水合物气资源评

水合物气资源评
水合物气资源评

布莱克海台水合物气资源评价

摘要:布莱克海台是全世界天然气水合物研究的热点之一。该区研究程度高、资料丰富,是进行对比研究的典型地区。论述了布莱克海台天然气水合物形成的地质条件和地球化学特征, 综述了该区水合物的研究历史和进展,介绍了对水合物气资源量的评价方法和评价结果。根据不同评价者和不同方法的评价, 布莱克海台区水合物气的资源量在(8~80)×1012m3[其中预测为(50~ 80)×1012m3的资源量包含水合物层之下的游离气]之间。

关键词: 布莱克海台。水合物。资源评价

布莱克海台位于美国卡罗莱纳州南部查尔斯顿以东约400 km 的大西洋大陆性洋脊(图1) , 是一个由等深流沉积物堆积形成的大陆隆, 其东南延伸方向与北美大陆边缘成正交[1,2 ]。深海钻探计划(DSPD) 早就预测到了该台区存在有天然气水合物藏[2]。大洋钻探计划(ODP) 164 和172 航次也对该区进行了专门考察。可以说, 在过去的30多年里, 布莱克海台一直是水合物调查研究的热点区。

图1 布莱克海台的地理位置

1 布莱克海台天然气水合物研究简况

布莱克海台和卡罗莱纳高地是世界最著名的海洋气体水合物的赋存地, 对水合物的研究有着重要的意义。

1.1 研究历史

早在1970 年,DSDP 就开始在布莱克海台进行考察, 由于在采集到的沉积物样品中发现了高浓度的甲烷, 考察人员便把这种甲烷同地震探测数据联系起来

研究, 提出了布莱克海台存在甲烷水合物的假设。到了1980 年,DSDP 在该区采集到了水合物样品, 证实了这一假设。1995 年11 月和12 月,ODP第164 航次

对布莱克海台区气体水合物藏和邻近的卡罗莱纳州高地进行了专项探查[2]。1997 年2 月,ODP 172 航次从南卡罗莱纳州的查尔斯顿出发, 对北大西洋布莱克—巴哈马外海台和卡罗莱纳州一线进行了更深入的调查, 主要目的是获取一个全新

的晚第三纪的沉积物深度剖面, 以便认识北大西洋西部气候和洋流在上新世中

期到更新世的变化情况[3]。另外, 在布莱克—巴哈马外部海台一线上的地震数据都显示了BSR 的存在, 而且孔隙水样品中氯化物的浓度变化也证明了气体水合

物是存在的。

2001年9月, 科学家搭乘Alvin 潜水设备下潜2200 多M, 对布莱克海台进行了一次近距离的观察。除了收集到甲烷水合物的有关信息外, 还第一次观察到了冷泉化学合成生态系统。

1.2 天然气水合物形成机理研究

布莱克海台是由平行于海岸线的两股海底洋流在此的沉积作用而逐渐形成的。在古新世, 墨西哥湾暖流沿着大西洋海岸向北与向南的北冰洋寒流在此相汇, 导致两股洋流速度锐减而发生沉积作用。

较高的沉积速率有利于水合物的形成。已证实布莱克海台含水合物沉积物与海底等深流沉积有密切关系。等深流沉积是海洋沉积物沉积后又被活跃的深水流充分改造过的沉积, 它主要分布在沉积速率较高的地方, 它形成的首要条件是

由于沉积物的压实固结作用不稳定而导致上升流的流动。布莱克海台晚中新世至全新世沉积速率为40~340 cm/Ma, 属于快速沉积区。由于等深流沉积具有颗粒较粗、储集物性好、气源充足和流体运移条件优越等特点, 对水合物的形成相当有利, 因此等深流沉积作用强烈的布莱克海台区有利于水合物的富集[4]。

在布莱克海台, 大量的甲烷被包含在水合物层和以游离气的形式聚集在水

合物层之下。水合物形成和分解、甲烷的释放和重新聚集这一反复过程,是解释

布莱克海台区游离气浓度与气体水合物之间相互关系的依据。

关于布莱克海台主要拗陷过程与甲烷分解和释放之间的关系, 目前还没有

完全弄清楚, 但存在两种解释。一种解释强调气体和沉积物的灾难性爆炸, 如在末次间冰期, 海平面下降导致海底地层压力降低,引起水合物分解和气体释放。

由于布莱克海台沉积物渗透率低和气体不能有效扩散, 致使压力增加、构造隆升、气体喷发。第二种解释认为, 由于沉积物的快速沉积, 使更多的甲烷通过高渗透性通道逐渐逸出, 其中一些高渗透性通道就连接着海底水合物的分解带[5]。

2 布莱克海台区域地质研究

2. 1钻孔站位分布

在卡罗莱纳高地布置了4 个观测孔(站位991、992、993 和996) , 孔深50~67 m , 用于观测沉积剖面的物理特性和气体的运移情况。站位991、992 和993 位于开普菲尔底辟构造的顶部和侧翼的更新世滑动带上[6], 站位996 位于布莱

克海台底辟构造的断层面上[7]。

ODP第172航次在布莱克海台BSR 分布区内外都布置了站位, 这有利于评价气体水合物的横向分布和大陆隆的地球化学特征, 和判定由气体水合物直接或

间接引起的成岩过程与各种地球化学模式的联系。

图2 布莱克海台地区研究站位分布[3]

图中:DSDP 第11 航次102、103 和104 站位和第76 航次533 站位用三角形标识。 ODP 第164 航次994、995 和997 站位用圆形标识。ODP 第172 航次包括卡罗莱纳高地(站位1 054~ 1 057)、布莱克海台(站位1 058~ 1 061) 和巴哈马海台(站位1062) 各站位用菱形标识。阴影部分为BSR 分布区。

2. 2 沉积物特征

2. 2. 1岩性特征

布莱克海台是由上新世和中新世的沉积物堆积而成, 它的沉积速率超过350 m?M a, 沉积物主要来源于大西洋西部的边缘潜流[8,9]。地层岩性序列相当均匀, 富含微型浮游生物化石的粘土和泥岩以及不同数量的蛋白石。该层段岩性序列从上到下依次为粘土、泥质粘土、泥岩。最古老的沉积物是中新世的, 它是一种灰绿色

的硅酸质泥浆,其中部大多是含碳的灰绿色泥浆, 并掺杂有不同数量的煤粉和砂砾粒。再向深钻进所获得沉积物的物性和岩性差别非常小。

2.2.2 有机碳含量

对世界上已发现天然气水合物海域的沉积物有机碳分布研究表明, 含水合

物区表层沉积物的有机碳含量一般大于或等于1% , 如果有机碳含量低于015% 就难以形成水合物[10]。布莱克海台区沉积物中有机碳含量平均值是015%~ 115% (表1),属于含量较高的区域。

2.2.3 气体组成

沉积物取样分析发现, 深度大约为海底之下190~ 480 m 之间的沉积物样品中含有大量的气体,其中甲烷最多, 约占99% , 二氧化碳含量次之,另外还含有微量的乙烷和其它烃类气体。

表1 布莱克地区沉积物有机碳含量[4,11,12]

2.2.4 气体水合物样品

994站位获得的粉砂质粘土中含有水合物残留物。996 站位所得样品刚取出时表层有约1 mm 的纹理, 水合物呈白色。所采集的水合物样品分解后,放出的气体中甲烷约占99% 和二氧化碳约占1%的。经测定,气水合物中气体与水的体积比率在130~160之间, 说明至少有70% 的孔隙为I 型结构甲烷水合物占据[13]。997站位所采样品最大, 大小约5cm ×14cm ,呈白色,外部有绿色泥浆包裹, 且可以看到其中含有气泡, 说明水合物正在分解。

3 布莱克海台天然气水合物的资源量

气体水合物的探测方法通常是地震方法, 其主要通过是否存在似海底反射层来

推断气体水合物的存在[14]。然而, 氯化物的浓度和同位素剖面可能是气体水合物存在的灵敏指标。该方法要比地震方法具有更大的发展潜力[15]。例如, 994 站位没有BSR显示, 但是孔隙水异常明显地指示有气体水合物存在, 因为: ①氯化

物浓度随深度减小, 可能反映了水合物稳定带底部水合物的分解和下部流体的

上移。②硫酸盐浓度直线下降, 表明气体水合物底层有甲烷气体在向上迁移。③钻孔发现, 浅部孔隙中甲烷和二氧化碳的13C 有明显的减少。

3.1 依据饱和气浓度评价水合物资源量

在995 和997 站位由压力岩芯取样器获得的岩心中, 每1 m3孔隙体积可以产出0.8~46 m3的甲烷[16]。由压力岩芯取样器采集的气体体积通常大大超过(10 倍以上) 地面条件下的饱和气体浓度。在气体水和物稳定面之上, 过剩的气体可能来源于占沉积物体积8% 的气体水合物的分解。气体水合物稳定面及其以下的过量气体表明游离气与BSR 有关(图3)。事实上, 在气体水合物稳定面之下由沉积物生成的游离气的数量与包含在气体水合物中气体的数量相当[16] 。根据气体数量观测值和BSR 的分布面积估算: 布莱克海台甲烷碳的储量达35 Gt (15 Gt 分布于水合物中,5Gt 溶解于孔隙水中, 15Gt 在游离气中)。

图3 994、995、997 站位钻孔与BSR 关系剖面

如图4 所示, 圆形图例表示995 站位的数据, 方形图例表示997站位的数据, 粗虚线为实测甲烷浓度随深度变化的情况, 细虚线为饱和状态下甲烷浓度

随深度变化的情况。由图4可知甲烷水合物存在于海地之下190~450m的沉积层, 游离甲烷位于海地之下450m以下的沉积层中,甲烷气量就是压力取样器所采集

到的气体体积[16]。

图4 样品孔隙中甲烷浓度与海水深度以及沉积物深度的关系

3.2 依据氯化物浓度测算水合物资源量

传统的岩心描述方法不能评价气体水合物的含量,通过测定孔隙水中的氯化物浓度, 可以定量地估算个别水合物样品中水合物含量的最小值。因为随着孔隙中的水和甲烷合成了甲烷水合物, 使得剩余孔隙水的盐度增加, 同时提高了其中氯化物的浓度,所以说氯化物浓度与水合物的生成有紧密的联系。

当钻孔取样时,由于水合物分解释放出的水和甲烷重新进入孔隙水中, 使得其盐度逐渐降低。从图5 可知, 氯化物浓度在海底之下约200 m 深度以上和约450 m 深度以下都趋于恒定, 而在200 m 以下至BSR (约450 m ) , 其浓度出现很大的波动。

图5 994,995和997 站位孔隙水中氯化物浓度变化剖面(阴影部分为水合物带)

这种方法是通过测定样品中已分解的水合物来估算水合物的总含量。虽然对于不同沉积物样品的测定结果变化很大, 但是大多数测定结果为已分解水合物

占样品总体积的1%~ 2% , 而在水合物带的测定结果则上升到了14%。而且发现, 没有BSR 的995 号站位与存在BSR 的995 和997 号站位几乎有着相同数量的

水合物。

3.3 水合物气资源量估算值

由于评价方法不同, 不同评价者对布莱克海台的水合物气和游离气的资源

量做出了不同的评价结果(表2)。

表2天然气资源量估算值[5, 17~22]

天然气资源量(×1012m3) 气藏面积

(km2)

生气强度

(×108m3/km2)

文献

18 3000 6 [5]

80﹡100000 0.8 [19]

70﹡26000 2.7 [17]

37.7 26000 1.5 [22]

57﹡26000 2.2 [22]

﹡包括水合物带底板下部的气体

4 小结

经过30多年的科学考察, 在布莱克海台获得了大量的地震测量、钻孔、采集岩芯和潜水研究资料。通过对地质条件和地球化学特征的全面分析可知:

(1)布莱克海台是一个由两股等深流交汇发生高速沉积形成的大陆隆, 该区的水合物气属于生物成因, 气水合物的形成与沉积物中较高含量的有机碳、等深流沉积及高速沉积速率有着密切关系。

(2)氯化物地球化学浓度和同位素剖面可能是气体水合物存在的灵敏指标。

(3)依据饱和气浓度估算水合物资源量和测定孔隙水中的氯化物浓度可以定量地估算水合物资源量, 为水合物资源评估提供了新方法。

上述研究成果可以成为其他相似海域水合物勘查和资源评价的借鉴。随着水合物研究的不断深入,布莱克海台必将继续成为研究天然气水合物和研究全球天然气水合物与全球大洋、大气的之间相互作用的窗口[23~25]。

天然气水合物典型特征综述

作者:樊浩 单位:中国石油辽河油田海南油气勘探分公司124010 作者简介:樊浩(1979-),男,湖北潜江市人,硕士,中级工程师,现从事海洋油气勘探。标题:天然气水合物典型特征综述 摘要:概述国内外天然气水合调查研究的勘探进展情况,详细地介绍判识天然气水合物的地球物理和地球化学特征。 关键词:天然气水合物;现状;特征 0 引言 天然气水合物, 也称“气体水合物”, 是由天然气与水分子在高压、低温条件下形成的一种固态结晶物质。由于天然气中80%~99.9%的成分是甲烷, 故也有人将天然气水合物称为甲烷水合物。天然气水合物多呈白色或浅灰色晶体, 外貌似冰状, 易点燃, 故也称其为“可燃冰”。在天然气水合物晶体化学结构中, 水分子构成笼型多面体格架, 以甲烷为主的气体分子包裹于其中。这是一种新型的潜在能源, 全球资源量达2.1×1015m3, 是煤炭、石油和天然气资源总量的两倍,具有巨大的能源潜力。因此, 世界各国尤其是各发达国家和能源短缺国家均高度重视天然气水合物的调查研究、开发和利用研究。 1 国内外天然气水合物勘探现状 1.1国外天然气水合物勘探历史及现状 天然产出的水合物矿藏首次在1965年发现于俄罗斯西西伯利亚永久冻土带麦索亚哈油气田。1972—1974年,美国、加拿大也在阿拉斯加、马更些三角洲冻土带的油气田区发现了大规模的水合物矿藏。同期,美国科学家在布莱克海岭所进行的地震探测中发现了“拟海底反射层(BSR)”。1979年,国际深海钻探计划(DSDP)第66、67航次在中美洲海槽危地马拉的钻孔岩芯中首次发现了海底水合物。此后,水合物的研究便成为DSDP和后续的大洋钻探计划(ODP)的一项重要任务,并相继在布莱克海岭、墨西哥湾、秘鲁—智利海沟、日本海东北部奥尻脊、南海海槽、北美洲西部近海—喀斯喀迪亚陆缘等地发现了BSR或水合物。德国在20世纪80年代中后期以联邦地学与资源研究中心、海洋地学研究中心为首的一些单位,结合大陆边缘等研究项目,开展了水合物的地震地球物理、气体地球化学调查。在各国科学家的努力下,海底水合物物化探异常或矿点的发现与日俱增,迄今已达80处。从1995年开始,日本、印度、美国、德国先后投巨资,实施了大规模的研究发展计划,韩国、俄国、加拿大、法国、英国、挪威、比利时、澳大利亚等国也正在制订计划或积极调查中。 1.2国内天然气水合物勘探历史及现状 与国外的发展历程相似, 中国天然气水合物也起始于实验室研究, 然后再扩展到资源调查领域。中国在1999年正式实施试验性调查前还经历了一段短暂的预研究阶段, 中国大洋矿产资源研究开发协会于1995年设立了“西太平洋气体水合物找矿前景与方法的调研”课题, 这是中国天然气水合物资源领域的第一个调研课题, 中国地质科学院矿产资源研究所等单位就天然气水合物在世界各大洋的分布特征及找矿方法进行了分析和总结, 并对西太平洋的找矿远景进行了初步评价。随后原地质矿产部于1997年设立了“中国海域天然气水合物勘测研究调研”课题, 国家863计划820主题也于1998年设立了“海底气体水合物资源勘查的关键技术”课题, 中国地质科学院矿产资源研究所、广州海洋地质调查局、中国科学院地质与地球物理研究所等单位对中国近海天然气水合物的成矿条件、调查方法、远景预测等方面进行了前期预研究, 为中国开展天然气水合物调查做好了资料和技术准备。 2 识别天然气水合物的标志特征 2.1地球物理标志 2.1.1 海底模拟反射层( BSR )来自水合物稳定带底面的反射也大致与海底平行,通常称为

国内天然气水合物相平衡研究进展

国内天然气水合物相平衡研究进展 摘要:分析了目前国内天然气水合物相平衡领域的五大主要研究热点,认为含醇类和电解质体系中天然气水合物的相平衡是研究中最活跃的领域,而多孔介质中天然气水合物的相平衡研究是未来天然气水合物相平衡研究的热点和难点问题。 关键词:天然气;水合物;相平衡;替代能源 Review of the Phase Equlibria on The Natura1 Gas Hydrate at home Abstract: According to the literature investigation at home,the five main researeh hot spots for the phase equllibria are analysed.The phase equilibria in aqueous solutions containing electrolytes and/or alcohol is the most active in all the research fields.While the Phase equilibria in natura1 Porous media is one of the essential hot spots and difficult problems during the phase equllibria researeh in future. Key words: natural gas;hydrate;phase equilibria ;alternative energy 1、前言 天然气水合物具有能量密度高、分布广、规模大、埋藏浅、成藏物化条件优越等特点,是21世纪继常规石油和天然气能源之后最具开发潜力的清洁能源,在未来能源结构中具有重要的战略地位。由于天然气水合物处于亚稳定状态,其相态转换的临界温度、压力和天然气水合物的组分直接制约着天然气水合物形成的最大深度和矿层厚度。天然气水合物的生成过程,实际上是一个天然气水合物—溶液—气体三相平衡变化的过程,任何能影响相平衡的因素都能影响天然气水合物的生成或分解过程[1]。因此,研究各种条件下天然气水合物—溶液—气体的三相平衡条件及其影响因素,可提供天然气水合物的生成或分解信息。因此,天然气水合物相平衡研究是天然气水合物勘探、开发和海洋环境保护研究中最基础和最重要的前沿问题。天然气水合物相平衡的研究主要是通过实验方法和数学预测手段确定天然气水合物的相平衡条件。随着透明耐高压材料的出现和相关实验测试技术的进步,科学家们对天然气水合物的相平衡条件的研究不断深入。 2、国内目前天然气水合物相平衡的主要五大研究热点 2.1 研究热点一:含醇类和电解质体系中天然气水合物的相平衡研究 长庆石油勘探局第三采油厂的严则龙(1997年)在长庆油田林5井采用井口注醇防止油管和地面管线天然气水合物堵塞,取得了良好的效果[2]。 中国石油大学(北京)梅东海和廖健等人:(1)(1997)在温度262.6~285.2K范围内分别测定了甲烷、二氧化碳和一种合成天然气在纯水、电解质水溶液以及甲醇水溶液中天然气水合物的平衡生成压力[3]。(2)(1998)对36个单一电解质水溶液体系及41个混合电解质水溶液体系中气体水合物的生成条件进行了预测。但对于二元以上的混合电解质水溶液体系,该模型的预测精度还有待改进[4];在温度260.8~281.5K和压力0.78~11.18MPa下,研究了含盐以及含盐和甲醇水溶液体系中的水合物平衡生成条件。认为无论对于单盐或多盐水溶液体系,甲醇对天然气水合物的生成均有显著的抑制作用;当溶液中甲醇增加至20%质量时,KCI 的抑制作用强于CaCl2[5];采用在Zuo一Golunesen一Guo水合物模型的基础上简化和改进的模型应用于含有盐和甲醇的水溶液体系中气体水合物生成条件的预测[6]。 华南理工大学的葛华才等人(2001)在模拟蓄冷空调的实验系统中研究了一元醇类添加

日本南海海槽天然气水合物研究现状

2001年6月地球物理学进展第16卷第2期日本南海海槽天然气水合物研究现状 宋海斌1,2松林修2 (1.中国科学院地质与地球物理研究所,北京100101; 2.日本地质调查所,筑波3058567) 摘要:本文介绍日本在其周围海域特别是南海海槽的海洋天然气水合物研究工作.首先介绍其研究简史、研究计划、研究队伍及早期研究成果.其次,介绍了西南海海槽天然气水合物的勘探、研究状况.然后,介绍了五年计划实施的东南海海槽地球物理勘探、钻探状况.最后指出,南海海槽的一些新资料深入的综合研究无疑会给世界水合物研究增添新的内容. 关键词:天然气水合物;日本;南海海槽 中图分类号:P722.3;P744.4文献标识码:A文章编号:1004-2903(2001)02-0088-11 1前言 由于日本国内缺乏常规油气资源,因此对海洋天然气水合物的开发寄予厚望.日本基于其雄厚的经济实力投入巨资设立国家计划,组织石油公司、国立研究所、大学的研究与技术人员开展海洋天然气水合物的研究、勘探工作.并积极开展国际合作(包括加拿大、美国等),充分结合深海钻探DSDP/大洋钻探ODP的工作,取得了世人注目的成就.日本在世界天然气水合物的勘探与研究中占非常重要的地位.因此,介绍日本在其周围海域特别是南海海槽的海洋天然气水合物研究工作是很有必要的.日本的一些研究工作并没有发表,有的也正在进行之中,发表的也多是日语论文,日本国外的研究者很难了解其真正的发展现状.本文也只是尽力向国内研究者简单地介绍其研究现状(图1). 2日本天然气水合物研究概况 !."研究简史 日本对天然气水合物的研究可简单分为两个阶段,5年(1995~1999)计划开始前与5年计划开始后,也就是1994年以前与1995年以后. 5年计划开始前,在20世纪80年代晚期,在一些国立研究所,主要是地质调查所开展了小规模的甲烷水合物研究,目的是调查日本周围海域水合物存在的可能性[1-2].其他工作通 收稿日期:2001-02-05;修订日期:2001-04-01. 基金来源:STA Fellowship、中国科学院全国优秀博士学位论文专项资金和国家自然科学基金项目(49904007). 作者简介:宋海斌,1968年生,男,博士,中国科学院地质与地球物理研究所副研究员,主要从事海洋地球物理研究.

天然气水合物的利用

天然气水合物的利用 摘要:本文对天然气水合物进行了简要介绍,并对当前天然气水合物的开采利用现状以及研究进展作了简要分析,虽然到目前为止,天然气水合物的开采利用还有诸多瓶颈,我们相信在不久的将来这些难题会被一一克服的。 关键词:天然气天然气水合物利用开采 Abstract: This paper gives a brief introduction of natural gas hydrates and analyzes the current exploitation status and research progress of natural gas hydrates. So far, although there are many bottlenecks about the exploitation of the natural gas hydrates, we believe that in the near future these problems will be overcome one by one. Keywords: natural gas, natural gas hydrates, utilize, exploitation 1 天然气水合物概述 1.1 天然气水合物概念 天然气水合物(Natural Gas Hydrates,简称NGH)是在低温、高压条件下由天然气与水相互作用形成的类冰状可燃固态物质,又称可燃冰(图1-1),在自然界中存在的水合物,其天然气主要成分是甲烷(>90%),因此又称为甲烷水合

物(Methane Hydrates)[1]。 图1-1 实验室天然气水合物在燃烧 水合物是一种笼型结晶化合物,水分子(主体分子)在氢键作用下形成“笼”,气体分子(客体分子)充填在水分子结晶构架的空穴中,两者在低温和一定压力下通过范德华力稳定结合,分子式可表示为M·nH2O,M为“客”气体分子,一般为CH4(甲烷)、C2H6(乙烷)、C3H8(丙烷)及C4H10(丁烷)等同系物与N2(氮气)、CO2(二氧化碳)、H2S(硫化氢)等一种或几种组成[2,3],n为水合指数(水分子数)。按照水分子构成的不同多面体,目前已发现水合物主要有三种不同的结构类型:Ⅰ型、Ⅱ型和H型(图1-2)。对3种结构水合物进行相比较得出,Ⅱ型和H型水合物更稳定一些,但是在自然界发现的天然气水合物以Ⅰ型水合物(甲烷水合物)为主[4]。

天然气水合物调查和研究现状

天然气水合物调查和研究现状 摘要:天然气水合物是21世纪潜在的新能源,它正受到各国科学家和各国政府的重视,本文简介了天然气水合物和各国对其合物资源调查和研究现状。 1 什么是天然气水合物 天然气水合物又称固态甲烷,它是由天然气与水所组成,呈固体状态,其外貌极象冰雪或固体酒精,点火即可燃烧,因此有人称其为”可燃冰”、”气冰”、”固体瓦斯”。天然气水合物的结晶格架主要由水分子构成,在不同的低温高压条件下,水分子结晶形成不同类型多面体的笼形结构。其分子式为MnH2O加表示甲烷等气体,n为水分子数)。天然气水会物的结构类型有:I、11和H型。I型为立方晶体结构、Ⅱ型为菱型晶体结构、H型为六方晶体结构。Ⅰ型天然气水合物在自然界颁最广,而Ⅱ及H型水合物更为稳定。它是在低温高压条件下,由水与天然气(主要是甲烷气,每平方米的天然气水会物可释放出164立方米甲烷和立方米的水)结合形成一种外观似水的白色结晶固体,主要存在于陆地上的永久冻土带和海洋沉积物中。 2 国际上天然气水合物资源调查、研究现状 随着世界上石油、天然气资源的日渐耗尽,各国的科学家正在致力于寻找新的接替能源。天然气水合物被称为ZI世纪具有商业开发前景的战略资源,正受到各国科学家和各国政府的重视。 自60年代开始,俄、美、巴德、英、加等许多发达国家,甚至一些发展中国家对其也极为重视,开展了大量的工作。 俄罗斯自60年代开始,先后在白令海、鄂霍茨克海、千岛海沟、黑海、里海等开展了天然气水合物调查,并发现有工业意义的矿体。即使近期经济比较困难,仍坚持在巴伦支海和鄂霍茨克海等海域进行调查或研究工作。位于西西伯利亚东北部的Messoyakha天然气水合物矿田已成功生产了17年。 美国科学家早在1934年首次在输气管道中发现了天然气水合物,它堵塞了管道,影响了气体的输送而开始了对水合物结构及形成条件的研究。随后美、加在加拉斯加北坡、马更些三角洲冻土带相继发现了大规模的水合物矿藏。70年代初英国地调所科学家在美国东海岸大陆边缘所进行的地震探测中发现了”似海底反射层”(Bottom Similating,Reflector,英文称 BSR)。紧接着于1974年又在深海钻探岩芯中获取天然气水合物样品,并释放出大量甲烷,证实了”似海底反射”与天然气水含物有关。1979年美国借助深海钻探计划(DSDP)和大洋钻探

南海天然气水合物技术理论创新与找矿重大突破-自然资源部

附件4 一、项目名称 南海天然气水合物技术理论创新与找矿重大突破 二、提名意见 该项目自1999年以来开展了南海北部陆坡天然气水合物勘查评价及相应的成藏富集规律、勘查技术方法研究,建立了天然气水合物从微观成核-宏观成藏-区域成矿分布的我国海域天然气水合物成藏系统理论,初步形成了从水体—海底表层—浅层—目标层段的综合立体探测和评价技术体系;首次在我国海域调查圈定了水合物存在的地质地球物理证据,首次在海域钻探获取到含水合物实物样品,使我国成为世界上第4个通过国家计划获取到水合物样品的国家;在南海北部陆坡圈定了6个水合物成矿远景区、19个成矿区带、25个有利区块及24个钻探目标;预测远景区总面积14.84×104km2,资源量为744亿吨油当量。部分理论成果属世界首次提出,实现海域天然气水合物资源勘查评价与技术理论研究的跨越式发展。 项目研究成果已经成功应用于2017年南海天然气水合物试验性开采,支撑了国务院2017年11月批准将天然气水合物作为我国第173种矿种,成果不仅填补了我国在该领域的空白,也将助推相关领域及相关产业经济发展,对推动我国海域天然气水合物的产业化进程具有里程碑式意义。同时,项目在南海获得的海量实测数据为维护国家海洋权益、服务国家外交大局和海军战场环境建设等方面提供支撑。 本项目已获专利19项、软件著作权登记证书10项、形成行业规范(规程)3部、发表论文400余篇、出版专著10部、获得省部级科学技术奖一等奖3项、二等奖4项。培养了一大批优秀人才,形成了以国土资源部科技创新团队?天然气水合物研究团队?为核心的产学研用科技创新团队。 提名该项目为国家科技进步奖一等奖。 三、项目简介 天然气水合物是天然气在低温、高压条件下与水结合形成的似冰状固体,世界各大洋中已发现的水合物总资源碳总量约相当于全世界已知煤、石油和天然气总储量的两倍,其总量之大足以取代日益枯竭的传统油气能源,是世界各国瞩目的21世纪具有商业开发前景的战略资源。 我国于1999年开始南海天然气水合物资源勘查与评价,2000年863计划启动勘查技术研发、2009年973计划支持开展南海天然气水合物富集规律与开采基础研究,同时国家基金委、各科研及产业部门支持开展了相应的探索性研究。16年

天然气水合物的研究与开发的论文

天然气水合物的研究与开发的论文 【摘要】人类的生存发展离不开能源。当人类学会使用第一个火种时便开始了能源应用的漫长历史。几千年来,人类所使用的能源已经历了三代,正在向第四代能源时代迈进。主体能源的更替充分反映出人类社会和经济的进步与发展。第一代能源为生物质材,以薪柴为代表;第二代能源以煤为代表;第三代能源则是石油、天然气和部分核裂变能源。实际上,第二代和第三代能源是以化石燃料为主体,第四代能源的构成将可能是核聚变能、氢能和天然气水合物。 一、天然气水合物是人类未来能源的希望 人类的生存发展离不开能源。当人类学会使用第一个火种时便开始了能源应用的漫长历史。几千年来,人类所使用的能源已经历了三代,正在向第四代能源时代迈进。主体能源的更替充分反映出人类社会和经济的进步与发展。第一代能源为生物质材,以薪柴为代表;第二代能源以煤为代表;第三代能源则是石油、天然气和部分核裂变能源。实际上,第二代和第三代能源是以化石燃料为主体,第四代能源的构成将可能是核聚变能、氢能和天然气水合物。 核聚变能主要寄希望于3he,它的资源量虽然在地球上有限(10~15t),但在月球的月壤中却极为丰富(100-500万t)。氢能是清洁、高效的理想能源,燃烧耐仅产生水(h2o),并可再生,氢能主要的载体是水,水体占据着地球表面的2/3以上,蕴藏量大。天然气水合物的主要成分是甲烷(c4h)和水,甲烷气燃烧十分干净,为清洁的绿色能源,其资源量特别巨大,开发技术较为现实,有可能成为21世纪的主体能源,是人类第四代能撅的最佳候选。 天然气水合物(gas hydrate)是一种白色固体结晶物质,外形像冰,有极强的燃烧力,可作为上等能源,俗称为”可燃冰”。天然气水合物由水分子和燃气分子构戚,外层是水分子格架,核心是燃气分子(图1)。燃气分子可以是低烃分子、二氧化碳或硫化氢,但绝大多数是低烃类的甲烷分子(c4h),所以天然气水合物往往称之为甲烷水合物(methane hydrate)。据理论计算,1m3的天然气水合物可释放出164m3的甲烷气和m3的水。这种固体水合物只能存在于一定的温度和压力条件下,一般它要求温度低于0~10℃,压力高于10mpa,一旦温度升高或压力降低,甲烷气则会逸出,固体水合物便趋于崩解。 天然气水合物往往分布于深水的海底沉积物中或寒冷的永冻±中。埋藏在海底沉积物中的天然气水合物要求该处海底的水深大于300-500m,依赖巨厚水层的压力来维持其固体状态。但它只可存在于海底之下500m或1000m的范围以内,再往深处则由于地热升温其固体状态易遭破坏。储藏在寒冷永冻土中的天然气水合物大多分布在四季冰封的极圈范围以内。煤、石油以及与石油有关的天然气(高烃天然气)等含碳能源是地质时代生物遗体演变而成的,因此被称为化石燃料。从含碳量估算,全球天然气水合物中的含碳总量大约是地球上全部化石燃料的两倍。因此,据最保守的统计,全世界海底天然气水合物中贮存的甲烷总量约为×108亿m3,约合11万亿t(11×1012t)。数冀如此巨大的矿物能源是人类未来动力的希望。 二、天然气冰合物的研究现状 1.分布与环境效应 世界上绝大部分的天然气水合物分布在海洋里,储存在深水的海底沉积物中,只有极其少数的天然气水合物是分布在常年冰冻的陆地上。世界海洋里天然气水合物的资源量是陆地上的100倍以上。到目前为止,世界上已发现的海底天然气水合物主要分布区有大西洋海域的墨西哥湾、加勒比海、南美东部陆缘、非洲西部陆缘和美国东岸外的布莱克海台等,西太平洋海域的白令海、鄂霍茨克海、千岛海沟、日本海、四国海槽、日本南海海槽、冲绳海槽、南

天然气水合物研究历程及现状样本

天然气水合物研究历程及现状 1.世界天然气水合物研究历程回顾 从1810 年英国Davy在实验室首次发现气水合物和1888 年Villard人工合成天然气水合物后, 人类就再没有停止过对气水合物的研究和探索。在这将近2 的时间内, 全世界对天然气水合物的研究大致经历了 3 个阶段, 如表1-1[2]所示。 第一阶段是从1810 年到20 世纪30 年代初。( 18 , Davy 合成氯气水合物并于次年发表文章正式提出水合物一词。) 在这120 年中, 对气水合物的研究仅停留在实验室, 且争议颇多。 第二阶段是大致可看作是自1934年起始的。当年美国Hammerschmidt发表文章, 提出天然气输气管道堵塞与水合物有关, 从负面加深了对气水合物及其性质的研究。在这个阶段, 研究主题是工业条件下水合物的预报和清除、水合物生成阻化剂的研究和应用。 第三阶段是从上世纪60年代至今, 全球天然气水合物进入大范围勘探普查开发的格局。上世纪60 年代特罗费姆克等发现了天然气能够以固态形式存在于地壳中。特罗费姆克等的研究工作为世界上第一座天然气水合物矿田——麦索雅哈气田的发现、勘探与开发前期的准备工作提供了重要的理论依据, 从而大大拓宽了天然气地质学的研究领域。美国学者在上世纪70年代也开始重视气水合物研究, 并于1972年在阿拉斯加获得世界上首次确认的冰胶结永冻层中的气水合物实物。天然气水合物成藏理论预测的成功、测得成藏理论区气水合物地球物理, 地球化学异常, 以及经过钻探取得水合物实样, 这一系列的成果被认为是上世纪能源问题的重大发现。能够说, 从上世纪60 年代至今, 全球气水合物研究跨入了一个崭新的阶段——第三个阶段(把气水合物作为一种能源进行全面研究和实践开发的阶段) , 世界各地科学家对气水合物的类型及物化性质、自然赋存和成藏条件、资源评价、勘探开发手段以及气水合物与全球变化和海洋

天然气水合物的研究进展

天然气水合物的研究进展 天然气水合物的研究进展 摘要:天然气水合物是一种继煤,石油与天然气等能源之后的新型能源物质,它被誉为21世纪最清洁的能源物质。本文章介绍了天然气水合物的概念以及形成条件,追溯了天然气水合物的发展历程。重点分析了国内外的研究情况,这为指导我国天然气水合物事业奠定了坚实的基础。天然气水合物的研究对于人类有着非比寻常的意义,还存在着一些难关有待于我们去探索。 关键词:天然气水合物进展能源物质意义探索 一、引言 1.1天然气水合物的概念 天然气水合物就是我们熟称的“可燃冰”或者固体“瓦斯”是因为它的外观像冰一样而且遇火燃烧。天然气水合物是天然气与水在一定的高亚低温条件下形成的类似冰状的结晶物质,其主要是分布在深海沉积物和陆域的永久冻土,岛屿的斜坡地带等地域。天然气水合物的研究起源于20世纪的一次科学考察中发现的矿产资源,虽然其成分与天然气相似但是较之更为纯净,开采时只需要将固体的“天然气水合物”升温减压就可以释放出大量的甲烷气体。天然气水合物作为一种新型的高效能源当之无愧的被誉为“21世纪最具有商业开发前景的战略资源”。 1.2天然气水合物的形成条件及优点 天然气水合物的分子结构式为CH4?8H2O,其分子结构就像一个一个由若干水分子组成的笼子。形成可燃冰有三个基本条件:温度,压力和原材料。首先需要低温的环境,天然气水合物在在0―10℃时生成,在超过20℃的温度时便会分解。其次需要高压的条件:在0℃时只需要30个大气压就可以满足可燃冰的生成然而在海洋深处,30个大气压是很容易满足的并且气压越大水合物越不容易分解。最后充足的气源是必不可少的。在海底深处经常会有很多有机物的沉淀,这些有机物质中含有丰富的碳,经过生物转化后可以产生充足的气源。

南海天然气水合物富集规律与开采基础研究973

项目名称:南海天然气水合物富集规律与开采基础 研究 首席科学家:杨胜雄广州海洋地质调查局起止年限:2011.1至2013.8 依托部门:国土资源部

一、研究目标的调整 1.总体目标调整为 建立南海北部陆坡扩散型和渗漏型天然气水合物成藏理论及更深层次的综合识别方法,研究其富集规律,探索开发相关的技术机理,为我国天然气水合物资源勘查、评价提供深入有效的基础理论指导,为水合物资源的最终开发利用做出重要贡献,促进国家能源战略目标的实现。培养和建立一支具有国际地位的天然气水合物研究团队。 2.五年预期目标 ●科学目标: 1.扩散-渗漏型天然气水合物成藏控制条件和机制; 2.扩散-渗漏型天然气水合物的识别方法; 3.扩散-渗漏型天然气水合物在南海北部的富集规律; 4.天然气水合物开采的理论基础。 ●形成一支进入国际前沿领域的优秀青年科学家群体,培养10名左右中青年 学术带头人,培养40名左右的博士、40名左右的硕士研究生; ●发表学术论文150篇以上(其中,SCI收录学术论文70篇以上);出版学术 专著2部以上;争取主办高规格的国际学术会议(如国际天然气水合物大会)。

二、研究内容和课题设置的调整 1.拟解决的关键科学问题调整为: 1) 南海北部扩散、渗漏型天然气水合物成藏的气源、地质和温压条件及其地球物理、地球化学异常机理; 2) 南海北部沉积物孔隙中游离天然气气泡形成水合物过程的热力学控制因素和生成动力学规律; 3) 南海北部扩散、渗漏型天然气水合物大规模成藏的机制及其发育特征和富集规律; 4) 天然气水合物开采过程的多相流动机理和渗流控制模式。 2.主要研究内容调整为: 1)南海北部天然气水合物成藏的基础条件 a. 烃类热解气、浅层生物气对水合物成藏的贡献 天然气水合物的成藏气体主要包括微生物气、热解气及其混合气,不同类型的成藏气体具有不同的成气作用、运移途径和富集过程,并影响到天然气水合物的形成机理。南海北部含油气盆地发育,气源丰富,类型众多,深部烃类热解气、浅层生物气均可能作为天然气水合物的气源。并且,不同类型的气源具有不同的成气作用、运移途径和富集过程,并影响到天然气水合物的形成机理。因此有必要深入研究不同成因的气源类型和运移特征及其对南海北部天然气水合物成藏的贡献。 b. 非烃气体对水合物成藏的影响 南海北部含油气盆地的非烃气体CO 2、N 2 十分丰富,许多天然气气藏中的CO 2 和N 2含量非常高,甚至形成90%以上的CO 2 气藏。如果这些非烃气体或随烃类气 向海底渗漏,进入水合物稳定带将对天然气水合物的成藏产生影响。因此,必须深入研究南海北部这些非烃气体来源和组成特征、水合物形成的温度和压力条

天然气水合物的识别标志

1.天然气水合物识别标志 天然气水合物可以通过海底沉积物取样、钻探取样和深潜考察等方式直接识别,也可以通过似海底反射层(BSR)、速度-振幅异常结构、地球化学异常、多波速测深以及海底电视摄像等方式间接识别。下面介绍一些间接识别标志。 1、地震标志 海洋天然气水合物存在的主要地震标志有:似海底反射层(BSR)、振幅变形(空白反射)、速度倒置、速度-振幅异常结构(VAMP)。大规模的天然气水合物聚集可以通过高电阻率(大于100欧·米)声波速度、低体积密度等参数进行直接判读。 似海底反射层BSR是地震反射剖面上的一个平行或基本平行于海底、可切过一切层面或断层面的声波反射界面。天然气水合物矿层之下,还常常圈闭有大量的游离甲烷气体(游离天然气),从而导致在地震反射剖面上产生BSR。现已证实,BSR代表的是天然气水合物矿层的底界面或基底,其上为固态的天然气水合物矿层,声波速率高,其下为游离甲烷气体或仅仅为孔隙水充填的沉积物,声波速率低,因而在地震反射剖面上形成强的负阻抗反射界面。因此,BSR是由于低渗透率的天然气水合物矿层与其下大量游离天然气及饱和水沉积物之间、在声阻抗(或声波传播速度)上存在较大差异而形成的。由于天然气水合物矿层的底界面主要受所在海域的地温梯度控制,往往位于海底以下一定的深度,因而BSR基本平行于海底,所以被称为“似海底反射层”。BSR除了被用来识别天然气水合物的存在和编制天然气水合物分布图以外,还被用来判明天然气水合物矿层的顶底界面及其产状,计算天然气水合物矿层的深度、厚度和体积。 然而,并不是所有的天然气水合物都存在BSR。在平缓的海底,即使有天然气水合物存在,也不易识别出BSR。BSR常常出现在斜坡或地形起伏的海域。另外,也并不是所有的BSR都对应有天然气水合物的存在。在极少数情况下,其它因素也可能导致BSR的形成。还应注意的是,尽管绝大部分天然气水合物矿层都位于BSR之上,但是并不是所有的天然气水合物矿层都位于BSR之上。这已经被深海钻探所证明。因此,BSR不能被作为天然气水合物存在的唯一标志,应结合其它勘查方法综合判断。 近几年来,分析和研究地震的速度结构,已成为该学科领域的前沿。天然气水合物层是高速层,其下的饱气层或饱水层是低速层。在速度曲线上,BSR界面处的速度会出现突然降低,表现出明显的速度异常结构。此外,分析地震的振幅结构也可识别天然气水合物。相对而言,天然气水合物层是刚性层,其下的饱气层或饱水层是塑性层。因此,在振幅曲线上,BSR界面处的振幅会出现突然减小,表现出明显的振幅异常结构。这种识别标志对海底平缓的海域来说,尤其显得重要。 2、地球化学标志 浅层沉积物和底层海水的甲烷浓度异常高,浅层沉积物孔隙水的氯Cl含量(或矿化度)和氧同位素δ18O 异常高,出现富含重氧的菱铁矿等,均可作为识别天然气水合物存在的地球化学标志。 3、海底地形地貌标志 在海洋环境中,天然气水合物富集区烃类气体的渗逸,可以在海底形成特殊的环境和特殊的微地形地貌。天然气水合物存在的地貌标志主要有:泄气窗、甲烷气苗、泥火山、麻点状地形、碳酸盐壳、化学合成生物群等。最近几年,德国基尔大学Geomar研究所,通过海底观测,在美国俄勒冈州西部大陆边缘Cascadia 天然气水合物海台,就发现了许多不连续分布、大小在5cm2左右的天然气水合物泄气窗。在这种泄气窗中,甲烷气苗一股一股地渗逸出来,渗气速度为每分钟达5公升。在这种渗逸气流的周围有微生物、蛤和碳酸盐壳出现。 4、海底“冷泉”生物群标志 深海“黑暗食物链”并不以热液为限。在大陆坡、深海区分布着天然气水合物。一旦海底升温或减压,它就会释放出大量甲烷,可以在海水中形成甲烷柱,被科学家称为“冷泉”。在冷泉附近可以形成特殊的生物群落。冷泉是海底天然气水合物的产物之一。在冷泉附近往往发育着依赖这些流体生存的冷泉生物群,又称为“碳氢化合物生物群落”。它是一种独特的黑暗生物群,最常见的有管状蠕虫、双壳类、腹足类和微生物菌等。海底冷泉及其伴生的黑暗生物群,是确认天然气水合物存在的有力证据。 天然气水合物释放区的生物群,也是类似于热液生物群的独立生态系统。其食物链低层生物也是一种管状

天然气水合物

化学选修3《物质结构与性质》P85选题2 天然气水合物 (一种潜在的能源) 天然气水合物——可燃冰 一、可燃冰相关概念 可燃冰:天然气与水在高压低温条件下形成的类冰状结晶物质。(又称笼形化合物)甲烷水合物(Methane Hydrate):用M·nH2O来表示,M代表水合物中的气体分子,n为水合指数(也就是水分子数)。组成天然气的成分如CH4、C2H6、C3H8、C4H10等同系物以及CO2、N2、H2S等可形成单种或多种天然气水合物。形成天然气水合物的主要气体为甲烷,对甲烷分子含量超过99%的天然气水合物通常称为甲烷水合物。 又因外形像冰,而且在常温下会迅速分解放出可燃的甲烷,因而又称“可燃冰”或者“固体瓦斯”和“气冰”)。 因为可燃冰的主要成分为甲烷,为甲烷水合物,而甲烷在常温中为气体,熔、沸点低,所以甲烷为分子晶体,因而可燃冰也为分子晶体。 可燃冰存在之处:天然气水合物在自然界广泛分布在大可燃冰 陆、岛屿的斜坡地带、活动和被动大陆边缘的隆起处、极地大陆架以及海洋和一些内陆湖的深水环境。 天然气水合物在全球的分布图 在标准状况下,一单位体积的气水合物分解最多可产生164单位体积的甲烷气体,因

而其是一种重要的潜在未来资源。 笼状化合物(Clathrate):在天然气水合物晶体中,有甲烷、乙烷、氮气、氧气二氧化碳、硫化氢、稀有气体等,它们在水合物晶体里是装在以氢键相连的几个水分子构成的笼内,因而又称为笼状化合物。 天然气分子藏在水分子中 水分子笼是多种多样的 二、可燃冰的性质 可燃冰的物理性质: (1)在自然界发现的天然气水合物多呈白色、淡黄色、琥珀色、暗褐色亚等轴状、层状、小针状结晶体或分散状。 (2)它可存在于零下,又可存在于零上温度环境。 (3)从所取得的岩心样品来看,气水合物可以以多种方式存在: ①占据大的岩石粒间孔隙; ②以球粒状散布于细粒岩石中; ③以固体形式填充在裂缝中;或者为大块固态水合物伴随少量沉积物。 可燃冰的化学性质: 1、在冰的空隙(“笼”)中可以笼合天然气中的分子的原因: (1)气水合物与冰、含气水合物层与冰层之间有明显的相似性: ①相同的组合状态的变化——流体转化为固体; ②均属放热过程,并产生很大的热效应——0℃融冰时需用的热量,0~20℃分解天然气 水合物时每克水需要~的热量; ③结冰或形成水合物时水体积均增大——前者增大9%,后者增大26%~32%; ④水中溶有盐时,二者相平衡温度降低,只有淡水才能转化为冰或水合物; ⑤冰与气水合物的密度都不大于水,含水合物层和冻结层密度都小于同类的水层; ⑥含冰层与含水合物层的电导率都小于含水层; ⑦含冰层和含水合物层弹性波的传播速度均大于含水层。 (2)天然气水合物中,水分子(主体分子)形成一种空间点阵结构,气体分子(客体分子) 则充填于点阵间的空穴中,气体和水之间没有化学计量关系。形成点阵的水分子之间靠较强的氢健结合,而气体分子和水分子之间的作用力为范德华力。 2、经发现的天然气水合物结构有三种: 即结构 I 型、结构 II 型和结构H型。结构 I 型气水合物为立方晶体结构,其在自然界分布最为广泛,仅能容纳甲烷(C1)、乙烷这两种小分子的烃以及N2、CO2、H2S 等非烃分子,这种水合物中甲烷普遍存在的形式是构成CH4·的几何格架;结构 II 型气水合物为菱型晶体结构,除包容C1、C2等小分子外,较大的“笼子”(水合物晶体中水分子间的空穴)还可容纳丙烷(C3)及异丁烷(i-C4)等烃类;结构H型气水合物为

天然气水合物合成实验

2009年第4期 总第170期 低 温 工 程 CRY OGEN I CS No 14 2009 Sum No 1170 天然气水合物合成实验 祁影霞 杨 光 汤成伟 张 华 (上海理工大学能源与动力学院 上海 200093) 摘 要:为提高天然气水合物的生产效率及储气密度,在专门设计的水合物合成实验装置上,进 行了纯甲烷水合物的合成实验。实验结果表明:对于纯净甲烷水合物,压力越高,合成速率越大;但当压力大于5MPa 时,压力的提高对生成速率的影响不大。水合物合成前抽真空时间越长,生成的水合物吸收的气体量越大,表明抽真空可以排出水中溶解的气体,提高水合物的储气密度。 关键词:水合物 甲烷 合成速率中图分类号:T B663、TK12 文献标识码:A 文章编号:100026516(2009)0420011204 收稿日期:2009203227;修订日期:2009206230 基金项目:上海市浦江人才计划(08PJ1408300)、上海市重点学科建设项目(S30503)资助。作者简介:祁影霞,女,45岁,博士、讲师。 Forma ti on exper im en t of na tura l ga s hydra te Q i Yingxia Yang Guang Tang Cheng wei Zhang Hua (School of Energy and Power Engineering,University of Shanghai for Science and Technol ogy,Shanghai 200093,China ) Abstract :I n order t o increase the p r oducti on efficiency and st ored gas density of natural gas hydrate,pure methane for mati on hydrate tests were carried out on a s pecial designed hydrate f or mati on apparatus .The experi m ent results indicate that,f or pure methane hydrates,the for mati on rate increases with p ressure,but the increase of p ressure has no obvi ous effects on the f or mati on rate when the p ressure is higher than 5MPa .The l onger vacuu m ing ti m e before the f or mati on of hydrates results in the larger a mount of gas ab 2s orbed in for med hydrates,which indicates that vacuu m ing can make the gases diss olved in the water release off and increase the st ored gas density of the hydrates . Key words :hydrates;methane;f or mati on rate 1 引 言 天然气水合物是由天然气与水在高压低温条件下结晶形成的固态笼状化合物,主要存在于海底或陆 地冻土带内[1] 。据估算,世界上天然气水合物所含有的有机碳总量相当于全球已知煤、石油和天然气的两倍。国际科学界预测,它是石油、天然气之后的最佳的替代能源。 纯净的天然气水合物呈白色,形似冰雪,可以像 固体酒精一样直接被点燃,因此,又被通俗、形象地称 为“可燃冰”。1m 3 的天然气水合物可以释放出164m 3 的天然气,且可以在常压和-15℃的条件下稳定储存。因此,天然气水合物也是天然气储运的安全有 效的方式[2] 。 为提高水合物的生产效率及储气密度,采用了多种方法促进水合物的快速生成。目前应用比较广泛的是应用磁力搅拌装置,通过可无级调速的磁力搅拌子,促进水和气体的接触来加快水合物的生长速度,

南海天然气水合物富集规律与开采基础研究项目申报

南海天然气水合物富集规律与开采基础研究项目申报

项目名称:南海天然气水合物富集规律与开采基础 研究 首席科学家: 起止年限: 依托部门:

一、研究内容 1.拟解决的关键科学问题 尽管我国南海北部陆坡具有天然气渗漏发育的地质背景,并且已发现四个天然气渗漏活动形成的冷泉碳酸盐岩和特异自养生物群的发育区,这些海区具有水合物形成的地质环境和温度-压力条件。但这些天然气水合物成藏条件,成藏动力学过程和机制及富集规律等是需要深入研究的关键科学问题。因此,本项目拟解决的关键科学问题有: 1)南海北部渗漏型天然气水合物成藏的气源、地质和温压条件及其地球物理、地球化学异常机理; 2)南海北部沉积物孔隙中游离天然气气泡形成水合物过程的热力学控制因素和生成动力学规律; 3)南海北部渗漏型天然气水合物大规模成藏的机制及其发育特征和富集规律;4)高品位(渗漏型)天然气水合物开采过程的多相流动机理和渗流控制模式。 2.主要研究内容 (1)南海北部天然气水合物成藏的基础条件 ●烃类热解气、浅层生物气对渗漏型水合物成藏的贡献 天然气水合物的成藏气体主要包括微生物气、热解气及其混合气,不同类型的成藏气体具有不同的成气作用、运移途径和富集过程,并影响到天然气水合物的形成机理。南海北部含油气盆地发育,气源丰富,类型众多,深部烃类热解气、浅层生物气均可能作为渗漏型天然气水合物的气源。并且,不同类型的气源具有不同的成气作用、运移途径和富集过程,并影响到天然气水合物的形成机理。因此有必要深入研究不同成因的气源类型和运移特征及其对南海北部天然气水合物成藏的贡献。 ●非烃气体对渗漏型水合物成藏的影响 南海北部含油气盆地的非烃气体CO2、N2十分丰富,许多天然气气藏中的CO2和N2含量非常高,甚至形成90%以上的CO2气藏。如果这些非烃气体或随烃类气向海底渗漏,进入水合物稳定带将对天然气水合物的成藏产生影响。因此,必须深入研究南海北部这些非烃气体来源和组成特征、水合物形成的温度和压力条件,及对渗漏型天然气水合物成藏的可能影响。 ●地质条件对渗漏型天然气水合物成藏的控制 构造环境和沉积特征是控制天然气水合物成藏的两个重要地质条件。区域构造环境决定了天然气水合物形成与富集的沉积场所,各种断 裂、底辟、泥火山直接制约着气源的强弱和天然气水合物的形成。含天

天然气水合物翻译

水合物的形成及其对天然气管道内腐蚀率影响 Hydrate Formation and its Influence on Natural Gas Pipeline Internal Corrosion Rate 作者:Emmanuel O. Obanijesu, Vishnu Pareek, and Moses O. Tade 起止页码:1-16 出版日期(期刊号):SPE128544 出版单位:Copyright 2010, Society of Petroleum Engineers 本文介绍SPE 的石油和天然气印度会议和2010年1月20日至22日在印度孟买举行展览的准备 SPE 程序委员会依据下列资料包括作者(S )提交一个摘要的审查而选定本文做介绍。本文的内容还没有被石油工程师协会审查,并须经由作者(S )校正。材料不需要反映石油工程师协会的任何位置,其管理人员或成员。没有石油工程师协会的书面同意而电子复制,分发或储存本文的任何部分是被禁止的。在印刷复制限制为不超过300字的摘要是允许的;插图不得复制。摘要必须包含突出SPE 的版权确认。 摘要 天然气管道沿线水合物的形成对石油和天然气工业生存已确认会造成严重威胁。如果不迅速取出天然气管道水合物则可能造成堵塞流线导致管道系统崩溃。这个问题对这行业造成每年数十亿美元的损失。所有有效控制水合物形成的文献的重点是堵塞流线的能力,几乎没有认可的方法解决管道内部腐蚀,对于这行业是一个更大的问题,因此这个问题的研究是重要的。这项工作的重点旨在新的腐蚀领域寻找新理论的技术。 在这项研究中,晶格被认为是由二氧化碳(2C O ),甲烷(4C H ),硫化氢(2H S )和水分子(2H O )组成。这些气体有能力轻松地进行管道内部表面的化学和电化学 反应而是晶格到位。这项反应将很容易引起管道腐蚀。进一步的研究证实,即使成功分离水合物,引起腐蚀的过程可能会继续影响管道内的连续流,从而导致材料和管道

相关文档
最新文档