催化剂的工业生产要求

催化剂的工业生产要求
催化剂的工业生产要求

一、工业生产对催化剂的要求工业生产要求催化剂具有较高的活性、良好的选择性、抗毒害性、热稳定性和一定的机械强度。

(1)活性

活性是指催化剂改变化学反应速率的能力,是衡量催化剂作用大小的重要指标之一。工业上常用转化率、空时产量、空间速率等表示催化剂的活性。

在一定的工艺条件(温度、压力、物料配比)下,催化反应的转化率高,说明催化剂的活性好。

在一定的反应条件下,单位体积或质量的催化剂在单位时间内生成目的产物的质量称作空时产量,也称空时产率,即

空时产量的单位是kg/( m3.h)或kg/(kg.h)。空时产量不仅表示了催化剂的活性,而且直接给出了催化反应设备的生产能力,在生产和工艺核算中应用很方便。空间速率(简称空速)是指单位体积催化剂通过的原料气在标准状况(0℃,iOl.3 kPa)下的体积流量,其单位是m3/(m3.h),常以符号Sv表示。

空间速率的倒数定义为标准接触时间(t。),单位是s。

t。= 3600/Sv

实验中,常用比活性衡量催化剂活性的大小。比活性是指催化反应速率常数与催化剂表面积的比值。

催化剂的活性并非一成不变,而是随着使用时间的延长而变化。

(2)选择性

选择性是衡量催化剂优劣的另一个指标。选择性表示催化剂加快主反应速率的能力,是主反应在主、副反应的总量中所占的比率。催化剂的选择性好,可以减少反应过程中的副反应,降低原材料的消耗,降低产品成本。催化剂的选择性表示如下:

(3)寿命

催化剂从其开始使用起,直到经再生后也难以恢复活性为止的时间,称为寿命。催化剂的活性与其反应时间的关系如图3 10所示,其使用活性随时间的变化,分为成熟期、活性稳定期和衰老期三个时期。不同的催化剂,其“寿命”曲线不同。

通常,新鲜催化剂刚投入使用时其组成及结构都需要调整,初始活性较低且不稳定,当催化剂运转一段时间后,活性达到最高而进入稳定阶段。故此,从催化剂投入使用至其活性升至较高的稳定期称为成熟期(也称诱导期)。

活性趋于稳定的时期称为活性稳定期。活性稳定期的长短与催化剂的种类、使用

条件有关。稳定期越长,催化剂的性能越好。

随着催化剂使用时间的增长,其催化活性也因各种原因随之下降,甚至完全失活,催化剂进入了衰老期。此时催化剂需进行再生,以恢复其活性。从催化剂活性开始下降到完全不能使用时的时间段称为衰老期。

催化剂的寿命越长,其使用的时间就越长,其总收率也越高。

(4)稳定性

即催化剂在使用条件下的化学稳定性,对热的稳定性,耐压、耐磨和耐冲击

等的稳定性。

较高的催化活性,可提高反应物的转化率和设各生产能力;良好的选择性,可提高目的产物的产率,减少副产物的生成,简化或减轻后处理工序的负荷,提高原料的利用率;耐热、对毒物具有足够的抵抗能力,即具有一定的化学稳定性,则可延长其使用寿命;足够的机械强度和适宜的颗粒形状,可以减少催化剂颗粒的破损,降低流体阻力。

(5)强度、比表面积、密度催化剂的机械强度、比表面积、密度等是催化剂的重要物理

性质,对催化剂的使用及寿命有很大的影响。

催化剂应具有一定的机械强度,否则在使用过程中容易出现破碎、粉化现象。这会造成对于固定床反应器,这会造成催化剂的大量流失;对于流化床反应器,气流通道的堵塞,增加流体阻力等。

1 g催化剂具有的总面积称为该催化剂的比表面积。催化剂内、外表面积之和为催化剂的总表面积。催化剂比表面积的大小对于吸附能力、催化活性有一定的影响,从而直接影响催化反应速率。比表面积越大,活性中心孔越多,活性越高。催化剂的密度(p)是单位体积催化剂所具有的质量,即

工业上根据催化剂体积的不同计算方法,对催化剂密度有以下几种表示方法。①堆积密度(PB)计算堆积密度时,催化剂的体积为催化剂自由堆积状态时(包括颗粒内孔隙和颗粒间空隙)的全部体积。

②真密度(ps)计算真密度时,催化剂的体积为扣除催化剂颗粒内孔隙和颗粒间空隙后的体积。

③表观密度(pp)计算表观密度时,催化剂的体积为包括催化剂颗粒内孔隙(扣除颗粒间空隙)的体积。

催化剂的密度,尤其是堆积密度的大小影响反应器的装填量。堆积密度大,单位体积反应器装填的催化剂的质量多,设备利用率大。

二、晶体结构

晶体结构即晶体的微观结构,是指晶体中实际质点(原子、离子或分子)的具体排列情况。自然界存在的固态物质可分为晶体和非晶体两大类,固态的金属与合金大都是晶体。晶体与非晶体的最本质差别在于组成晶体的原子、离子、分子等质点是规则排列的(长程序),而非晶体中这些质点除与其最相近外,基本上无规则地堆积在一起(短程序)。金属及合金在大多数情况下都以结晶状态使用。晶体结构是决定固态金属的物理、化学和力学性能的基本因素之一。

(1)点阵和周期性

晶体是各向异性的均匀物体。生长良好的晶体,外观上往往呈现某种对称性。从微观来看,组成晶体的原子在空间呈周期重复排列。即以晶体中的原子或其集不断重复出现。各按一定的点阵周期,在空间中三个不共面的方向上,合为基点,如从重复出现的每个基元中各取某一相当点,则这些点合在一起形成一个空间点阵的一部分。确切地说,点阵是一组按连接其中任何两点的矢量进行平移后而能复原的点的重复排列。

空间点阵是认识晶体结构基本特征的关键之一,用它可以方便而又清楚地说明晶体的微观结构在宏观中所表现出的面角守恒、有理指数等定律以及X射线衍射的几何关系。各点分布在同一直线上的点阵称为直线点阵,分布在同一平面中者称为平面点阵,而分布在三维空间中者称为空间点阵。空间点阵可以分解为各组平行的直线点阵或平面点阵,并可划分成并置的平行六面体单位。规定这个单位的矢量为a、b和c。空间点阵划分成一个个并置的平行六面体单位后,若点阵中各点都位于各平行六面体的顶点处,则此单位只摊到一个点,称为素单位。平行六面体单位也可在面上或体内带心,摊到一个以上的点,成为复单位。按照空间点阵的平行六面体单位,可划分成晶体结构的单位,这样的单位称为晶胞。晶体的一些宏观规律性反映了它微观结构中具有长程序的空间点阵形式。晶体之所以不同于一般具有短程序的非晶态固体和液体而成为各向异性体,与此有关。晶体外形为晶面构成的多面体,而晶面必与空间点阵中一组平面点阵平行,晶棱则与某一直线点阵组平行。在同一种晶体上两个给定晶面之间的交角是两组相应的点阵平面之间的交角,从而是常数。

点阵平面和直线点阵方向的表示方法在任何晶体中,可根据空间点阵的基向量a、b和c来取晶轴系。若任一点阵平面与它们交于A、B和C,则这个面在这三个晶轴上的倒易截之比,必可通约成三个互质数之比,即h:k:l,这是“有理指数定律”,h,k,l称为点阵平面指数,而(hkl)是该晶面的符号。晶棱或与一组直线点阵平行的方向可用记号【uvw】来代表,其中u、v和w也是三个互质的整数,称点阵方向指数。而这个方向与矢量ua+vb+wc平行。例如直线点阵方向【100】必与a平行,【010】与b平行,等等;而点阵平面(100)必与b和c平行,(010)与c和a平行,等等。

有了点阵概念就可以将晶体结构用下述所谓公式来简单表示:

晶体结构=点阵+结构基元

(2)晶体对称性

晶体的理想在晶体的外形以及其他宏观表现中还反映了晶体结构的对称性。.

外形或其结构都是对称图象。这类图象都能经过不改变其中任何两点间距离的操作后复原。这样的操作称为对称操作,平移、旋转、反映和倒反都是对称操作。能使一个图象复原的全部不等同操作,形成一个对称操作群。在晶体结构中空间点阵所代表的是与平移有关的对称性,此外,还可以含有与旋转、反映和倒反有关并能在宏观上反映出来的对称性,称为宏观对称性,它在晶体结构中必须与空间点阵共存,并互相制约。制约的结果有二:①晶体结构中只能存在1、2、3、4和6次对称轴,②空间点阵只能有14种形式。n次对称轴的基本旋转操作为旋转360°/n,因此,晶体能在外形和宏观中反映出来的轴对称性也只限于这些轴次。

(3)空间点阵的类型

根据晶体的宏观对称性,布喇菲(Bravais)在1849年首先推导出14种空间点阵,它们的晶轴关系即晶轴的单位长度及夹角(即单胞参量a、b、c、α、β、γ)

间的关系,分别属于立方、四方、三方、六方、正交、单斜、三斜共7个晶系(见表)。其中立方晶系的对称性最高,晶胞的三个边等长(a=b=c)并正交(α=β=γ=90°)。三斜晶系的对称性最低(a≠b≠c,α≠β≠γ≠90°)。在四方晶系中,晶胞的两个边等长并正交;而在正交晶系中三个边皆不等长。在六方晶系中,两个边等长(a=b≠c),它们的夹角γ=120°,而在三方晶系的菱面体晶胞中,三个边等长,三个夹角相等,但无正交关系(三方晶系中也可取六方点阵的晶胞),在单斜晶系,三个边不等长,三个夹角中有两个是90°。在这7个晶系中,除了由素单位构成的简单点阵(P)外,还可能有体心(I)、底心(C)、面心(F)点阵。在这些有心的点阵中,晶胞分别有2个或4个阵点。

(3)晶体的共性

如果将大量的原子聚集到一起构成固体,那么显然原子会有无限多种不同的排列方式。而在相应于平衡状态下的最低能量状态,则要求原子在固体中有规则地排列。若把原子看作刚性小球,按物理学定律,原子小球应整齐地排列成平面,又由各平面重叠成规则的三维形状的固体。

人们很早就注意一些具有规则几何外形的固体,如岩盐、石英等,并将其称为晶体。显然,这是不严格的,它不能反映出晶体内部结构本质。事实上,晶体往往并不是所有晶体都能表现由于受到外界条件的限制和干扰,在形成过程中,

出规则外形;一些非晶体,在某些情况下也能呈现规则的多面体外形。因此,晶体和非晶体的本质区别主要并不在于外形,而在于内部结构的规律性。迄今为止,已经对五千多种晶体进行了详细的X射线研究,实验表明:组成晶体的粒子(原子、离子或分子)在空间的排列都是周期性的有规则的,称之为长程有序;而非晶体内部的分布规律则是长程无序。

各种晶体由于其组分和结构不同,因而不仅在外形上各不相同,而且在性质上也有很大的差异,尽管如此,在不同晶体之间,仍存在着某些共同的特征,主要表现在下面几个方面。

自范性

晶体物质在适当的结晶条件下,都能自发地成长为单晶体,发育良好的单晶体均以平面作为它与周围物质的界面,而呈现出凸多面体。这一特征称之为晶体的自范性。

晶体角守恒定律

由于外界条件和偶然情况不同,同一类型的晶体,其外形不尽相同那么,由晶体内在结构所决定的晶体外形的固有特征是什么呢?实验表明:对于一定类型的晶体来说,不论其外形如何,总存在一组特定的夹角,如石英晶体的m与m两面夹角为60°0′,m与R面之间的夹角为38°13′,m与r面的夹角为38°13′。对于其它品种晶体,晶面间则有另一组特征夹角。这一普遍规律称为晶面角守恒定律,即同一种晶体在相同的温度和压力下,其对应晶面之间的夹角恒定不变。解离性

当晶体受到敲打、剪切、撞击等外界作用时,可有沿某一个或几个具有确定方位的晶面劈裂开来的性质。如固体云母(一种硅酸盐矿物)很容易沿自然层状结构平行的方向劈为薄片,晶体的这一性质称为解理性,这些劈裂面则称为解理面。自然界的晶体显露于外表的往往就是一些解理面。

各向异性

晶体的物理性质随观测方向而变化的现象称为各向异性。晶体的很多性质表现为各向异性,如压电性质、光学性质、磁学性质及热学性质等。例如:石墨的得到

方向不同而石墨的电导率数当我们沿晶体不同方向测其电导率时,电导率,

值也不同的结果。

对称性

晶体的宏观性质一般说来是各向异性的,但并不排斥晶体在某几个特定的方向可以是异向同性的。晶体的宏观性质在不同方向上有规律重复出现的现象称为晶体的对称性。晶体的对称性反映在晶体的几何外形和物理性质两个方面。实验表明,晶体的许多物理性质都与其几何外形的对称性相关。

最低内能与固定熔点编辑

实验表明:从气态、液态或非晶态过渡到晶体时都要放热,反之,从晶态转变为非晶态、液态或气态时都有要吸热。表明:在相同的热力学条件下,与同种化学成分的气体、液体或非晶体相比,晶体的内能最小。即在相同的热力学条件下,以具有相同化学成分的晶体与非晶体相比,晶体是稳定的,非晶体是不稳定的,后者有自发转变为晶体的趋势。

晶体具有固定的熔点。当加热晶体到某一特定的温度时,晶体开始熔化,且在熔化过程中保持温度不变,直至晶体全部熔化后,温度才又开始上升。如图1-1-3所示:石英的熔点是1470℃,硅单晶的熔点是1420℃。

反之,玻璃等非晶体在加热过程中,先出现整个固体变软,然后逐渐熔化为液体,也就是说,他们没有固定的熔点,而只是在某一温度范围内发生软化,这个范围称为软化区。

三、固体表面吸附

物理吸附

物理吸附也称范德华吸附,它是由吸附质和吸附剂分子间作用力所引起,此力也称作范德华力。由于范德华力存在于任何两分子间,所以物理吸附可以发生在任何固体表面上。吸附剂表面的分子由于作用力没有平衡而保留有自由的力场来吸引吸附质,由于它是分子间的吸力所引起的吸附,所以结合力较弱,吸附热较小,吸附和解吸速度也都较快。被吸附物质也较容易解吸出来,所以物理吸附在一定程度上是可逆的。如:活性炭对许多气体的吸附,被吸附的气体很容易解脱出来而不发生性质上的变化。

吸附于固体表面的气体分子,不与固体产生化学反应,这种吸附称为物理吸,吸附速率慢,无选择性,可逆,通常是发附,物理吸附的特点是:吸附热小

生在接近气体液化点的温度,一般是多层吸附。

化学吸附

化学吸附是吸附质分子与固体表面原子(或分子)发生电子的转移、交换或共有,形成吸附化学键的吸附。由于固体表面存在不均匀力场,表面上的原子往往还有剩余的成键能力,当气体分子碰撞到固体表面上时便与表面原子间发生电子的交换、转移或共有,形成吸附化学键的吸附作用。

特点

化学吸附的主要特点是:仅发生单分子层吸附;吸附热与化学反应热相当;有选择性;大多为不可逆吸附;吸附层能在较高温度下保持稳定等。化学吸附又可分为需要活化能的活化吸附(activated adsorption)和不需活化能的非活化吸附

(non-activated adsorption),前者吸附速度较慢,后者则较快。

化学吸附是多相催化反应的重要步骤。研究化学吸附对了解多相催化反应机理,实现催化反应工业化有重要意义。吸附特点

与物理吸附相比,化学吸附主要有以下特点:①吸附所涉及的力与化学键力相当,

比范德华力强得多。②吸附热近似等于反应热。③吸附是单分子层的。因此可用朗缪尔等温式描述,有时也可用弗罗因德利希公式描述。捷姆金吸附等温式只适用于化学吸附:V/Vm=1/a·㏑CoP。式中V是平衡压力为p时的吸附体积;Vm 是单层饱和吸附体积;a和c0是常数。④有选择性。⑤对温度和压力具有不可逆性。另外,化学吸附还常常需要活化能。确定一种吸附是否是化学吸附,主要根据吸附热和不可逆性。

机理.

催化剂常用制备方法

催化剂常用制备方法 固体催化剂的构成 ●载体(Al2O3 ) ●主催化剂(合成NH3中的Fe) ●助催化剂(合成NH3中的K2O) ●共催化剂(石油裂解SiO2-Al2O3 催化剂制备的要点 ●多种化学组成的匹配 –各组分一起协调作用的多功能催化剂 ●一定物理结构的控制 –粒度、比表面、孔体积 基本制备方法: ?浸渍法(impregnating) ?沉淀法(depositing) ?沥滤法(leaching) ?热熔融法(melting) ?电解法(electrolyzing) ?离子交换法(ion exchanging) ?其它方法 固体催化剂的孔结构 (1)比表面积Sg 比表面积:每克催化剂或吸附剂的总面积。 测定方法:根据多层吸附理论和BET方程进行测定和计算 注意:测定的是总表面积,而具有催化活性的表面积(活性中心)只占总表面的很少一部分。 内表面积越大,活性位越多,反应面越大。 (2)催化剂的孔结构参数 密度:堆密度、真密度、颗粒密度、视密度 比孔容(Vg):1克催化剂中颗粒内部细孔的总体积. 孔隙率(θ):颗粒内细孔的体积占颗粒总体积的分数. (一) 浸渍法 ?通常是将载体浸入可溶性而又易热分解的盐溶液(如硝酸盐、醋酸盐或铵盐等)中进 行浸渍,然后干燥和焙烧。 ?由于盐类的分解和还原,沉积在载体上的就是催化剂的活性组分。 浸渍法的原理 ●活性组份在载体表面上的吸附

●毛细管压力使液体渗透到载体空隙内部 ●提高浸渍量(可抽真空或提高浸渍液温度) ●活性组份在载体上的不均匀分布 浸渍法的优点 ?第一,可使用现成的有一定外型和尺寸的载体材料,省去成型过程。(如氧化铝,氧 化硅,活性炭,浮石,活性白土等) ?第二,可选择合适的载体以提供催化剂所需的物理结构待性.如比表面、孔径和强 度等。 ?第三,由于所浸渍的组分全部分布在载体表面,用量可减小,利用率较高,这对贵 稀材料尤为重要。 ?第四,所负载的量可直接由制备条件计算而得。 浸渍的方法 ?过量浸渍法 ?等量浸渍法 ?喷涂浸渍法 ?流动浸渍法 1.1、过量浸渍法 ?即将载体泡入过量的浸渍液中,待吸附平衡后,过滤、干燥及焙烧后即成。 ?通常借调节浸渍液浓度和体积来控制负载量。 1.2、等量浸渍法 ?将载体与它可吸收体积相应的浸渍液相混合,达到恰如其分的湿润状态。只要混合 均匀和干燥后,活性组分即可均匀地分布在载体表面上,可省却过滤和母液回收之累。但浸渍液的体积多少,必须事先经过试验确定。 ?对于负载量较大的催化剂,由于溶解度所限,一次不能满足要求;或者多组分催化 剂,为了防止竞争吸附所引起的不均匀,都可以来用分步多次浸渍来达到目的。 1.3.多次浸渍法 ●重复多次的浸渍、干燥、焙烧可制得活性物质含量较高的催化剂 ●可避免多组分浸渍化合物各组分竞争吸附 1.4浸渍沉淀法 将浸渍溶液渗透到载体的空隙,然后加入沉淀剂使活性组分沉淀于载体的内孔和表面 (二) 沉淀法 ?借助于沉淀反应。用沉淀剂将可溶性的催化剂组分转变为难溶化合物。经过分离、 洗涤、干燥和焙烧成型或还原等步骤制成催化剂。这也是常用于制备高含量非贵金属、金属氧化物、金属盐催化剂的一种方法。 ?共沉淀、均匀沉淀和分步沉淀 2.1、共沉淀方法 将催化剂所需的两个或两个以上的组分同时沉淀的一个方法,可以一次同时获得几个活性组分且分布较为均匀。为了避免各个组分的分步沉淀,各金属盐的浓度、沉淀剂的浓度、介质

(完整版)催化剂与催化作用试题副本

名词解释(10~15分,4~6题)填空(10~15分,5~10题)简要回答问题(45~55分,6~8题)论述题(25~35,2~3题) 第1、2章复习思考题 1、催化剂是如何定义的? 催化剂是一种能够改变化学反应速度而不能改变反应的热力学平衡位置,且自身不被明显消耗的物质。 2、催化剂在工业上的作用功能或者效果有哪些? 1)使得原来难以在工业上实现的过程得以实现。 2)由过去常常使用的一种原料,可以改变为多种原料。 3)原来无法生产的过程,可以实现生产。 4)原来需要多步完成的,变为一步完成。 5)由原来产品质量低,能耗大,变为生产成本低,质量高 6)由原来转化率低,副产物多,污染严重,变为转化率高,产物单一,污染减少 3、载体具有哪些功能和作用?8 ①分散作用,增大表面积,分散活性组分;②稳定化作用,防止活性组分熔化或者再结晶;③支撑作用,使催化剂具备一定机械强度,不易破损;④传热和稀释作用,能及时移走热量,提高热稳定性; ⑤助催化作用,某些载体能对活性组分发生诱导作用,协助活性组分发生催化作用。 4、代表催化剂性能的重要指标是什么? 催化剂的反应性能是评价催化剂好坏的主要指标,它主要包括催化剂的活性、选择性和稳定性。(1)催化剂的活性:指催化剂能加快化学反应的反应速度的程度 (2)催化剂的选择性:使反应向生成某一特定产物的方向进行。 (3)催化剂的稳定性:是指在使用条件下,催化剂具有稳定活性的周期 5、多相催化反应的过程步骤可分为哪几步?实质上可分为几步? (1)外扩散—内扩散—化学吸附—表面反应—脱附—内扩散—外扩散 (2)物理过程—化学过程—物理过程 6、吸附是如何定义的? 气体与固体表面接触时,固体表面上气体的浓度高于气相主体浓度的现象。 7、物理吸附与化学吸附的本质不同是什么? 本质:二者不同在于其作用力不同,前者为范德华力,后者为化学键力,因此吸附形成的吸附物种也不同,而且吸附过程也不同等诸多不同。 不同的表现形式为:(后面) 8、为何说Langmuir吸附为理想吸附?基本假设是什么? 模型假设:①吸附表面均匀,各吸附中心能量相同;②吸附分子间无相互作用;③单分子层吸附,吸附分子与吸附中心碰撞进行吸附,一个分子只占据一个吸附中心;④在一定条件下,吸附与脱附可建立动态平衡。 9、催化剂的比表面测定有哪些实验方法? (1)BET法测比表面积 1)测定原理和计算方法 依据BET提出的多层吸附理论以及BET吸附等温曲线进行测定和计算的。利用BET方程进行作图,采用试验采集数据并利用图解法进行计算。 2)实验方法 测定表面积的实验方法通常有,低温氮吸附容量法、重量法和色谱法等,当表面积比较小时,采用氮吸附法。 (2)色谱法测定比表面积 色谱法测定比表面积时载气一般采用He或H2,用N2做吸附质,吸附在液氮温度下进行。 10、何为扩散?催化剂颗粒内部存在几种扩散形式? (1)扩散:分子通过随机运动,从高浓度向低浓度进行传播的现象。 (2)1)普通扩散(分子扩散):分子扩散的阻力来自分子间的碰撞,通常在大孔(孔径大于100nm)

对于三效催化剂的制备与研究的开题报告

对于三效催化剂的制备与研究的开题报告 对于三效催化剂的制备与研究的开题报告 一、综述: 汽车作为现代社会的交通工具,给人们的工作和生活都带来了极大的便利,但同时也对大气环境造成了严重污染。由于汽车保有量的急剧增加,且我国的汽车检查和维修系统不完善,及汽车尾气污染控制水平低等原因,致使汽车尾气污染日益严重。大量汽车尾气污染物集中在城市,造成城市中汽车污染源的污染分担率明显增加。汽车排出的污染物主要有碳氢化合物、一氧化碳、氮氧化合物、铅、二氧化硫等有害物质。这些污染物危害人类健康,影响动植物的生长;另外氮氧化合物与碳氢化合物在强日光的作用吓,遇到不利于扩散的气候和地理环境时可形成光化学烟雾,造成眼中的二次污染和生态环境的破坏。因此,限制和治理汽车排气污染已迫在眉睫。20世纪80年代中期出现了第三代的Pt/Rh/Pd三金属三效催化剂。该技术充分利用了Pd的耐高温性能和Rh优异的NOx催化净化能力,大大提高了三效催化剂的活性。它的净化原理是:将贵金属三效催化剂制成净化装置后装入汽车内,使催化剂与尾气中的CO、NOX和有机物起氧化还原作用而生成无害物质排出,从而达到消除有害气体的目的。 二、思路及方法: 三效催化剂一般由四部分组成,包括:载体、涂层、活性催化剂、催化剂助剂。三效催化净化法,对一氧化碳、碳氢化合物和氮氧化物都有催化作用。本实验准备制备以γ-Al2O3及其他金属物质或陶瓷为载体,用La和Ce作为催化剂助剂的三效催化剂,并初步研究其催化性能。 三、主要内容:

采用浸渍法、机械混合法、离子交换法等制备三效催化剂 改变不同条件和助剂,改良单钯三效催化剂的性能 探讨改良三效催化剂的催化作用 四、工作计划: 1、2021年12月至2021年2月:查阅相关文献资料,初步确定论文题目; 2、2021年3月:拟定实验方案; 3、2021年4月:进行实验研究; 4、2021年5月:撰写毕业论文,进行毕业答辩。

催化剂与工业生产

催化剂与工业生产 没有催化剂就没有现代化的工业,这是许多有识之士的共同观点。如果没有催化剂,大量的化学反应就不可能达到理想的速度,因而也无法实现大规模的化工生产。所以说,催化剂是随着现代化学工业的发展而产生的,而同时,催化技术的发展也推动了现代化学的发展。 工业生产中,催化剂是提高化学反应速度、控制化学反应方向的最为有效的手段之一。对于一个有用的化学反应,是否能实现工业生产,必须要考虑产率问题和速度问题。产率关心的是反应能进行到什么样的程度。而速度衡量的是化学反应进行的快慢,即反应达到合适的产率需要多长的时间。 工业生产中催化剂的选择 在许多工业生产中,催化剂作为一种必不可少的原料,是生产最重要的条件之一。这就意味着,要获得较高的生产效率,必须选择与生产相适应的催化剂。实际工业生产中,对于催化剂的选择是一门重要的学问。催化效率是选择催化剂要考虑的重要因素,但不是惟一因素,光有高的催化效率是不够的,有时候太高的催化效率反而会影响生产效率。一下就继续介绍。 根据经验,一个好的工业催化剂应该同时具备适宜的催化效率、较高的选择性和较长的使用寿命。 1.催化率 通常,为了提高工业生产的效率,应该选择使用催化效率更高的催化剂,但这并不是绝对的。比如,对于某些热效应较大的化学反应,如前面述及的二氧化硫的氧化反应,催化剂的催化效率如果过高的话,反应会在单位时间内放出大量的热量。如果这些热量不能及时、有效地从反应容器中被排走,则会导致反应容器中的温度急剧升高。温度的升高不仅会影响反应的产率,而且过高的温度会破坏催化剂的最适宜的温度条件,引起催化剂的烧结,从而丧失催化功能 2.催化剂选择性。 催化剂如果具有较高的选择性,则可以选择性地催化工业生产所需的主反应,而大大减少副反应的发生和副产物的生成。这不仅可以增大原料的利用率,而且可以简化反应后产物的净化、提纯处理等流程,节约成本。设想一下,如果一种催化剂对主反应具有很高的催化效率,但这个催化剂“不分敌我”,对于各个副反应也同样具有很高的催化效率,甚至催化效率比主反应还要高,那么这个催化剂的高效率只能是“帮倒忙”,不具有现实意义。 3.催化剂的寿命 催化剂的寿命,也就是催化剂的稳定性。催化剂虽然不是反应物,不会随着反应的进行而被消耗掉。但由于实际工业生产环境的影响,如高温、反应物中存在杂质等,都可能导致

催化剂的制备和应用

摘要: 均匀、连续、致密分子筛膜的合成和应用受到广泛关注。利用分子筛膜具有的筛分和催化作用,在传统颗粒催化剂或载体表面包覆分子筛膜形成复合型催化剂,可以实现膜基分离和催化过程的耦合,增加反应物选择性,提高目标产物收率。本文综述了近年来在不同类型颗粒催化剂或载体表面合成分子筛膜的制备方法,描述了分子筛膜包覆型复合催化剂用于不同催化反应体系的研究结果。同时,在归纳和总结已有研究成果基础上展望了分子筛膜包覆型催化剂的研究发展趋势。 关键词: 分子筛膜包覆载体膜催化反应器 Coated with molecular sieve membrane preparation and application of the catalyst Abstract:uniform, continuous, the synthesis and application of dense molecular sieve membrane is widely https://www.360docs.net/doc/1117800095.html,ing molecular sieve membrane is screening and catalysis, in traditional particle catalyst or carrier cladding molecular sieve membrane formation on the surface of composite catalyst, can realize the coupling of membrane separation and catalytic process, increase the selectivity of reactants, improve the target product yield.In recent years was reviewed in this paper in different types of particle catalyst or carrier surface preparation methods of synthesis of molecular sieves membrane, describes the molecular sieve membrane coated type composite catalyst used for the results of different catalytic reaction system.At the same time, on the basis of induction and summary of existing research results discussed coated with molecular sieve membrane research and development trend of catalyst. Keywords:molecular sieve membrane coated carrier membrane catalytic reactor 1引言 分子筛膜具有较高的热稳定性,较好的化学稳定性。耐腐蚀性以及与特种材料的生物相容性,自首次支撑体分子筛膜专利报道至今,沸石分子筛膜的研究及生产已经成为膜科学技术领域的研究热点之一。图1分子筛膜论文和专利发表数量随年份的趋势图。支撑体分子筛膜的使用拓宽了分子筛的应用范围,避免了直接使用分子筛粉末床层带来的高压降及成型时加入粘结剂带来的使用效率降低等问题,使分子筛膜规模化的工业应用成为可能。加上分子筛具有筛分效应,较大的比表面积,可控的客体-吸附质相互作用,使其可用于膜催化和分离。分子筛膜在膜分离、膜催化反应器、化学传感器、电极材料、光电器件、低介电常数材料以及保护层方面均有潜在的应用前景。

催化剂的工业生产要求

一、工业生产对催化剂的要求工业生产要求催化剂具有较高的活性、良好的选择性、抗毒害性、热稳定性和一定的机械强度。 (1)活性 活性是指催化剂改变化学反应速率的能力,是衡量催化剂作用大小的重要指标之一。工业上常用转化率、空时产量、空间速率等表示催化剂的活性。 在一定的工艺条件(温度、压力、物料配比)下,催化反应的转化率高,说明催化剂的活性好。 在一定的反应条件下,单位体积或质量的催化剂在单位时间内生成目的产物的质量称作空时产量,也称空时产率,即 空时产量的单位是kg/( m3.h)或kg/(kg.h)。空时产量不仅表示了催化剂的活性,而且直接给出了催化反应设备的生产能力,在生产和工艺核算中应用很方便。空间速率(简称空速)是指单位体积催化剂通过的原料气在标准状况(0℃,iOl.3 kPa)下的体积流量,其单位是m3/(m3.h),常以符号Sv表示。 空间速率的倒数定义为标准接触时间(t。),单位是s。 t。= 3600/Sv 实验中,常用比活性衡量催化剂活性的大小。比活性是指催化反应速率常数与催化剂表面积的比值。 催化剂的活性并非一成不变,而是随着使用时间的延长而变化。 (2)选择性 选择性是衡量催化剂优劣的另一个指标。选择性表示催化剂加快主反应速率的能力,是主反应在主、副反应的总量中所占的比率。催化剂的选择性好,可以减少反应过程中的副反应,降低原材料的消耗,降低产品成本。催化剂的选择性表示如下: (3)寿命 催化剂从其开始使用起,直到经再生后也难以恢复活性为止的时间,称为寿命。催化剂的活性与其反应时间的关系如图3 10所示,其使用活性随时间的变化,分为成熟期、活性稳定期和衰老期三个时期。不同的催化剂,其“寿命”曲线不同。 通常,新鲜催化剂刚投入使用时其组成及结构都需要调整,初始活性较低且不稳定,当催化剂运转一段时间后,活性达到最高而进入稳定阶段。故此,从催化剂投入使用至其活性升至较高的稳定期称为成熟期(也称诱导期)。 活性趋于稳定的时期称为活性稳定期。活性稳定期的长短与催化剂的种类、使用

催化剂的历史及其发展趋势

催化剂的历史及其发展趋势 1.催化剂的历史 催化现象由来已久,早在古代,人们就利用酵素酿酒制醋,中世纪炼金术士用硝石催化剂从事硫磺制作硫酸。十三世纪发现硫酸能使乙醇产生乙醚,十八世纪利用氧化氮之所硫酸,即所谓的铅室法[1]。最早记载“催化现象”的资料可以追溯到十六世纪末(1597年)德国的《炼金术》一书,但是当时“催化作用”还没有被作为一个正式的化学概念提出。一直到十九世纪初期,由于催化现象的不断发现,为了要解释众多的催化现象,开始提出了“催化”这一个名词。最早是在1835年,瑞典化学家J.J.Berzelius(1779-1848)在其著名的“二元学说”的基础上,把观察到的零星化学变化归结为是由一种“催化力(catalyticforce)”所引起的,并引入了“催化作用(cataysis)”一词[2]。从此,对于催化作用的研究才广泛的开展起来。 1.1萌芽时期(20世纪以前) 催化剂工业发展史与工业催化过程的开发及演变有密切关系。1740年英国医生J.沃德在伦敦附近建立了一座燃烧硫磺和硝石制硫酸的工厂,接着,1746 年英国J.罗巴克建立了铅室反应器,生产过程中由硝石产生的氧化氮实际上是一种气态的催化剂,这是利用催化技术从事工业规模生产的开端。1831年P.菲利普斯获得二氧化硫在铂上氧化成三氧化硫的英国专利。19世纪60年代,开发了用氯化铜为催化剂使氯化氢进行氧化以制取氯气的迪肯过程。1875年德国人E.雅各布在克罗伊茨纳赫建立了第一座生产发烟硫酸的接触法装置,并制造所需的铂催化剂,这是固体工业催化剂的先驱。铂是第一个工业催化剂,现在铂仍然是许多重要工业催化剂中的催化活性组分。19世纪,催化剂工业的产品品种少,都采用手工作坊的生产方式。由于催化剂在化工生产中的重要作用,自工业催化剂问世以来,其制造方法就被视为秘密。 1.2奠基时期(20世纪初) 在这一时期内,制成了一系列重要的金属催化剂,催化活性成分由金属扩大到氧化物,液体酸催化剂的使用规模扩大。制造者开始利用较为复杂的配方来开发和改善催化剂,并运用高度分散可提高催化活性的原理,设计出有关的制造技术,例如沉淀法、浸渍法、热熔融法、浸取法等,成为现代催化剂工业中的基

催化剂的制备性能评价及使用技术多相催化剂常用哪些

第二章催化剂的制备、性能评价及使用技术 1.多相催化剂常用哪些方法来制备?为什么制备固体催化剂都需要经过热处理,其目的是什么? 多相催化剂常用的制备方法有:(1)天然资源的加工,结构不同,含量不同的硅铝酸盐采用不同的方法和条件加工后能适用于某一特定的催化反应;(2)浸渍法,将载体置于含活性组分的溶液中浸泡,达到平衡后将剩余液体除去,再经干燥、煅烧、活化等步骤即得催化剂。此法要求浸渍溶液中所含活性组分溶解度大、结构稳定、受热后分解为稳定的化合物;(3)滚涂法和喷涂法,滚涂法是将活性组分先放在一个可摇动的容器中,再将载体布于其上,经过一段时间的滚动,活性组分逐渐粘附其上,为了提高滚涂效果,有时也添加一定的粘合剂。喷涂法与滚涂法类似,但活性组分不同载体混在一起,而是用喷枪附于载体上;(4)沉淀法,在含金属盐类的水溶液中,加进沉淀剂,以便生成水合氧化物、碳酸盐的结晶或凝胶。将生成的沉淀物分离、洗涤、干燥后,即得催化剂;(5)共混合法:将活性组分与载体机械混合后,碾压至一定程度,再经挤条成型,最后缎烧活化;(6)沥滤法(骨架催化剂的制备方法),将活性组分金属和非活性金属在高温下做成合金,经过粉碎,再用苛性钠来溶解非活性金属即得;(7)离子交换法: 是在载体上金属离子交换而负载的方法, 合成沸石分子筛一般也是先做成Na型,需经离子交换后方显活性;(8) 均相络合催化别的固载化: 将均相催化剂的活性组分移植于载体上, 活性组分多为过渡金属配合物,载体包括无机载体和有机高分子载体。优点是活性组分的分散性好,而且可根据需要改变金属离子的配体。制备各固体催化剂,无论是浸渍法,沉淀法还是共混合法,有的钝态催化剂经过缎烧就可以转变为活泼态,有的还需要进一步活化。 所以,催化剂在制备好以后,往往还要活化;除了干燥外,还都需要较高温度的热处理-煅烧的目的:1)通过热分解除掉易挥发的组分而保留一定的化学组成,使催化剂具有稳定的催化性能。2)借助固态反应使催化剂得到一定的晶型、晶粒大小、孔隙结构和比表面。3)提高催化剂的机械强度。 2.沉淀法制备催化剂的原理是什么?金属盐和沉淀剂的选择原则是什么? 沉淀法制备催化剂的原理是沉淀反应,金属盐一般首选硝酸盐来提供无机催化剂材料所需的阳离子;金、铂、钯等贵金属不溶于硝酸,但可溶于王水。 沉淀剂的选择原则是:(1)尽可能使用易分解并含易挥发成分的沉淀剂;(2)沉淀便于过滤和洗涤;(3)沉淀剂自身的溶解度要足够大;(4)沉淀物的溶解度应很小;(5)沉淀剂必须无毒,不造成环境污染。

1第一章工业催化剂概述

第一章工业催化剂概述 1.催化剂在经济上的地位和作用 2.催化工业的形成和发展 3.催化剂市场 4.若干术语和基本概念 1.催化剂在经济上的地位和作用 A.催化剂是化学工业的基石。据统计,现有90%以上的化工过程是采用催化剂进行生产的。借助于催化剂生产的产品总值在全世界工业生产总值中约占18%,仅低于机械产品的总值。 B.提高社会生产水平(合成氨、合成材料、生物化工) 合成氨:亚洲在世界上的产量最高,其中,中国是第一大生产和消费国; 合成材料:树脂,塑料;合成纤维;合成橡胶; 树脂,塑料;产量最大的通用塑料:聚乙烯、聚丙烯、聚苯乙烯、聚氯乙烯;热塑性树脂,塑料总产量已与赶超钢铁的产量。 生物化工:酶化工,最古老的化学工业,酿酒、制药,(Only,Cobbut,青霉素) 生物汽油:发酵法生产乙醇,掺入汽油约10%; 生物柴油:大豆油、蓖麻油等掺入柴油中。 C.扩大资源利用范围(C1化工、煤、石油)

C1:含一个碳的小分子;可生产合成燃料(F-T合成);生产三烯(乙烯,丙烯,丁二烯);生产三苯(苯、甲苯、二甲苯);构成化学物质的使用循环。 煤:传统用处,燃料,化工原料(汽化干馏得到,成本高,不纯);现石油危机,重提化工利用,汽化,液化等。 石油:催化裂化,重要的行业革新;催化重整,开辟制苯途径;60年代,全面取代煤。 燃料添加剂:四乙基铅、甲基叔丁基醚、二甲醚。 D.提取制造重要物质(精细化工) 精细化工产品:批量小,附加值高,技术含量高,针对性强。 催化剂本身是一种精细化工产品; E.满足社会各方面需要(衣、食、住、行、环保、国防) 2.催化工业的形成和发展 A. 二十世纪以前(萌芽时期);最早工业化催化剂:硫酸催化剂:NO2 SO2 SO3 Cat:NO2 后1879年用Pt催化剂,现用V2O5-K2SO4/硅藻土 B. 二十世纪初(奠基时期) 1913年:合成氨Fe Cat; 15年:氨氧化制硝酸Pt网Cat; C. 二十世纪初30~60年代(大发展时期) 36年:催化裂化催化剂:SiO2-Al2O3; 38年:Ficher-Tropsch合成,Fe,Co,Ni催化剂; 49年:催化重整催化剂:Pt-Re/Al2O3; 53年:乙烯聚合催化剂:Ziggler-Natte TiCl4-Al(C2H5)3 60年代:均相络合催化剂;分子筛催化剂。 D. 二十世纪初70年代以后(成熟时期) 78年:甲醇制汽油,甲醇芳构化,ZSM-5分子筛; 甲醇羰基化RhI2(CO)2;

工业生产对催化剂的要求

工业生产对催化剂的要求 工业生产要求催化剂具有较高的活性、良好的选择性、抗毒害性、热稳定性和一定的机械强度。 (1)活性 活性是指催化剂改变化学反应速率的能力,是衡量催化剂作用大小的重要指标之一。工业上常用转化率、空时产量、空间速率等表示催化剂的活性。 在一定的工艺条件(温度、压力、物料配比)下,催化反应的转化率高,说明催化剂的活性好。 在一定的反应条件下,单位体积或质量的催化剂在单位时间内生成目的产物的质量称作空时产量,也称空时产率,即 空时产量的单位是kg/( m3.h)或kg/(kg.h)。空时产量不仅表示了催化剂的活性,而且直接给出了催化反应设各的生产能力,在生产和工艺核算中应用很方便。 空间速率(简称空速)是指单位体积催化剂通过的原料气在标准状况(0℃,iOl.3 kPa)下的体积流量,其单位是m3/(m3.h),常以符号Sv表示。 空间速率的倒数定义为标准接触时间(t。),单位是s。 t。= 3600/Sv 实验中,常用比活性衡量催化剂活性的大小。比活性是指催化反应速率常数与催化剂表面积的比值。 催化剂的活性并非一成不变,而是随着使用时间的延长而变化。 (2)选择性 选择性是衡量催化剂优劣的另一个指标。选择性表示催化剂加快主反应速率的能力,是主反应在主、副反应的总量中所占的比率。催化剂的选择性好,可以减少反应过程中的副反应,降低原材料的消耗,降低产品成本。催化剂的选择性表示如下:

(3)寿命 催化剂从其开始使用起,直到经再生后也难以恢复活性为止的时间,称为寿命。催化剂的活性与其反应时间的关系如图3 10所示,其使用活性随时间的变化,分为成熟期、活性稳定期和衰老期三个时期。不同的催化剂,其“寿命”曲线不同。 通常,新鲜催化剂刚投入使用时其组成及结构都需要调整,初始活性较低且不稳定,当催化剂运转一段时间后,活性达到最高而进入稳定阶段。故此,从催化剂投入使用至其活性升至较高的稳定期称为成熟期(也称诱导期)。 活性趋于稳定的时期称为活性稳定期。活性稳定期的长短与催化剂的种类、使用条件有关。稳定期越长,催化剂的性能越好。 随着催化剂使用时间的增长,其催化活性也因各种原因随之下降,甚至完全失活,催化剂进入了衰老期。此时催化剂需进行再生,以恢复其活性。从催化剂活性开始下降到完全不能使用时的时间段称为衰老期。 催化剂的寿命越长,其使用的时间就越长,其总收率也越高。 (4)稳定性 即催化剂在使用条件下的化学稳定性,对热的稳定性,耐压、耐磨和耐冲击等的稳定性。 较高的催化活性,可提高反应物的转化率和设各生产能力;良好的选择性,可提高目的产物的产率,减少副产物的生成,简化或减轻后处理工序的负荷,提高原料的利用率;耐热、对毒物具有足够的抵抗能力,即具有一定的化学稳定性,则可延长其使用寿命;足够的机械强度和适宜的颗粒形状,可以减少催化剂颗粒的破损,降低流体阻力。 (5)强度、比表面积、密度催化剂的机械强度、比表面积、密度等是催化剂的重要物理 性质,对催化剂的使用及寿命有很大的影响。 催化剂应具有一定的机械强度,否则在使用过程中容易出现破碎、粉化现象。对于流化床反应器,这会造成催化剂的大量流失;对于固定床反应器,这会造成

催化剂的工业生产要求

一、工业生产对催化剂的要求 工业生产要求催化剂具有较高的活性、良好的选择性、抗毒害性、热稳定性和一定的机械强度。 (1)活性 活性是指催化剂改变化学反应速率的能力,是衡量催化剂作用大小的重要指标之一。工业上常用转化率、空时产量、空间速率等表示催化剂的活性。 在一定的工艺条件(温度、压力、物料配比)下,催化反应的转化率高,说明催化剂的活性好。 在一定的反应条件下,单位体积或质量的催化剂在单位时间内生成目的产物的质量称作空时产量,也称空时产率,即 空时产量的单位是kg/( m3.h)或kg/(kg.h)。空时产量不仅表示了催化剂的活性,而且直接给出了催化反应设备的生产能力,在生产和工艺核算中应用很方便。 空间速率(简称空速)是指单位体积催化剂通过的原料气在标准状况(0℃,iOl.3 kPa)下的体积流量,其单位是m3/(m3.h),常以符号Sv表示。 空间速率的倒数定义为标准接触时间(t。),单位是s。 t。= 3600/Sv 实验中,常用比活性衡量催化剂活性的大小。比活性是指催化反应速率常数与催化剂表面积的比值。 催化剂的活性并非一成不变,而是随着使用时间的延长而变化。 (2)选择性 选择性是衡量催化剂优劣的另一个指标。选择性表示催化剂加快主反应速率的能力,是主反应在主、副反应的总量中所占的比率。催化剂的选择性好,可以减少反应过程中的副反应,降低原材料的消耗,降低产品成本。催化剂的选择性表示如下:

(3)寿命 催化剂从其开始使用起,直到经再生后也难以恢复活性为止的时间,称为寿命。催化剂的活性与其反应时间的关系如图3 10所示,其使用活性随时间的变化,分为成熟期、活性稳定期和衰老期三个时期。不同的催化剂,其“寿命”曲线不同。 通常,新鲜催化剂刚投入使用时其组成及结构都需要调整,初始活性较低且不稳定,当催化剂运转一段时间后,活性达到最高而进入稳定阶段。故此,从催化剂投入使用至其活性升至较高的稳定期称为成熟期(也称诱导期)。 活性趋于稳定的时期称为活性稳定期。活性稳定期的长短与催化剂的种类、使用条件有关。稳定期越长,催化剂的性能越好。 随着催化剂使用时间的增长,其催化活性也因各种原因随之下降,甚至完全失活,催化剂进入了衰老期。此时催化剂需进行再生,以恢复其活性。从催化剂活性开始下降到完全不能使用时的时间段称为衰老期。 催化剂的寿命越长,其使用的时间就越长,其总收率也越高。 (4)稳定性 即催化剂在使用条件下的化学稳定性,对热的稳定性,耐压、耐磨和耐冲击等的稳定性。 较高的催化活性,可提高反应物的转化率和设各生产能力;良好的选择性,可提高目的产物的产率,减少副产物的生成,简化或减轻后处理工序的负荷,提高原料的利用率;耐热、对毒物具有足够的抵抗能力,即具有一定的化学稳定性,则可延长其使用寿命;足够的机械强度和适宜的颗粒形状,可以减少催化剂颗粒的破损,降低流体阻力。 (5)强度、比表面积、密度催化剂的机械强度、比表面积、密度等是催化剂的重要物理 性质,对催化剂的使用及寿命有很大的影响。 催化剂应具有一定的机械强度,否则在使用过程中容易出现破碎、粉化现象。对于流化床反应器,这会造成催化剂的大量流失;对于固定床反应器,这会造成

催化剂的发展论文

催化剂的发展 催化剂的发展历程 第一代催化剂 纳塔小组及其它工业实验室发现通过铝还原的TiCl3(其中含共结晶的AlCl3)或者 TiCl3 和AlCl3 混合物可以得到活性比纯TiCl3还高的催化剂。1959 年,Staffer 化学公司将这种催化剂工业化,并将之命名为AA-TiCl3(AA 指还原的和活化)。人们将这种催化剂称为聚丙烯工业生产中的第一代齐格勒-纳塔催化剂。 催化剂经长时间研磨热处理,表面积可达16~40m2/g,这种催化剂用于丙烯聚合时,每1g Ti可得约5000g聚丙烯,等规度在90%左右。因此这种催化剂的产率和立体选择性很 低,得到的聚丙烯需要清除残留的催化剂和无规聚丙烯部分,生产过程过复杂,费用较高。 第二代催化剂 第二代催化剂主要特点是添加了第二组分给电子体,后来被称为内给电子体,同时该代 催化剂还注意控制催化剂的形状。Solvay型催化剂是这类催化剂的一个典型代表:二十世纪七十年代早期,Solvay公司的催化剂技术取得了较大的进步,其制得的TiCl3 催化剂比常规AA-TiCl3的比表面积更大(催化剂的表面积150 m2/g),催化活性提高了约5倍,等规度高达95%。 后来又经过多次改进,性能有所提高,聚合物性能优于第一代催化剂所合成的聚丙烯树脂。但是,第二代催化剂虽然在催化活性、定向能力方面有明显改进,其催化剂效率仍不能完全满足聚合物免脱灰的要求,聚丙烯树脂仍需进行催化剂残渣处理和无规物脱除,生产工艺流程也就没有得到明显的改善。 第三代催化剂 第三代催化剂由于催化剂的单位产率高,等规指数较高,基本上可以不脱灰和分离无规 聚合物,又被称作高效催化剂,主要是以MgCl2为载体的载体型催化剂,使用单酯类化合 物作内给电子体,进行四氯化钛负载。第三代催化剂的成功应用,使聚丙烯生产工艺和设备得到了大大简化,促使聚丙烯的生产得到飞快的发展。然而,聚丙烯的活性还有待提高。

催化剂的制备方法与成型技术简汇

\催化剂的制备方法与成型技术1314100125 13化工本一万立之 摘要:本文介绍了固体催化剂的组成,催化剂制备的一般方法、催化剂制备的新技术,以及催化剂常用成型技术。 关键词:固体催化剂;制备方法;成型技术 目录 摘要 (1) 1 固体催化剂的组成: (1) 2 催化剂的一般制备方法 (1) 2.1 浸渍法 (1) 2.2 沉淀法 (2) 2.3 混合法 (2) 2.4 滚涂法 (3) 2.5 离子交换法 (3) 2.6 热熔融法 (3) 2.7锚定法 (4) 3 催化剂成型技术 (4) 3.1喷雾成型 3.2油柱成型 3.3转动成型 3.4挤条成型 3.5压片成型 4 小结 (5) 参考文献 (6)

0 引言 催化剂又叫触媒。根据国际纯粹与应用化学联合会(IUPAC)于1981年提出的定义,催化剂是一种物质,它能够改变反应的速率而不改变该反应的标准Gibbs自由焓变化。这种作用称为催化作用。涉及催化剂的反应为催化反应。催化作用是指改变化学反应的速度,控制反应方向和产物构成。催化剂具有加快化学反应的速度,但不进入化学反应计量,对反应的选择性,只能加速热力学上可能的反应,且不改变化学平衡的位置的特点。催化剂是催化工艺的灵魂,它决定着催化工艺的水平及其创新程度。因此研究工业催化剂的制备方法以及成型技术具有重要的实际意义。 1 固体催化剂的组成: 固体催化剂主要有活性组分、助剂和载体三部分组成: 1.活性组分:主催化剂,是催化剂中产生活性的部分,没有它催化剂就不能产生催化作用。 2.助剂:本身没有活性或活性很低,少量助剂加到催化剂中,与活性组分产生作用,从而显著改善催化剂的活性和选择性等。 3.载体:载体主要对催化活性组分起机械承载作用,并增加有效催化反应表面、提供适宜的孔结构;提高催化剂的热稳定性和抗毒能力;减少催化剂用量,降低成本。 目前,国内外研究较多的催化剂载体有:SiO2,Al2O3、玻璃纤维网(布)、空心陶瓷球、有机玻璃、光导纤维、天然粘土、泡沫塑料、树脂、活性炭,Y、β、ZSM-5分子筛,SBA-15、MCM-41、LaP04等系列载体。 2 催化剂的一般制备方法 2.1 浸渍法 将含有活性组分(或连同助催化剂组分)的液态(或气态)物质浸载在固态载体表面上。此法的优点为:可使用外形与尺寸合乎要求的载体,省去催化剂成型工序;可选择合适的载体,为催化剂提供所需的宏观结构特性,包括比表面、孔半径、机械强度、导热系数等;负载组分仅仅分布在载体表面上,利用率高,用量少,成本低。广泛用于负载型催化剂的制备,尤其适用于低含量贵金属催化剂。 影响浸渍效果的因素有浸渍溶液本身的性质、载体的结构、浸渍过程的操作条件等。浸渍方法有:①超孔容浸渍法,浸渍溶液体积超过载体微孔能容纳的体积,常在弱吸附的情况下使用;②等孔容浸渍法,浸渍溶液与载体有效微孔容积相等,无多余废液,可省略过滤,便于控制负载量和连续操作;③多次浸渍法,浸渍、干燥、煅烧反复进行多次,直至负载量足够为止,适用于浸载组分的溶解

不能没有你—工业生产与催化剂

“不能没有你”—工业生产与催化剂 没有催化剂就没有现代化的工业,这是许多有识之士的共同观点。如果没有催化剂,大量的化学反应就不可能达到理想的速度,因而也无法实现大规模的化工生产。所以说,催化剂是随着现代化学工业的发展而产生的,而同时,催化技术的发展也推动了现代化学的发展。 工业生产中,催化剂是提高化学反应速度、控制化学反应方向的最为有效的手段之一。对于一个有用的化学反应,是否能实现工业生产,必须要考虑产率问题和速度问题。产率关心的是反应能进行到什么样的程度。而速度衡量的是化学反应进行的快慢,即反应达到合适的产率需要多长的时间。设想,如果一个化学反应在工业上达到适合的产率需要花很长的时间,那么这个反应是否具有工业生产价值就存在疑问,因为工业生产是要讲求效率的。在工厂、设备规模限定的前提下,提高产量最有效的途径,就是在单位时间内获得更多的产物,也就是增大化学反应的速度。而这,恰恰是催化剂所擅长的。 工业生产中催化剂的选择 在许多工业生产中,催化剂作为一种必不可少的原料,是生产最重要的条件之一。这就意味着,要获得较高的生产效率,必须选择与生产相适应的催化剂。实际工业生产中,对于催化剂的选择是一门重要的学问。或许你会说,这有什么难的,选择催化剂不就应该选择催化效率最高的吗?是的,不可否认,催化效率是选择催化剂要考虑的重要因素,但不是惟一因素,光有高的催化效率是不够的,有时候太高的催化效率反而会影响生产效率。你一定感到糊涂了吧,没关系,看下去你就会明白的。 根据经验,一个好的工业催化剂应该同时具备适宜的催化效率、较高的选择性和较长的使用寿命。 首先是催化效率。通常,为了提高工业生产的效率,应该选择使用催化效率更高的催化剂,但这并不是绝对的。比如,对于某些热效应较大(即反应过程中会释放较多的热量)的化学反应,如前面述及的二氧化硫的氧化反应,催化剂的催化效率如果过高的话,反应会在单位时间内放出大量的热量。如果这些热量不能及时、有效地从反应容器中被排走,则会导致反应容器中的温度急剧升高。温度的升高不仅会影响反应的产率,而且过高的温度会破坏催化剂的最适宜的温度

催化剂开发与设计

如何利用组合技术设计和开发催化剂?这种技术易于开发新材料和过程优化,近年来将它应用于多相催化剂或催化材料的研究报道日益增多,目的在于发现具有工业应用价值的配方新材料或组合催化剂。 组合催化剂的研制与开发需要几方面的技术?1.设计和使用并行合成法,合成众多有希望的侯选物库;2.建立快速灵敏的鉴定方法,一较短的时间对众多候选物库进行分析评选;3.有希望候选物的优化和候选物库的改进。 绿色化学:又称环境友好化学,环境无害化学,清洁化学,使用化学的技术和方法去减少或消除有害物质的产生和使用。核心:利用化学原理从源头上减少和消除工业生产对环境的污染,按照绿色化学的原则,理想的化工生产方式是:反应物的原子全部转化为期待的最终产物。特点:1.充分利用资源和能源,采用无毒,无害的原料;2.在无毒无害的条件下进行反应,以减少向环境排放的废物;3.提高原子的利用率,力图使所有的原料的原子都被产品所消纳,实现零排放。4.生产出有利于环境保护,社区安全和人体健康的环境友好产品。 流化床反应器:是一种利用气体或液体通过颗粒状固体层而使固体颗粒出于悬浮运动状态,并进行气固相反应过程或液固反应过程的反应器,在有气相系统时,又称沸腾床反应器。 费米能级;衡量固体中电子逸出功的难易程度,它与电子的逸出功直接相关,是一个电子从固体内部拉到外部变成自由电子所需要的能量,此能量用以克服电子的平均位能,Ef就是这种平均位能,从Ef到导带顶间的能量差就是逸出功。 酸催化剂:酸强度越大,催化剂活性越高,酸度越大,催化剂活性也越高。酸强度越大,酸量越小,活性一般也会降低,不同的反应要求的酸中心强度也会不同。例如:c-c断裂,要求的酸中心强度大,此类反应有裂化,异构,烷基化等;c-H断裂:亚欧酸中心较弱,如丁烯:双键异构反应。 合成氨的发展历程:1900年,法国化学家勒夏特列在研究平衡移动的基础上通过理论计算,认为N2和H2在高压下可以直接化合生成氨,接着,他用实验来验证,但在实验过程中发生了爆炸。他没有调查事故发生的原因,而是觉得这个实验有危险,于是放弃了这项研究工作,他的合成氨实验就这样夭折了。后来才查明实验失败的原因,是他所用混合气体中含有O2,在实验过程中H2和O2发生了爆炸的反应。稍后,德国化学家能斯特通过理论计算,认为合成氨是不能进行的。因此人工合成氨的研究又惨遭厄运。后来才发现,他在计算时误用一个热力学数据,以致得到错误的结论。在合成氨研究屡屡受挫的情况下,哈伯知难而进,对合成氨进行全面系统的研究和实验,终于在1908年7月在实验室用N2和H2在600℃、200个大气压下合成氨,产率仅有2%,却也是一项重大突破。当哈伯的工艺流程展示之后,立即引起了早有用战争吞并欧洲称霸世界野心的德国军政要员的高度重视,为了利用哈伯,德国皇帝也屈尊下驾请哈伯出任德国威廉研究所所长之职。而恶魔需要正好迎合了哈伯想成百万富翁的贪婪心理。从1911年到1913年短短的两年内,哈伯不仅提高了合成氨的产率,而且合成了1000吨液氨,并且用它制造出3500吨烈性炸药TNT。1918年哈伯获得诺贝尔化学奖。 工业催化剂设计的三个层析;1.在原子、分子水平上设计催化剂的活性组分和活性位,主要设计催化材料和催化原理;2.在微观适度水平上设计催化剂的粒子大小、形貌和宏观结构;3.在宏观尺度上设计催化反应的传递过程和反应器。 均相络合催化剂:指通过配位作用而使反应物分子活化的催化剂。在这类催化剂中至少含有一个金属离子或原子,无论母体本身是否是络合物,但在起作用时,催化活性中心是以配位结构出现,通过改变金属配位数或配位基,最少有一种反应分子进入配位状态而被活化,从而促进反应的进行。均相络合催化剂在反应体系中可溶成均相的络合物催

催化剂工业综述

工业催化与绿色化学结课论文 工业催化剂研究最新进展与制备方法 学院:环境与化学工程学院 专业:化学工程与技术 学号:S 姓名: 时间:2016-4-21 工业催化剂-纳米氧化物研究进展与制备方法 摘要:催化剂(catalyst) 是一种能够改变化学反应速度,而它本身又不参与最终产物的物质。本文综述催化剂纳米氧化铝、ZrO2的制备及最新研究进展。指出制备性能优异的新型催化剂已经成为化学工业可持续发展的关键。 关键词:纳米氧化铝;ZrO2;催化剂;制备 一、前言 活性组分大小在几十纳米左右的催化剂称为纳米催化剂[1],它具有深层次的阵列有序结构( nanostructured array)等特点[ 2]。在现代化学工业、石油加工工业、食品工业及制药工业等工业部门中应用广泛,催化反应使用的固体催化剂常由活性组分、助催化剂及载体三部分组成,活性组分对催化剂的活性起决定性的作用;助催化剂可以改善催化剂的活性及选择性;而载体主要是承载活性组分和助催化剂,改进催化剂的物理性能。组成相同的催化剂因各组成结构的性质不同,其催化性能具有很大差异,而这些组成结构又受制备技术的影响。催化剂一般由化学法、物理法和物理化学法等方法制得,如共沉淀、浸渍法等。但是这些传统方法制得的催化剂催化性能一般。为了制备性能优异的工业催化剂,需要使用先进的制备方法和生产工艺。 最初使用载体的目的是为了节约贵金属材料(如铂、钯等) 和提高催化剂的机械强度,后来研究发现使用不同载体催化剂的活性会产生差异。王亚军等[3]对众多研究成果作了总结,认为催化剂载体在催化反应中一般有下述几方面作用:(1) 增大有效表面积和提供合适的孔结构;(2) 提高催化剂的机械强度,包括耐磨性、硬度、抗压强度和耐冲击性等;(3) 提高催化剂的热稳定性;(4) 提供催化反应的活性中心;(5) 与活性组分作用形成新的化合物;(6) 增加催化剂的抗毒性能,降低对毒物的敏感性;(7) 节省活性组分用量,降低成本。 二、纳米氧化铝的制备与研究 2.1纳米氧化铝的研究现状 工业催化剂载体中氧化铝应用最为广泛。纳米氧化铝具有独特的晶体结构及表面特性,其催化活性和选择性大大高于传统的氧化铝催化剂,因而备受关注。当前研究中存在的问题,如研究主要停留在探索实验阶段,纳米氧化铝不易造粒,易于固聚、高温气流中活性降低,这些正是今后研究的主要方向。 催化是纳米材料应用的重要领域之一,利用纳米粒子(或膜) 的高比表面积与高活性可以显著地增进催化效率,国际上称为第四代催化剂。纳米催化剂研究的意义在于:(1) 纳米颗粒材料有别于传统微米材料,它具有深层次的阵列有序结构( nanostructured array) 特点,并且可以加以控制,现已在薄膜催化剂中得到应用;( 2) 纳米催化剂能够采用低廉的金属,使之纳米化后取代贵重金属催化剂;(3) 纳米催化剂的阵列制备可以促进其活性大规模提高,从而提高催化剂的选择性。纳米氧化铝按照催化作用分类,可分为本身颗粒度尺寸在纳米级的纳米氧化铝催化剂和孔道结构在纳米级的纳米氧化铝载体催化剂两大类。在工业催化剂载体中氧化铝是应用最为广泛的载体,各种催化反应所要求的晶相、比表面积和孔径分布范围等

相关文档
最新文档