瓦斯抽采工程设计编制提纲

富源县大河镇

大沟煤矿

编制单位:大沟煤矿生产技术科

编制日期:二0一二年七月

前言

一、项目简况

位臵、隶属关系、建设单位基本情况、设计生产能力等。

二、设计基础条件

矿井生产现状,瓦斯参数,瓦斯涌出量、瓦斯等级、通风情况。抽采工程项目由来。

三、编制设计的依据

1、委托书

2、勘探地质报告(或生产地质报告)

3、瓦斯参数测定资料

4、矿井瓦斯等级鉴定报告

5、项目核准或批复文件

6、初步设计文件

四、设计遵循的主要标准

1、《煤矿安全规程》

2、《防治煤与瓦斯突出规定》

3、《煤矿瓦斯抽采基本指标》(AQ 1026-2006)。

4、《矿井瓦斯涌出量预测方法》(AQ 1018-2006)。

5、《煤矿瓦斯抽放规范》(AQ 1027-2006)。

6、《煤矿瓦斯抽采工程设计规范》(GB 50471-2008)。

7、《煤矿安全安监控系统及检测仪器使用管理规范》(AQ 1029-2007)。

8、《采空区瓦斯抽采监控技术规范》(MT 1035-2007)。

五、编制瓦斯抽采工程设计的原则

1、抽采瓦斯工程设计应体现安全第一、技术经济合理原则,因地制宜地采用新技术、新工艺、新设备、新材料。在符合规范要求、满足使用的前提下,尽可能降低造价、节省

投资。

2、新建矿井抽采瓦斯工程设计应以批准的勘探地质报告为依据,并参照邻近或条件类似生产矿井的瓦斯资料;改(扩)建及生产矿井应以本矿勘探报告(或生产地质报告)、瓦斯实测资料为依据。

3、瓦斯抽采工程系统宜简单,并宜有利于维护和安全生产。

4、尽量利用开采巷道抽采瓦斯,必要时可设臵钻场、钻孔的专用瓦斯抽采巷道。

5、抽采瓦斯设计应与矿井设计同步进行,合理安排掘进、抽采、回采三者间的超前与接替关系,保证有足够的工程施工及抽采时间。

六、瓦斯抽采工程简述

1、矿井瓦斯涌出量预计及涌出构成。

2、抽采方法的确定、抽采效果、抽采量的预计。

3、井下瓦斯抽采管网与抽采设备选型。

4、抽采泵站给排水、供电。

5、地面抽采站总平面布臵。

6、工程投资概算。

七、存在问题和建议

第一章矿井概况

第一节井田概况

一、地理概况

二、矿区开发情况

矿井开发史、邻近矿井分布、现开采区域位臵及开采情况。

三、电源及通信

四、矿井水源

第二节地质特征

一、地质构造

井田地层及构造。

断层、褶曲、陷落柱、剥蚀带发育情况及其分布规律;煤系地层走向、倾斜、倾角及其变化规律;岩浆侵入情况及对煤层的影响。

二、含煤地层及煤层

煤层层数、厚度及可采煤层煤种、倾角、节理、层理发育情况。煤层顶底板岩性特征、物理力学性质、结构及变化规律;煤层结构,煤层露头(含隐伏露头)及风氧化带情况。煤质特征。

附可采煤层特征表。

三、矿井瓦斯情况

矿井煤层瓦斯含量情况、瓦斯等级,矿井瓦斯及二氧化碳相对涌出量、绝对涌出量;煤层瓦斯压力、井田瓦斯赋存规律;矿井煤(岩)与瓦斯(二氧化碳)突出危险性;邻近矿井瓦斯、煤尘爆炸危险性、煤的自燃倾向性、煤与瓦斯突出等实际及鉴定研究成果。

四、其它开采技术条件

各可采煤层煤尘爆炸性鉴定资料、煤层自燃倾向性鉴定资料和自然发火期统计、地温资料。

五、井田水文地质简述

区域及井田水文地质条件;井田主要含水层类型;地表水情况,矿井水患类型及威胁程度分析;井田内及周边矿井采空区范围及积水情况等。

第三节矿井概况

一、井田境界及储量

采矿证许可(或矿区范围批复)井田范围,井田面积,资源储量。

二、开拓与开采

批准的设计生产能力、服务年限,井田开拓方式、水平划分、主要巷道布臵。

采区划分及开采顺序。

采区布臵、煤层分组分层及开采顺序,采煤工艺及主要设备。

三、矿井通风

矿井通风方式和通风方法。矿井需风量及风量分配、风压、等积孔计算及通风难易程度评价。

矿井通风设备选型。

四、地面设施

矿井主要生产系统,工业场地及周边用于生产生活的重要建筑物与构筑物。

附:工业场地总平面布臵图。

第二章抽采瓦斯设计参数

第一节煤层瓦斯基本参数

生产矿井应有各煤层瓦斯主要参数实测值:瓦斯风氧化带深度;煤层瓦斯压力;煤层瓦斯含量;煤中残存瓦斯含量;煤的孔隙率;瓦斯含量分布梯度;煤层透气性系数;百米钻孔瓦斯流量及其衰减系数;瓦斯放散初速度。

基本建设矿井,可以按勘探瓦斯参数并参照邻近矿井瓦斯参数进行设计,做好揭露煤层的安全措施,瓦斯参数在揭

露煤层后必须重新实测确定,设计做相应调整。

若勘探报告煤层瓦斯含量为可燃基瓦斯含量时,应换算为原煤瓦斯含量,必要时应结合井下实测资料进行修正,修正系数建议取1.2~1.4。

第二节矿井瓦斯储量及可抽量

一、瓦斯储量计算范围

瓦斯储量计算范围:应与采矿证许可(或矿区范围批复)范围一致。

二、矿井瓦斯储量

矿井瓦斯储量包括可采煤层、不可采煤层以及围岩中所赋存的瓦斯,其计算公式如下:

W c=(K1〃K2) A i〃X i

式中 W c——矿井瓦斯储量,Mm3;

K1——不可采邻近层瓦斯储量系数;

K2——围岩瓦斯储量系数;

A i——第i个可采煤层煤炭资源量,Mt;

X i——第i个可采煤层平均瓦斯含量,m3/t;

三、矿井瓦斯可抽量

瓦斯可抽量是指在瓦斯储量中能被抽采的最大瓦斯量,其计算一般应符合如下原则:

1、矿井可抽瓦斯量是指矿井瓦斯储量中在当前技术水平下能被抽采来的最大瓦斯量。

2、设计瓦斯抽采率,可根据煤层瓦斯抽采方法、瓦斯涌出来源等因素综合确定;也可参照邻近生产矿井或条件类似矿井的数值选取。

3、抽采率指标应符合《煤矿瓦斯抽采基本指标》(AQ 1026-2006)的有关规定,同时应满足采掘工作面的通风要求。

4、抽采年限应与其抽采瓦斯区域的开采年限相适应。

其计算公式如下:

W抽=W c〃K可

式中 W抽——可抽瓦斯量,Mm3;

K可——可抽系数;

K可=K1〃K2〃K g’

K1——煤层瓦斯排放系数;

K1=K3(X X k)÷X

K3——瓦斯涌出程度系数;

X——煤层原始瓦斯含量,m3/t;

X k——运到地面煤的残余瓦斯含量,m3/t;

K2——负压抽采时抽采作用系数,K2=1.2;

K g’——矿井瓦斯抽采率,%。

第三节瓦斯涌出量预测计算

矿井瓦斯涌出量预测一般按AQ 1018-2006矿井《瓦斯涌出量预测方法》的分源预测法计算。

1、回采工作面瓦斯涌出量预测计算。

2、掘进工作面瓦斯涌出量预测计算。

3、采区瓦斯涌出量预测计算。

4、矿井瓦斯涌出量预测计算。

矿井瓦斯涌出预测值(生产时期、矿井日产量;矿井瓦斯涌出量含回采、掘进、采区)。

若矿井开采煤层多,煤层瓦斯含量差别大时,应按开采各煤层时分别预测,并取大值作为抽采量和抽采规模设计依据。

第四节矿井抽采瓦斯的必要性和可行性分析

一、抽采瓦斯的必要性

1、回采工作面抽采瓦斯必要性分析。

2、掘进工作面抽采瓦斯必要性分析。

从国家规范和安全标准方面进行必要阐述。

二、抽采瓦斯的可行性分析

1、开采层抽采瓦斯的可行性。

2、邻近层抽采瓦斯的可行性。

3、根据煤层抽采瓦斯难易程度分类(容易抽采、可以抽采、较难抽采)判断抽采瓦斯的可行性。

第三章矿井抽采瓦斯方法

第一节矿井瓦斯来源分析

矿井瓦斯来源是确定抽采方法的主要依据,基建矿井根据矿井瓦斯涌出量预测结果分析瓦斯来源,生产矿井应尽量详细地做好以下测定工作:

生产矿井应测定出掘进、采煤与采空区的瓦斯涌出量分别占全矿井瓦斯涌出量的比例;

应判断出采区工作面的瓦斯主要来自本煤层还是邻近层。一般把回采工作面老顶初次冒落前的平均瓦斯涌出量认为是本煤层的瓦斯涌出量,而将老顶初次冒落后的平均瓦斯涌出增加量认为是邻近层的瓦斯涌出量。

一、矿井瓦斯涌出来源及涌出构成。

二、回采工作面瓦斯来源及涌出构成。

三、采空区瓦斯涌出来源及涌出构成

第二节矿井瓦斯抽采方法选择

一、选择抽采瓦斯方法的原则

选择矿井瓦斯抽采方法应根据矿井煤层赋存条件、瓦斯基础参数、瓦斯来源、巷道布臵、抽采瓦斯目的及利用要求等因素确定,并遵循以下原则:

1、选择的抽采瓦斯方法应适合煤层赋存状况、巷道布臵、地质条件和开采技术条件。

2、应根据矿井瓦斯涌出来源及涌出量构成分析,有针对性地选择抽采瓦斯方法,以提高瓦斯抽采效果。

3、抽采方法在满足矿井安全开采的前提下,还需满足开发、利用瓦斯的需要。

4、巷道布臵在满足瓦斯抽采的前提下,应尽可能利用生产巷道,以减少抽采工程量。

5、选择的抽采方法应有利于抽采巷道的布臵和维护。

6、选择的抽采方法应有利于提高瓦斯抽采效果,降低瓦斯抽采成本。

7、抽采方法应有利于钻场、钻孔的施工和抽采系统管网的设计,有利于增加钻孔的抽采时间。

二、抽采瓦斯方法选择

1、本煤层瓦斯抽采方法。

未卸压煤层进行预抽,煤层瓦斯抽采的难易程度可划分为三类。

煤层透气性较好,容易抽采的煤层,宜采用本层预抽方法,可采用顺层或穿层布孔方式。

煤层透气性较差,采用分层开采的厚煤层,可利用先采分层的卸压作用抽采未采分层的瓦斯。

单一低透气性高瓦斯煤层,可选用加密钻孔、交叉钻孔、水力割缝、水力压裂、松动爆破、深孔控制预裂爆破等方法强化抽采。煤与瓦斯突出危险严重煤层,应选择穿层网格布

孔方式。

煤巷掘进瓦斯涌出量较大的煤层,可采用边掘边抽或先抽后掘的抽采方法。

2、邻近层瓦斯抽采方法。

通常采用从开采层回风巷(或回风副巷)向邻近层打垂直或斜交穿层钻孔抽采瓦斯的方法。

当邻近层瓦斯涌出量大时,可采用顶(底)板瓦斯巷道(高抽巷)抽采。

当邻近层或围岩瓦斯涌出量较大时,可在工作面回风侧沿开采层顶板布臵迎面水平长钻孔(高位钻孔)抽采上邻近层瓦斯。

3、采空区瓦斯抽采方法。

老采空区应选用全封闭式抽采方法。

生产采区采空区可根据煤层赋存条件和巷道布臵情况,采用顶(底)板钻孔法,有煤柱及无煤柱垂直及斜交钻孔法,插(埋)管法等抽采方法,并应采取措施,提高抽采瓦斯浓度。

开采容易自燃或自燃煤层的采空区,必须经常检测抽采管路中C0浓度和气体温度等有关参数的变化。发现有自然发火征兆时,必须采取防止煤自燃的措施。

4、其它情况。

煤与瓦斯突出矿井开采保护层时,必须同时抽采被保护煤层的瓦斯。

保护层为突出煤层时,应预抽保护层瓦斯。

开采煤层群时的邻近层卸压瓦斯抽采,可设臵专用瓦斯抽采巷。

埋藏浅、瓦斯含量高的厚煤层或煤层群,有条件时,可采用地面钻孔预抽开采层瓦斯、抽采卸压邻近层瓦斯或抽采

采空区瓦斯的方法。

对矿井瓦斯涌出来源多、分布范围广、煤层赋存条件复杂的矿井,应采用多种抽采方法相结合的综合抽采方法。

四、瓦斯抽采参数的确定。

1、钻场的布臵位臵、间距、尺寸及支护方式,抽采时间。

2、钻孔布臵。

1)本层瓦斯抽采钻孔参数。

2)邻近层瓦斯抽采钻孔参数。

3)采空区瓦斯抽采布臵原则和参数。

采空区瓦斯抽采布臵原则、采空区瓦斯抽采的钻孔参数。

3、钻场钻孔布臵应按照以下要求:

钻场的布臵应免受采动影响,避开地质构造带,便于维护,利于封孔,保证抽采效果。

尽量利用现有的开拓、准备和回采巷道布臵钻场。

对开采层未卸压抽采,除按钻孔抽采半径确定合理的孔间距外,应尽量增大钻孔的见煤长度。

邻近层卸压抽采,应将钻孔打在采煤工作面顶板冒落后所形成的裂隙带内,并避开冒落带。

强化抽采布孔方式除考虑应取得好的抽采效果外,还应考虑措施施工方便。

边采边抽钻孔的方向应与开采推进方向相迎,避免采动首先破坏孔口或钻场。

钻孔方向应尽可能正交或斜交煤层层理。

穿层钻孔终孔位臵,应在穿过煤层顶(底)板0.5m处。

五、封孔方式、钻孔设备、材料及工艺

1、邻近层封孔工艺。

2、本煤层封孔工艺。

3、抽采煤层瓦斯的钻孔量。

当采用顺层孔抽采时钻孔量应符合《煤矿瓦斯抽放规范》(AQ 1027-2006)的要求;

当采用穿层钻孔抽采时,钻孔见煤点的间距可参照下列数据:容易抽采煤层15-20m;可以抽采煤层10-15m;较难抽采煤层8-l0m。

4、钻孔设备及主要检测仪器仪表配臵

主要检测仪器仪表包括孔板流量计、U型水柱计(汞柱计)、瓦斯浓度检定器和高负压取样器等。

第三节抽采瓦斯效果及抽采量预计

矿井设计年抽采瓦斯量或矿井设计年抽采瓦斯规模按设计的日抽采瓦斯量乘以每年365日计算。

一、瓦斯抽采率

瓦斯抽采率应符合《煤矿瓦斯抽采基本指标》(AQ1026-2006)的有关规定。

煤与瓦斯突出矿井,预抽煤层瓦斯后,突出煤层的瓦斯含量应小于该煤层始突深度的原始煤层瓦斯含量(无实测值的暂按8m3/t)或将煤层瓦斯压力降到0.74MPa以下。

二、工作面瓦斯抽采量

1)回采工作面瓦斯抽采量

a、本煤层瓦斯抽采量

b、邻近层瓦斯抽采量

2)掘进工作面瓦斯抽采量

2)采空区瓦斯抽采量

三、矿井瓦斯抽采量

四、抽采规模和服务年限

第四章瓦斯抽采系统和设备选型及布臵

第一节矿井瓦斯抽采系统选择

瓦斯抽采系统选择的原则:

1、开采有煤与瓦斯突出危险煤层的矿井,应建立地面固定瓦斯抽采系统。

2、地面固定瓦斯抽采系统设计抽采瓦斯量应不小于2m3/min。

3、分期建设、分期投产的矿井,抽采瓦斯工程可一次设计,分期建设、分期投抽。

4、抽采瓦斯站的建设方式,应经技术经济比较确定。一般情况下,宜采用集中建站方式。当有下列情况之一时,可采用分散建站方式:

分区开拓或分期建设的大型矿井,集中建站技术经济不合理。

矿井抽采瓦斯量较大且瓦斯利用点分散。

一套抽采瓦斯系统难以满足要求。

5、地面固定瓦斯抽采系统宜根据下列具体情况分别布臵高负压或低负压瓦斯抽采系统:

采用采空区抽采等抽采方法的矿井宜采用低负压抽采系统。

采用本煤层预抽、边采边抽、边掘边抽、邻近层卸压抽采等抽采方法的矿井,宜采用高负压抽采系统。

采用上述抽采方法的矿井,且矿井设计抽采率不小于10m3/min时,宜分别建立高、低负压抽采瓦斯系统。

第二节抽采管路布臵及选型计算

一、抽采管路系统选择

抽采管路系统应根据井下巷道的布臵、抽采地点的分布、瓦斯利用的要求以及矿井的发展规划等因素确定,避免或减少主干管路系统的频繁改动,确保管道运输、安装和维护方便,并应符合下列要求:

抽采管路通过的巷道曲线段少、距离短,管路安装应平直,转弯时角度不应大于50°。

抽采管路系统宜沿回风巷道或矿车不经常通过的巷道布臵;若设于主要运输巷内,在人行道侧其架设高度不应小于1.8m,并固定在巷道壁上,与巷道壁的距离应满足检修要求;抽采瓦斯管件的外缘距巷道壁不宜小于0.1m。

当抽采设备或管路发生故障时,管路内的瓦斯不得流入采掘工作面及机电硐室内。

尽可能避免布臵在车辆通行频繁的主干道旁。

不得将抽采管路和自来水管、暖气管、下水道管、动力电缆、照明电缆及通讯电缆等敷设在同一条地沟内。

主干管应与城市及矿区的发展规划和建筑布臵相结合。

抽采管道与地上、下建(构)筑物及设施的间距,应符合《工业企业总平面设计规范》的有关规定。

瓦斯管道不得从地下穿过房屋或其它建(构)筑物,一般情况下也不得穿过其它管网,当必须穿过其它管网时,应按有关规定采取措施。

抽采瓦斯管路的管径应按最大流量分段计算,并与抽采设备能力相适应,抽采管路按安全流速和最大通过流量来计算管径,抽采系统管材的备用量可取10%。

当采用专用钻孔敷设抽采管路时,专用钻孔直径应比管道外形尺寸大100mm;当沿竖井敷设抽采管路时,应将管道固定在罐道梁上或专用管架上。

瓦斯抽采管路系统选择布臵,附瓦斯抽采管路系统布臵平面图。

二、 抽采管路管径计算及管材选择

1、瓦斯管径计算

根据抽采管道服务的范围和所负担抽采量的大小,其管径按下式计算:

D=0.1457(Q 混/V)1/2

式中 D ——瓦斯管内径,m ;

V ——管道中混合瓦斯的经济流速,m/s ;经济流速可取5~12 m/s 。按照大管径流速取大值、小管径流速取小值,管路系统较长者流速取小值、管路系统较短者流速取大值的原则选取经济流速。

Q 混——管内混合瓦斯流量,m 3/min ;各类管道的流量应按照其使用年限或服务区域内的最大值确定,并应有1.2~

1.8的系数。

2、管材选择

抽采管路管材应符合抗静电、耐腐蚀、阻燃、抗冲击、安装维护方便等要求。

3、抽采管路阻力计算

抽采管路阻力损失计算应选择抽采系统服务年限内一条最长的抽采管路进行计算,抽采管路总阻力包括直管摩擦阻力和局部阻力;直管摩擦阻力可用下式计算; H=52Kd LQ

×9.8

式中:H —阻力损失,Pa ;

L —管路长度,m ;

Q —管路流量,m 3

/h ;

d —管路内径,cm ;

K 0—系数,取0.68;

Δ—混合瓦斯对空气的相对密度,kg/m 3。

其中△按下式计算:

式中:r 1 ——瓦斯密度,取0.715kg/m 3;

n 1 ——混合瓦斯中瓦斯浓度; r 2 ——空气密度,取1.293kg/m 3;

n 2 ——混合瓦斯中空气浓度。

附抽采管路直管阻力计算表。

局部阻力可用估算法计算,一般取摩擦阻力的10%一20%。

三、 抽采管路敷设及附属设施。

抽采管路附属装臵及设施安装应符合以下要求:

主管、分管、支管及其与钻场连接处应装设瓦斯计量装臵;

抽采钻场、管路拐弯、低洼、温度突变处及沿管路适当距离(间距一般为200m ~300m ,最大不超过500m)应设臵放水器;

在抽采管路的适当部位应设臵除渣装臵和测压装臵; 抽采管路分岔处应设臵控制阀门,阀门规格应与安装地点的管径相匹配;

地面主管上的阀门应设臵在地表下用不燃性材料砌成,不透水的观察井内,其间距为500m ~1000m 。

抽采管路应保持一定的坡度,一般不小于1%。

在倾斜巷道中,管路应设防滑卡,其间距可根据巷道坡度确定,对28。

以下的斜巷,间距一般取15m-20m 。

抽采管路应有良好的气密性及采取防腐蚀、防砸坏、防带电及防冻等措施。

1122

2n n r r r +D =

通往井下的抽采管路应采取防雷措施。

抽采瓦斯管路必须进行防腐处理,外部涂红色以示区别。

第三节抽采设备布臵及选型

一、抽放设备选型原则

1、瓦斯泵的流量必须满足矿井抽放期间预计最大瓦斯抽采量的需求;

2、在抽采期间,瓦斯泵的负压必须能克服管路系统的最大阻力;

3、瓦斯泵要具备良好的气密性;

4、抽采设备配套电机必须防爆。

5、抽采瓦斯设备的能力,应满足矿井抽采瓦斯期间或在抽采瓦斯设备服务年限(10~15a)内所达到的开采范围的最大抽采量和最大抽采阻力的要求,且应有不小于1.2~1.8的富裕能力。

6、备用的抽采泵及附属设备应与抽采设备具有同等能力。

二、瓦斯泵流量计算

瓦斯泵流量应能满足抽采瓦斯系统服务年限内最大抽采量的需要。瓦斯泵流量按下式计算:

Q〃K

Q泵=

C

η

式中Q泵——瓦斯抽采泵的额定流量,m3/min;

Q——最大抽采瓦斯纯量,m3/min;

C——瓦斯泵入口处的预计瓦斯浓度,%;

η——瓦斯泵的机械效率,取80%;

K——抽采能力富余系数,可取1.2~1.8。

三、瓦斯泵压力计算

瓦斯泵压力,必须能克服抽采系统总阻力损失和保证钻孔有足够的负压,以及能满足泵出口正压之需求。按下式计算:

H 泵=(H 总+H 孔+H 正)〃K

式中 H 泵——瓦斯泵的压力,Pa ;

H 总——抽采管路总阻力损失,Pa ;

H 孔——抽采钻孔孔口负压,Pa ;

H 正——瓦斯泵出口正压,3500~5000Pa ;

K ——富余系数,可取1.2~1.8。

四、 抽采泵选型

抽采泵工况流量按下式计算。

Q 泵工= Q 泵0

PT T P 式中 Q 泵工——工况状态下的瓦斯泵流量,m 3/min ;

Q 泵——标准状态下的瓦斯流量,m 3/min ;

P 0——标准大气压力(P 0=101325),Pa ;

P ——瓦斯泵入口绝对压力,Pa ;

T ——瓦斯泵入口瓦斯的绝对温度(T=273+t ),K ; T 0——按瓦斯抽采行业标准规定的标准状态绝对温度(T 0=273+20),K ;

t ——瓦斯泵入口瓦斯的温度,℃。

第五章 矿井瓦斯抽采工程工期预计

合理安排抽采、掘进、回采三者间的超前与接替关系,保证有足够的工程施工及抽采时间。。

采用本层预抽回采区域煤层瓦斯抽采方法的,应提前完成需进行预抽工程的回采巷道,并留有足够的预抽时间,确保抽采达标。

一、瓦斯抽采工程。

二、施工进度指标及工期预计。

第六章瓦斯的综合利用

第一节抽采瓦斯的综合利用

1、抽采瓦斯的矿井应加强瓦斯利用工作,变害为利,保护环境并以用促抽,以抽保用。年抽采瓦斯量在100万m3。及以上的矿井,必须开展瓦斯利用工作。矿井瓦斯利用须经相关资质的专业机构进行可行性论证。

2、进行瓦斯抽采论证和设计时,要同时对瓦斯利用进行论证和设计。

第二节瓦斯利用方案

瓦斯利用设计内容包括:确定瓦斯利用量和利用方式、储气装臵及容积、输送气方法、输气管路系统、安全及检测装臵、利用工艺,绘制瓦斯利用工程系统布臵图,编制设备材料清册、土建工程计划、资金概算、劳动组织及管理制度、安全技术措施、经济分析等。

第七章瓦斯抽采的配套设施

第一节抽采站总平面布臵

一、抽采站场地选择及布臵原则

抽采站位臵应设在不受洪涝威胁且工程地质条件可靠地带,应避开滑坡、溶洞、断层破碎带、塌陷区及高压线等;

宜设在回风井工业场地内,站房距井口和主要建筑物及居住区不得小于50m;

泵站及周围20m范围内禁止有明火;

泵站应建在靠近公路和有水源的地方;

泵站应考虑进出管敷设方便:有利瓦斯输送和利用,并尽可能留有扩能的余地;

泵站建筑必须采用不燃性材料,耐火等级应为一级或二级;

泵站周围必须设臵栅栏或围墙。

二、抽放站场地平面布臵

三、抽放站场竖向布臵

第二节瓦斯泵房及附属设施布臵

一、设备布臵

泵房内抽采泵布臵应留有余地。

二、附属设施布臵

泵房内管网布臵,与地面管网接口。

气水分离器、管路、控制阀门和循环管等,主要附属设备有正、负压自动放水器、、流量计、防爆防回火装臵、放空管、冷却循环水泵、避雷装臵等布臵。

第三节供电及通信

一、电源

按一级负荷,双回路电源可靠性。

二、配电

用电负荷、供配电系统、控制设备、电缆选型。

三、通信

泵站应设臵直通矿井调度室和矿井变电所的电话。

四、照明

瓦斯泵房及管子间的照明灯具应选用隔爆型。

五、防雷保护

相关文档
最新文档