数学:1.1.1变化率问题教案 (2)

数学:1.1.1变化率问题教案 (2)
数学:1.1.1变化率问题教案 (2)

§1.1.1变化率问题

教学目标

1.理解平均变化率的概念;

2.了解平均变化率的几何意义;

3.会求函数在某点处附近的平均变化率

教学重点:平均变化率的概念、函数在某点处附近的平均变化率;

教学难点:平均变化率的概念.

教学过程:

一.创设情景

为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关:

一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度

等;

二、求曲线的切线;

三、求已知函数的最大值与最小值;

四、求长度、面积、体积和重心等。

导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。

导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度. 二.新课讲授 (一)问题提出 问题1 气球膨胀率

我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢?

气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是3

3

4)(r r V π=

如果将半径r 表示为体积V 的函数,那么3

43)(π

V V r = 分析: 3

43)(π

V V r =, ⑴ 当V 从0增加到1时,气球半径增加了)(62.0)0()1(dm r r ≈-

气球的平均膨胀率为

)/(62.00

1)

0()1(L dm r r ≈--

⑵ 当V 从1增加到2时,气球半径增加了)(16.0)1()2(dm r r ≈-

气球的平均膨胀率为

)/(16.01

2)

1()2(L dm r r ≈--

可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了.

思考:当空气容量从V 1增加到V 2时,气球的平均膨胀率是多少?

1

212)

()(V V V r V r --

问题2 高台跳水

在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在函数关系h (t )= -4.9t 2+6.5t +10.如何用运动员在某些时间段内的平

h

t

均速v 度粗略地描述其运动状态?

思考计算:5.00≤≤t 和21≤≤t 的平均速度v 在5.00≤≤t 这段时间里,)/(05.40

5.0)

0()5.0(s m h h v =--=;

在21≤≤t 这段时间里,)/(2.81

2)

1()2(s m h h v -=--=

探究:计算运动员在49

65

0≤

≤t 这段时间里的平均速度,并思考以下问题: ⑴运动员在这段时间内使静止的吗?

⑵你认为用平均速度描述运动员的运动状态有什么问题吗?

探究过程:如图是函数h (t )= -4.9t 2+6.5t +10的图像,结合图形可知,)0()49

65

(

h h =,

所以)/(0049

65)0()4965

(

m s h h v =--=

, 虽然运动员在49

65

0≤≤t 这段时间里的平均速度为)/(0m s ,但实际情况是运动员仍

然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态. (二)平均变化率概念:

1.上述问题中的变化率可用式子

1

212)

()(x x x f x f --表示, 称为函数f (x )从x 1到x 2

的平均变化率

2.若设12x x x -=?, )()(12x f x f f -=? (这里x ?看作是对于x 1的一个“增量”可用x 1+x ?代替x 2,同样)()(12x f x f y f -=?=?)

3. 则平均变化率为

=

??=??x

f

x y x x f x x f x x x f x f ?-?+=--)()()()(111212

思考:观察函数f (x )的图象 平均变化率

=

??x

f

1212)()(x x x f x f --表示什么?

直线AB 的斜率

三.典例分析

例1.已知函数f (x )=x x +-2的图象上的一点)2,1(--A 及临近一点

)2,1(y x B ?+-?+-,则

=??x

y

. 解:)1()1(22x x y ?+-+?+--=?+-,

∴x x

x x x y ?-=?-?+-+?+--=??32)1()1(2 例2. 求2

x y =在0x x =附近的平均变化率。

x

x 2

O

y

y =f (x )

f (x 1)

f (x 2)

△x =

△y =f (x 2)-f (

x ) x

解:2

02

0)(x x x y -?+=?,所以x

x x x x y ?-?+=??2

20)( x x x

x x x x x ?+=?-?+?+=02

0202022

所以2x y =在0x x =附近的平均变化率为x x ?+02 四.课堂练习

1.质点运动规律为32+=t s ,则在时间)3,3(t ?+中相应的平均速度为 . 2.物体按照s (t )=3t 2+t +4的规律作直线运动,求在4s 附近的平均变化率. 3.过曲线y =f (x )=x 3上两点P (1,1)和Q (1+Δx ,1+Δy )作曲线的割线,求出当Δx =0.1时割线的斜率. 五.回顾总结

1.平均变化率的概念

2.函数在某点处附近的平均变化率 六.布置作业

人教版高中数学全套教案导学案111变化率问题

1. 1.1变化率问题课前预习学案。知道平均变化率的定义。,课本中的问题1,2 预习目标:“变化率问题”预习内容:气球膨胀率问题1 气球,,随着气球内空气容量的增加我们都吹过气球回忆一下吹气球的过程,可以发现 ,如何描 述这种现象呢?的半径增加越来越慢.从数学角度43?r?r)V(dmVL r)气球的体积:(单位:之间的函数关系是)与半径(单位33V?)r(V V r,如果将半径那么表示为体积的函数3?4在吹气球问题中,当空气容量V从0增加到1L时,气球的平均膨胀率为__________ 当空气容量V从1L增加到2L时,气球的平均膨胀率为__________________ 当空气容量从V增加到V时,气球的平均膨胀率为_____________21问题2 高台跳水 h 与起跳后)单位:m在高台跳水运动中,,运动员相对于水面的高度h(2如何用运动+10. +6.5-4.9tt 的时间t(单位:s)存在函数关系h(t)= v? 粗略地描述其运动状态员在某些时间段内的平均速度v5t.?00?=_________________ 这段 时间里,在v2?t?1=_________________ 这段时间里,在ot 问题3 平均变化率????xffxx到从已知函数,则变化率可用式子_____________,此式称之为函数1x?xx看做是相表示=___________,可把,即习惯上用 ___________.x??x?x122x?xx__________________,代替对于类似有的一个“增量”,可用,?x)?f(x?211_______________________ 于是,平均变化率可以表示为提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中 课内探究学案 1.学习目标理解平均变化率的概念; 2.了解平均变化率的几何意义; .

高中数学变化率问题教案

§1.1.1变化率问题 教学目标 1.理解平均变化率的概念; 2.了解平均变化率的几何意义; 3.会求函数在某点处附近的平均变化率 教学重点:平均变化率的概念、函数在某点处附近的平均变化率; 教学难点:平均变化率的概念. 教学过程: 一.创设情景 为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关: 一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等; 二、求曲线的切线; 三、求已知函数的最大值与最小值; 四、求长度、面积、体积和重心等。 导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。 导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度. 二.新课讲授 (一)问题提出 问题1 气球膨胀率 我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢? ? 气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是33 4)(r r V π= ? 如果将半径r 表示为体积V 的函数,那么3 43)(π V V r = 分析: 3 43)(π V V r =, ⑴ 当V 从0增加到1时,气球半径增加了)(62.0)0()1(dm r r ≈- 气球的平均膨胀率为 )/(62.00 1) 0()1(L dm r r ≈-- ⑵ 当V 从1增加到2时,气球半径增加了)(16.0)1()2(dm r r ≈- 气球的平均膨胀率为 )/(16.01 2) 1()2(L dm r r ≈-- 可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了. 思考:当空气容量从V 1增加到V 2时,气球的平均膨胀率是多少 ?

优秀教案21-变化率与导数

第三章 导数及其应用 3.1 变化率与导数(1) 教材分析 导数是微积分的核心概念之一.它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具,因而也是解决诸如运动速度、物种繁殖率、绿化面积增长率,以及用料最省、利润最大、效率最高等实际问题的最有力的工具.在本章,我们将利用丰富的背景与大量实例,学习导数的基本概念与思想方法;通过应用导数研究函数性质、解决生活中的最优化问题等实践活动,初步感受导数在解决数学问题与实际问题中的作用.教材安排导数内容时,学生是没有学习极限概念的.教材这样处理的原因,一方面是因为极限概念高度抽象,不适合在没有任何极限认识的基础上学习.所以,让学生通过学习导数这个特殊的极限去体会极限的思想,这为今后学习极限提供了认识基础.另一方面,函数是高中的重要数学概念,而导数是研究函数的有力工具,因此,安排先学习导数方便学生学习和研究函数.基于学生已经在高一年级的物理课程中学习了瞬时速度,因此,先通过求物体在某一时刻的平均速度的极限去得出瞬时速度,再由此抽象出函数在某点的平均变化率的极限就是瞬时变化率的的模型,并将瞬时变化率定义为导数,这是符合学生认知规律的. 课时分配 本节课的教学内容选自人教社普通高中课程标准实验教科书(A 版)数学选修1-1第三章第一节的《变化率与导数》,《导数的概念》是第2课时,主要讲解导数的概念及利用定义求导数. 教学目标 重点: 通过运动物体在某一时刻的瞬时速度的探求,抽象概括出函数导数的概念. 难点:使学生体会运动物体在某一时刻的平均速度的极限意义,由此得出函数在某点平均变化率的极限就是函数在该点的瞬时变化率,并由此得出导数的概念. 知识点:导数的概念. 能力点:掌握利用求函数在某点的平均变化率的极限实现求导数的基本步骤 教育点:通过导数概念的构建,使学生体会极限思想,为将来学习极限概念积累学习经验 自主探究点:通过导数概念的教学教程,使学生体会到从特殊到一般的过程是发现事物变化规律的重要 过程. 考试点:利用导数的概念求导数. 易错易混点:对0x ?→的理解,0,0,x x ?>?<0,0x x ?>?≠但0x ?≠. 拓展点:导数的几何意义. 教具准备 多媒体课件和三角板 课堂模式 学案导学

平均变化率

江苏省盱眙中学高二数学组张勇 平均变化率 【创设情境】 1.同学们,相信大家都玩过气球吧,我们回忆一下吹气球的过程,可以发现,随着气球内气体的容量的增加,气球的半径增加的越来越慢,这种现象我们如何去解释 呢! 2.请观察教材中图,随着时间的推移,气温的变化趋势;从图中我们可以看出:在整个区间[1,32]这个31天内,气温仅仅上升了15.1;0问题1:平均每小时上升了多少度?而在区间[32,34]这两天内,气温就上升了14.80, 问题2:平均每小时上升了多少度? 我们把这个比值叫做在给定的区间上的平均变化率; 虽然A,B之间的温差与点B,C之间的温差几乎不同,但它们的平均变化率却相差很大;因此我们可以利用平均变化率的大小来刻画变量平均变化的趋势,快慢程度; 问题3:观察这个比值与这两点连线斜率之间有什么关系? 【探索研究】 1、平均变化率: f(x)?f(x)12上的平均变化率为[x一般地,函数f(x)在区间,x]21x?x12点拨:?xxx??○x?,1本质:如果函数的自变量的“增量”为相应的函数值的“增量”为,且12f(x)?f(x)y?21?)f(x)f?y?(x?xx?xx?x)(fxy?到,则函数, 从的平均变化率为122121. 江苏省盱眙中学高二数学组张勇

○;连线的斜率(割线的斜率)2几何意义:两点)) )),(x,f(x(x,f(x1122○,或说在某个区平均变化率反映了在函数在某个区间上平均变化的趋势(变化快慢)3间上曲线陡峭的程度; 课件展示平均变化率; 【例题评析】 2+2x,分别计算f(x)在下列区间上的平均变化率1:已知函数f(x)=x; 例1.[1,2] 2. [3,4] 3. [-1,1] ?y; ,求2+△y))及邻近一点B(1+△x,的图象上取一点变题1:在曲线y=x2+1A(1,2 ?x f(x)=2x+1, :已知函变题2 的平均变化率;-1],[0,5]上函数f(x)1.分别计算在区间[-3,上的平均变化率的特点;探求一次函数y=kx+b在区间[m,n]2.1x?)f(x?y内的平均变化率在区间[1,1+]变式3: 求函数x反思:曲线上两点的连线(割线)的斜率即为函数f(x)在区间[x,x]上的BA f(x)?f(x)AB平 均变化率;x?x AB12:自由落体运动的物体的位移s(单位:s)与时间t(单位:sgt(g是例3)之间的关系是:s(t)=2重力加速度),求该物体在时间段[t,t]内的平均速度;21 【反馈练习】 ???????1.0,,上的平均变化率,并比较大小;在区间y=sinx 和试比较正弦函数???? 362????23ax)?f(x f(x)在区间[-2,-1]则在区间[1,2]上的平均变化率为上的平均变化2.练习: 已知函数,率为( ) ?23? D.-3 C.-2 B. A. 江苏省盱眙中学高二数学组张勇 3.在高台跳水运动中,运动员相对于水面高度与起跳的时间t的函数关系为 2(a?0,b??c?bt?at0)h(t),则( ) bbbbbb)?h(0)h()?h()h()?h(0)h()?h()h(aa2a2a2a2a??A. B. bbbbbb???0?0 aaa22aa2a2b(0)?hh()b a?t0?0?这段时间内处于静止状态 D.C. 运动员在b a0?a4.A、B两船从同一码头同时出发,A船向北,B船向东,若A 船的速度为30km/h,B船的速度为40km/h,设时间为t,则在区间[t,t]上,A,B两船间距离变化的平均速度为_______ 21【课堂小结】 1、平均变化率的概念;

变化率和导数(三个课时教案)

第一章导数及其应用 第一课时:变化率问题 教学目标: 1.理解平均变化率的概念; 2.了解平均变化率的几何意义; 3.会求函数在某点处附近的平均变化率 教学重点:平均变化率的概念、函数在某点处附近的平均变化率; 教学难点:平均变化率的概念. 教学过程: 一.创设情景 为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关:一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等; 二、求曲线的切线; 三、求已知函数的最大值与最小值; 四、求长度、面积、体积和重心等。 导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度.

二.新课讲授 (一)问题提出 问题1 气球膨胀率 我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢? ? 气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是33 4)(r r V π= ? 如果将半径r 表示为体积V 的函数,那么343)(π V V r = 分析: 3 43)(π V V r =, ⑴当V 从0增加到1时,气球半径增加了 )(62.0)0()1(dm r r ≈- 气球的平均膨胀率为 )/(62.00 1) 0()1(L dm r r ≈-- ⑵当V 从1增加到2时,气球半径增加了 )(16.0)1()2(dm r r ≈- 气球的平均膨胀率为)/(16.01 2)1()2(L dm r r ≈-- 可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了. 思考:当空气容量从V 1增加到V 2时,气球的平均膨胀率是多少? 1 212) ()(V V V r V r --

最新3.1.1变化率问题汇总

3.1.1变化率问题

3.1.1变化率问题 一.设计思想:(1)用已知探究未知的思考方法(2)用逼近的思想考虑问题的 思考方法. 二.教学目标 1.理解平均变化率的概念; 2.了解平均变化率的几何意义; 3.会求函数在某点处附近的平均变化率 4. 感受平均变化率广泛存在于日常生活之中,经历运用数学描述和刻画现 实世界的过程,体会数学的博大精深以及学习数学的意义。 三.教学重点 1.通过实例,让学生明白变化率在实际生活中的需要,探究和体验平均变 化率的实际意义和数学意义; 2.掌握平均变化率的概念,体会逼近的思想和用逼近的思想思考问题的方 法; 四.教学难点:平均变化率的概念. 五.教学准备 1.认真阅读教材、教参,寻找有关资料; 2.向有经验的同事请教; 3.从成绩好的学生那里了解他们预习的情况和困惑的地方. 六.教学过程 一.创设情景 (1)让学生阅读章引言,并思考章引言写了几层意思? 仅供学习与交流,如有侵权请联系网站删除谢谢2

仅供学习与交流,如有侵权请联系网站删除 谢谢3 (2) 学生先阅读,思考,老师再提示;①以简洁的话语指明函数和微积分的关系,微积分的研究对象就是函数,正是对函数的深入研究导致了微积分的产生;②从数学史的角度,概括地介绍与微积分创立密切相关的四类问题以及做出巨大贡献的科学家;③概述本章的主要内容,以及导数工具的作用和价值. 让学生对这章书先有一个大概认识,从而使学生学习有了方向,能更好地进行以下学习. 二.新课讲授 (一)问题提出 问题1气球膨胀率问题: 老师准备了两个气球,请两位同学出来吹,请观看同学谈谈看见的情景;再请吹气球同学谈谈吹气球过程的感受,开始与结束感受是否有区别? 我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢? 气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是?Skip Record If...? 如果将半径r 表示为体积V 的函数,那么?Skip Record If...? 分析: ?Skip Record If...?, ⑴ 当V 从0增加到1时,气球半径增加了?Skip Record If...? 气球的平均膨胀率为?Skip Record If...? ⑵ 当V 从1增加到2时,气球半径增加了?Skip Record If...? 气球的平均膨胀率为?Skip Record If...?

高中数学第三章.1变化率问题3.1.2导数的概念学案含解析新人教A版选修7.doc

3.1.1 & 3.1.2 变化率问题 导数的概念 [提出问题] 假设下图是一座山的剖面示意图,并建立如图所示的平面直角坐标系.A 是出发点,H 是山顶.爬山路线用函数y =f (x )表示. 自变量x 表示某旅游者的水平位置,函数值y =f (x )表示此时旅游者所在的高度.设点 A 的坐标为(x 1,y 1),点 B 的坐标为(x 2,y 2). 问题1:若旅游者从点A 爬到点B ,且这段山路是平直的,自变量x 和函数值y 的改变量Δx ,Δy 分别是多少? 提示:自变量x 的改变量为Δx =x 2-x 1,函数值的改变量为Δy =y 2-y 1. 问题2:Δy 的大小能否判断山路的陡峭程度? 提示:不能. 问题3:怎样用数量刻画弯曲山路的陡峭程度呢? 提示:对山坡AB 来说,Δy Δx =y 2-y 1 x 2-x 1可近似地刻画. 问题4:能用Δy Δx 刻画山路陡峭程度的原因是什么? 提示:因Δy Δx 表示A ,B 两点所在直线的斜率k ,显然,“线段”所在直线的斜率越大, 山路越陡.这就是说,竖直位移与水平位移之比Δy Δx 越大,山路越陡;反之,山路越缓. 问题5:从点A 到点B 和从点A 到点C ,两者的Δy Δx 相同吗? 提示:不相同.

[导入新知] 函数的平均变化率 对于函数y =f (x ),给定自变量的两个值x 1,x 2,当自变量x 从x 1变为x 2时,函数值从 f (x 1)变为f (x 2),我们把式子f x 2-f x 1 x 2-x 1 称为函数y =f (x )从x 1到x 2的平均变化率. 习惯上用Δx 表示x 2-x 1,即Δx =x 2-x 1,可把Δx 看作是相对于x 1 的一个“增量”,可用x 1+Δx 代替x 2.类似地,Δy =f (x 2)-f (x 1).于是,平均变化率可表示为 Δy Δx . [化解疑难] 1.正确理解增量Δx 与Δy Δx 是自变量x 在x 0处的改变量,不是Δ与x 的乘积,Δx 的值可正,可负,但不能为0.Δy 是函数值的改变量,可正,可负,也可以是0.函数的平均变化率为0,并不一定说明函数f (x )没有变化. 2.平均变化率是曲线陡峭程度的“数量化”,曲线陡峭程度是平均变化率的“视觉化”.利用平均变化率的大小可以刻画变量平均变化的趋势和快慢程度. [提出问题] 一质点的运动方程为s =8-3t 2 ,其中s 表示位移,t 表示时间. 问题1:试求质点在[1,1+Δt ]这段时间内的平均速度. 提示:Δs Δt = 8-+Δt 2 -8+3×1 2 Δt =-6-3Δt . 问题2:当Δt 趋近于0时,“问题1”中的平均速度趋近于什么?如何理解这一速度? 提示:当Δt 趋近于0时,Δs Δt 趋近于-6.这时的平均速度即为t =1时的瞬时速度. [导入新知] 1.瞬时速度的概念 物体在某一时刻的速度称为瞬时速度: 设物体运动的路程与时间的关系是s =s (t ),当Δt 趋近于0时,函数s (t )在t 0到t 0 +Δt 之间的平均变化率s t 0+Δt -s t 0 Δt 趋近于一个常数,把这个常数称为瞬时速 度. 2.导数的定义

3.1.1变化率问题

极限 (数学术语) 编辑 本词条由“科普中国”百科科学词条编写与应用工作项目审核。 “极限”是数学中的分支——微积分的基础概念,广义的“极限”是指“无限靠近而永远不能到达”的意思。数学中的“极限”指:某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A 不断地逼近而“永远不能够重合到A”(“永远不能够等于A,但是取等于A‘已经足够取得高精度计算结果)的过程中,此变量的变化,被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点的趋势”。极限是一种“变化状态”的描述。此变量永远趋近的值A叫做“极限值”(当然也可以用其他符号表示)。 以上是属于“极限”内涵通俗的描述,“极限”的严格概念最终由柯西和魏尔斯特拉斯等人严格阐述。 极限思想 编辑 简介 极限的思想是近代数学的一种重要思想,数学分析就是以极限概念为基础、极限理论(包括级数)为主要工具来研究函数的一门学科。 所谓极限的思想,是指“用极限概念分析问题和解决问题的一种数学思想”。用极限思想解决问题的一般步骤可概括为: 对于被考察的未知量,先设法正确地构思一个与它的变化有关的另外一个变量,确认此变量通过无限变化过程的’影响‘趋势性结果就是非常精密的约等于所求的未知量;用极限原理就可以计算得到被考察的未知量的结果。 极限思想是微积分的基本思想,是数学分析中的一系列重要概念,如函数的连续性、导数(为0得到极大值)以及定积分等等都是借助于极限来定义的。如果要问:“数学分析是一门什么学科?”那么可以概括地说:“数学分析就是用极限思想来研究函数的一门学科,并且计算结果误差小到难于想像,因此可以忽略不计

(word完整版)数学北师大版高中选修2-2北师大版高中数学选修2-2第二章《变化率与导数》教案

北师大版高中数学选修2-2第二章《变化率与导数》全部教案 §1变化的快慢与变化率 第一课时变化的快慢与变化率——平均变化率 一、教学目标:1、理解函数平均变化率的概念; 2、会求给定函数在某个区间上的平均变化率,并能根据函数的平均变化率判断函数在某区间上变化的快慢。 二、教学重点:从变化率的角度重新认识平均速度的概念,知道函数平均变化率就是函数在某区间上变化的快慢的数量描述。 教学难点:对平均速度的数学意义的认识 三、教学方法:探析归纳,讲练结合 四、教学过程 (一)、客观世界的一切事物,小至粒子,大至宇宙,始终都在运动和变化着。因此在数学中引入了变量的概念后,就有可能把运动现象用数学来加以描述了。由于函数概念的产生和运用的加深,也由于科学技术发展的需要,一门新的数学分支就继解析几何之后产生了,这就是微积分学。微积分学这门学科在数学发展中的地位是十分重要的,可以说它是继欧氏几何后,全部数学中的最大的一个创造。 从微积分成为一门学科来说,是在十七世纪,但是,微分和积分的思想在古代就已经产生了。公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、螺线下面积和旋转双曲体的体积的问题中,就隐含着近代积分学的思想。十七世纪,有许多科学问题需要解决,这些问题也就成了促使微积分产生的因素。归结起来,大约有四种主要类型的问题: 第一类是研究运动的时候直接出现的,也就是求即时速度的问题。 第二类问题是求曲线的切线的问题。 第三类问题是求函数的最大值和最小值问题。第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力。 十七世纪的许多著名的数学家、天文学家、物理学家都为解决上述几类问题作了大量的研究工作,如法国的费尔玛、笛卡尔、罗伯瓦、笛沙格;英国的巴罗、瓦里士;德国的开普勒;意大利的卡瓦列利等人都提出许多很有建树的理论。为微积分的创立做出了贡献。 十七世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作。他们的最大功绩是把两个貌似毫不相关的问题联系在一起,一个是切线问题(微分学的中心问题),一个是求积问题(积分学的中心问题)。牛顿和莱布尼茨建立微积分的出发点是直观的无穷小量,因此这门学科早期也称为无穷小分析,这正是现在数学中分析学这一大分支名称的来源。牛顿研究微积分着重于从运动学来考虑,莱布尼茨却是侧重于几何学来考虑的。牛顿在1671年写了《流数法和无穷级数》,这本书直到1736年才出版,它在这本书里指出,变量是由点、线、面的连续运动产生的,否定了以前自己认为的变量是无穷小元素的静止集合。他把连续变量叫做流动量,把这些流动量的导数叫做流数。牛顿在流数术中所提出的中心问题是:已知连续运动的路径,求给定时刻的速度(微分法);已知运动的速度求给定时间内经过的路程(积分法)。德国的莱布尼茨是一个博才多学的学者,1684年,他发表了现在世界上认为是最早的微积分文献,这篇文章有一个很长而且很古怪的名字《一种求极大极小和切线的新方法,它也适用于分式和无理量,以及这种新方法的奇妙类型的计算》。就是这样一片说理也颇含糊的文章,却有划时代的意义。他以含有现代的微分符号和基本微分法则。1686年,莱布尼茨发表了第一篇积分学的文献。他是历史上最伟大的符号学者之一,他所创设的微积分符号,远远优于牛顿的符号,这对微积分的发展有极大的影响。现在我们使用的微积分通用符号就是当时莱布尼茨精心选用的。微积分学的创立,极大地推动了数学的发展,过去很多初等数学束手无策的问题,运用微积分,往往迎刃而解,显示出微积分学的非凡威力。 研究函数,从量的方面研究事物运动变化是微积分的基本方法。这种方法叫做数学分析。 本来从广义上说,数学分析包括微积分、函数论等许多分支学科,但是现在一般已习惯于把数学分析和微积分等同起来,数学分析成了微积分的同义词,一提数学分析就知道是指微积分。微积分的基本概念和内容包括微分学和积分学。 微分学的主要内容包括:极限理论、导数、微分等。 积分学的主要内容包括:定积分、不定积分等。 微积分是与应用联系着发展起来的,最初牛顿应用微积分学及微分方程为了从万有引力定律导出了开普勒行星运动三定律。此后,微积分学极大的推动了数学的发展,同时也极大的推动了天文学、力学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支中的发展。并在这些学科中有越来越广泛的应用,特别是

§1.1.1变化率问题教学设计

§1.1.1变化率问题 教学目标: 1.理解平均变化率的概念; 2.了解平均变化率的几何意义; 3.会求函数在某点处附近的平均变化率 教学重点:平均变化率的概念、函数在某点处附近的平均变化率; 教学难点:平均变化率的概念. 教学过程: 一.创设情景 为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关: 一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等; 二、求曲线的切线; 三、求已知函数的最大值与最小值; 四、求长度、面积、体积和重心等。 导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。 导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度. 二.新课讲授 (一)问题提出 问题1 气球膨胀率 我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢? ? 气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是33 4)(r r V π= ? 如果将半径r 表示为体积V 的函数,那么343)(π V V r = 分析: 3 43)(π V V r =, ⑴ 当V 从0增加到1时,气球半径增加了)(62.0)0()1(dm r r ≈- 气球的平均膨胀率为 )/(62.00 1) 0()1(L dm r r ≈-- ⑵ 当V 从1增加到2时,气球半径增加了)(16.0)1()2(dm r r ≈- 气球的平均膨胀率为)/(16.01 2) 1()2(L dm r r ≈-- 可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了. 思考:当空气容量从V 1增加到V 2时,气球的平均膨胀率是多少? 1 212) ()(V V V r V r -- 问题2 高台跳水 在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在函数关系h (t )= -4.9t 2+6.5t +10. 如何用运动员在某

1.1变化率与导数第1课时 精品教案

1.1变化率与导数 【课题】:1.1.1变化率问题 【教学目标】: (1)知识目标: ○1感受平均变化率广泛存在于日常生活之中,经历运用数学描述和刻画现实世界的过程。体会数学的博大精深以及学习数学的意义。○2理解平均变化率的意义,为后续建立瞬时变化率和导数的数学模型提供丰富的背景。 (2)情感目标:让学生充分体会到生活中处处有数学。 (3)能力目标:提高学生学习能力与探究能力、归纳表达能力。【教学重点】: 正确理解平均变化率; 【教学难点】: 平均变化率的概念。 【课前准备】:powerpoint 【教学过程设计】:

(基础题) 1.物体自由落体的运动方程是:()2 12 S t gt =,求1s 到2s 时的平均速度. 解:213 14.72 S S g m -= = ,211t t s -=,

则()21 21 14.7/S S v m s t t -= =- 2.水经过虹吸管从容器甲中流向容器乙,t s 后容器甲中水的体 积 (单位:3 cm ),计算第一个10s 内V 的平 均变化率。 注: (10)(0)100 V V -- 3.已知函数2 ()f x x =,分别计算()f x 在下列区间上的平均变 化率: (1)[1,3]; (2)[1,2]; (3)[1,1.1]; (4)[1,1.001]。 4.某婴儿从出生到第12个月的体重变化如图所示,试分别计算从出生到第3个月与第6个月到第12个月该婴儿体重的平均变化率。 (难题) 5.思考: (1)课本P4思考题 (2)在高台跳水运动中,运动员相对水面的高度h (单位:m )与起跳后的时间t (单位: s )存在函数关系h (t )=-4.9t 2+6.5t +10.计算运动员在65 049 t ≤≤这段时间里的平均速度, 并思考下面的问题: ○ 1运动员在这段时间里是静止的吗? ○ 2你认为用平均速度描述运动员的运动状态有什么问题吗? 答案: ○1不是. ○2不能客观描述运动员的运动状态. T(月) 3 9 12 t t V 1.025)(-? =

3.1 变化率与导数 教学设计 教案

教学准备 1. 教学目标 知识与技能 1.理解平均变化率的概念. 2.了解瞬时速度、瞬时变化率、的概念. 3.理解导数的概念 4.会求函数在某点的导数或瞬时变化率. 过程与方法 理解平均变化率的概念,了解平均变化率的几何意义,会计算函数在某个区间上的平均变化率. 情感、态度与价值观 感受数学模型刻画客观世界的作用,进一步领会变量数学的思想,提高分析问题、解决问题的能力. 2. 教学重点/难点 教学重点 平均变化率的概念. 教学难点 平均变化率概念的形成过程. 3. 教学用具 多媒体、板书 4. 标签 教学过程 教学过程设计

创设情景、引入课题 【师】十七世纪,在欧洲资本主义发展初期,由于工场的手工业向机器生产过渡,提高了生产力,促进了科学技术的快速发展,其中突出的成就就是数学研究中取得了丰硕的成果―――微积分的产生。 【师】人们发现在高台跳水运动中,运动员相对于水面的高度h(单位:米)与起跳后的时间t(单位:秒)存在函数关系h(t)=-4.9t2+6.5t+10. 如何用运动员在某些时间段内的平均速度粗略地描述其运动状态? 让学生自由发言,教师不急于下结论,而是继续引导学生:欲知结论怎样,让我们一起来观察、研探。 新知探究 1.变化率问题 探究1 气球膨胀率 【师】很多人都吹过气球,回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢? 气球的体积V(单位:L)与半径r(单位:dm)之间的函数关系是 如果将半径r表示为体积V的函数,那么 【分析】 (1)当V从0增加到1时,气球半径增加了 气球的平均膨胀率为 (2)当V从1增加到2时,气球半径增加了 气球的平均膨胀率为

课时跟踪检测(十七) 变化率与导数、导数的运算

课时跟踪检测(十七) 变化率与导数、导数的运算 一抓基础,多练小题做到眼疾手快 1.曲线f (x )=x 3-x +3在点P 处的切线平行于直线y =2x -1,则P 点的坐标为( ) A .(1,3) B .(-1,3) C .(1,3)和(-1,3) D .(1,-3) 解析:选C f ′(x )=3x 2-1,令f ′(x )=2,则3x 2-1=2,解得x =1或x =-1,∴P (1,3)或(-1,3),经检验,点(1,3),(-1,3)均不在直线y =2x -1上,故选C. 2.曲线f (x )=2x -e x 与y 轴的交点为P ,则曲线在点P 处的切线方程为( ) A .x -y +1=0 B .x +y +1=0 C .x -y -1=0 D .x +y -1=0 解析:选C 曲线f (x )=2x -e x 与y 轴的交点为(0,-1). 且f ′(x )=2-e x ,∴f ′(0)=1. 所以所求切线方程为y +1=x , 即x -y -1=0. 3.(2018·温州模拟)设函数f (x )在(0,+∞)内可导,且f (e x )=x +e x ,则f ′(2 017)=( ) A .1 B .2 C .12 017 D .2 0182 017 解析:选D 令e x =t ,则x =ln t ,所以f (t )=ln t +t ,故f (x )=ln x +x .求导得f ′(x )=1x +1,故f ′(2 017)=12 017+1=2 0182 017 .故选D. 4.若曲线f (x )=x sin x +1在x =π2 处的切线与直线ax +2y +1=0 相互垂直,则实数a =________. 解析:因为f ′(x )=sin x +x cos x ,所以f ′????π2=sin π2+π2cos π2 =1.又直线ax +2y +1=0的斜率为-a 2 ,所以1×????-a 2=-1,解得a =2. 答案:2 5.(2018·杭州模拟)已知函数f (x )=x 33-b 2 x 2+ax +1(a >0,b >0),则函数g (x )=a ln x +f ′(x )a 在点(b ,g (b ))处切线的斜率的最小值是________. 解析:因为a >0,b >0,f ′(x )=x 2-bx +a ,所以g ′(x )=a x +2x -b a ,则g ′(b )=a b +2b -b a =a b +b a ≥2,当且仅当a =b =1时取等号,所以斜率的最小值为2.

2018 2019高中数学第1章导数及其应用11导数的概念111平均变化率讲义含解析苏教版

1.1.1 平均变化率 AH是山假设下图是一座山的剖面示意图,并在上面建立平面直角坐标系.是出发点,yfx)表 示.顶.爬山路线用函数(= xyfx)表示此时旅游者所在的高度.设点表示某旅游者的水平位置,函数值(=自变量AxyBxy).(的坐标为的坐标为( ,,),点1100ABxyxy分别是,1:若旅游者从的改变量点爬到Δ点,则自变量Δ和函数值问题多少? xxxyyy. Δ提示:Δ-=-=,0110xy来刻画山路的陡峭程度?ΔΔ和问题2:如何用yΔAB,可用来近似刻画山路的陡峭程度.提示:对于山坡xΔyyy-Δ01问题3:试想=的几何意义是什么? xxx-Δ01yyy-Δ01AB的斜率.=表示直线提示:xxx-Δ01yyΔΔABAC,两者的相同吗?到到,从问题4:从的值与山路的陡峭程度有什么关xxΔΔ系? yΔ提示:不相同.的值越大,山路越陡峭.xΔ fxfx))-((12xxxf. ,]在区间[.一般地,函数1上的平均变化率为()21xx-122.平均变化率是曲线陡峭程度的“数量化”,或者说,曲线陡峭程度是平均变化率的“视觉化”. 在函数平均变化率的定义中,应注意以下几点: xx]上有意义;函数在[ ,(1)21fxfx))-((12xxfxfx)的值可正、可负、可为(中,->0在式子(2),而0. ()-1122xx-12xx取不同的数值时,函数的平均变化率不一定相在平均变化率中,当(3)取定值后,21.

xx 取不同的数值时,函数的平均变化率也不一定相同.同;同样的,当 取定值后,12 [对应学生用书P3] 求函数在某区间的平均变化率 2 xxf 上的平均变化率;+2(1)[例1] 求函数在区间([2,2.1])=3xxg 上的平均变化率.[-2(, -)=31]-2求函数(2)在区间求出所给区间内自变量的改变量及函数值的改变量,从而求出平均变化] [思路点拨 率.2 xfx 2函数在区间([2,2.1])=3上的平均变化率为:+[精解详析] (1)22 ff +22)2)--(3(2)(3×2.1×+(2.1)==12.3. 0.12.1-2gg (--2)-(1)xxg =化率为平2在区间[-2,-1]上的(2)函数均(=)3变- 2)--((-1)2][3-×(-2)-×[3(-1)-2] 2)(--1)-(8)-5)-((-3. == 2-1+[一点通] 求函数平均变化率的步骤为: xx ; -第一步:求自变量的改变量12 fxfx );)- 第二步:求函数值的改变量((12 fxfx )-(()12 . 第三步:求平均变化率 xx - 12 xxg .=-)3[2,4]在上的平均变化率是________1.函数(gg (2)-3×4-(-3)×-(4)2xxg =3 解析:函数()=-上的平均变化率为在[2,4]= 2-42-46 +12-3. =- 2 3 答案:-xyf )2.如图是函数=(的图象,则:xf 1,1]-在区间)函数(1)([上的平均变化率为________;xf .________上的平均变化率为[0,2]在区间)(函数(2). ff 1(-1)2-(1)-1xf . =-)在区间[1,1]解析:(1)函数上的平均变化率为(= 21)21-(- x 3+??x ,≤1≤,-1 2?xxff )的图象知,)(2)由函数(( =

变化率与导数教案

变化率与导数教案 Prepared on 24 November 2020

第三章 变化率和导数 3.1.1瞬时变化率—导数 教学目标: (1)理解并掌握曲线在某一点处的切线的概念 (2)会运用瞬时速度的定义求物体在某一时刻的瞬时速度和瞬时加速度 (3)理解导数概念 实际背景,培养学生解决实际问题的能力,进一步掌握在一点处的导数的定义及其几何意义,培养学生转化问题的能力及数形结合思想 教学过程:时速度我们是通过在一段时间内的平均速度的极限来定义的,只要知道了物体的运动方程,代入公式就可以求出瞬时速度了.运用数学工具来解决物理方面的问题,是不是方便多了.所以数学是用来解决其他一些学科,比如物理、化学等方面问题的一种工具,我们这一节课学的内容以及上一节课学的是我们学习导数的一些实际背景 一、复习引入 1、什么叫做平均变化率; 2、曲线上两点的连线(割线)的斜率与函数f(x)在区间[x A ,x B ]上的平均变化率 3、如何精确地刻画曲线上某一点处的变化趋势呢 下面我们来看一个动画。从这个动画可以看出,随着点P 沿曲线向点Q 运动,随着点P 无限逼近点Q 时,则割线的斜率就会无限逼近曲线在点Q 处的切线的斜率。 所以我们可以用Q 点处的切线的斜率来刻画曲线在点Q 处的变化趋势 二、新课讲解 1、曲线上一点处的切线斜率 不妨设P(x 1,f(x 1)),Q(x 0,f(x 0)),则割线PQ 的斜率为0 101) ()(x x x f x f k PQ --=, 设x 1-x 0=△x ,则x 1 =△x +x 0,

∴x x f x x f k PQ ?-?+= ) ()(00 当点P 沿着曲线向点Q 无限靠近时,割线PQ 的斜率就会无限逼近点Q 处切线斜率,即当△x 无限趋近于0时,x x f x x f k PQ ?-?+= ) ()(00无限趋近点Q 处切线斜率。 2、曲线上任一点(x 0,f(x 0))切线斜率的求法: x x f x x f k ?-?+= ) ()(00,当△x 无限趋近于0时,k 值即为(x 0,f(x 0))处切线的 斜率。 3、瞬时速度与瞬时加速度 (1)平均速度: 物理学中,运动物体的位移与所用时间的比称为平均速度 (2) 位移的平均变化率: t t s t t s ?-?+) ()(00 (3)瞬时速度:当无限趋近于0 时,t t s t t s ?-?+) ()(00无限趋近于一个常数,这个常 数称为t=t 0时的瞬时速度 求瞬时速度的步骤: 1.先求时间改变量t ?和位置改变量)()(00t s t t s s -?+=? 2.再求平均速度t s v ??= 3.后求瞬时速度:当t ?无限趋近于0,t s ??无限趋近于常数v 为瞬时速度 (4)速度的平均变化率: t t v t t v ?-?+) ()(00 (5)瞬时加速度:当t ?无限趋近于0 时,t t v t t v ?-?+) ()(00无限趋近于一个常数,这 个常数称为t=t 0时的瞬时加速度 注:瞬时加速度是速度对于时间的瞬时变化率

平均变化率

平均变化率 一、教学目标 知识目标:通过实例直观感知、构建平均变化率的概念,并初步运用和加深理解平均变化率的实际意义和数学意义. 能力目标:由平均变化率的实际意义到数学意义,体现实际问题数学化的过程,并渗透“以直代曲”、“数形结合”的思想方法,培养学生分析问题、解决问题的能力. 情感目标:经历运用数学模型刻画客观世界的“数学化”过程,感受数学产生和发展的规律,培养学生勇于探索、创新的个性品质. 二、教学重点、难点 重点:平均变化率概念的建构和平均变化率的实际意义. 难点:平均变化率的实际意义和数学意义的互相转化. 三、教学方法 启发式和互动式教学方法以及多媒体辅助教学. 四、教学过程 Ⅰ.创设情境,引出问题 让学生观看过山车录像并提出问题:注意观察过山车在运行过程中有哪些量在发生变化.从而通过过山车在运行过程中位移的变化、速度的变化、曲线的上升下降等具体可视现象概括为在运动过程中变量的变化情况,就是新的一章《导数及其应用》将要研究的问题,从而引出本章课题,并用恩格斯的话强调微分学在自然科学中的重要意义,再设计了两个贴近生活的实例: 实例1.气温随时间变化的快慢情况; 实例2.婴儿的体重随时间变化的快慢情况. 用具有潜在意义的、饶有兴趣的实际问题,将教学内容自然呈现在学生面前,用问题抓住学生,激发其探究欲望.这两个实际问题让学生直观的感受到生活实际中的一些变化快慢的问题,从而会产生数学问题就是如何用数学模型去刻画这种变化的快慢,引出课题《平均变化率》.让学生体会到“数学源于生活”体现课堂教学的“生活性”. Ⅱ.案例分析,建构概念 通过案例分析构建数学理论,如何从数学角度描述这些现象. 对实例1中气温随时间变化的快慢情况的刻画经历如下几个过程: 1.由表格中的数据和天气逐渐变热的图片让学生初步从直觉上感受天气在逐渐变热,而且4月18日到4月20这两天的气温陡增.

平均变化率教案

高中数学选修2—2 平均变化率(教案)

高中数学选修2—2 1.1.1 平均变化率(教学设计) 一、教学目标 知识与技能: 1、理解平均变化率的概念; 2、通过具体事例,感受平均变化率广泛存在于日常生活之中,经历运用数学 描述刻画现实世界的过程。 过程与方法: 1、通过动手计算培养学生观察、分析、比较和归纳能力; 2、通过对实际问题的探究使学生体会类比、从特殊到一般的数学思想。 情感、态度与价值观: 感受平均变化率广泛存在于日常生活之中,经历运用数学描述和刻画现实世界的过程。体会数学的博大精深以及学习数学的意义。 二、教学重点、难点 重点:平均变化率的概念的归纳得出;求函数在某个区间的平均变化率。 难点:从实际例子归纳出函数的平均变化率的过程。 三、教学方法 引导学生通过由特殊到一般的思想方法得到平均变化率的概念;引导学生通过积极探究、讨论,逐步理解如何求函数的平均变化率。 四、教学基本流程 创设情境,引导探索分析归纳,建立概念 例题讲解,尝试应用回顾反思,感悟升华 五、教学过程(具体如下表)

问题三:气球膨胀率 让学生吹气球。 提出问题一:细细体会气球膨胀的过程,你有什么发现归纳出: 随着气球内空气容量的增加,气球的半径增加越来越慢. 提出问题二:怎样从数学的角度描述这种现象 气球的体积V(单位:L)与半径r(单 位:dm)之间的函数关系是 如果将半径r表示为体积V的函数, 那么 操作实践:, (1)当V从0增加到1时,气球半径增加了 气球的平均膨胀率为 (2)当V从1增加到2时,气球半径增加了 气球的平均膨胀率为 可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了. 思考:当空气容量从V1增加到V2时,气球的平均膨胀率是多少

3.1变化率与导数(教学设计)(3)

3.1变化率与导数(教学设计)(3) 3.1.3导数的几何意义 教学目标: 知识与技能目标: 通过实验探究,理解导数的几何意义,体会导数在刻画函数性质中的作用。 过程与方法目标: 培养学生分析、抽象、概括等思维能力;通过“以直代曲”思想的具体运用,使学生达到思维方式的迁移,培养学生科学的思维习惯。 情感、态度与价值观目标: 渗透逼近和“以直代曲”思想,能激发学生的学习兴趣,培养学生不断发展、探索知识的精神,引导学生从有限中认识无限,体会量变和质变的辩证关系,感受数学思想方法的魅力。 教学重点:曲线的切线的概念、切线的斜率、导数的几何意义; 教学难点:导数的几何意义. 教学过程: 一、复习回顾: 导数的概念: 从函数y =f (x )在x =x 0处的瞬时变化率是: 000 ()() lim lim x x f x x f x f x x ?→?→+?-?=?? 我们称它为函数()y f x =在0x x =出的导数,记作'0()f x 或0 ' |x x y =,即 0000 ()() ()lim x f x x f x f x x ?→+?-'=? 说明:(1)导数即为函数y =f (x )在x =x 0处的瞬时变化率 (2)0x x x ?=-,当0x ?→时,0x x →,所以000 ()() ()lim x f x f x f x x x ?→-'=- 二.创设情景,新课引入: (一)平均变化率、割线的斜率 (二)瞬时速度、导数 我们知道,导数表示函数y =f (x )在x =x 0处的瞬时变化率,反映了函数y =f (x )在x =x 0附近的变化情况,导数0()f x '的几何意义是什么呢? 三.师生互动,新课讲解: (一)曲线的切线及切线的斜率: 如图 3.1-2,当(,())(1,2,3,4)n n n P x f x n =沿着曲线()f x 趋近于点00(,())P x f x 时,割线n P P 的变化趋势是什么? 图3.1-2

相关文档
最新文档