处理器运用不同的算法来提高对结论有重要影响的图像要素。

机器人视觉传感技术及应用

题目机器人视觉传感器的应用 姓名 班级测控122 学号 小组成员

机器人视觉传感器的应用 摘要 机器人视觉技术是指机器人工作时通过视觉传感器对环境物体获取视觉信息,让机器人识别物体来进行各种工作。本文介绍了机器人技术中所常用的视觉传感器的种类、结构。原理和功能。介绍了弧焊机器人视觉传感技术较为前沿的一些应用和研究,包括焊缝跟踪和获取熔池信息。简要说明了视觉技术在农业采摘机器人方面的应用。 关键词:机器人、视觉、弧焊、采摘机器人 1.绪论 机器人视觉是使机器人具有视觉感知功能的系统。机器人视觉可以通过视觉传感器获取环境的一维、二维和三维图像,并通过视觉处理器进行分析和解释,进而转换为符号,让机器人能够辨识物体,并确定其位置及各种状态。机器人视觉视觉侧重于研究以应用为背景的专用视觉系统,只提供对执行某一特定任务相关的景物描述。机器人视觉硬件主要包括图像获取和视觉处理两部分,而图像获取由照明系统、视觉传感器、模拟-数字转换器和帧存储器等组成。根据功能不同,机器人视觉可分为视觉检验和视觉引导两种,广泛应用于电子、汽车、机械等工业部门和医学、军事领域。 2.机器人常用的视觉传感器 2.1光电二极管与光电转换器件 图2.1是pn型光电二级管的结构。如果让光子射入半导体的pn结边界耗尽层,就会激励起新的空穴。利用电场将空穴和电子分离到两侧,就可以的到与光

子量成比例的反向电流。Pn型元件的优点是暗电流小,所以被广泛用于照度计和分广度计等测量装置中。 图2.1 pn型光电二极管结构 在高响应的发光二极管中pin结型与雪崩型。前者在pn结边界插入一个本征半导体i层取代其耗尽层。给它施加反向偏压,可以减少结电容,获得高速响应;而后者是在pn结上加100伏左右的反向偏置电压产生强电场,激励载流子加速,与原子碰撞产生电子雪崩现象。这些高速型二极管的响应速度很快,能用于高速光通信等。 2.2 PSD PSD(Position Sensitive Detector,位置敏感探测器)是测定入射光位置的传感器,由发光二级管、表面电阻膜、电极组成。入射光产生的光电流通过电阻膜到达元件两端的电极,流入各个电极的电流与电阻值存在对应关系,而电阻值又与光的入射位置及到各个电极距离成比例,因此根据电流值就能检测到光入射的位置。PSD元件中有一维和二维两种,它们都具有高速性,但要注意入射到开口部分的散射光的影响。

相关文档
最新文档