电损耗计算公式

电损耗计算公式
电损耗计算公式

摆出公式:

电流等于电压与电阻之:I=U/R

功率等于电压与电流的积:P=U*I=U*U/R

db为化简大数字的计算,采用对数的方式将其进行缩小计算:db=10log p 电缆电阻等于电阻率与电缆长度的积再比上电缆的截面积

电阻率的计算公式为:ρ=RS/L。

ρ为电阻率——常用单位Ω·m

S为横截面积——常用单位㎡

R为电阻值——常用单位Ω

L为导线的长度——常用单位m

电缆选择的计算程序

(1)例:允许损耗为XdB,

X=10log p

计算所损耗的功率P

(2) P=U*U/R

根据额定功率与额定电压计算负载的等效电阻

(3)计算整个电路的电流

I=(P额—P负)/R负

(4)根据电流与损耗功率决定电缆的电阻

P=I*I*R

(5)根据电阻率与线路长度决定电缆的截面积

ρ=RS/L

电阻率请询问电缆生产厂家

几种金属导体在20℃时的电阻率

材料电阻率(Ω m)

(1)银 1.65 × 10-8

(2)铜 1.75 × 10-8

(3)铝 2.83 × 10-8

(4)钨 5.48 × 10-8

(5)铁9.78 × 10-8

(6)铂 2.22 × 10-7

(7)锰铜 4.4 × 10-7

(8)汞9.6 × 10-7

(9)康铜 5.0 × 10-7

(10)镍铬合金 1.0 × 10-6

(11)铁铬铝合金1.4 × 10-6

(12) 铝镍铁合金1.6 × 10-6

(13)石墨(8~13

电缆损耗计算公式

电缆损耗计算公式 如果从材料上计算,那需要的数据比较多,那不好算,而且理论与实际差别较大。嗯,是比较正常的。常规电缆是5-8%的损耗。一般常用计算损耗的方法,就是通过几个电表的示数加减计算的。因为理论与实际的误差是比较大的,线路老化,会造成线路电阻变大,损耗增大。7%的损耗,是正常的。还需要你再给出一些数据…如电阻率等… 185的铜线,长度200米,电 缆损耗是多少。 电缆线路损耗计算一条500米长的240铜电缆线路损耗怎么计。 首先要知道电阻: 截面1平方毫米长度1米的铜芯线在20摄氏度时电阻为0.018 欧,R=P*L/S(P电阻系数.L长度米.S截面平方毫米) 240平方毫米铜线、长度500米、电阻:0.0375欧姆假定电流100安培,导线两端的电压:稀有金属3.75伏。耗功率:37.5瓦。 急求电缆线电损耗的计算公式? 线路电能损耗计算方法A1 线路电能损耗计算的基本方法是均方根电流法,其代表日的损耗 电量计算为:ΔA=3 Rt×10-3 (kW·h) (Al-1)Ijf = (A) (Al-2)式中ΔA——代表日损耗电量,kW·h;t——运行时间(对于代表日t=24),h;Ijf——均方根电流,A;R——线路电 阻,n;It——各正点时通过元件的负荷电流,A。当负荷曲线以三相有功功率、无功功率表示时:Ijf= = (A) (Al-3)式中Pt ——t时刻通过元件的三相有功功率,kW;Qt——t时刻通过 元件的三相无功功率,kvar;Ut——t时刻同端电压,kV。A2 当具备平均电流的资料时,可以利用均方根电流与平均电流的等效关系进行电能损耗计算,令均方根电流Ijf与平均电流 Ipj(代表日负荷电流平均值)的等效关系。 3*150+1*70电缆300米线路损耗如何计算 300*0.01=3米也就是说300米的主材消耗量是3米.如果工作量是300米的工程,那么造价时的主材应申请303米.但如果是300米的距离敷设电缆时,需考虑波形弯度,弛度和交叉的附加长度,那么就应该是(水平长度+垂直长度)*1.025+预留长度,算完得数后再乘以1.01就是主材的最后消耗量。 一般电缆的损耗怎样计算 理论上只能取个适当的系数,如金属1.01~1.02,非金属1.04~1.05。要确切的得称重收集数据并总结归纳可得。 电缆线用电损耗如何计算?如现用YJV22-3*150+1*70 电缆线。 电缆电阻的计算: 1、铜导线的电阻率为:0.0175hexun1 Ω·m, 根据公式:R=P*L/S(P电阻系数.L长度米.S截面平方毫米),电缆的电阻为:R=0.0175*260/70=0.065Ω; 2、根据用公式P=I2R计算功率损耗。

电机损耗计算

Power loss:这个名词,出现在11及之前的版本。指的是感应电流对应的铜耗。比如鼠笼式异步电机转子导条铜耗,永磁体涡流损耗等。在12及更高版本中,该名词已更名为Solidloss。 Solidloss:如上解释,出现在12及更高版本中,指的是大块导体中感应电流产生的铜耗。Coreloss:铁耗。指的是根据硅钢片厂商提供的损耗曲线,求得的铁耗。 Ohmic_loss:感应电流产生的损耗的密度分布。也就是Powerloss或Solidloss的密度。Stranded Loss R:电压源(非外电路中的)对应的绞线铜耗。 Stranded Loss:电流源,外电路中的电压源或电流源,对应的绞线铜耗。 铜耗问题,阐述如下。 铜耗分为2部分,一是主动导体产生的,比如异步和同步电机定子绕组;二是被动导体产生的,比如鼠龙式异步电机转子导条。主动导体一般是多股绞线(也就是stranded),被动导体一般是大块导体(solid)。它们分别对应stranded loss(R)和solid loss。 主动导体损耗:需要设置导体为stranded,并施加电压源,电流源或外电路。当施加的是电压源时,并且给定电机相电阻和端部漏电感(此处针对二维模型)值,则后处理中results/create transient report/retangular report/stranded loss R就是主动导体的损耗,比如异步或同步电机的定子铜耗。当施加的是电流源,外电路中的电压源或电流源时,后处理中results/create transient report/retangular report/stranded loss就是主动导体的损耗。建议选用电压源方法计算铜耗,因为电阻值是由用户指定的,而不是软件根据截面积和长度自动计算出来的,这样可以算得比较准确。 被动导体损耗:只需要给定被动导体的电导率,并且set eddy effect,则后处理中solidloss 即是被动导体的损耗,比如鼠龙式异步电机转子导条。这有点类似于涡流损耗的计算方法,因为涡流损耗和被动导体损耗,都是在非零电导率的导体上产生的。 以上方法,基于Ansoft maxwell 13.0.0及以上版本,并且适用于任何电机。 铁耗分析 对常规交流电机(同步或者异步电机),只有定子铁心才会产生铁耗,转子铁心是没有铁耗的,学过电机的人都明白的。因此,只需要对定子铁心给出B-P曲线(也就是铁损曲线)。注意,B-P曲线分为单频和多频两种,能给出多频损耗曲线最好,这样maxwell算得准些。设置完铁损曲线以后,还要记得在excitations/set core loss,对定子铁心勾选才行。此时,不需要给定子和转子铁心再施加电导率,这是初学者容易忽视的问题。后处理中,通过result/create transient reports/core loss查看铁耗随时间变化曲线。 再谈一下什么情况下需要做涡流损耗分析。对永磁电机,永磁体受空间高次谐波的影响,会在表面产生涡流损耗;对实心转子电机,由于是大块导体,因此涡流损耗占绝大部分。以上两种情况需要考虑做涡流损耗分析。现以永磁电机为例,具体阐述。对永磁体设置电导率,然后对每个永磁体分别施加零电流激励源,在excitations/set eddy effect,对永磁体勾选。注意,若只考虑永磁体的涡流损耗,而不考虑电机其他部分(定转子铁心)的涡流损耗,则只需要给永磁体赋予电导率值,其他部件不需要赋电导率,这是初学者容易搞错的地方。简而言之,只对需要考虑涡流损耗的部件,施加电导率,零电流激励和set eddy effect。后处理中,通过results/create transient reports/retangular report/solid loss查看涡流损耗随时间变化曲线。最后,再次强调一下,做涡流损耗分析,需要skin depth based refinement 网格剖分才行。

回波损耗的定义与标准中参数规定的理解

在电线电缆2003-2中<对称数字通信电缆结构回波损耗影响因素分析>中提到:当高频信号在电缆及通信设备中传输时,遇到波阻抗不均匀点时,就会对信号形成反射,这种反射不但导致信号的传输损耗增大,并且会使传输信号畸变,对传输性能影响很大。这种由信号反射引起的衰减被称为回波损耗。那么这样理解回波损耗应该是衰减的一部分,那为什么标准中规定回波损耗要大于某个值呢,而且我们努力的都是如何提高回波损耗. 所以我想问回波损耗的定义和性质到底是什么?是理解为反射波引起的损耗,还是反射波的损耗呢?似乎怎么理解的都有,希望大家积极讨论,理清概念. 回波损耗(RETURN LOSS) 回波损耗是电缆链路由于阻抗不匹配所产生的反射,是一对线自身的反射。不匹配主要发生在连接器的地方,但也可能发生于电缆中特性阻抗发生变化的地方,所以施工的质量是减少回波损耗的关键。回波损耗将引入信号的波动,返回的信号将被双工的千兆网误认为是收到的信号而产生混乱。 对于通讯信号分为有用和有害信号,对于有用信号,是衰减得越少越好,比如测试中常见的衰减参数,那是数值越小越好. 但是对于有害信号,比如回波,串音,就需要衰减得越大越好.

如果结构和阻抗稳定合理,则回波会很小,即使有也由于线缆阻抗在长度上比较平滑,不容易叠加而很快被衰减.所以好的线,对回波的衰减大. 比较好理解的是串音,比如NEXT,全称是:近端串音衰减(或近端串音损耗),这个数值也是越大越好. 它是这样测试的:用网络分析仪测量,一个输入信号加在主干扰线对上,同时在近端的被干扰线对输出端测量串音信号. 测得值当然是越小越好,越小就说明串音被线缆结构(比如屏蔽)衰减得越多. 对于NEXT,有人说是近端串音,口头说说可以,但是容易造成误解,因为串音当然是越小越好,怎么要求测量数值越大约好呢,其实后面少了两个字:衰减. 串音衰减定义:用以表示能量从主串回路串入被串回路时的衰减程度。即串音的衰减. 可以理解为串音这种干扰信号的衰减程度,也就是串音衰减越大串音衰减的越多.但回波损耗的定义为由信号反射引起的衰减被称为回波损耗。也就是回波造成的损耗.他们的名词结构是不一致的,这个我也考虑过.从定义到标准中的解释,都可以说回波损耗是一种干扰和衰减,可为什么还要增大这个参数的数值呢? 当高频信号在电缆及通信设备中传输时,遇到波阻抗不均匀点时,就会对信号形成反射,这种反射不但导致信号的传输损耗增大,并且会使传输信号畸变,对传输性能影响很大。这种由信号反射引起的衰减被称为回波损耗。 我也来说说我对回路损失的理解吧!

射频中的回波损耗 反射系数 电压驻波比以及S参数的含义和关系

回波损耗,反射系数,电压驻波比,S11这几个参数在射频微波应用中经常会碰到,他们各自的含义如下: 回波损耗(Return Loss):入射功率/反射功率,为dB数值 反射系数(Г):反射电压/入射电压,为标量 电压驻波比(Voltage Standing Wave Ration):波腹电压/波节电压S参数:S12为反向传输系数,也就是隔离。S21为正向传输系数,也就是增益。S11为输入反射系数,也就是输入回波损耗,S22为输出反射系数,也就是输出回波损耗。 四者的关系: VSWR=(1+Г)/(1-Г)(1) S11=20lg(Г)(2) RL=-S11(3) 以上各参数的定义与测量都有一个前提,就是其它各端口都要匹配。这些参数的共同点:他们都是描述阻抗匹配好坏程度的参数。其中,S11实际上就是反射系数Г,只不过它特指一个网络1号端口的反射系数。反射系数描述的是入射电压和反射电压之间的比值,而回波损耗是从功率的角度来看待问题。而电压驻波的原始定义与传输

线有关,将两个网络连接在一起,虽然我们能计算出连接之后的电压驻波比的值,但实际上如果这里没有传输线,根本不会存在驻波。我们实际上可以认为电压驻波比实际上是反射系数的另一种表达方式,至于用哪一个参数来进行描述,取决于怎样方便,以及习惯如何。回波损耗、反射系数、电压驻波比以及S参数的物理意义:以二端口网络为例,如单根传输线,共有四个S参数:S11,S12,S21,S22,对于互易网络有S12=S21,对于对称网络有S11=S22,对于无耗网络,有S11*S11+S21*S21=1,即网络不消耗任何能量,从端口1输入的能量不是被反射回端口1就是传输到端口2上了。在高速电路设计中用到:以二端口网络为例,如单根传输线,共有四个S 参数:S11,S12,S21,S22,对于互易网络有S12=S21,对于对称网络有S11=S22,对于无耗网络,有S11*S11+S21*S21=1,即网络不消耗任何能量,从端口1输入的能量不是被反射回端口1就是传输到端口2上了。在高速电路设计中用到的微带线或带状线,都有参考平面,为不对称结构(但平行双导线就是对称结构),所以S11不等于S22,但满足互易条件,总是有S12=S21。假设Port1为信号输入端口,Port2为信号输出端口,则我们关心的S参数有两个:S11和S21,S11表示回波损耗,也就是有多少能量被反射回源端(Port1)了,这个值越小越好,一般建议S11<0.1,即-20dB,S21

电力线路线损计算方法

电力线路线损计算方法 线路电能损耗计算方法 A1线路电能损耗计算的基本方法是均方根电流法,其代表日的损耗电量计算为: ΔA=3Rt×10-3(kW?h)(Al-1) Ijf=(A)(Al-2) 式中ΔA——代表日损耗电量,kW?h; t——运行时间(对于代表日t=24),h; Ijf——均方根电流,A; R——线路电阻,n; It——各正点时通过元件的负荷电流,A。 当负荷曲线以三相有功功率、无功功率表示时: Ijf==(A)(Al-3) 式中Pt——t时刻通过元件的三相有功功率,kW; Qt——t时刻通过元件的三相无功功率,kvar; Ut——t时刻同端电压,kV。 A2当具备平均电流的资料时,可以利用均方根电流与平均电流的等效关系进行电能损耗计算,令均方根电流Ijf与平均电流Ipj(代表日负荷电流平均值)的等效关系为K(亦称负荷曲线形状系数),Ijf=KIpj,则代表日线路损耗电量为: ΔA=3K2Rt×10-3(kW?h)(A2-1) 系数K2应根据负荷曲线、平均负荷率f及最小负荷率α确定。 当f>0.5时,按直线变化的持续负荷曲线计算K2: K2=[α 1/3(1-α)2]/[1/2(1 α)]2(A2-2) 当f<0.5,且f>α时,按二阶梯持续负荷曲线计算K2: K2=[f(1 α)-α]/f2(A2-3) 式中f——代表日平均负荷率,f=Ipj/Imax,Imax为最大负荷电流值,Ipj为平均负荷电流值; α——代表日最小负荷率,α=Imin/Imax,Imin为最小负荷电流值。 A3当只具有最大电流的资料时,可采用均方根电流与最大电流的等效关系进行能耗计算,令均方根电流平方与最大电流的平方的比值为F(亦称损失因数),F=/,则代表日的损耗电量为: ΔA=3FRt×10-3(kW?h)(A3-1) 式中F——损失因数; Imax——代表日最大负荷电流,A。 F的取值根据负荷曲线、平均负荷率f和最小负荷率α确定。 当f>0.5时,按直线变化的持续负荷曲线计算F: F=α 1/3(1-α)2(A3-2) 当f<0.5,且f>α时,按二阶梯持续负荷曲线计算:

变压器损耗计算公式

变压器损耗 分为铁损和铜损,铁损又叫空载损耗,就是其固定损耗,实是铁芯所产生的损耗(也称铁芯损耗,而铜损也叫负荷损耗,1、变压器损耗计算公式 (1)有功损耗:ΔP=P0+KTβ2PK-------(1) (2)无功损耗:ΔQ=Q0+KTβ2QK-------(2) (3)综合功率损耗:ΔPZ=ΔP+KQΔQ----(3) Q0≈I0%SN,QK≈UK%SN 式中:Q0——空载无功损耗(kvar) P0——空载损耗(kW) PK——额定负载损耗(kW) SN——变压器额定容量(kVA) I0%——变压器空载电流百分比。 UK%——短路电压百分比 β——平均负载系数 KT——负载波动损耗系数 QK——额定负载漏磁功率(kvar) KQ——无功经济当量(kW/kvar) 上式计算时各参数的选择条件: (1)取KT=1.05; (2)对城市电网和工业企业电网的6kV~10kV降压变压器取系统最小负荷时,其无功当量KQ=0.1kW/kvar; (3)变压器平均负载系数,对于农用变压器可取β=20%;对于工业企业,实行三班制,可取β=75%; (4)变压器运行小时数T=8760h,最大负载损耗小时数:t=5500h; (5)变压器空载损耗P0、额定负载损耗PK、I0%、UK%,见产品资料所示。 2、变压器损耗的特征 P0——空载损耗,主要是铁损,包括磁滞损耗和涡流损耗; 磁滞损耗与频率成正比;与最大磁通密度的磁滞系数的次方成正比。 涡流损耗与频率、最大磁通密度、矽钢片的厚度三者的积成正比。 PC——负载损耗,主要是负载电流通过绕组时在电阻上的损耗,一般称铜损。其大小随负载电流而变化,与负载电流的平方成正比;(并用标准线圈温度换算值来表示)。 负载损耗还受变压器温度的影响,同时负载电流引起的漏磁通会在绕组内产生涡流损耗,并在绕组外的金属部分产生杂散损耗。 变压器的全损耗ΔP=P0+PC 变压器的损耗比=PC/P0 变压器的效率=PZ/(PZ+ΔP),以百分比表示;其中PZ为变压器二次侧输出功率。一、变损电量的计算:变压器的损失电量有铁损和铜损两部分组成。铁损与运行时间有关,铜损与负荷大小有关。因此,应分别计算损失电量。 1、铁损电量的计算:不同型号和容量的铁损电量,计算公式是:

插入损耗与回波损耗的概念

插入损耗 中文名称: 插入损耗 英文名称: insertion loss 定义: 将某些器件或分支电路(滤波器、阻抗匹配器等)加进某一电路时,能量或增益的损 耗。 所属学科: 通信科技(一级学科) ;通信原理与基本技术(二级学科) 插入损耗指在传输系统的某处由于元件或器件的插入而发生的负载功率的损耗,它表示为该元件或器件插入前负载上所接收到的功率与插入后同一负载上所接收到的功率以分贝为单位的比值。 1..插入损耗是指发射机与接收机之间,插入电缆或元件产生的信号损耗,通常指衰减。插入损耗以接收信号电平的对应分贝(dB)来表示。 2..插入损耗多指功率方面的损失,衰减是指信号电压的幅度相对 测量插入损耗的电路 原信号幅度的变小。譬如对一个理想无损耗的变压器,原 传输线变压器的插入损耗关系曲线

副理想变压器无损耗,即插入损耗为零。插入损耗的概念一般用在滤波器中,表示使用了该滤波器和没使用前信号功率的损失。 通道的插入损耗是指输出端口的输出光功率与输入端口输入光功率之比,以dB 为单位。插入损耗与输入波长有关,也与开关状态有关。定义为:IL=-10log(Po/Pi) 式中: Pi—→输入到输入端口的光功率, 单位为mw; Po—→从输出端口接收到的光功率,单位为mw。 对于OLP,具体分为发送端插入损耗和接收端插入损耗。 回波损耗 中文名称: 回波损耗 英文名称: return loss 定义: 反射系数倒数的模。通常以分贝表示。 所属学科: 通信科技(一级学科) ;通信原理与基本技术(二级学科) 百科名片 回波损耗测量仪 回波损耗,又称为反射损耗。是电缆链路由于阻抗不匹配所产生的反射,是一对线自身的反射。不匹配主要发生在连接器的地方,但也可能发生于电缆中特性阻抗发生变化的地方,所以施工的质量是提高回波损耗的关键。回波损耗将引入信号的波动,返回的信号将被双工的千兆网误认为是收到的信号而产生混乱。

10KV电缆的线路损耗及电阻计算公式

10KV电缆的线路损耗及电阻计算公式 线损理论计算是降损节能,加强线损管理的一项重要的技术管理手段。通过理论计算可发现电能损失在电网中分布规律,通过计算分析能够暴露出管理和技术上的问题,对降损工作提供理论和技术依据,能够使降损工作抓住重点,提高节能降损的效益,使线损管理更加科学。所以在电网的建设改造过程以及正常管理中要经常进行线损理论计算。 线损理论计算是项繁琐复杂的工作,特别是配电线路和低压线路由于分支线多、负荷量大、数据多、情况复杂,这项工作难度更大。线损理论计算的方法很多,各有特点,精度也不同。这里介绍计算比较简单、精度比较高的方法。 理论线损计算的概念 1.输电线路损耗 当负荷电流通过线路时,在线路电阻上会产生功率损耗。 (1)单一线路有功功率损失计算公式为 △P=I2R 式中△P--损失功率,W; I--负荷电流,A; R--导线电阻,Ω (2)三相电力线路 线路有功损失为 △P=△PA十△PB十△PC=3I2R (3)温度对导线电阻的影响: 导线电阻R不是恒定的,在电源频率一定的情况下,其阻值 随导线温度的变化而变化。 铜铝导线电阻温度系数为a=0.004。 在有关的技术手册中给出的是20℃时的导线单位长度电阻值。但实际运行的电力线路周围的环境温度是变化的;另外;负载电流通过导线电阻时发热又使导线温度升高,所以导线中的实际电阻值,随环境、温度和负荷电流的变化而变化。为了减化计算,通常把导线电阴分为三个分量考虑:1)基本电阻20℃时的导线电阻值R20为 R20=RL 式中R--电线电阻率,Ω/km,; L--导线长度,km。 2)温度附加电阻Rt为 Rt=a(tP-20)R20 式中a--导线温度系数,铜、铝导线a=0.004; tP--平均环境温度,℃。 3)负载电流附加电阻Rl为 Rl= R20 4)线路实际电阻为 R=R20+Rt+Rl (4)线路电压降△U为 △U=U1-U2=LZ 2.配电变压器损耗(简称变损)功率△PB 配电变压器分为铁损(空载损耗)和铜损(负载损耗)两部分。铁损对某一型号变压器来说是固定的,与负载电流无关。铜损与变压器负载率的平方成正比。 配电网电能损失理论计算方法 配电网的电能损失,包括配电线路和配电变压器损失。由于配电网点多面广,结构复杂,客户用电性质不

变压器空载损耗与负载损耗的计算方法及公式

变压器空载损耗与负载损耗的计算方法及公式 电力变压器损耗分为铁损和铜损,铁损又叫空载损耗,就是其固定损耗,实际是铁芯所产生的损耗(也称铁芯损耗),而铜损也叫负荷损耗。 1、电力变压器损耗计算公式 (1)有功损耗:ΔP=P0+KTβ2PK-------(1) (2)无功损耗:ΔQ=Q0+KTβ2QK-------(2) (3)综合功率损耗:ΔPZ=ΔP+KQΔQ------(3) Q0≈I0%SN,QK≈UK%SN 式中:Q0——空载无功损耗(kvar) P0——空载损耗(kW) PK——额定负载损耗(kW) SN——变压器额定容量(kVA) I0%——变压器空载电流百分比。 UK%——短路电压百分比 β——平均负载系数 KT——负载波动损耗系数 QK——额定负载漏磁功率(kvar) KQ——无功经济当量(kW/kvar) 上式计算时各参数的选择条件: (1)取KT=1.05; (2)对城市电网和工业企业电网的6kV~10kV降压变压器取系统最小负荷时,其无功当量KQ=0.1kW/kvar;

(3)变压器平均负载系数,对于农用变压器可取β=20%;对于工业企业,实行三班制,可取β=75%; (4)变压器运行小时数T=8760h,最大负载损耗小时数:t=5500h; (5)变压器空载损耗P0、额定负载损耗PK、I0%、UK%,见产品出厂资料所示。 2、电力变压器损耗的特征 P0——空载损耗,主要是铁损,包括磁滞损耗和涡流损耗; 磁滞损耗与频率成正比;与最大磁通密度的磁滞系数的次方成正比。 涡流损耗与频率、最大磁通密度、矽钢片的厚度三者的积成正比。 PC——负载损耗,主要是负载电流通过绕组时在电阻上的损耗,一般称铜损。其大小随负载电流而变化,与负载电流的平方成正比;(并用标准线圈温度换算值来表示)。 负载损耗还受变压器温度的影响,同时负载电流引起的漏磁通会在绕组内产生涡流损耗,并在绕组外的金属部分产生杂散损耗。 变压器的全损https://www.360docs.net/doc/105426553.html,/耗ΔP=P0+PC 变压器的损耗比=PC /P0 变压器的效率=PZ/(PZ+ΔP),以百分比表示;其中PZ为变压器二次侧输出功率。 变损电量的计算:变压器的损失电量有铁损和铜损两部分组成。铁损与运行时间有关,铜损与负荷大小有关。因此,应分别计算损失电量。 1、铁损电量的计算:不同型号和容量的铁损电量,计算公式是: 铁损电量(千瓦时)=空载损耗(千瓦)×供电时间(小时)

回波损耗与结构回波损耗

回波损耗作为评价电缆阻抗均匀性的指标,一直在电缆行业内广泛应用,然而很多国内电缆出口企业在与国外厂商接触中,发现国外客户更多地提出用结构回波损耗而非回波损耗来衡量电缆的好坏,如美国、澳大利亚等国。那么回波损耗和结构回波损耗有什么区别呢? 根据美国标准结ANSI/SCTE 03 2003及ASTM D 4566,结构回波损耗SRL的定义为: SRL =结构回波损耗,dB; Z in=输入阻抗(复数),Ω Z avg=平均阻抗(复数),Ω 根据标准: R i=电缆各个频率点下输入阻抗的实部; X i=电缆各个频率点下输入阻抗的虚部; R avg=电缆所有测试点实部的平均值; X avg=电缆所有测试点虚部的平均值。 根据IEC 61196或GB/T 17737标准,回波损耗RL的定义为: RL =回波损耗,dB, Z T=终端接标称阻抗时的输入端阻抗(复数),Ω Z L=校准负载。 回波损耗可以由网络分析仪直接测试得到,而结构回波损耗则需要用矢量网络分析仪测量电缆的输入阻抗,测得的数据经电脑计算后才能得到,因此结构回波损耗测量过程需要运用计算机程控技术来实现。 根据结构回波损耗的定义,我检验中心运用计算机程控技术组建了结构回波损耗测量系统。下面是同一根电缆的回波损耗和结构回波损耗的测量结果图,图中回波损耗的最差值为 21.92dB,而结构回波损耗的最差值为24.11dB,两最差值出现在同一频点。

SRL测试图 RL测试图 由定义可以看出:回波损耗反映的是电缆的输入阻抗与测量系统阻抗之间的偏差,它既体现了电缆的结构不均匀性又反映出电缆阻抗与测量系统阻抗的偏差(或匹配程度);而结构回波损耗只反映电缆的输入阻抗与电缆自身阻抗平均值的偏差,所以,结构回波损耗反映的只是电缆本身结构的不均匀性。虽然回波损耗和结构回波损耗两种指标都能反映电缆质量的好坏,但结构回波损耗只反映电缆结构的不均匀,而与电缆阻抗偏离系统阻抗无关。除非电缆特性阻抗的平均值非常接近与系统阻抗,否则结构回波损耗总是比回波损耗较好些。

S参数与反射系数插损回损驻波比

S参数与反射系数、插损、回损、驻波比 S参数就是建立在入射波、反射波关系基础上的网络参数,适于微波电路分析,以器件端口的反射信号以及从该端口传向另一端口的信号来描述电路网络。 S参数的基本定义: S11:端口2匹配时,端口1的反射系数Г及输入驻波,描述器件输入端的匹配情况,S11=a2/a1; 也可用输入回波损耗RL=2Olg(Г)(能量方面的反应)表示。 S22:端口1匹配时,端口2输出驻波,描述器件输出端的匹配情况,S22=b2/b1。 S21:增益或插损,描述信号经过器件后被放大的倍数或者衰减量。S21=b1/a1. 对于无源网络即传输系数T或插损,对放大器即增益。 S12:反向隔离度,描述器件输出端的信号对输入端的影响,S12=a2/b2。 S参数的特点: 1、对于互易网络有S12=S21 2、对于对称网络有S11=S22 3、对于无耗网络,有S11*S11+S21*S21=1,即网络不消耗任何能量,从端口1输入的能量不是被反射回端口1就是传输到端口2上 4、在高速电路设计中用到的微带线或带状线,都有参考平面,为不对称结构(但平行双导线就是对称结构),所以S11不等于S22,但满足互易条件,总是有S12=S21。 假设Port1为信号输入端口,Port2为信号输出端口,则我们关心的S参数有两个:S11和S21 S11表示回波损耗,也就是有多少能量被反射回源端(Port1)了,这个值越小越好,一般建议S11<0.1,即-20dB; S21表示插入损耗,也就是有多少能量被传输到目的端(Port2)了,这个值越大越好,理想值是1,即0dB,越大传输的效率越高,一般建议S21>0.7,即-3dB。

电气相关计算公式

电气相关计算公式 一电力变压器额定视在功率Sn=200KVA,空载损耗Po=0.4KW,额定电流时的短路损耗PK=2.2KW,测得该变压器输出有功功率P2=140KW时,二次则功率因数2=0.8。求变压器此时的负载率和工作效率。 解:因P22×100% 2÷(Sn×2)×100% =140÷(200×0.8)×100%=87.5% =(P 2/P1)×100% P1=P2+P0K =140+0.4+(0.875)2×2.2 =142.1(KW) 所以 =(140×142.08)×100%=98.5% 答:此时变压器的负载率和工作效率分别是87.5%和98.5%。

有一三线对称负荷,接在电压为380V的三相对称电源上,每相负荷电阻R=16,感抗X L=12。试计算当负荷接成星形和三角形时的相电流、线电流各是多少? 解;负荷接成星形时,每相负荷两端的电压,即相电压为U入Ph===220(V) 负荷阻抗为Z===20() 每相电流(或线电流)为 I入Ph=I入P-P===11(A) 负荷接成三角形时,每相负荷两端的电压为电源线电压,即==380V 流过每相负荷的电流为 流过每相的线电流为 某厂全年的电能消耗量有功为1300万kwh,无功为1000万kvar。求该厂平均功率因数。 解:已知P=1300kwh,Q=1000kvar 则 答:平均功率因数为0.79。 计算: 一个2.4H的电感器,在多大频率时具有1500的电感? 解:感抗X L=则 =99.5(H Z) 答:在99.5H Z时具有1500的感抗。 某企业使用100kvA变压器一台(10/0.4kv),在低压侧应配置多大变比的电流互感器? 解:按题意有 答:可配置150/5的电流互感器。 一台变压器从电网输入的功率为150kw,变压器本身的损耗为20kw。试求变压器的效率? 解:输入功率 P i=150kw 输出功率 PO=150-20=130(KW)

回波损耗的测试和计算

RL 的测试和计算 1、 RL 定义: in out P P IL lg 10-= in ref P P RL lg 10-= * 此处我们对所有的IL 和RL 定义为正值 2、 测试设备: A :Agilent 81680A TLS B :Agilent 81623A PM (PowerMeter ) C :50/50(3dB ) Coupler 3、 测试方法和步骤: A ??? ? ??-=in in p P dB lg 100 B :测试系统的RL :RLs ,搭建如图2所示的光路: 因为我们在步骤A 中做归零的时候已经将P in 作为基准功率,所以 ??? ? ??-=-in s ref s P P RL lg 10(式1) C :测试器件的RL :RL d ,搭建如图3所示的光路:

() ()()31lg 10lg 10lg 10?→?-+--+--+----??? ? ??--=??? ????????? ??-????? ??--=???? ??-=IL P p P P P P P P P P P RL in s ref d s ref in s ref d s ref s ref d s ref d ref in d ref d 根据式1,可以得出: 10 10 s RL in s ref P P --?= 设定:??? ? ??-=+-+in d s ref d s p p RL lg 10,推出: ()10 10 d s RL in P d s ref p +- ?=+- 将以上式3和式4带入式2,得到: ()311010311010311010lg 101010lg 10lg 10?→?--?→?--?→?-+--??? ? ??--=-????? ? ??????? ????? ? ?--=-??? ? ??--=++IL IL P P IL P p P RL s d s s d s RL RL in RL RL in in s ref d s ref d 令d s s RL RL x +-=,推出:x RL RL s d s -=+,将其带入式5,有: 3110103110 103110 1011010lg 101010lg 101010lg 10?→? -?→?---?→?---???? ? ????? ??--=-???? ? ?--=-???? ? ?--=+IL IL IL RL x RL RL x RL RL RL d s s s s d s 3110311010 110lg 10110lg 1010lg 10?→??→?--???? ??--=-???? ??--? ?? ? ??-=IL RL IL x s x RL s 综上,我们得出: 3110110lg 10?→?-??? ? ??--=IL RL RL x s d 试算如下: 设dB RL dB RL d s s 58,62==+,推出dB x 45862=-=,带入式6,得出: 31311042.60110lg 1062?→??→?-=-??? ? ??--=IL IL RL d (式2) (式3) (式4) (式5) (式6)

驻波比、插入损耗和回波损耗对照表

驻波比、插入损耗和回波损耗对照表 ρ=VSWR-1 VSWR+1RL=-20lg?ρVSWR=1+ρ 1-ρ 反射系数ρ回波损耗RL 驻波比VSWR 1.00 0.00 ∞ 0.90 0.92 19.00 0.80 0.94 9.00 0.70 3.10 5.67 0.60 4.44 4.00 0.50 6.02 3.00 0.40 7.96 2.33 0.30 10.46 1.86 0.20 13.98 1.50 0.10 20.00 1.22 0.09 20.92 1.20 0.08 21.94 1.17 0.07 23.10 1.15 0.06 24.44 1.13 0.05 26.02 1.11 0.04 27.96 1.08 0.03 30.46 1.06 0.02 33.98 1.04 0.01 40.00 1.02 0.00 ∞ 1.00

复反射系数:Γ=Z L-Z0 Z L+Z0 =ρsinθ+j cosθ 其中:幅度在0~1之间(为标量反射系数) 反射波相对于入射波的相角在+180°~-180°之间 定向耦合器: 耦合度C(dB)= -10lg P3 P1 隔离度I(dB)= -10lg P4 P1 方向性D(dB)= -10lg P3 P4 C-I=D 其中:P1为输入端口功率,P3为耦合端口输出功率,P4为隔离端口输出功率 网络基本参数: (一)反射参数 正向反向 反射系 数ΓΓ=S11Γ=S22 回波损 耗RL RL=-20lg?S11 RL=-20lg?S22 驻波比VSWR VSWR =(1+?S11 )(1-?S11 ) VSWR= (1+?S22 )(1-?S22 ) 阻抗Z Z=R+jX =Z0(1+?S11 )(1-?S11 ) Z=R+jX= Z0(1+?S22 )(1-?S22 ) (二)传输参数 正向反向

低压线路损失计算方法

1.输电线路损耗 当负荷电流通过线路时,在线路电阻上会产生功率损耗。 (1)单一线路有功功率损失计算公式为 △P=I2R 式中△P--损失功率,W; I--负荷电流,A; R--导线电阻,Ω (2)三相电力线路 线路有功损失为 △P=△PA十△PB十△PC=3I2R (3)温度对导线电阻的影响: 导线电阻R不是恒定的,在电源频率一定的情况下,其阻值 随导线温度的变化而变化。 铜铝导线电阻温度系数为a=0.004。 在有关的技术手册中给出的是20℃时的导线单位长度电阻值。但实际运行的电力线路周围的环境温度是变化的;另外;负载电流通过导线电阻时发热又使导线温度升高,所以导线中的实际电阻值,随环境、温度和负荷电流的变化而变化。为了减化计算,通常把导线电阴分为三个分量考虑:1)基本电阻20℃时的导线电阻值R20为 R20=RL 式中R--电线电阻率,Ω/km,; L--导线长度,km。 2)温度附加电阻Rt为

Rt=a(tP-20)R20 式中a--导线温度系数,铜、铝导线a=0.004; tP--平均环境温度,℃。 3)负载电流附加电阻Rl为 Rl= R20 4)线路实际电阻为 R=R20+Rt+Rl (4)线路电压降△U为 △U=U1-U2=LZ 2.配电变压器损耗(简称变损)功率△PB 配电变压器分为铁损(空载损耗)和铜损(负载损耗)两部分。铁损对某一型号变压器来说是固定的,与负载电流无关。铜损与变压器负载率的平方成正比。 配电网电能损失理论计算方法 配电网的电能损失,包括配电线路和配电变压器损失。由于配电网点多面广,结构复杂,客户用电性质不同,负载变化波动大,要起模拟真实情况,计算出某一各线路在某一时刻或某一段时间内的电能损失是很困难的。因为不仅要有详细的电网资料,还在有大量的运行资料。有些运行资料是很难取得的。另外,某一段时间的损失情况,不能真实反映长时间的损失变化,因为每个负载点的负载随时间、随季节发生变化。而且这样计算的结果只能用于事后的管理,而不能用于事前预测,所以在进行理论计算时,都要对计算方法和步骤进行简化。为简化计算,一般假设: (1)线路总电流按每个负载点配电变压器的容量占该线路配电变压器总容量的比例,分配到各个负载点上。 (2)每个负载点的功率因数cos 相同。 这样,就能把复杂的配电线路利用线路参数计算并简化成一个等值损耗电阻。这种方法叫等值电阻法。

插回损测量

1 光器件的回损测量 引言:随着宽带接入如 LTE, FTTX 的应用越来越多,骨干光纤通信带宽越来越大,光纤本身的和光 纤系统中的无源光器件都变得越来越复杂,光纤系统中无源器件的反射对更高速率的通信系统性 能的影响越发显著,人们对光纤无源器件回波损耗指标测试的关注度在持续上升。 光纤无源器件的回损测试方案自光纤通信系统开始就有了,早期的典型测试仪表如:JDSU 公 司的 RX Meter, Agilent 公司的 816xx 系列。这些测试仪表的共同特点是:测试方法采用标准的连 续光方法,即 IEC 建议的 OCWR(Optical Continuous Wave Reflectometer)法,测量时通常需要用缠 绕光纤的方法消除额外反射,测量回损的范围在 70dB 以下。随着光纤通信技术的进步,测试仪 表也在发展,使用 OCWR 方法的测试仪技术非常成熟,随着竞争产品的越来越多,这两种仪表都 早已停止生产。 使用 OCWR 方法测量回损存在许多限制,如:测试步骤多,需要过程复杂的系统校“零”, 不能一次连接进行插损/回损的测试,不能区分瑞利散射和菲涅尔反射回损,只适用于≤55dB 的 回损测量等[1]。 另一方面,由于这些限制,在很多应用场合下不适合或者无法使用 OCWR 法进行测量,如: 无法弯曲也不允许破坏接头的光缆接头盒,特种光缆,MPO 接头等。 图 1:无法弯曲的光纤接头 为了解决这些问题,我们需 要采用其他的回损测量方法,如 OTDR 法。为了比较 OCWR 和 OTDR 两种测量方法,让我们首先回顾一下回损测试的原理以及 IEC61300‐3‐6 对回损测试方法的描 述。 1. 原理和测量方法 1.1 回损的来源 按照 IEC61300‐3‐6 的定义,回损是指在器件输入端、光纤接头或者定义的某一段光路上反射 光功率[mW]与入射光功率[mW]的比值。

插回损中文说明书(USB)

目录 1、概述-----------------------------------2 2、技术指标-------------------------------3 3、组成-----------------------------------4 4、功能说明-------------------------------4 5、使用说明-------------------------------6 6、测量数据记录---------------------------8 7、注意事项和常见故障----------------------9 8、维护及保养-----------------------------11 9、质量保证------------------------------12

1.概述 插回损测试仪是集合自身多年的光纤无源器件和光通信检测仪表的生产和测试经验,充分借鉴了国内外仪表的优点和国内客户的需求,精心研制开发出来的一款精密光检测仪表。它广泛应用于光纤光缆、光无源器件和光纤通信系统的插损和回损测试,是广大生产厂商、科研机构和运营商用于生产检测、研究开发和工程施工维护基本的测试仪器。 (一)特点 (1)测试精度高 通过内置高稳定的激光器,最先进的微电子技术和光检测设备,结合软件技术,使得仪器输出功率稳定、检测速度快、测试范围广。(2)波长自动同步设定 在回损模式下,光源与功率计波长同步切换,不需分别设定波长。功率计模式时,可另行单独设定功率计测试波长。 (3)多种工作模式 该测试仪表集成了回波损耗测试、光功率模块测试和插入损耗测试。 (4)操作简单方便 回损/插损同步测量,无需按键切换。回损/插损测试值分别在一台仪器上的两个液晶窗口同时显示,测试结果一目了然。通过操作“Zero按键”。和“Ref按键”程序会自动保存相应的校正数据,当仪器断电后再开机,被保存的数据立即生效不需要重复校准,简化测试过程。(5)人体工学设计 仪器采用高质量金属外壳,确保仪器性能不受生产环境下可能存在的电气干扰。经久耐用的按键具有完美舒适的手感。 (6)光源/光功率计接口采用灵巧设计,便于清洁 光源/光功率计均采用活动接口,可轻易卸下以便对光探测器进行清洁或更换其它型号适配器如(FC/SC/ST/2.5mm通用/1.25mm通用/MT-RJ 等,用于测试各种型号跳线。)同时也便于对光源接口内侧APC适配器的清洁。(注意:拆卸时,只需旋转光源/光功率计接口并拔下接口即可) (7)USB通讯接口

电能损耗计算

华润电力黔西、大方电厂线路损耗计算 根据《华润电力贵州煤电一体化毕节4×660MW新建项目送出工程可行性研究报告》,500kV大方电厂至黔西电厂送电线路长度约55km,导线截面为4×300mm2;500kV黔西电厂至南川送电线路长度约为330km,其中重庆段长度约为88km。毕节4×660MW送出工程潮流分布图如下图所示,各段线路损耗见表1。 图1 毕节4×660MW送出工程潮流分布图 根据《电力系统设计手册》,最大负荷利用小时数TMAX与损耗小时数τ对应关系见表2。 表2 最大负荷利用小时数TMAX与损耗小时数τ对照表

根据架空线路年电能损耗公式: τmax 8760P P A yp ?+??=? 其中由于yp P ?相对较小,在计算中忽略;max P ?为线路有功损耗最大值。 毕节4×660MW 新建项目送出工程各段线路年电能损耗见表3,其中功率因素取0.95。 (4500h )计算方法如下: 大方电厂至黔西电厂年最大利用小时数(4500h )电能损耗: 1134027002.4=?=?P MWh 即为0.1134亿kWh 黔西电厂至南川站(贵州段)年最大利用小时数(4500h )损耗率%为: %2.0%1005616900 11340%10045001248.227002.4%=?=???=?P

黔西电厂至南川站(贵州段)年最大利用小时数(4500h )电能损耗: 118800270044=?=?P MWh 即为1.188亿kWh 黔西电厂至南川站(贵州段)年最大利用小时数(4500h )损耗率%为: %06.1%10011214000 118800%10045004922270044%=?=???=?P 黔西电厂至南川站(重庆段)年最大利用小时数(4500h )电能损耗: 4212027006.15=?=?P MWh 即为0.4212亿kWh 黔西电厂至南川站(重庆段)年最大利用小时数(4500h )损耗率%为: %38.0%10011016000 42120%1004500448227006.15%=?=???=?P 注:1、4000h 计算方法同4500h 不在重复计算; 2、刘工已经做得相当多了,基本上没有什么问题,就是在计算功率损耗的时候多乘以了3倍,导致数据偏大。因为功率对线路而言就是三相不是单相,刘工在计算的时候误乘以了3倍。

相关文档
最新文档