开关电源频率特性

开关电源频率特性
开关电源频率特性

如何提高开关电源效率 电阻的大小会有何影响

如何提高开关电源效率电阻的大小会有何影响 课程介绍本课程主要讲的是自举电容首次充电电路的分析和搭建。 上节课我们讲到了MOS管前的这个电阻,当一个12V的电压过来充电的话,电阻两端就会有一个18V的压降。如果这个压降比较大,而电阻阻值比较小的话,那么这个电阻的功率就会特别的大。电阻功率一大就容易发热,不符合我们低功耗设计的一个规范和需求,同时开关电源整个的效率都被大大降低了。 要使得开关电源效率很高,那么电路中每个点的功耗都不能太大,所以这里消耗了这么大的电流是不行的。因此我们要把该电阻加的特别大,而加到多少比较合适呢?理论上来说是越大越合适,因为流过电阻的电流变小了,我们的设计方向就是这个电流越小越好。但是如果电阻上了MΩ级,30V通过这个电阻对电容进行充电,充电的时间就特别长。我们希望的Buck电路启动时间不会太长。电容的经验充电电流一般都是1-2mA的电流,这样充到10V的时间比较快,所以这个电阻取20KΩ是比较合适的。 学习获得: 通过这个课程你可以: 掌握开关电源电感计算; 学会前级驱动电路的设计与分析; 了解自举电容自举电容首次充电电路的分析和搭建,分析电路不足并引出电流环和电压环; 电路的调试; 适宜学习人群: 1、如果你还是学生,正厌倦于枯燥的课堂理论课程,想得到电子技术研发的实战经验; 2、如果你即将毕业或已经毕业,想积累一些设计研发经验凭此在激烈竞争的就业大军中脱颖而出,找到一份属于自己理想的高薪工作; 3、如果你已经工作,却苦恼于技能提升缓慢,在公司得不到加薪和快速升迁; 4、如果你厌倦于当前所从事的工作,想快速成为一名电子研发工程师从事令人羡慕的研

(Mg2Si1- Sb 04-(Mg Sn) 固溶体合金的制备及热电输运特性

第27卷 第8期 无 机 材 料 学 报 Vol. 27 No. 8 2012年8月 Journal of Inorganic Materials Aug., 2012 收稿日期: 2011-08-30; 收到修改稿日期: 2011-10-18 基金项目: 国家自然科学基金(50801002); 北京市自然科学基金(2112007); 北京市属高校人才强教计划(PHR20110812) National Natural Science Foundation of China (50801002); Beijing Natural Science Foundation (2112007); Founding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality (PHR20110812) 作者简介: 韩志明(1984?), 男, 硕士研究生. E-mail: 0402hzm@https://www.360docs.net/doc/1116382644.html, 通讯作者: 张 忻, 副研究员. E-mail: zhxin@https://www.360docs.net/doc/1116382644.html, 文章编号: 1000-324X(2012)08-0822-05 DOI: 10.3724/SP.J.1077.2012.11550 (Mg 2Si 1-x Sb x )0.4-(Mg 2Sn)0.6固溶体合金的制备及热电输运特性 韩志明, 张 忻, 路清梅, 张久兴, 张飞鹏 (北京工业大学 材料学院, 新型功能材料教育部重点实验室, 北京 100124) 摘 要: 以Mg 、Si 、Sn 、Sb 块体为原料, 采用熔炼结合放电等离子烧结(SPS)技术制备了n 型(Mg 2Si 1-x Sb x )0.4-(Mg 2Sn)0.6(0≤x ≤0.0625)系列固溶体合金. 结构及热电输运特性分析结果表明: 当Mg 原料过量8wt%时, 可以弥补熔炼过程中Mg 的挥发损失, 形成单相(Mg 2Si 1-x Sb x )0.4-(Mg 2Sn)0.6固溶体. 烧结样品的晶胞随Sb 掺杂量的增加而增大; 电阻率随Sb 掺杂量的增加先减小后增大, 当样品中Sb 掺杂量x ≤0.025时, 样品电阻率呈现出半导体输运特性, Sb 掺杂量x >0.025时, 样品电阻率呈现为金属输运特性. Seebeck 系数的绝对值随Sb 掺杂量的增加先减小后增大; 热导率κ在Sb 掺杂量x ≤0.025时比未掺杂Sb 样品的热导率低, 在Sb 掺杂量x >0.025时高于未掺杂样品的热导率, 但所有样品的晶格热导率明显低于未掺杂样品的晶格热导率. 实验结果表明Sb 的掺杂有利于降低晶格热导率和电阻率, 提高中温区Seebeck 系数绝对值; 其中(Mg 2Si 0.95Sb 0.05)0.4-(Mg 2Sn)0.6合金具有最大ZT 值, 并在723 K 附近取得最大值约为1.22. 关 键 词: Mg 2Si 基热电材料; Sb 掺杂; 热电性能; 放电等离子烧结 中图分类号: TK9 文献标识码: A Preparation and Thermoelectric Properties of (Mg 2Si 1-x Sb x )0.4-(Mg 2Sn)0.6 Alloys HAN Zhi-Ming, ZHANG Xin, LU Qing-Mei, ZHANG Jiu-Xing, ZHANG Fei-Peng (College of Materials Science and Engineering, Beijing University of Technology, The key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing 100124, China) Abstract: n-type (Mg 2Si 1-x Sb x )0.4-(Mg 2Sn)0.6 (0≤x ≤0.0625) alloys were prepared by an induction melting and spark plasma sintering method using bulks of Mn, Si, Sn, Sb as raw materials. The analyzing results of the structure and thermoelectric properties show that the single-phase (Mg 2Si 1-x Sb x )0.4-(Mg 2Sn)0.6 alloys can be obtained at 8wt% excess of Mg addition. The lattice constant increases linearly with the amount of Sb, the electrical resistivity ρ firstly increases and then decreases. The electrical resistivity ρ of samples (x ≤0.025) shows semi-conductor be-havior, while that of the samples (x >0.025) shows the metallic behavior. The Seebeck coefficient α firstly increases and then decreases with the increase of x value. Compared with the non-doped sample, the thermal conductivity κ for samples (x ≤0.025) decreases and that of the other samples (x >0.025) increases. The ZT value for (Mg 2Si 0.95Sb 0.05)0.4-(Mg 2Sn)0.6 sample reaches its highest value of 1.22 at 773 K, which is much higher than that of the non-doped sample. Key words: Mg 2Si base thermoelectric materials; Sb doping; thermoelectric properties; spark plasma sintering

开关电源检验规范.

1、目的 通过进行相关的测试检验评估,确保产品符合安规及品质要求。 2、适用范围 适用于本公司所开发/设计的所有开关电源产品。 3、检验所用仪器与设备 检验所需的设备均须为校验合格的设备,其精度必须高于测试所要求的精度至少一位。 4、检验试验的一般条件 4.1 检验试验的环境要求 如无特殊要求,则试验应在下列环境条件下进行: 环境温度:20 ~ 30℃; 相对湿度:35% ~ 75%; 大气压力:70 ~ 106KPa。 4.2 检验方法 各检验项目内有检验方法,具体的检验操作方法参考《检验作业指导书》。 5、检验基本原则及判定准则 5.1 检验基本原则 5.1.1 以《检验规范》、《产品规格书》依据,以测试数据为准则。 5.1.2 检验过程中若发现问题比较严重且比较多,需立即停止并及时向上级汇报。 5.1.3 检验过程中,若抽样产品出现问题,但不影响测试的正常进行,则需测完样机的全部项目。 5.2 不合格项目分类 5.2.1 致命问题 安规测试不合格;导致电源损坏的所有项目。 5.2.2 严重问题 技术指标未达到规格的要求;抗干扰性指标未达到规格要求。 5.2.3 一般问题 测试中指标的裕量不足。 5.2.4 讨论问题 研究性测试未合格项目;产品规格书中未界定的项目。 修改记录版次修订日期批准审核编写 唐恿 2012.3.3

6、检验试验项目 说明:以下检验方法,参照IEC 、GB 、CE 、UL 等标准的通用检验方法;检验项目以产品规格书规定的为准,产品规格书有要求的项目为必检项目,产品规格书未要求的项目可不检验;检验条件如果产品规格书有规定,则以产品规格书为准;当客户对检验项目和检验方法等有特别要求时,以客户的要求为准。输入全电压范围是指输入由最低输入电压到最高输入电压连续调节,但数据只需记录最低输入电压,额定输入电压,最高输入电压的情况。输出全负载范围是指输出负载由最小负载到额定负载连续调节,但数据只需记录最小负载,半载,额定负载的情况。高温低温分别指产品的工作温度或存储温度的上限和下限。输入电源的频率要求为最小输入电压时47Hz (当设备能力达不到47 Hz 时按设备能达到的最小频率输入)、最大输入电压时63Hz 、额定高电压输入时为50 Hz 、额定低电压输入时为60 Hz 。 检验试验范围包含但不限于以下项目: 6.1 电气性能测试:空/负载输入输出电压、负载输入输出电压/电流/功率、效率、纹波&噪声、功率 因素、动态响应、开机时间、异常保护,耐压绝缘、漏电、接地、老化、温升等测试。 6.2 环境适应性检验:高温、低温启动,高温、低温ON/OF 循环冲击,高温、低温储存等试验。 6.3 机械检验:外观要求、尺寸测量、标记检查,跌落、振动、模拟运输等试验。 6.4 重要元器件检验:变压器、电感、场效应管、输出整流二极管、桥堆、滤波电容、X 电容、Y 电 容等重要元器件的型号、规格、厂商、生产批号的检验。 6.1 电气性能测试: 6.1.1 空载输入功率 测试说明: 参照产品Spec.,测试空载输入功率须在Spec.标示范围内,同时也需符合下表的限值(输入115V/60Hz 和(或)230V/50Hz 两种模式下测试): 输出功率标称值Po(W) 空载输入功率限值(W) 0 < Po < 60 1 MAX. 60 ≤ Po ≤ 200 3 MAX. 测试方框图: 图1 测试方法: 1. 先如图1 布置好测试电路。 2. 产品输入额定电压&频率。 3. 电源输出处于空载状态。 4. 读取电参数测量仪上输入功率,此时功率为空载输入功率。 判定标准: 空载输入功率超标: 严重问题 6.1.2 空载输出电压 测试说明: AC 电源 电参数测量仪 待测试 电源 电子负载

低功耗小功率开关电源设计毕业设计

低功耗小功率开关电源设计毕业设 计 南华大学船山学院毕业设计 1 开关电源简介小功率开关电源以其诸多优良的性能,在测控仪器仪表、通信设备、学习与娱乐等诸多电子产品中得到广泛的应用。随着环境和能源问题日益突出,人们对电子产品的环保要求不断提高,对电子产品的能源效率更加关注。设计无污染、低功耗、高效率的绿色模式电源已成为开关电源技术研究的热点。研究一种中小功率开关电源,应用过渡模式有源功率因数校正、准谐振变频功率隔离变换控制和同步整流等多种先进的电源控制技术,以实现绿色开关电源设计的目的。开关电源的基本结构所有事物都要遵循能量守恒定律,开关电源也不例外,实际上,开关电源也要通过以能量形式传递完成的。从能量上看,开关电

源可以分为直流开关电源模式和交流开关电源模式,直流开关电源模式主要是输出为直流信号电能,而交流开关电源模式主要是输出为交流信号电能。直流开关电源模式为当前的主流模式,该开关电源模式的基本组成结构框图如下图所示:交流输入桥式整流滤波LC 组成滤波器DC/DC变换器转换输出整流滤波占空比控制电路DC直流输出放大电路控制电路图开关电源基本组成结构框图上图中可知:开关电源主要整流滤波、DC/DC变换电路、开关占空比控制电路以及控制电路等模块组成。第1页,共29页南华大学船山学院毕业设计交直流输入电压经LC滤波器,再通过桥式整流与母线电解电容平滑后变为直流电压,再经DC/DC变换器转换,再经二极管整流和电解电容的滤波至输出,为了能使电路成为一个闭环工作,在输出端引出一个控制电路再经放大电路到占空比控制电路至DC/DC变换器转换器形成一

个闭环。占空比控制电路中占空比的表示方法如下图所示:图占空比示意图上图中可知:占空比D=Toff/(TOff+Ton),周期T= Ton+Toff,频率f=1/T。传统开关电源的缺陷传统开关电源基本上采用的都是传统电路,传统电路大部分采用的电路芯片都为PWM控制的KA38系列芯片,这当中也要用到开关MOSFET管,还有就是也要加个启动电阻,根据P=U*U/R可知该电路上的待机功耗至少要大于,而低功耗的要求待机功耗至少要小于,甚至有些要小于。如果功耗大,对人口密集的中国来说,电能的损耗无疑是巨大的。另外传统电源存在着某些有害物质,根据我国CCC标准中的《关于在电气电子设备中限制使用某些有害物质指令》,从而没能达到环保的功能。绿色开关电源的发展方向于传统电源存在着诸多的缺陷,为了能量的有效利用,人们从而提出了绿色开关电源,绿色开关电源产品主要向高频、高效率、低功

开关电源和线性电源的优点和缺点对比(特制材料)

开关电源和线性电源的优点和缺点对比 开关电源是相对线性电源而言的,线性电源是利用功率半导体器件的线性工作区,通过调节线性阻抗来达到调节输出的目的;而开关电源是利用功率半导体器件的饱和区通过调整他的开通时间或频率来达到调节输出的目的。 其优点是: 1、效率较高,体积小。由于开关电源的电压控制是利用功率半导体器件的饱和区通过调整他的开通时间或频率达到的,所以就不存在铁损和铜损,元器件的损耗可以忽略不计,比较变压器而言效率较高;由于它只有元器件和电路板,因而体积就会很小,重量也较轻。 2、电压输入范围宽。一般可达到160V-270之间。 但它的缺点更是它致命的: 1、开关电源看着小巧,功率和磁心变压器以及控制方式有关,电磁干扰大,纹波系数大。尤其有音频、视频的范畴内,对电磁干扰非常敏感,在音频表现为音色不纯厚,可能会有丝丝声;在视频表现为,图像可能会有细小的纹波,不细腻。 2、设计复杂,维护维修不方便。往往越是复杂的设备出现的问题的可能性就越大,而且开关电源一旦出现问题,一般非专业人士是维修不了的,找别人维修,费用又太高,还不如废弃掉。 3、体积小是开关电源的优点,但设计不好就成为它的缺点了。为了追求更小,一大把元器件挤在一个小壳子里,散热不好,我们以前用的当中也出现过外壳变形的现象。 4、开关电源的元器件在选择上也不是很规范,这是国产开关电源的通病。国家有关质检部门检验市场上的开关电源发现,有过半数的不合格,这其中还包括进口开关电源。

5、最大的一点就是抗雷击能力非常低。在监控系统中,遭遇雷击的可能也非常大,主要表现为从电源串入,直接雷击的可能性非常小。一旦220V的电压突然变高,开关电源在瞬间就被烧毁。前段时间的一个监控系统中,在一个雷过后,监控总闸跳了,再合上闸后,大部分摄像机还正常工作,一部分监视器显示无视频信号。经检查发现,无视频信号的全部都是开关电源(施工时有的地方安装不方便,就用了开关电源),最后又在摄像机杆上安装上了电源箱,换上了变压器电源。 变压器电源(也就是线性电源)也有以下几个优缺点: 其缺点是: 1、效率低。由于变压器是一个“电——磁——电”的转换过程,避免不了存在铁损和铜损,效率低。 2、输入范围窄。一般只有200V—240V之间吧,小于这个范围,输出电压不够,大于这个范围,变压器可能就会烧毁。这个电压范围绝大多数的场合是够用的,不必去过多的考虑。再者变压器体积较开关电源大,笨重。 优点: 1、线性的看着笨重,功率完全取决于变压器和调整管,效率虽低但是不会引入额外的干扰,也就是说电磁干扰小,纹波系数很低,可忽略不计。对于监控来说,没有比这个优点还要好的了,图像质量的好坏与电源的关系非常大。尤其对于小幅值的模拟信号(音频源和视频源等)对电源的要求非常高,所以一些发烧音响中的电源都采用变压器而不用开关电源。 2、稳压率高、设计简单,维修维护非常方便,出现故障,稍懂电子的技术人员就能维修,维修成本比开关电源少得多。

怎样提高开关电源的转换效率及降低待机功耗

以反激式电源为例, 其工作损耗主要表现为:MOSFET导通损耗(I*I*Rdston*fs),MOSFET寄生电容损耗 (C*V*V*fs/2),开关交叠损耗,PWM控制器及其启动电阻损耗,输出整流管损耗,箝位保护电路损耗,反馈电路损耗等.其中前三个损耗与频率成正比关系. 在待机状态,主电路电流较小,MOSFET导通时间ton很小,电路工作在DCM模式,故相关的导通损耗,次级整流管损耗等较小,此时损耗主要由寄生电容损耗和开关交叠损耗和启动电阻损耗构成. 根据上面分析可知,减小/关断启动电阻,降低开关频率,减小开关次数,都可减小待机损耗,提高待机效率.具体的方法有:降低时钟频率;由高频工作模式切换至低频工作模式,如准谐振模式(Quasi Resonant,QR)切换至脉宽调制(Pulse Width Modulation,PWM), 脉宽调制切换至脉冲频率调制(Pulse Frequency Modulation, PFM);间隙工作模式(Burst Mode). 1)减小、关断启动电阻 对于反激式电源,启动后控制芯片由辅助绕组供电,启动电阻上压降为300V左右.设启动电阻取值为47kΩ,消耗功率将近2W.要改善待机效率,必须在启动后将该电阻通道切断.现在一般的IC内部都有专门的启动电路,在电源启动后,可关闭启动电阻.若控制器没有专门启动电路,也可在启动电阻串接电容,其启动后的损耗可逐渐下降至零.缺点是电源不能自重启,只有断开输入电压,使电容放电后才能再次启动电路.而下图所示的启动电路,则可避免以上问题,而且该电路功耗仅为0.03W.不过电路增加了复杂度和成本. 2)降低开关工作频率 3)切换工作模式 1)QRPWM 对于工作在高频工作模式的开关电源,在待机时切换至低频工作模式可减小待机损耗.例如,

电荷输运机制

表1 几种电荷输运机制的能带示意图,电流特性公式及电流对温度、电压的依赖关系 q :电子电荷;V :外加电压;k :波尔兹曼常数;n :理想因子;I s :饱和电流;J s =I s /A εr :相对介电常数;ε0:真空介电常数;L :阴阳两极间距离 输运机制 能带示意图 电流特性公式 温度依赖性 电压依赖性 文献 直接隧穿 ()()21122222exp 2q V d I S m m d αα??-??= ? ?? none I V ∝ G 1 Fowler –Nordheim 隧穿 *3232*42()exp 83FN m Smq I E hm hqE ?π??? =- ? ??? none ()2ln 1I V V ∝G 2 Schottk y 发射效应 ()2120exp /I SAT e E kT βφ=- ()2ln 1I T T ∝()1 2 ln I V ∝ G 3 Poole-F rankel 效应 00 ()exp PF q qE SV I d kT ?πεεσ??-= - ? ??? ()ln 1I T ∝ ()1 2 ln I V V ∝ G 4 Hopping 传导 0exp(-)a E S I V d kT σ= ()ln 1I V T ∝ I V ∝ G 5 SCLC 效 应 2 3 98S S V I d εμθ= none n I V ∝ G 6 Standar d diode 方程 W d Mott-Gu rney law none J 1/2 V I -V 欧姆传导 None 有 用sclc

理解薄膜中电荷的输运机制对于分子电子器件的应用具有重要意义,例如分子二极管、分子晶体管和分子存储元件等。因此,关于金属电极薄膜中电荷的输运机制的研究已成为纳米材料研究中倍受关注的热点课题。电荷在金属电极-薄膜-金属电极结构中的输运机制主要有直接隧穿、Fowler –Nordheim 隧穿、Schottky 发射效应、Poole-Frankel 效应、跳跃传导(Hopping conduction )及空间电荷限制(SCLC )效应六种,各种输运机制的能带示意图,电流特性公式及电流对温度、电压的依赖关系如表1所示。 直接隧穿和Fowler –Nordheim 隧穿属于非共振遂穿,电流大小均和温度无关,其中直接隧穿适用于小电压范围(eV φ<),电流和电压呈线性关系;Fowler –Nordheim 隧穿适用于较高电压范围(eV φ>),()2ln I V 和1V 呈线性关系。在小电压范围,美国耶鲁大学Reed G7研究组利用直接隧穿模型研究了饱和烷硫醇自组装薄膜器件在变温条件下的电荷输运机制,并推算出势垒高度φ及衰减系数β。清华大学陈培毅教授G8等也对烷基硫醇饱和分子结中的电荷输运进行了研究,证实了隧穿为饱和分子结中的主要电荷输运机制。中国科学技术大学王晓平G9研究组研究了自组装硫醇分子膜输运特征的压力依赖性,分析表明自组装硫醇分子膜输运特征的压力依赖性也主要源于电荷在分子膜中的链间隧穿过程。在较高电压范围,韩国光州科学研究院Lee G10等观察到饱和烷硫醇自组装薄膜器件电流输运机制由直接隧穿转变为Fowler –Nordheim 隧穿,并研究了不同条件下过渡电压的变化规律。中科院上海微系统与信息技术研究所董耀旗 G11 等基于分栅闪存存储器的结构,对多晶硅/ 隧穿氧化层/多晶硅非平面结构的F-N 隧穿进行了研究。天津大学胡明教授G12 等在研究碳纳米管场发射性能时 认为其至少在某一电流密度范围内属于Fowler –Nordheim 遂穿。直接隧穿和Fowler –Nordheim 隧穿是饱和烷烃自组装薄膜中最常见的两种输运机制,然而对于π共轭分子,由于禁带宽度较小,则有可能是近似共振隧穿机制。 Schottky 发射效应是指在一定温度下, 金属中部分电子将获得足够的能量越过绝缘体的势垒,此过程又称为热电子发射,由电流特性公式可知()2ln I T 和1T 、()ln I 和12 V 均呈线性关系。美国匹兹堡大学Perello G13 等研究碳纳米管器件时观察到Schottky 发射效应并推算出Schottky 势垒。北京工业大学聂祚仁G14研究组也通过Schottky 发射效应分析研究了纳米复合W-La 2O 3材料的I-V 曲线并计算了材料的有效逸出功。 如果介质层包含有非理想性结构, 如不纯原子导致的缺陷, 那么这些缺陷将扮演电子陷阱的作用, 诱陷电子的场加强热激发将产生电流,此即为Poole-Frankel 效应。电流对温度和电压的关系为 ()ln 1I ∝和()1 2ln I V V ∝。西安电子科技大学汪家友教授 G15 等在研究a-C :F 薄膜电学性能时观察到薄 膜在高场区符合Poole-Frankel 机制。如果介质层缺陷密度很大, 电子的输运将由跳跃传导控制,此时,电流和电压呈线性关系且()ln 1I V ∝。美国耶鲁大学周崇武 G16 等研究Au/Ti/4-thioacetylbiphenyl/Au 分子结时观察到,在负偏压且偏压较小时即属于跳跃传导机制。新加坡国立大学Nijhuis G17等在研究Ag TS SC 11Fc 2Lee, W. Y. Wang, M. A. Reed. Mechanism of Electron Conduction in Self-Assembled

开关电源的基本要求

开关电源的基本要求 A:开关电源就是用通过电路控制开关管进行高速的道通与截止.将直流电转化为高频率的交流电提供给变压器进行变压,从而产生所需要的一组或多组电压。B:开关电源就是用半导体功率器件作开关,把一种电源形态转换为另一种电源形态 电源是一切电子设备的动力源,是保证电子设备的基础部件。据相关统计,电源故障约占电子设备整机故障率的40%---50%。为此,对电源必须提出一些基本要求,包括使用性能和电气性能。 一、使用性能要求 1、高的可靠性。平均无故障工件时间MTBF是衡量电源可靠性的重要指标,在通用电源的标准中规定,可靠性指标MTBF大于等于3000h是最低要求。航空航天电源要求更高,现制造技术和工艺不断成熟,MTBF可达500000h以上。折算是78.6年。 2、高的安全性。设计出的开关电源,应该符合相关标准或规范中规定的安全性能指标要求,如绝缘要求。抗电强度要求,防人身触电要求等,以防止在极限状况或恶劣环境条件下,出现电源故障并危及人身或设备安全。 3、好的可维修性。平均故障维修时间MTTR是衡量电源可维修性的重要指标。电源出现故障时,应能用时诊断出故障现象用部位,无需使用专用工具或不需要熟练技式就能在较短时间内,排除故障、替换故障部件及模块。一般要求MTTR小于30min。这除了要求电源有故障自诊断功能外,必须采用先进的设计、制造技术和工艺,如标准化、模块化(如上板的驱动模块)、电力电子集成等设计制造工艺。 4、高的功率密度。提高电源单位体积的功率容量(W/立方cm)及单位质量的功率容量(W/g),c以减少电源的体积和质量,便于用户安装、集成、移动及使用。实现高功率密度的关键是提高开关频率、减少损耗,与此相应的要求应用低损耗功率器件、高导热、高绝缘性能的绝缘材料,应用软开关电路结构。 5、高性价比、低使用维修费用。 6、环境适宜性要求。环境适宜性要求包括工作温度、储存温度范围、环境温度、对源电压品质及周围环境净化程度等。这些要求应以符合相关标准或满足合同要求为前提。 二、电气性能参数。 电源的电气性能参数通常包括电源输入特性参数、输出特性参数以及必要的附加功能。 1、源电压特性。 (1)源电压类型直流或交流。交流输入时是单相或是三相。 (2)源电压允许变化范围。源电压在此范围变化时电源给保证正常工作。通常在三相输入时取±15%的波动率。 (3)源电流。开关电源的源电流一般情况下不是正弦波,它的方均根值(有效值)是正弦波的2.12倍指出源电流是必要的,这样可以提供用户使用安装相应的配电盘。 (4)源功率因素。开关电源的源电流波形与源电压相位差的余弦与电流畸变因子的乘积即为功率因素。它反映出开关电源装置接入电网后对电网产生的影响程度,同时也影响开关电源的效率,一般功率因素PF 大于等于0.8 2、效率。电源的效率是指输入功率能传输到输出的程度,或且说输出功率与输入功率的比值。 3、源效应(电网电压调整率)是指在额定或规定的负载范围内,输入电压在规定的允许范围内变化时,引上起电压变化量与输出电压整定值之比的百分数。输入电压一般取波动下限。标称值和上限三点。测量输出电压的变化量,则源效应CV=|VoN-Vo|/VoN*100%。式中VoN为源电压在额定标称值时的输出电压,Vo 为源电压波动时的输出电压。对恒流源而言,源效应是指输出电网电压在规定的允许范围内变化时,引起输出电流变化量与输出电流设计值之比的百分数。即CC=(ΔIo/IoN)*100%。 4、负载效应(负载调整率)。是在规定的源电压(可以是标称源电压,也可以是源电压的允许下限或上限)下,负载电流从空载(也可以按产品标准规定的某一轻载)至满载变化时,引起输出的变化量与输入整定值之比的百分数。

开关电源电路中每个元件的作用及参数计算

开关电源电路中每个元件的作用及计算 本次讲解电源以一个13.2W电源为例 输入:AC90~264V输出:3.3V/4A 原理图 变压器是整个电源供应器的重要核心,所以变压器的计算及验证是很重要的。决定变压器的材质及尺寸: 依据变压器计算公式

决定一次侧滤波电容: 滤波电容的决定,可以决定电容器上的Vin(min),滤波电容越大,Vin(win)越高,可以做较大瓦数的Power,但相对价格亦较高。 决定变压器线径及线数: 当变压器决定后,变压器的Bobbin即可决定,依据Bobbin的槽宽,可决定变压器的线径及线数,亦可计算出线径的电流密度,电流密度一般以6A/mm2为参考,电流密度对变压器的设计而言,只能当做参考值,最终应以温升记录为准。决定Duty cycle (工作周期): 由以下公式可决定Duty cycle ,Duty cycle的设计一般以50%为基准,Duty cycle若超过50%易导致振荡的发生。

决定Ip值: 决定辅助电源的圈数: 依据变压器的圈比关系,可决定辅助电源的圈数及电压。 决定MOSFET及二次侧二极管的Stress(应力): 依据变压器的圈比关系,可以初步计算出变压器的应力(Stress)是否符合选用零件的规格,计算时以输入电压264V(电容器上为380V)为基准。 其它: 若输出电压为5V以下,且必须使用TL431而非TL432时,须考虑多一组绕组提供Photo coupler及TL431使用。 将所得资料代入 公式中,如此可得出B(max),若B(max)值太高或太低则参数必须重新调整。 变压器计算: 输出瓦数13.2W(3.3V/4A),Core = EI-28,可绕面积(槽宽)=10mm,Margin Tape = 2.8mm(每边),剩余可绕面积=4.4mm. 变压器材质及尺寸: 由以上假设可知材质为PC-40,尺寸=EI-28,Ae=0.86cm2,可绕面积(槽宽)=10mm,因Margin Tape使用2.8mm,所以剩余可绕面积为4.4mm.假设滤波电容使用47uF/400V,Vin(min)暂定90V。 决定变压器的线径及线数:

提高开关电源效率的电路技术

提高开关电源效率的电路技术 熊猫电子集团公司岳云 引言 随着半导体技术的不断进步,信号处理和信息处理电路的高密度集成化取得了长足的进步,系统LSI研发和推广活动也开展得如火如荼。与此同时,对为这些系统LSI供电的电源电路本身也提出了高功率密度的要求。目前使用的电源几乎都是开关电源,其小型化的基本方法便是提高开关电源的开关频率。从另一个方面来说,如果电源的功耗增加,则对于电源的小型化是极为不利的。尤其随着近来信息处理设备用量的激增,从节能的角度考虑,人们对于降低功耗(亦即提高电源的效率)给予了很大的关注。 本文将从电路和系统的层面上对开关电源效率指标的改善进行一些粗浅的分析。 提高开关电源效率的常见方法 开关电源的功耗包括由半导体开关、磁性元件和布线等的寄生电阻所产生的固定损耗以及进行开关操作时的开关损耗。对于固定损耗,由于它主要取决于元件自身的特性,因此需要通过元件技术的改进来予以抑制。在磁性元件方面,对于兼顾了集肤效应和邻近导线效应的低损耗绕线方法的研究由来已久。为了降低源自变压器漏感的开关浪涌所引起的开关损耗,人们开发出了具有浪涌能量再生功能的缓冲电路等新型电路技术。以下是提高开关电源效率的电路和系统方法: (1)ZVS(零电压开关)、ZCS(零电流开关)等利用谐振开关来降低开关损耗的方法。 (2)运用以有源箝位电路为代表的边缘谐振(Edge Resonance)来降低开关损耗。 (3)通过延展开关元件的导通时间以抑制峰值电流的方法来减少固定损耗。 (4)在低电压大电流的场合通过改善同步整流电路的方法来减少固定损耗。 (5)利用转换器的并联结构来减少固定损耗。 其中,第一种方法对于降低开关损耗极为有效,但问题是因峰值电流和峰值电压所导致的固定损耗将会增加。第二种方法是为解决该问题而开发的有源缓冲器(Active Snubber),是一种极为实用的ZVS方式;但是,由轻负载条件下的无功电流所引发的效率下降问题却是其一大缺陷。第三种方法中,采用抽头电感器(Tap Inductor)的方式是比较有效的,它能够应付由漏感所引起的浪涌现象。关于第四种方法,两段式结构是实现同步整流电路高效工作的方法之一,它采用接近0.5的固定时间比率(Time Ratio),并由前段的转换器来进行

Tb掺杂LaMnO_3材料的电输运与介电性能研究

Tb掺杂LaMnO3材料的电输运与介电性能研究 * 张开拓1,郑 舒1,张营堂2 (1 河南机电高等专科学校电气工程系,新乡453000;2 陕西理工学院材料学院功能材料研究所,汉中723003)摘要 采用固相反应法制备了A位掺杂的La0.95Tb0.05MnO3(LTMO)钙钛矿材料。研究了LTMO的电输运性能、磁性能以及介电性能。结果表明,LTMO表现出半导体电输运特性,其磁序结构表现出类自旋玻璃行为,而其介电性能在100K附近表现出弛豫特性,当温度高于100K时LTMO介电常数ε′随温度的升高几乎不变化,表现出介电常数的高温稳定性。 关键词 La0.95Tb0.05MnO3 电输运特性 类自旋玻璃 介电弛豫中图分类号:TB34 文献标识码:A Electrical Transport and Dielectric Properties of Perovskite Tb Dop ed LaMnO3ZHANG Kaituo1,ZHENG Shu1,ZHANG Yingtang 2 (1 Electrical Engineering College,Henan Mechanical and Electrical Engineering College,Xinxiang  453000;2 Institute ofFunctional Material,School of Material Science and Engineering,Shaanxi University of Technology,Hanzhong  723003)Abstract Polycrystalline bulk perovskite La0.95Tb0.05MnO3(LTMO)were synthesized by conventional solid-state reaction.Electric transport property,magnetic and dielectric property were examined.LTMO exhibits semicon-ductor,and its magnetic properties are spin-glass like behavior.It possesses the dielectric relaxation at lower 100K.Furthermore,the dielectric properties remain almost unchanged at hig her 100K.Key  words La0.95Tb0.05MnO3,electric transport,spin-glass like behavior,dielectric relaxation *陕西省教育厅专项科学研究项目( 12JK0953);电力设备电气绝缘国家重点实验室开放课题(EIPE11207) 张开拓: 1978年生,硕士,实验师,研究方向为电缆材料及其测试 E-mail:zkt8009@163.com 近年来, 钙钛矿结构的锰氧化物及其薄膜因其表现出的奇特电输运性能、 磁性能、介电性能和光性能而备受人们关注[1-4]。当Sr2+和Ca2+ 部分取代LaMnO3(LMO)的A位离子时,出现了金属-绝缘体转变,同时在转变点附近也发现了巨磁电阻效应[5-7] 。另外,TbMnO3表现出的磁电耦合特性也引起了人们的广泛兴趣[8,9] 。但由于TbMnO3的磁电耦合 温度很低,制约了TbMnO3体系的研究和应用, 人们一直试图提高TbMnO3的磁电耦合温度[10]。本实验利用等价Tb3+ 取代LaMnO3中的L a3+ ,研究体系的电输运性能、磁性能以及介电性能。 1 实验 采用传统固体反应法(陶瓷烧结法)制备LTMO陶瓷材料,成功制备出单相的LTMO材料样品,LTMO样品的制备过程的具体工艺流程为: (1)原料选择与处理。实验所用原料La2O3、MnO2和 Tb2O7均为分析纯( 纯度99.99%)。为保障化学计量比准确,称量前将易吸潮的La2O3放于烘箱中烘干(900℃、2h)。(2 )配料。根据计算好的化学配比,用电子天平称取化学粉末并置于预先准备好的球磨罐中。 (3 )混合。将称量好的原料放入研磨皿,进行混合研磨,每个样品每次研磨6h以上, 为了使其混合均匀,另外在研磨过程中一定小心,不让原料损失,防止成分偏差。 (4 )预烧。将磨好的样品用模具压制成块,放入低温炉中预烧,温度在900~1000℃,恒温12h,最后随炉冷却至室温。 (5)粉碎。将预烧合成后的样品放入研磨皿研磨6h以上,反复3次预烧、研磨过程。(6)成型。把第4次研磨好的原料用千斤顶压成直径3cm的圆片。 (7)烧结。烧结是通过一定的高温处理过程,使成型的坯体发生预期的物理化学反应和充分致密化,形成所需的化学组成和微观结构,得到具有所要求的物理化学性能陶瓷的全过程。在1300℃左右烧结24h, 即可获得单相多晶陶瓷。利用X射线衍射仪测试样品的XRD谱图,采用Cu靶,管压30kV,管流20mA,扫速8(°)/min,扫描范围10~80°,步长0.08° 。采用四点法测量样品的电输运性能。首先对样品表面进行打磨处理,并用酒精进行清洗,使表面保持清洁平整;用铟在样品表面制作4个电极;在液氮的条件下,冷却样品到液氮温区;而后在慢慢升温过程中测量电阻-温度(R-T)曲线。 通过带场冷(FC)和零场冷(ZFC)两种测量模式在超导量子干涉仪(SQUID) 系统中测量样品的直流磁化率曲线。· 511·Tb掺杂LaMnO3材料的电输运与介电性能研究 /张开拓等

开关电源电气性能测试规范文档

1.0 目的: 统一定义本司电源产品的测试方法与标准,给电源的测试提供一个方法依据,从而使电源的测试能够正确、准确地进行。 2.0 适用范围: 适用于测试工程师、技术员和工程测试人员对本司所有电源类产品的测试验证. 3.0 定义 略 4.0 权责: 测试组:测试工程师、技术员对各阶段样机进行测试验证,并提供测试报告 研发组:针对测试组在测试过程中提出的问题点进行改善. 5.0 程序内容: 5.1 输入电流 5.1.1 测试条件 5.1.1.1 输入电压: 下限电压/上限电压/额定电压 5.1.1.2 负载: 满载条件 5.1.1.3 环境温度:室温 5.1.2 测试设备 5.1.2.1 可编程交流源 5.1.2.2 精密电子负载 5.1.2.3 电参数测试仪 5.1.3测试方法与步骤 5.1.3.1接线方法请参考下图 5.1.3.2 说明:当DC输入时,图中Power analyzer(电参数测试仪)用万用表替代测试电流 5.1.3.3 依照客户规格输入电压设定AC Source/DC Source的输出电压 5.1.3.4 依照客户规格的满载条件设定电子负载带载条件 5.1.3.5 开启AC Source 电源输出并确认EUT正常动作后,直接读取电参数测试仪的电流读 值或AC SOURCE上的电流读值即为输入电流值 5.1.3.6 DC输入时,用导线直接将DC Source与EUT连接,用钳流表量测其输入电流 5.1.4 判定标准 依照客户规格或开发样机规格书所定的标准判定,若规格无输入电流测试的判定标准,则此项测试仅供参考

5.1.5 注意事项 5.1.5.1 若客户对输入电流之量测条件有特别的要求,则测试标准条件的设定以客户规格为准 5.1.5.2 通常在外部环境为高温,EUT 规定的最低电压输入,EUT满载的条件下,所测得的电 流最大 5.1.5.3 电参数测试仪上显示的电流值的精确度要比AC Source 显示的电流值要高,建议用电 参数测试仪读取 5.2 启动冲击电流 5.2.1 测试条件 5.2.1.1 通常在高温环境、EUT允许最高的输入电压(AC输入的相位角建议为90℃或27 0℃)及满载条件下所测得的数值最大 5.2.1.2 如客户无特别要求,本司的测试要求在常温条件下测试 5.2.1.3 一般而言,客户所定的冲击电流规格时通常会分别规定热态及冷态时的最大值,故量 测时严格以客户要求为准 5.2.2 测试设备 5.2.2.1 可编程交流源 5.2.2.2 精密电子负载 5.2.2.3 数字示波器 5.2.2.4 电流探头 5.2.3 测试方法与步骤 5.2.3.1 依据下图将仪器和待测物接线. 5.2.3.2 依照客户规格输入电压之上下限设定AC Source之电压输出. 5.2.3.3 依照客户规格作业温度的高温设定外部环境(Chamber)温度. 5.2.3.4 依照客户规格的满载条件设定电子负载条件:满载. 5.2.3.5 连接电流探头与示波器,设置适当的档位,将示波器触发设定为Normal捕获冲击电流 波形. 5.2.3.6 开启AC Source/DC Source 电源瞬间,示波器所取得的电流波形并判读其最高点的读 值为冲击电流,存储该冲击电流波形 5.2.4 判定标准 依照客户规格或本司企业标准所定标准判定,若规格无Inrush current测试标准,则此测试仅供参考 5.2.5 注意事项

开关电源变压器参数设计步骤详解

开关电源高频变压器设计步骤 步骤1确定开关电源的基本参数 1交流输入电压最小值u min 2交流输入电压最大值u max 3电网频率F l开关频率f 4输出电压V O(V):已知 5输出功率P O(W):已知 6电源效率η:一般取80% 7损耗分配系数Z:Z表示次级损耗与总损耗的比值,Z=0表示全部损耗发生在初级,Z=1表示发生在次级。一般取Z=0.5 步骤2根据输出要求,选择反馈电路的类型以及反馈电压V FB 步骤3根据u,P O值确定输入滤波电容C IN、直流输入电压最小值V Imin 1令整流桥的响应时间tc=3ms 2根据u,查处C IN值 3得到V imin 确定C IN,V Imin值 u(V)P O(W)比例系数(μF/W)C IN(μF)V Imin(V) 固定输 已知2~3(2~3)×P O≥90 入:100/115 步骤4根据u,确通用输入:85~265已知2~3(2~3)×P O≥90 定V OR、V B 固定输入:230±35已知1P O≥240 1根据u由表查出V OR、V B值

2 由V B 值来选择TVS 步骤5根据Vimin 和V OR 来确定最大占空比 Dmax V OR Dmax= ×100% V OR +V Imin -V DS(ON) 1设定MOSFET 的导通电压V DS(ON) 2 应在u=umin 时确定Dmax 值,Dmax 随u 升高而减小 步骤6确定初级纹波电流I R 与初级峰值电流I P 的比值K RP ,K RP =I R /I P u(V) K RP 最小值(连续模式)最大值(不连续模式) 固定输入:100/1150.41通用输入:85~2650.441固定输入:230±35 0.6 1 步骤7确定初级波形的参数 ①输入电流的平均值I AVG P O I A VG= ηV Imin ②初级峰值电流I P I A VG I P = (1-0.5K RP )×Dmax ③初级脉动电流I R u(V) 初级感应电压V OR (V)钳位二极管反向击穿电压V B (V) 固定输入:100/115 6090通用输入:85~265135200固定输入:230±35 135 200

相关文档
最新文档