连续时间LTI系统的频率特性及频域分析

连续时间LTI系统的频率特性及频域分析
连续时间LTI系统的频率特性及频域分析

实验报告

实验项目名称:运用Matlab进行连续时间信号卷积运算

(所属课程:信号与系统)

学院:电子信息与电气工程学院

专业: 10电气工程及其自动化

姓名: xx

学号: 201002040077

指导老师: xxx

一、实验目的

1、学会运用MATLAB 分析连续系统的频率特性。

2、掌握相关函数的调用。

二、实验原理

1、一个连续LTI 系统的数学模型通常用常系数线性微分方程描述,即

)()()()()()(01

)(01)(t e b t e b t e b t r a t r a t r a m m n n +'++=+'++ (1) 对上式两边取傅里叶变换,并根据FT 的时域微分性质可得:

)(])([)(])([0101ωωωωωωE b j b j b R a j a j a m m n n +++=+++

101)()()()()(a j a j a b j b j b j E j R j H n n m m ++++++==ωωωωωωω H ( j ω )称为系统的频率响应特性,简称系统频率响应或频率特性。一般H ( j ω )是复函数,可表示为:

)()()(ω?ωωj e j H j H =

其中, )(ωj H 称为系统的幅频响应特性,简称为幅频响应或幅频特性;)(ω?称为系统的相频响应特性,简称相频响应或相频特性。H ( j ω )描述了系统响应的傅里叶变换与激励的傅里叶变换间的关系。H ( j ω )只与系统本身的特性有关,与激励无关,因此它是表征系统特性的一个重要参数。

MATLAB 信号处理工具箱提供的freqs 函数可直接计算系统的频率响应的数值解,其语句格式为:H=freqs(b,a,w)其中,b 和a 表示H ( j ω )的分子和分母多项式的系数向量;w 为系统频率响应的频率范围,其一般形式为w1:p:w2,w1 为频率起始值,w2 为频率终止值,p 为频率取值间隔。

H 返回w 所定义的频率点上系统频率响应的样值。注意,H 返回的样值可能为包含实部和虚部的复数。因此,如果想得到系统的幅频特性和相频特性,还需要利用abs 和angle 函数来分别求得。

2、对于正弦激励信号)sin(0?ω+t A ,当经过系统后,其稳态响应为:)](sin[|)(|00ω??ωω++t j H A

三、程序设计实验

1、试用MATLAB 命令求下图所示电路系统的幅频特性和相频特性。已知 R = 10Ω,L = 2H ,C = 0.1F 。

2、已知系统微分方程和激励信号如下,试用MATLAB 命令求系统的稳态响应。

(1)r ′(t ) +1.5r(t ) = e ′(t ),e(t ) = cos 2t

(2)r ′′(t ) + 2r ′(t ) + 3r(t ) = ? e ′(t ) + 2 e (t ), e (t ) = 3 + cos 2t + cos5t

四、实验步骤

按照实验要求设计程序如下所示

1、 w=-20:0.001:20;

Fw=(2*sin(w).*exp(i*w))./w;

plot(w,abs(Fw));

-20-15-10-505101520

00.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

试用MATLAB 命令求下图所示电路系统的幅频特性和相频特性。已知

R = 10Ω,L = 2H ,C = 0.1F 。

2、w=-6*pi:0.001:6*pi;

b=5;a=[1,1,5];

H=freqs(b,a,w);

subplot(2,1,1);

plot(w,abs(H)),grid on

subplot(2,1,2);

plot(w,angle(H)),grid on

-20

-15-10-50510152000.5

1

1.5

2

2.5

-20-15-10-505101520

-4-2

2

4

(1)r ′(t ) +1.5r(t ) = e ′(t ),e(t ) = cos 2t

3、t=0:0.01:20;

w=2;

H=(j*w)/(j*w+1.5);

f=cos(2*t);

y=abs(H)*cos(w*t+angle(H));

subplot(2,1,1);

plot(t,f);grid on

subplot(2,1,2);

plot(t,y);grid on

02468101214161820

-1-0.5

0.5

1

02468101214161820

-1-0.5

0.5

1

(2)r ′′(t ) + 2r ′(t ) + 3r(t ) = ? e ′(t ) + 2 e (t ), e (t ) = 3 + cos 2t + cos5t

4、t=0:0.01:20;

w1=2;w2=5;

H1=(-j*w1+2)/(-[w1]^2+2j*w1+3);

H2=(-j*w2+2)/(-[w2]^2+2j*w2+3);

f=3+cos(2*t)+cos(5*t);

y=abs(H1)*cos(w1*t+angle(H1))+abs(H2)*cos(w2*t+angle(H2));

subplot(2,1,1);

plot(t,f);grid on

subplot(2,1,2);

plot(t,y);grid on

0246810121416182012

3

4

5

02468101214161820

-1-0.5

0.5

1

北京理工大学信号与系统实验报告5-连续时间系统的复频域分析

北京理工大学信号与系统实验报告5-连续时间系统的复频域分析

实验5连续时间系统的复频域分析 (综合型实验) 一、实验目的 1)掌握拉普拉斯变换及其反变换的定义并掌握MATLAB 实现方法。 2)学习和掌握连续时间系统函数的定义及复频域分析方法。 3)掌握系统零极点的定义,加深理解系统零极点分布与系统特性的关系。 二、实验原理与方法 1.拉普拉斯变换 连续时间信号x(t)的拉普拉斯变换定义为 (s)(t)e st X x dt +∞ --∞ = ? (1) 拉普拉斯反变换为1 (t)(s)e 2j st j x X ds j σσπ+∞ -∞ =? (2) MATLAB 中相应函数如下: (F) L laplace = 符号表达式F 拉氏变换,F 中时间变量为t ,返回变量为s 的结果表达式。 (F,t)L laplace =用t 替换结果中的变量s 。 () F ilaplace L =以s 为变量的符号表达式L 的拉氏反变换,返回时间变量为t 的结果表达式。 (,) F ilaplace L x =用x 替换结果中的变量t 。

的连续时间系统,其系统函数为s 的有理函数 110 110 ...(s)...M M M M N N N N b s b s b H a s a s a ----+++= +++ (7) 3.连续时间系统的零极点分析 系统的零点指使式(7)的分子多项式为零的点,极点指使分母多项式为零的点,零点使系统的值为零,极点使系统的值为无穷大。通常将系统函数的零极点绘在s 平面上,零点用O 表示,极点用?表示,这样得到的图形为零极点分布图。可以通过利用MATLAB 中的求多项式根的roots 函数来实现对(7)分子分母根的求解,调用格式如下: r=roots(c),c 为多项式的系数向量,返回值r 为多项式的根向量。 求取零极点以及绘制系统函数的零极点分布图可以采用pzmap 函数,调用格式如下: pzmap(sys)绘出由系统模型sys 描述的系统的零极点分布图。 [p,z]=pzmap(sys)这种调用方式返回极点与零点,不绘出零极点分布图。 还有两个专用函数tf2zp 和zp2tf 可实现系统的传递函数模型和零极点增益模型的转换。调用格

实验四 控制系统频率特性的测试(实验报告)

实验四 控制系统频率特性的测试 一. 实验目的 认识线性定常系统的频率特性,掌握用频率特性法测试被控过程模型的原理和方法,根据开环系统的对数频率特性,确定系统组成环节的参数。 二.实验装置 (1)微型计算机。 (2)自动控制实验教学系统软件。 三.实验原理及方法 (1)基本概念 一个稳定的线性定常系统,在正弦信号的作用下,输出稳态与输入信号关系如下: 幅频特性 相频特性 (2)实验方法 设有两个正弦信号: 若以)(t x ω为横轴,以)(y t ω为纵轴,而以t ω作为参变量,则随t ω的变化,)(t x ω和 )(y t ω所确定的点的轨迹,将在 x--y 平面上描绘出一条封闭的曲线(通常是一个椭圆)。这 就是所谓“李沙育图形”。 由李沙育图形可求出Xm ,Ym ,φ,

四.实验步骤 (1)根据前面的实验步骤点击实验七、控制系统频率特性测试菜单。 (2)首先确定被测对象模型的传递函数, 预先设置好参数T1、T2、ξ、K (3)设置好各项参数后,开始仿真分析,首先做幅频测试,按所得的频率范围由低到高,及ω由小到大慢慢改变,特别是在转折频率处更应该多取几个点 五.数据处理 (一)第一种处理方法: (1)得表格如下: (2)作图如下: (二)第二种方法: 由实验模型即,由实验设置模型根据理论计算结果绘制bode图,绘制Bode图。

(三)误差分析 两图形的大体趋势一直,从而验证了理论的正确性。在拐点处有一定的差距,在某些点处也存在较大的误差。 分析: (1)在读取数据上存在较大的误差,而使得理论结果和实验结果之间存在。 (2)在数值应选取上太合适,而使得所画出的bode图形之间存在较大的差距。 (3)在实验计算相角和幅值方面本来就存在着近似,从而使得误差存在,而使得两个图形之间有差异 六.思考讨论 (1)是否可以用“李沙育”图形同时测量幅频特性和想频特性 答:可以。在实验过程中一个频率可同时记录2Xm,2Ym,2y0。 (2)讨论用“李沙育图形”测量频率特性的精度,即误差分析(说明误差的主要来源)答:用“李沙育图形”测量频率特性的精度从上面的分析处理上也可以看出是比较高的,但是在实验结果和理论的结果之间还是存在一定的差距,这些误差主要来自于从“李沙育图形”上读取数据的时候存在的误差,也可能是计算机精度方面的误差。 (3)对用频率特性测试系统数学模型方法的评测 答:用这种方法进行此次实验能够让我们更好地了解其过程,原理及方法。但本次实验的数据量很大,需要读取较多坐标,教学软件可以更智能一些,增加一些自动读取坐标的功能。 七.实验总结 通过本次实验,我加深了对线性定常系统的频率特性的认识,掌握了用频率特性法测试被控过程模型的原理和方法。使我把书本知识与实际操作联系起来,加深了对课程内容的理解。在处理数据时,需要进行一定量的计算,这要求我们要细心、耐心,作图时要注意不能用普通坐标系,而是半对数坐标系进行作图。

(实验三)连续时间LTI系统的频域分析汇总

实验三 连续时间LTI 系统的频域分析 一、实验目的 1、掌握系统频率响应特性的概念及其物理意义; 2、掌握系统频率响应特性的计算方法和特性曲线的绘制方法,理解具有不同频率响应特性的滤波器对信号的滤波作用; 3、学习和掌握幅度特性、相位特性以及群延时的物理意义; 4、掌握用MA TLAB 语言进行系统频响特性分析的方法。 基本要求:掌握LTI 连续和离散时间系统的频域数学模型和频域数学模型的MATLAB 描述方法,深刻理解LTI 系统的频率响应特性的物理意义,理解滤波和滤波器的概念,掌握利用MATLAB 计算和绘制LTI 系统频率响应特性曲线中的编程。 二、实验原理及方法 1 连续时间LTI 系统的频率响应 所谓频率特性,也称为频率响应特性,简称频率响应(Frequency response ),是指系统在正弦信号激励下的稳态响应随频率变化的情况,包括响应的幅度随频率的变化情况和响应的相位随频率的变化情况两个方面。 上图中x(t)、y(t)分别为系统的时域激励信号和响应信号,h(t)是系统的单位冲激响应,它们三者之间的关系为:)(*)()(t h t x t y =,由傅里叶变换的时域卷积定理可得到: )()()(ωωωj H j X j Y = 3.1 或者: ) () ()(ωωωj X j Y j H = 3.2 )(ωj H 为系统的频域数学模型,它实际上就是系统的单位冲激响应h(t)的傅里叶变换。即 ? ∞ ∞ --= dt e t h j H t j ωω)()( 3.3 由于H(j ω)实际上是系统单位冲激响应h(t)的傅里叶变换,如果h(t)是收敛的,或者说 是绝对可积(Absolutly integrabel )的话,那么H(j ω)一定存在,而且H(j ω)通常是复数,

频率特性分析

实验三 频率特性分析 一·实验目的 1.掌握频率特性的基本概念,尤其是频率特性的几种表示方法。 2.能熟练绘制极坐标频率特性曲线(奈奎斯特曲线)和对数频率特性曲线,尤其要注意的是在非最小相位系统时曲线的绘制。 3.正确应用频率稳定判别方法,包括奈奎斯特稳定判据和对数稳定判据。 4.熟练正确计算相位裕量和幅值裕量。 5.掌握闭环频率特性的基本知识以及有关指标的近似估算方法。 二·实验内容 1增加开环传递函数零极点个数对奈奎斯特图的影响 1)改变有限极点个数n ,使n=0,1,2,3 Nyquist Diagram Real Axis I m a g i n a r y A x i s -2 -101234 -3.5-3-2.5-2-1.5-1-0.50 0.511.52n=0 n=1 n=2 n=3 2)改变原点处极点个数v ,当v=1,2,3,4, Nyquist Diagram Real Axis I m a g i n a r y A x i s -2 -1.5 -1 -0.5 00.5 1 1.5 2 -2-1.5 -1 -0.5 00.5 1 1.5 2 System: sys P hase Margin (deg): -32.9Delay Margin (sec): 4.41At frequency (rad/sec): 1.3 Closed Loop Stable? No System: sys P hase Margin (deg): -121Delay Margin (sec): 3.49At frequency (rad/sec): 1.2 Closed Loop Stable? No System: sys P hase Margin (deg): 150Delay Margin (sec): 2.28At frequency (rad/sec): 1.15Closed Loop Stable? No System: sys P hase Margin (deg): 51.8Delay Margin (sec): 0.575 At frequency (rad/sec): 1.57 Closed Loop Stable? Yes v=1 v=2 v=3 v=4

实验四 系统频率特性测量(模拟实验)

实验四 系统频率特性测量 一、实验目的 1.加深了解系统及元件频率特性的物理概念。 2.掌握系统及元件频率特性的测量方法。 二、实验仪器 1.EL-AT-II 型自动控制系统实验箱一台 2.计算机一台 三、实验原理 1.模拟电路图 若输入信号U1(t )=U1sin ωt,则在稳态时,其输出信号为U2(t )=U2sin (ωt+ψ),改变输入信号角频率ω值,便可测得二组U2/U1和ψ随ω变化的数值,这个变化规律就是系统的幅频特性和相频特性。 图4-1为二阶系统的模拟电路图,它是由惯性环节、积分环节和比例环节组成。图4-2为图4-1的方框原理图,图中2321211 2 ,,C R T C R T R R K === 。 图4-1 二阶系统的模拟电路 图4-2 二阶系统原理图

由图4-1求得二阶系统的闭环传递函数为: 2 11 22 122 2112)()()(T T K T s s T T K K s T s T T K s U s U s ++=++== φ 典型二阶系统的闭环传递函数为: 2 2 22)(n n n s s s ωζωωφ++= 对比可得:21T T K n =ω,K T T 124=ζ 若令s T 2.01=,s T 5.01=,则K n 10=ω,K 625.0=ζ 由上式可知,调节开环增益K 的值,就能同时改变系统阻尼比ζ和无阻尼自然频率n ω的值,我们可以改变k 的值,令系统处于稳定状态下。 当625.0>K ,10<<ζ,系统处于欠阻尼状态,当625.0=K ,1=ζ,系统处于临界阻尼状态, 当625.0ζ,系统处于过阻尼状态。 四、实验步骤 1.连接被测量典型环节的模拟电路。电路的输入U1接A/D 、D/A 卡的DA1输出,电路的输出U2接A/D 、D/A 卡的AD1输入。检查无误后接通电源。 2.启动计算机,在桌面双击图标 [自动控制实验系统] 运行软件。 3.测试计算机与实验箱的通信是否正常,通信正常继续。如通信不正常查找原因使通信正常后才可以继续进行实验。 测频率图 4.选中 [实验课题→系统频率特性测量→手动方式] 菜单项,鼠标单击将弹出参数设置窗口。参数设置完成后点确认等待观察波形,如图4-4所示。 图4-4 手动方式测量波特图

系统频率特性

第三章 系统频率特性 系统的时域分析是分析系统的直接方法,比较直观,但离开计算机仿真,分析高阶系统是困难的。系统频域分析是工程广为应用的系统分析和综合的间接方法。频率分析不仅可以了解系统频率特性,如截止频率、谐振频率等,而且可以间接了解系统时域特性,如快速性,稳定性等,为分析和设计系统提供更简便更可靠的方法。 本章首先阐明频率响应的特点,给出计算频率响应的方法,接着介绍Nyquist 图和Bode 图的绘制方法、系统的稳定裕度及系统时域性能指标计算。 3.1 频率响应和频率特性 3.1.1 一般概念 频率响应是指系统对正弦输入的稳态响应。考虑传递函数为G(s)的线性系统,若输入正弦信号 t X t x i i ωsin )(= (3.1-1) 根据微分方程解的理论,系统的稳态输出仍然为与输入信号同频率的正弦信号,只是其幅值和相位发生了变化。输出幅值正比于输入的幅值i X ,而且是输入正弦频率ω的函数。输出的相位与i X 无关,只与输入信号产生一个相位差?,且也是输入信号频率ω的函数。即线性系统的稳态输出为 )](sin[)()(00ω?ωω+=t X t x (3.1-2)

由此可知,输出信号与输入信号的幅值比是ω的函数,称为系统的幅频特性,记为)(ωA 。输出信号与输入信号相位差也是ω的函数,称为系统的相频特性,记为)(ω?。 幅频特性: )()()(0ωωωi X X A = (3.1-3) 相频特性: )()()(0ω?ω?ω?i -= (3.1-4) 频率特性是指系统在正弦信号作用下,稳态输出与输入之比对频率的关系特性,可表示为: )()()(0ωωωj X j X j G i = (3.1-5) 频率特性)(ωj G 是传递函数)(s G 的一种特殊形式。任何线性连续时间系统的频率特性都可由系统传递函数中的s 以ωj 代替而求得。 )(ωj G 有三种表示方法: )()()(ω?ωωj e A j G = (3.1-6) )()()(ωωωjV U j G += (3.1-7) )(sin )()cos()()(ω?ωωωωjA A j G += (3.1-8) 式中,实频特性: )(cos )()(ω?ωωA U = 虚频特性:

连续时间LTI系统的频率特性及频域分析

实验报告 实验项目名称:运用Matlab进行连续时间信号卷积运算 (所属课程:信号与系统) 学院:电子信息与电气工程学院 专业: 10电气工程及其自动化 姓名: xx 学号: 201002040077 指导老师: xxx

一、实验目的 1、学会运用MATLAB 分析连续系统的频率特性。 2、掌握相关函数的调用。 二、实验原理 1、一个连续LTI 系统的数学模型通常用常系数线性微分方程描述,即 )()()()()()(01 )(01)(t e b t e b t e b t r a t r a t r a m m n n +'++=+'++ (1) 对上式两边取傅里叶变换,并根据FT 的时域微分性质可得: )(])([)(])([0101ωωωωωωE b j b j b R a j a j a m m n n +++=+++ 101)()()()()(a j a j a b j b j b j E j R j H n n m m ++++++==ωωωωωωω H ( j ω )称为系统的频率响应特性,简称系统频率响应或频率特性。一般H ( j ω )是复函数,可表示为: )()()(ω?ωωj e j H j H = 其中, )(ωj H 称为系统的幅频响应特性,简称为幅频响应或幅频特性;)(ω?称为系统的相频响应特性,简称相频响应或相频特性。H ( j ω )描述了系统响应的傅里叶变换与激励的傅里叶变换间的关系。H ( j ω )只与系统本身的特性有关,与激励无关,因此它是表征系统特性的一个重要参数。 MATLAB 信号处理工具箱提供的freqs 函数可直接计算系统的频率响应的数值解,其语句格式为:H=freqs(b,a,w)其中,b 和a 表示H ( j ω )的分子和分母多项式的系数向量;w 为系统频率响应的频率范围,其一般形式为w1:p:w2,w1 为频率起始值,w2 为频率终止值,p 为频率取值间隔。 H 返回w 所定义的频率点上系统频率响应的样值。注意,H 返回的样值可能为包含实部和虚部的复数。因此,如果想得到系统的幅频特性和相频特性,还需要利用abs 和angle 函数来分别求得。

线性系统的频率特性实验报告(精)

实验四 线性系统的频率特性 一、实验目的: 1. 测量线性系统的幅频特性 2. 复习巩固周期信号的频谱测量 二、实验原理: 我们讨论的确定性输入信号作用下的集总参数线性非时变系统,又简称线性系统。线性系统的基本特性是齐次性与叠加性、时不变性、微分性以及因果性。对线性系统的分析,系统的数学模型的求解,可分为时间域方法和变换域方法。这里主要讨论以频率特性为主要研究对象,通过傅里叶变换以频率为独立变量。 设输入信号)(t v in ,其频谱)(ωj V in ;系统的单位冲激响应)(t h ,系统的频率特性 )(ωj H ;输出信号)(t v out ,其频谱)(ωj V out ,则 时间域中输入与输出的关系 )()()(t h t v t v in out *= 频率域中输入与输出的关系 )()()(ωωωj H j V j V in out ?= 时间域方法和变换域方法并没有本质区别,两种方法都是将输入信号分解为某种基本单元,在这些基本单元的作用下求得系统的响应,然后再叠加。变换域方法可以将时域分析中的微分、积分运算转化为代数运算,将卷积积分变换为乘法;在信号处理时,将输入时间信号用一组变换系数(谱线)来表示,根据信号占有的频带与系统通带间的关系来分析信号传输,判别信号中带有特征性的分量,比时域法简便和直观。 三、实验方法: 1. 输入信号的选取 这里输入信号选取周期矩形信号,并且要求 τ T 不为整数。这是因为周期矩形信号具有丰富的谐波分量,通过观察系统的输入、输出波形的谐波的变化,分析系统滤波特性。周期矩形信号可以分解为直流分量和许多谐波分量;由于测量频率点的数目有限,因此需要排除谐波幅度为零的频率点,周期矩形信号谐波幅度为零的频率点是 Ω KT ,其中1=K 、2、3、… 。 图11.1 输入的周期矩形信号时域波形 t

使用Multisim进行电路频率特性分析

使用Multisim进行电路频率响应分析 作者:XChuda Multisim的AC Analysis功能用于对电路中一个或多个节点的电压/电流频响特性进行分析,画出伯德图。本文基于Multisim 11.0。 1、实验电路 本例使用如图的运放电路进行试验。该放大电路采用同相输入,具有(1+100/20=)6倍的放大倍数,带300欧负载。方框部分象征信号源,以理想电压源串联电阻构成。 请不要纠结于我把120Vrms的电压源输入双15V供电的运放这样的举动是否犯二,电压源在AC Analyses中仅仅是作为一个信号入口的标识,其信号类型、幅值和频率对分析是没有贡献的,但是它的存在必不可少,否则无法得到仿真结果! 2、操作步骤 搭好上述电路后,就可以进行交流分析了。

一般设置Frequency parameters和Output两页即可,没有特殊要求的话其他选项保持默认,然后点Simulate开始仿真。切记是点Simulate,点OK的话啥都不会发生。

按照上述步骤仿真结果如下: 分析结果是一份伯德图。在上下两个图表各自区域上按右键弹出列表有若干选项,各位可自己动手试试。右键菜单中的Properties可打开属性对话框,对图表进行更为详细的设置。 3、加个电容试试 从上面伯德图分析结果看出,该电路具有高通特性,是由输入耦合电容C3造成的。现在在输入端加入一个退耦电容试试。电路如下:

在输入端加入220pF退耦电容后C1与后面的放大电路输入电阻构成低通滤波器,可滤除高频干扰。加入C1后,放大电路的输出应该具有带通特性。用AC Analysis分析加入C1后的电路频响特性: 奇怪,为什么高通不见了?一阵疑惑,我甚至动笔算了同相输入端的阻容网络复频域的特性,无论C1是否加入,从同相输入端向左看出去的阻容电路都有一个横轴为0的零点,所以幅度特性应该是从0Hz处开始上升的!对,从0Hz开始!回头看看电路加入C1前仿真的伯德图,发现竖轴范围是13dB~13.3dB! 我们尝试放大来看看。现在重新进行AC分析,将频率范围设置为0.1~10Hz,结果如下图。OK,没问题,果然是高通的,只是截止频率非常低(0.3Hz左右),刚才的仿真频率范围从1Hz开始,自然是看不到的。从中也看出,图表中数字后加小写m,是毫赫兹(mHz)的意思,而不是兆赫兹(MHz)。

系统频率特性的测试实验报告

东南大学自动化学院课程名称:自动控制原理实验 实验名称:系统频率特性的测试 姓名:学号: 专业:实验室: 实验时间:2013年11月22日同组人员: 评定成绩:审阅教师:

一、实验目的: (1)明确测量幅频和相频特性曲线的意义; (2)掌握幅频曲线和相频特性曲线的测量方法; (3)利用幅频曲线求出系统的传递函数; 二、实验原理: 在设计控制系统时,首先要建立系统的数学模型,而建立系统的数学模型是控制系统设计的重点和难点。如果系统的各个部分都可以拆开,每个物理参数能独立得到,并能用物理公式来表达,这属机理建模方式,通常教材中用的是机理建模方式。如果系统的各个部分无法拆开或不能测量具体的物理量,不能用准确完整的物理关系式表达,真实系统往往是这样。比如“黑盒”,那只能用二端口网络纯的实验方法来建立系统的数学模型,实验建模有多种方法。此次实验采用开环频率特性测试方法,确定系统传递函数。准确的系统建模是很困难的,要用反复多次,模型还不一定建准。另外,利用系统的频率特性可用来分析和设计控制系统,用Bode 图设计控制系统就是其中一种。 幅频特性就是输出幅度随频率的变化与输入幅度之比,即)()(ωωi o U U A =。测幅频特性时, 改变正弦信号源的频率,测出输入信号的幅值或峰峰值和输输出信号的幅值或峰峰值。 测相频有两种方法: (1)双踪信号比较法:将正弦信号接系统输入端,同时用双踪示波器的Y1和Y2测量系统的输入端和输出端两个正弦波,示波器触发正确的话,可看到两个不同相位的正弦波,测出波形的周期T 和相位差Δt ,则相位差0360??=ΦT t 。这种方法直观,容易理解。就模拟示波 器而言,这种方法用于高频信号测量比较合适。 (2)李沙育图形法:将系统输入端的正弦信号接示波器的X 轴输入,将系统输出端的正弦信号接示波器的Y 轴输入,两个正弦波将合成一个椭圆。通过椭圆的切、割比值,椭圆所在的象限,椭圆轨迹的旋转方向这三个要素来决定相位差。就模拟示波器而言,这种方法用于低频信号测量比较合适。若用数字示波器或虚拟示波器,建议用双踪信号比较法。 利用幅频和相频的实验数据可以作出系统的波Bode 图和Nyquist 图。 三、预习与回答: (1)实验时,如何确定正弦信号的幅值?幅度太大会出现什么问题,幅度过小又会出现什 么问题? 答:根据实验参数,计算正弦信号幅值大致的范围,然后进行调节,具体确定调节幅值时,首先要保证输入波形不失真,同时,要保证在频率较大时输出信号衰减后人能够测量出来。如果幅度过大,波形超出线性变化区域,产生失真;如果波形过小,后续测量值过小,无法精确的测量。

理工大学信号与系统实验报告连续时间系统的复频域分析

理工大学信号与系统实验报告连续时间系统的 复频域分析 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

实验5连续时间系统的复频域分析 (综合型实验) 一、实验目的 1)掌握拉普拉斯变换及其反变换的定义并掌握MATLAB 实现方法。 2)学习和掌握连续时间系统函数的定义及复频域分析方法。 3)掌握系统零极点的定义,加深理解系统零极点分布与系统特性的关系。 二、实验原理与方法 1.拉普拉斯变换 连续时间信号x(t)的拉普拉斯变换定义为(s)(t)e st X x dt +∞ --∞ =? (1) 拉普拉斯反变换为1 (t)(s)e 2j st j x X ds j σσπ+∞ - ∞ = ? (2) MATLAB 中相应函数如下: (F)L laplace = 符号表达式F 拉氏变换,F 中时间变量为t ,返回变量为s 的结果表达式。 (F,t)L laplace =用t 替换结果中的变量s 。 ()F ilaplace L =以s 为变量的符号表达式L 的拉氏反变换,返回时间变量 为t 的结果表达式。 (,)F ilaplace L x =用x 替换结果中的变量t 。 拉氏变换还可采用部分分式法,当(s)X 为有理分式时,它可以表示为两个多项式之比: 110 1 10 ...(s)(s)(s)...M M M M N N N N b s b s b N X D a s a s a ----+++==+++ (3)

上式可以采用部分分式法展成以下形式 1212(s)...N N r r r X s p s p s p = +++--- (4) 再通过查找常用拉氏变换对易得反变换。 利用residue 函数可将X(s)展成(4)式形式,调用格式为: [r,p,k]residue(b,a)=其中b 、a 为分子和分母多项式系数向量,r 、p 、k 分 别为上述展开式中的部分分式系数、极点和直项多项式系数。 2.连续时间系统的系统函数 连续时间系统的系统函数是指系统单位冲激响应的拉氏变换 (s)(t)e st H h dt +∞ --∞ = ? (5) 连续时间系统的系统函数还可以由系统输入与输出信号的拉氏变换之比得到。 (s)(s)/X(s)H Y = (6) 单位冲激响应(t)h 反映了系统的固有性质,而(s)H 从复频域反映了系统的固有性质。由(6)描述的连续时间系统,其系统函数为s 的有理函数 110 1 10 ...(s)...M M M M N N N N b s b s b H a s a s a ----+++=+++ (7) 3.连续时间系统的零极点分析 系统的零点指使式(7)的分子多项式为零的点,极点指使分母多项式为零的点,零点使系统的值为零,极点使系统的值为无穷大。通常将系统函数的零极点绘在s 平面上,零点用O 表示,极点用?表示,这样得到的图形为零极点分布图。可以通过利用MATLAB 中的求多项式根的roots 函数来实现对(7)分子分母根的求解,调用格式如下:

控制系统的频率特性分析

实验六 控制系统的频率特性分析 1.已知系统传递函数为:1 2.01)(+=s s G ,要求: (1) 使用simulink 进行仿真,改变正弦输入信号的频率,用示波器观察输 出信号,记录不同频率下输出信号与输入信号的幅值比和相位差,即 可得到系统的幅相频率特性。 F=10时 输入: 输出:

F=50时 输入:输出: (2)使用Matlab函数bode()绘制系统的对数频率特性曲线(即bode图)。 提示:a)函数bode()用来绘制系统的bode图,调用格式为: bode(sys) 其中sys为系统开环传递函数模型。 参考程序: s=tf(‘s’); %用符号表示法表示s G=1/(0.2*s+1); %定义系统开环传递函数 bode(G) %绘制系统开环对数频率特性曲线(bode图)

实验七连续系统串联校正 一.实验目的 1.加深理解串联校正装置对系统动态性能的校正作用。 2. 对给定系统进行串联校正设计,并通过matlab实验检验设计的正确性。二.实验内容 1.串联超前校正 系统设计要求见课本例题6-3,要求设计合理的超前校正环节,并完成以下内容用matlab画出系统校正前后的阶跃相应,并记录系统校正前后的超调量及调节时间 num=10; 1)figure(1) 2)hold on

3)figure(1) 4)den1=[1 1 0]; 5)Gs1=tf(num,den1); 6)G1=feedback(Gs1,1,-1); 7)Step(G1) 8) 9)k=10; 10)figure(2) 11)GO=tf([10],[1,1,0]); 12)Gc=tf([0.456,1],[1,00114]); 13)G=series(G0,Gc); 14)G1=feedback(G,1); 15)step(G1);grid

自动控制原理学生实验:二阶开环系统的频率特性曲线

实验三 二阶开环系统的频率特性曲线 一.实验要求 1.研究表征系统稳定程度的相位裕度γ和幅值穿越频率c ω对系统的影响。 2.了解和掌握欠阻尼二阶开环系统中的相位裕度γ和幅值穿越频率c ω的计算。 3.观察和分析欠阻尼二阶开环系统波德图中的相位裕度γ和幅值穿越频率ωc ,与计算值作比对。 二.实验内容及步骤 本实验用于观察和分析二阶开环系统的频率特性曲线。 由于Ⅰ型系统含有一个积分环节,它在开环时响应曲线是发散的,因此欲获得其开环频率特性时,还是需构建成闭环系统,测试其闭环频率特性,然后通过公式换算,获得其开环频率特性。 自然频率:T iT K = n ω 阻尼比:KT Ti 2 1= ξ (3-2-1) 谐振频率: 2 21ξωω-=n r 谐振峰值:2 121lg 20)(ξ ξω-=r L (3-2-2) 计算欠阻尼二阶闭环系统中的幅值穿越频率ωc 、相位裕度γ: 幅值穿越频率: 24241ξξωω-+? =n c (3-2-3) 相位裕度: 4 24122arctan )(180ξξξω?γ++-=+=c (3-2-4) γ值越小,Mp%越大,振荡越厉害;γ值越大,Mp%小,调节时间ts 越长,因此为使 二阶闭环系统不致于振荡太厉害及调节时间太长,一般希望: 30°≤γ≤70° (3-2-5) 本实验所构成的二阶系统符合式(3-2-5)要求。 被测系统模拟电路图的构成如图1所示。 图1 实验电路 本实验将数/模转换器(B2)单元作为信号发生器,自动产生的超低频正弦信号的频率从低到高变化(0.5Hz~16Hz ),OUT2输出施加于被测系统的输入端r (t),然后分别测量被测系统的输出信号的开环对数幅值和相位,数据经相关运算后在虚拟示波器中显示。 实验步骤: (1)将数/模转换器(B2)输出OUT2作为被测系统的输入。 (2)构造模拟电路:安置短路套及测孔联线表同笫3.2.2 节《二阶闭环系统的频率特性曲线测试》。 (3)运行、观察、记录: ① 将数/模转换器(B2)输出OUT2作为被测系统的输入,运行LABACT 程序,在界面 的自动控制菜单下的线性控制系统的频率响应分析-实验项目,选择二阶系统,就会弹出虚拟示波器的界面,点击开始,实验开始后,实验机将自动产生0.5Hz~16H 等多种频率信号,等待将近十分钟,测试结束后,观察闭环对数幅频、相频曲线和幅相曲线。 ② 待实验机把闭环频率特性测试结束后,再在示波器界面左上角的红色‘开环’或‘闭

实验4:连续系统的频域分析

实验4:连续系统的频域分析 一、实验目的 (1)掌握连续时间信号的傅里叶变换和傅里叶逆变换的实现方法。 (2)掌握傅里叶变换的数值计算方法和绘制信号频谱的方法。 二、实验原理 1.周期信号的分解 根据傅里叶级数的原理,任何周期信号都可以分解为三角级数的组合——称为 ()f t 的傅里叶级数。在误差确定的前提下,可以由一组三角函数的有限项叠加而得到。 例如一个方波信号可以分解为: 11114111 ()sin sin 3sin 5sin 7357E f t t t t t ωωωωπ?? = ++++ ??? 合成波形所包含的谐波分量越多,除间断点附近外,它越接近于原波形,在间断点附近,即使合成的波形所含谐波次数足够多,也任存在约9%的偏差,这就是吉布 斯现象(Gibbs )。 2.连续时间信号傅里叶变换的数值计算 由傅里叶变换的公式: ()()lim ()j t j n n F j f t e dt f n e ωωττωττ∞ ∞ ---∞ →=-∞ ==∑ ? 当 ()f t 为时限信号时,上式中的n 取值可以认为是有限项N ,则有: ()(),0k N j n n F k f n e k N ωτττ-==≤≤∑,其中2k k N π ωτ = 3.系统的频率特性 连续LTI 系统的频率特性称为频率响应特性,是指在正弦信号激励作用下稳态响应随激励信号频率的变化而变化的情况,表示为 () ()() Y H X ωωω= 三、实验内容与方法 1.周期信号的分解 【例1】用正弦信号的叠加近似合成一个频率为50Hz 的方波。 MATLAB 程序如下: clear all; fs=10000; t=[0:1/fs:0.1]; f0=50;sum=0; subplot(211) for n=1:2:9 plot(t,4/pi*1/n*sin(2*pi*n*f0*t),’k ’); hold on; end title(‘信号叠加前’); subplot(212) for n=1:2:9;

连续系统的时域、频域分析

学生实验报告实验课程:信号与 系统E D A 实验地点:东1教 414 学院: 专业: 学号 : 姓名 :

2.信号卷积,根据PPT 中的实验2、2与2、3内容完成课堂练习,写出程序及运行结果。 用Matlab 实现卷积运算)(*)(t h t f ,其中 )()()],2()([2)(t e t h t t t f t εεε-=--=,)2 ()(2t h t h =;对比说明信号)( t f 分别输入系统)(和)(2t h t h 时的输出有什么区别并分析原因。 >> p=0、01; nf=0:p:4; f=2*(heaviside(nf)-heaviside(nf-2)); nh=0:p:6; h=exp(-nh)、*(nh>0); y=conv(f,h);

t=0:length(y)-1; subplot(3,1,1),stairs(nf,f);title('f(t)');axis([0 6 0 2、1]); subplot(3,1,2),plot(nh,h);title('h(t)');axis([0 6 0 1、1]); subplot(3,1,3),plot(0、01*t,y); title('y(t)=f(t)*h(t)'); >> p=0、01; nf=0:p:4; f=2*(heaviside(nf)-heaviside(nf-2)); nh=0:p:6; h=exp(-2*nh)、*(2*nh>0); y=conv(f,h); t=0:length(y)-1; subplot(3,1,1),stairs(nf,f);title('f(t)');axis([0 6 0 2、1]);

实验七典型系统的频率特性测试

实验七典型系统的频率特性测试 一. 实验目的 1 ?掌握测量典型一阶系统和二阶系统频率特性曲线的方法; 2. 掌握软件仿真求取一阶和二阶系统开环频率特性的方法。 二. 实验内容 1?搭建一阶惯性环节,绘制其频率特性曲线; 2?搭建典型二阶环节,绘制其频率特性曲线; 3. 用软件仿真求取一阶和二阶系统频率特性曲线,跟实验结果加以比较。 三. 实验步骤 在实验中观测实验结果时,可选用普通示波器,也可选用本实验台上的虚拟示波器。 如果选用虚拟示波器, 只要运行ACES 程序,选择菜单列表中的相应实验项目, 再选择 开始实验,就会打开虚拟示波器的界面,点击开始即可使用本实验台上的虚拟示波器 CH1、 CH2两通道观察被测波形。具体用法参见用户手册中的示波器部分。 1. 一阶惯性环节的频率特性 实验中所用到的功能区域: 信号源、虚拟示波器、实验电路 图1-7-1 一阶惯性环节模拟电路 (1) 设置信号源: 将信号源区的正弦波端子与实验电路 A1的“ IN13”端子相连接,可根据需 求拨动频率选择开关,选择不同频率段“ 8Hz ?0.16Hz ”或“ 400Hz ?6Hz ”。 (2) 搭建一阶惯性环节模拟电路: A .将实验电路 A1的“O UT1 ”端子与实验电路 A2的“ IN23 ”端子相连接; B ?按照图1-7-1选择拨动开关: 图中:R 仁50K 、R2=50K 、R3=100K 、R4=100K 、C1=0.1uF A1、实验电路A2。 一阶惯性环节模拟电路如图 1-7-1所示,惯性环节的传递函数为: U ° (s) K TS 1

将A1的S7、S8、S15, A2的S7、S11拨至开的位置。 (3) 连接虚拟示波器: 将正弦波端子与示波器通道CH1相连接,实验电路A2的“0UT2”与示波器通道CH2相 连接。 (4) 输入正弦波信号,通过虚拟示波器观测输入输出正弦波曲线并调节正弦波频率和幅值,绘 制该一阶惯性环节的幅频曲线和相频曲线。 (5) 运行软件仿真一阶惯性环节频率特性曲线,记录理想幅频曲线和相频曲线,并与 实验结果相比较。 2. 二阶环节的频率特性曲线 实验中所用到的功能区域: 信号源、虚拟示波器、实验电路A1、实验电路A2、实验电路A3。 二阶振荡环节模拟电路如图1-7-2所示,二阶环节的传递函数为: 2 U°(s) n U i(s) 2 n

系统频率特性地测试

自动控制原理实验 实验报告 实验四系统频率特性的测试 学号22012309 姓名 时间2014年10月23日 评定成绩审阅教师

目录 一、实验目的··3 二、实验原理··3 三、预习与回答··3 四、实验设备··4 五、实验线路图··4 六、实验步骤··4 七、实验数据··4 八、实验分析及思考题··5 九、实验总结··7

一、实验目的: (1)明确测量幅频和相频特性曲线的意义; (2)掌握幅频曲线和相频特性曲线的测量方法; (3)利用幅频曲线求出系统的传递函数; 二、实验原理: 在设计控制系统时,首先要建立系统的数学模型,而建立系统的数学模型是控制系统设计的重点和难点。如果系统的各个部分都可以拆开,每个物理参数能独立得到,并能用物理公式来表达,这属机理建模方式,通常教材中用的是机理建模方式。如果系统的各个部分无法拆开或不能测量具体的物理量,不能用准确完整的物理关系式表达,真实系统往往是这样。比如“黑盒”,那只能用二端口网络纯的实验方法来建立系统的数学模型,实验建模有多种方法。此次实验采用开环频率特性测试方法,确定系统传递函数。准确的系统建模是很困难

的,要用反复多次,模型还不一定建准。另外,利用系统的频率特性可用来分析和设计控制系统,用Bode 图设计控制系统就是其中一种。 幅频特性就是输出幅度随频率的变化与输入幅度之比,即)()(ωωi o U U A =。测幅频特性时, 改变正弦信号源的频率,测出输入信号的幅值或峰峰值和输输出信号的幅值或峰峰值。 测相频有两种方法: (1)双踪信号比较法:将正弦信号接系统输入端,同时用双踪示波器的Y1和Y2测量系统的输入端和输出端两个正弦波,示波器触发正确的话,可看到两个不同相位的正弦波,测出波形的周期T 和相位差Δt ,则相位差0360??=ΦT t 。这种方法直观,容易理解。就模拟示波 器而言,这种方法用于高频信号测量比较合适。 (2)李沙育图形法:将系统输入端的正弦信号接示波器的X 轴输入,将系统输出端的正弦信号接示波器的Y 轴输入,两个正弦波将合成一个椭圆。通过椭圆的切、割比值,椭圆所在的象限,椭圆轨迹的旋转方向这三个要素来决定相位差。就模拟示波器而言,这种方法用于低频信号测量比较合适。若用数字示波器或虚拟示波器,建议用双踪信号比较法。 利用幅频和相频的实验数据可以作出系统的波Bode 图和Nyquist 图。 三、预习与回答: (1)实验时,如何确定正弦信号的幅值?幅度太大会出现什么问题,幅度过小又会出现什 么问题? 答:若正弦信号的幅值过大,会容易失真;信号幅值太小会使信号容易被噪声淹没。 (2)当系统参数未知时,如何确定正弦信号源的频率? 答:从理论推导的角度看,应该采取逐点法进行描述,即ω 从0变化到∞,得到变化时幅度和相位的值。从实际操作来看,ω 值过小所取得的值无意义,因此我们选取[1.0,100.0]

连续系统的频域分析

第三章傅立叶变换 时域分析:f(t) y f(t)=h(t)*f(t) ↓分解↑ 基本信号δ(t)→LTI →h(t) 频域分析: f(t) ye jωt =h(t)* H(jω)Fe jωt ↓分解↑ 基本信号 sinωt →LTI →H(jω)e jωt e jωt H(jω):系统的频域响应函数,是信号角频率ω的函数,与t无关. 主要内容: 一、信号的分解为正交函数。 二、周期信号的频域分析?付里叶级数(求和),频谱的特点。信号 三、非周期信号的频域分析?付里叶变换(积分),性质。分析 四、LTI系统的频域分析:频域响应H(jω);y(jω)= H(jω)?F(jω). (系统分析) 五、抽样定理:连续信号→离散信号.

§3.1 信号分解为正交函数 一、正交: 两个函数满足φ1(t)φ2(t)dt=0,称φi(t),φj(t)在区间(t1 ,t2)正交。 二、正交函数集:几个函数φi(t)φi(t)dt= 0 当i≠j; K i 当i=j. 三、完备正交函数集:在{φ1(t)…φn(t)}之外, 不存在ψ(t)满足ψ (t)φi(t)dt= 0 (i=1,2,…n). 例、三角函数集:{1,cosΩt,cos2Ωt,… ,cosmΩt,…,sinΩt, sin2Ωt,…sin(nΩt),…}区间:(t0,t0+T),t=2π/Ω为周期. 满足: cosmΩtcosnΩtdt= 0 m≠n T/2 m=n≠0 T m=n=0 sin(mΩt)sin(nΩt)dt= 0 m≠n T/2 m=n≠0 sin(mΩt)cos(nΩt)dt= 0. 所有的m和n. 结论:三角函数集是完备正交集。 推导: cosmΩtcosnΩtdt =(1/2) [cos(m+n) Ωt+cos(m-n) Ωt]dt =(1/2)sin(m+n)Ωt +(1/2)sin(m-n)Ωt =(1/2)[sin(m+n) Ω(t0+T)-sin(m+n)Ωt0] +(1/2)[sin(m-n) Ω(t0+T)-sin(m-n)Ωt0] =0 当m≠n时.

一二阶系统频率特性测试与分析

广西大学实验报告纸 姓名: 指导老师:胡老师 成绩: 学院:电气工程学院 专业:自动化 班级:121 实验内容:零、极点对限性控制系统的影响 2014年 11月 16 日 【实验时间】2014年11月14日 【实验地点】宿舍 【实验目的】 1. 掌握测量典型一阶系统和二阶系统的频率特性曲线的方法; 2. 掌握软件仿真求取一、二阶系统的开环频率特性的方法; 3. 学会用Nyquist 判据判定系统的稳定性。 【实验设备与软件】 1. labACT 实验台与虚拟示波器 2. MATLAB 软件 【实验原理】 1.系统的频率特性测试方法 对于现行定常系统,当输入端加入一个正弦信号)sin()(t X t X m ωω=时,其稳态输出是一个与输入信号频率相同,但幅值和相位都不同的正弦信号 )sin()()sin()(ψωωψω+=+=t j G X t Y s Y m m 。 幅频特性:m m X Y j G /)(=ω,即输入与输出信号的幅度比值,通常转换成)(lg 20ωj G 形式。 相频特性:)(arg )(ωω?j G =,可以直接基于虚拟示波器读取,也可以用“李沙育图行”法得到。 可以将用Bode 图或Nyquist 图表示幅频特性和相频特。 在labACT 试验台采用的测试结构图如下:

被测定稳定系统对于实验就是有源放大电路模拟的一、二阶稳定系统。 2.系统的频率测试硬件原理 1)正弦信号源的产生方法 频率特性测试时,一系列不同频率输入正弦信号可以通过下图示的原理产生。按照某种频率不断变化的数字信号输入到DAC0832,转换成模拟信号,经一级运放将其转换为模拟电压信号,再经过一个运放就可以实现双极性电压输出。 根据数模转换原理,知 R V N V 8 012- = (1) 再根据反相加法器运算方法,得 R R R V N V N V R R V R R V 1281282282201210--=??? ??+-?-=??? ? ??+-= (2) 由表达式可以看出输出时双极性的:当N 大于128时,输出为正;反之则为负;当输入为128时,输出为0. 在labACT 实验箱上使用的参考电压时5V 的,内部程序可以产生频率范围是对一阶系统是0.5 H Z ~64H Z 、对二阶系统是0.5 H Z ~16 H Z 的信号,并由B2单元的OUT2输出。

相关文档
最新文档