小波分析的发展历程

小波分析的发展历程
小波分析的发展历程

小波分析的发展历程

一、小波分析

1910年,Haar提出了L2(R)中第一个小波规范正交基,即Haar正交基。

(1)操作过程:Haar正交基是以一个简单的二值函数作为母小波经平移和伸缩而形成的。

(2)优点:Haar小波变换具有最优的时(空)域分辨率。

(3)缺点:Haar小波基是非连续函数,因而Haar小波变换的频域分辨率非常差。

1936年,Littlewood和Paley对傅立叶级数建立了二进制频率分量分组理论,(即L-P理论:按二进制频率成分分组,其傅立叶变换的相位并不影响函数的大小和形状),这是多尺度分析思想的最早起源。

1952年~1962年,Calderon等人将L-P理论推广到高维,建立了奇异积分算子理论。

1965年,Calderon发现了著名的再生公式,给出了抛物型空间上H1的原子分解。

1974年,Coifman实现了对一维空间和高维空间的原子分解。

1976年,Peetre在用L-P理论对Besov空间进行统一描述的同时,给出了Besov空间的一组基。1981年,Stromberg引入了Sobolev空间H p的正交基,对Haar正交基进行了改造,证明了小波函数的存在性。

1981年,法国地球物理学家Morlet提出了小波的正式概念。

1985年,法国数学家Meyer提出了连续小波的容许性条件及其重构公式。

1986年,Meyer在证明不可能存在同时在时频域都具有一定正则性(即光滑性)的正交小波基时,意外发现具有一定衰减性的光滑性函数以构造L2(R)的规范正交基(即Meyer基),从而证明了正交小波系的存在。

1984年~1988年,Meyer、Battle和Lemarie分别给出了具有快速衰减特性的小波基函数:Meyer小波、Battle-Lemarie样条小波。

1987年,Mallat将计算机视觉领域中的多尺度分析思想引入到小波分析中,提出了多分辨率分析的概念,统一了在此前的所有具体正交小波的构造,给出了构造正交小波基的一般方法,提出了快速小波变换(即Mallat算法)。它标志着第一代小波的开始?

(1)操作过程:先滤波,再进行抽二采样。

(2)优点:Mallat算法在小波分析中的地位相当于FFT在经典傅立叶分析中的地位。它是小波分析从纯理论走向实际应用。

(3)缺点:以傅立叶变换为基础,直接在时(空)域中设计滤波器比较困难,并且计算量大。

1988年,Daubechies基于多项式方式构造出具有有限支集的光滑正交小波基(即Daubechies基)。

Chui和中国学者王建忠基于样条函数构造出单正交小波函数,并提出了具有最优局部化性能的尺度函数和小波函数的一般性构造方法。1988年,Daubechies在美国NSF/CBMS主办的小波专题研讨会上进行了10次演讲,引起了广大数学家、物理学家、工程师以及企业家的重视,将小波理论发展与实际应用推向了一个高潮。

1992年,Daubechies对这些演讲内容进行了总结和扩展形成了小波领域的经典著作——小波十讲《Ten Lectures on Wavelet》。

1992年3月,国际权威杂志《IEEE Transactions on Information Theory》专门出版了“小波分析及其应用”专刊,全面介绍了此前的小波分析理论和应用及其在不同学科领域的发展,从此小波分析开始进入了全面应用阶段。

1992年,Kovacevic和Vetterli提出了双正交小波的概念。

1992年,Cohen、Daubechies和Feauveau构造出具有对称性、紧支撑、消失矩、正则性等性质的双正交小波。

(1)操作过程:利用两组互为对偶的尺度函数和小波函数实现函数的分解与重构。

(2)优点:具有正交小波无法同时满足的对称性、紧支撑、消失矩、正则性等性质。

1992年,Coifman和Wickerhauser提出了小波包(Wavelet Packet,WP)分析。

(1)操作过程:不仅对低通子带进行分解,而且也对高通分量分解,从而聚焦到感兴趣的任意频段。

(2)优点:突破了小波分析对信号频带进行等Q划分的局限性。

(3)缺点:最优基的搜索问题

1992年,Zou等提出了多带小波(M-band Wavelet)理论,将人们对小波变换的研究从“二带”推广到“多带”情况。

基于“二带”小波变换的多分辨率分析中,尺度函数对应一个低通滤波器,而小波函数对应一个高通滤波器。“二带”小波变换把信号分解成不同的通道,而这些通道的带宽相对于尺度函数的对数是相同的,因此高频通道具有较宽的带宽,而低频通道具有较窄的带宽。

1993年,Goodman等基于r阶多尺度函数及多分辨率分析建立了多小波(Multi-Wavelet)理论框架。

(1)操作过程:将单小波中由多个尺度函数生成的多分辨率空间扩展为由多个尺度函数生成,以此获得更大的自由度。

(2)优点:

1994年,Geronimo等提出了多小波变换(Multi-Wavelet Transform,MWT),将单尺度小波变换推广到多尺度小波变换。

(1)操作过程:小波函数的构造是由多个尺度函数完成的。

(2)优点:与二带小波、小波包、多带小波等单尺度小波相比,多小波在非常窄的紧支范围内同时具有光滑性、正交性、对称性、利普希茨Lipschitz连续性(消失矩)等特性。——发展中

1991年,Alpert用多项式构造了第一个多小波。

Geronimo等利用分形插值函数构造了正交、对称、紧支撑、逼近阶位2的GHM多小波。

1995年,Sweldens等提出了一种新的小波构造算法——提升方案(Lifting Scheme)。它标志着第二代小波的开始。

(1)操作过程:先将原始离散样本信号进行奇偶剖分,然后对奇偶样本点进行滤波处理。

(2)优点:所有的第一代小波都可以用提升方案构造出来。具有运算速度快、对内存需求量小、能实现整-整变换等特点。

(3)缺点:对于边缘、轮廓和纹理等具有高维奇异性的几何特征,小波不是表示图像的最优基。

小波变换的局限性:

1)二维小波变换只有2.5个方向选择性。

小波是表示具有点奇异性目标函数的最优基(能有效表示信号的零维奇异特征,反映奇异点的位置和特性),但是难以表示更高维的几何特征。

2)二维小波变换的基函数都是各向同性的。

二、超小波分析(X-let,或多尺度几何分析)

1、自适应多尺度几何分析——指图像变换的基函数随图像内容变化而变化

1997年,Meyer和Coifman提出了Brushlet变换,即一种自适应频带分割方法。

(1)操作过程:

(2)优点:非常适合描述周期纹理图像。

(3)缺点:对于分片光滑图像的边缘不能提供稀疏表示。

1999年,美国学者Donoho提出了楔波(Wedgelet)变换。

(1)操作过程:Wedgelet是定义在正方形区域上的分片二值函数,该区域被一条直线分成两个楔块,直线的方向可以根据边缘的方向调节,用一系列不同尺寸不同方向的Wedgelet可

以逼近图像的边缘轮廓。

(2)优点:使用多尺度Wedgelet对图像轮廓进行分段线性近似,能较好地捕捉图像中的“线”

和“面”的特征。

(3)缺点:没有基于临界采样的滤波器组(临界采样对于压缩是很方便的)。

1999年,美国斯坦福大学的David L. Donoho教授提出了小线(Beamlets)变换。

(1)操作过程:以各种方向、尺度和位置信息的小线段为基本单元建立小线库,沿小线库中的小线段对目标图像进行线积分产生小线变换系数,以小线金字塔方式组织变换系数,再以小线

图结构为驱动从小线金字塔中提取小线变换系数,从而实现多尺度分析。

(2)优点:对于处理强噪背景的图像有无可比拟的优势。

(3)缺点:小线库(字典)、小线金字塔扫描等小线变换的前期准备工作过于庞大,需要简化以利于研究。

2000年,法国学者Pennec和Mallat提出了第一代Bandelet变换。

(1)操作过程:根据图像内容将图像分割成大小不一的矩形块,变化剧烈的区域用多一些的小矩形块分割,而变化缓慢的区域用少一些的大矩形块分割。对每一个矩形块应用和边缘同向的几

何流对其进行描述。把分割方式和几何流模型作为参数,去优化一个给定的目标函数,从而

得到该图像的最优表示。

(2)优点:能够自适应地跟踪图像的几何正则方向,适合图像压缩应用。能够对图像的不同变化区域给以不同的处理,并抛弃“边缘”这一不易于从数学上界定的概念,转而采用“几何

流”这样一个反映图像连续区域变化的概念。

(3)缺点:没有基于临界采样的滤波器组。

2001年,Cohen和Matei提出了边缘自适应多尺度变换(Edge-Adapted Multiscale Transform)。

(1)操作过程:基于边缘方向检测的非线性多尺度变换。

(2)优点:用于图像压缩,重构图像边缘处的视觉效果明显优于小波变换。

2003年,Wakin等提出了Wedgeprint的图像稀疏表示方法。

(1)操作过程:利用Wedgelet字典(Wedgelet Dictionary)来描述图像边缘产生的小波系数。

(2)优点:能够得到比小波和Wedgelet更为稀疏的图像表示方法。

2005年,Peyre和Mallat提出了第二代Bandelet变换。

(1)操作过程:普通的二维小波变换+几何正交投影。

(2)优点:不需要计算几何流,算法更加简洁快速。

2005年,Velisavljevic等基于整数格点理论提出了一种可分离多方向多尺度图像表示方法——Directionlets。

(1)操作过程:利用拉格朗日优化算法对图像进行最优分块操作,每块图像采用不同方向的Directionlets来表示。

(2)优点:各向异性基函数Directionlets在沿着任何两个有着合理斜率的方向上都有方向消失矩(DVM)。

2、非自适应多尺度几何分析——指图像变换的基函数与图像内容无关

1998年,Candès和Donoho提出了连续脊波(Ridgelet)变换。

(1)操作过程:利用Radon变换将一维奇异特征(线奇异)映射为零维奇异特征(点奇异),然后再进行小波变换。

(2)优点:Ridgelet变换是表示具有线奇异性的多变量函数的最优基。

(3)缺点:对于图像曲线边缘的描述,其逼近性能只相当于小波变换。

1998年,Donoho提出了正交Ridgelet变换的构造方法。

1999年,C andès提出的单尺度Ridgelet变换实现了含曲线奇异的多变量函数的构造方法。

2000年,Do和Vetterli提出了一种离散Ridgelet变换。

1999年,Candès和Donoho在Ridgelet变换的基础上提出了连续曲波(Curvelet)变换——

第一代Curvelet变换中的Curvelet99。

操作过程:子带滤波+多尺度局部Ridgelet变换。

2002年,Strack、Candès和Donoho提出了第一代Curvelet变换中的Curvelet02。

操作过程:频域子带滤波+离散局部Ridgelet变换(由算法简单的伪极坐标

(Pseudo-polar)FFT变换实现)。

第一代Curvelet变换的共同点:

(1)优点:对于具有光滑奇异性曲线的目标函数提供了近乎最优的表示。

Curvelet能够达到的MSE衰减率为O(N-2(logN)1/2)。

(2)缺点:在实现时首先用子带分解算法对原始图像进行分解,完成对图像子带滤波的功能;然后对不同的子带图像进行分块,再对每个分块进Ridgelet变换。为了避免分块效应,块与

块之间必须有重叠,因此其实现算法的冗余度较高。并且,没有基于临界采样的滤波器组。

2002年,Candès等人提出了第二代Curvelet变换。

(1)操作过程:无需分块操作和Ridgelet变换。

(2)优点:实现简单、便于理解、算法快速。

(3)缺点:没有基于临界采样的滤波器组。

2005年,Candès提出了两种基于第二代Curvelet变换理论的快速离散实现方法:1)非均匀空间抽样的二维FFT算法(Unequally-Spaced Fast Fourier Transform,USFFT);2)Wrap算法(Wrapping-Based Transform)

2002年,Do和Vetterli提出了Contourlet变换。

(1)操作过程:多尺度分解+方向滤波器(Directional Filter Banks,

DFB,也即2D-DFB)。首先采用拉普拉斯金字塔(Laplacian Pyramid,

LP)式结构对图像进行多尺度分解以捕获奇异点,再由DFB将各尺度的细

节子带进行多方向分解,从而将分布在同一尺度同一方向的奇异点合并成一

个系数。为满足各向异性尺度关系,各尺度的方向子带的数量应取不同值,

每隔一个尺度,方向数加倍。

(2)优点:它能用不同尺度、不同频率的自带更准确地捕获图像中的分段二次连续

曲线,从而使表示图像边缘的Contourlet系数能量更加集中。

Contourlet能够达到的MSE衰减率为O(N-2(logN)3)。

(3)缺点:没有基于临界采样的滤波器组。

2007年,Yue Lu和M.N. Do提出了多维方向滤波器组(N-dimensional Directional Filter Banks,NDFB)的Surfacelet变换。

(1)操作过程:多尺度分解(采用新的塔式结构)+NDFB(三维信号时为3D-DFB)。

首先对信号进行多尺度分解以捕获奇异变化,接着由NDFB将同一方向上的

奇异变化合成为一个系数。

(2)优点:有效地捕捉和表示高维信号中的曲面奇异。

1992年,Bamberger和Smith提出无冗余且能完全重构的方向滤波器(Directional Filter Banks,DFB,也即2D-DFB),DFB能有效地对二维信号进行方向分解。具有不可分性,把DFB从二维扩展多维,至今没有完美的实现方法。

2007年,Yue Lu和M.N. Do提出了多维方向滤波器组设计方法——NDFB。采用一种简单、高效的树状结构,能够对任意维的信号进行方向分解

小波理论

小波变换 一、小波变换的基本原理及性质 1、小波是什么? 小波可以简单的描述为一种函数,这种函数在有限时间范围内变化,并且平均值为0。这种定性的描述意味着小波具有两种性质:A 、具有有限的持续时间和突变的频率和振幅;B 、在有限时间范围内平均值为0。 2、小波的“容许”条件 用一种数学的语言来定义小波,即满足“容许”条件的一种函数,“容许”条件非常重要,它限定了小波变换的可逆性。 小波本身是紧支撑的,即只有小的局部非零定义域,在窗口之外函数为零;本身是振荡的,具有波的性质,并且完全不含有直流趋势成分,即满足 3、信号的信息表示 时域表示:信号随时间变化的规律,信息包括均值、方差、峰度以及峭陡等,更精细的表示就是概率密度分布(工程上常常采用其分布参数)。 频域表示:信号在各个频率上的能量分布,信息为频率和谱值(频谱或功率谱),为了精确恢复原信号,需要加上相位信息(相位谱),典型的工具为FT 。 时频表示:时间和频率联合表示的一种信号表示方法,信息为瞬时频率、瞬时能量谱 信号处理中,对不同信号要区别对待,以选择哪种或者哪几种信号表示方法 ) ()(ωψ??x ∞ <=?∞ ∞-ωω ωψ?d C 2 ) (0 )()0(==?∞ ∞ -dx x ?ψ

平稳信号 非平稳信号 不满足平稳性条件至少是宽平稳条件的信号。 信号的时域表示和频域表示只适用于平稳信号,对于非平稳信号而言,在时间域各种时间统计量会随着时间的变化而变化,失去统计意义;而在频率域,由于非平稳信号频谱结构随时间的变化而变化导致谱值失去意义。 时频表示主要目的在于实现对非平稳信号的分析,同样的可以应用于平稳信号的分析。 4、为什么选择小波 小波提供了一种非平稳信号的时间-尺度分析手段,不同于FT 方法,与STFT 方法比较具有更为明显的优势。 ) ,,,;,,,(),,,;,,,(21212121τττ+++=n n n n t t t x x x f t t t x x x f [][][] ??? ????∞<-=====?+∞ ∞-)(),()()(),()()(21 22121t x E t t R t x t x E t t R m dx x xf t x E x x x ττ时间幅度 小波变换 时间 尺度

近代数学 小波 简答题+答案

1什么是小波函数?(或小波函数满足什么条件?) 答:设)()(2R L t ∈?,且其Fourier 变换)(ω? 满足可允许性(admissibility )条件 +∞

小波分析及其在通信中的应用 张天雷

小波分析及其在通信中的应用 专业:电子信息工程 姓名:张天雷 学号:123408148 河南城建学院 2011年05月29日

小波分析及其在通信中的应用 摘要:小波分析是傅里叶分析的重大突破,是当今许多领域研究的热点。从小波分析的发展历程出发,介绍了小波在现代通信中的一些应用,并指出了未来的一些研究方向。 关键词:小波变换;傅里叶变换;小波应用;通信 小波(Wavelet)这一术语,顾名思义,“小波”就是小的波形。所谓“小”是指它具有衰减性;而称之为“波”则是指它的波动性,其振幅正负相间的震荡形式。小波分波是自1986年以来由于Meyer、Mallat和Daubechies等的奠基工作而迅速发展起来的一门新兴学科,它是傅立叶分析划时代的发展结果。与Fourier 变换相比,小波变换是时间(空间)频率的局部化分析,它通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier 变换的困难问题, 小波分析的目的是“既要看到森林(信号的概貌) ,又要看到树木(信号的细节) |”。因此,它被誉为“学显微镜”。 小波分析已经在图像处理、语音识别,声学,信号处理,神经生理学,磁性谐振成像,地震测量,机械故障诊断,生物医学,医疗卫生,以及一些纯数学应用如解决一些微分方程式等领域取得一系列重要应用。小波变换理论在通信中的应用研究在国际上日益受到重视。小波函数提供的一系列正交基非常适合通信系统中的信号波形设计,扩频特征波形设计,多载波传输系统的正交子信道划分等。 小波变换技术在通信系统中的信源编码、信道编码、调制、均衡、干扰抑制和多址等方面具有广阔的应用前景。 一、小波分析在通信系统中的研究动态 如何在各种信道环境下实现有效可靠的信息传输一直是通信领域关注的课

wiki介绍以及常见wiki比较

? 源文档 ?Wiki也指一种超文本系统。这种超文本系统支持面向社群的协作式写作,同时也包括一组支持这种写作的辅助工具。 ?WiKi是一个供多人协同写作的系统。与博客、论坛等常见系统相比,WiKi有以下特点: ? 1.使用方便 ?维护快速:快速创建、更改网站各个页面内容。 ?格式简单:基础内容通过文本编辑方式就可以完成,使用少量简单的控制符还可以加强文章显示效果。 ?链接方便:通过简单的“[[条目名称]]”,可以直接产生内部链接。外部链接的引用也很方便。 ? 2.自组织 ?自组织的:同页面的内容一样,整个超文本的相互关联关系也可以不断修改、优化。 ?可汇聚的:系统内多个内容重复的页面可以被汇聚于其中的某个,相应的链接结构也随之改变。 ? 3.可增长 ?可增长:页面的链接目标可以尚未存在,通过点选链结,我们可以创建这些页面,使系统得以增长。 ?修订历史:记录页面的修订历史,页面的各个版本都可以被取得。 ? 4.开放性 ?开放的:社群内的成员可以任意创建、修改、或删除页面。 ?可观察:系统内页面的变动可以被来访者清楚观察得到。 ?Wiki非常适合于做一种“All about something”的站点。个性化在这里不是最重要的,信息的完整性和充分性以及权威性才是真正的目标。 ?几种wiki之间的比较? ?2012年1月29日 ?17:30 ?一.Mediawiki ? ?Mediawiki是全球最著名的wiki程序,运行于PHP+MySQL环境。Mediawiki从2002 ?年2月25 日被作为维基百科全书的系统软件,并有大量其他应用实例。目前 ?Mediawiki的开发得到维基媒体基金会的支持。 ? ?Mediawiki是建立wiki网站的首选后台程序,目前国内的天下维客等站点都采用?这套系统。 ? ?Mediawiki一直保持着持续更新。其原作者为德国的Magnus Manske。 ? ?二.Hdwiki ?

小波分析的发展历程

小波分析的发展历程 一、小波分析 1910年,Haar提出了L2(R)中第一个小波规范正交基,即Haar正交基。 (1)操作过程:Haar正交基是以一个简单的二值函数作为母小波经平移和伸缩而形成的。 (2)优点:Haar小波变换具有最优的时(空)域分辨率。 (3)缺点:Haar小波基是非连续函数,因而Haar小波变换的频域分辨率非常差。 1936年,Littlewood和Paley对傅立叶级数建立了二进制频率分量分组理论,(即L-P理论:按二进制频率成分分组,其傅立叶变换的相位并不影响函数的大小和形状),这是多尺度分析思想的最早起源。 1952年~1962年,Calderon等人将L-P理论推广到高维,建立了奇异积分算子理论。 1965年,Calderon发现了著名的再生公式,给出了抛物型空间上H1的原子分解。 1974年,Coifman实现了对一维空间和高维空间的原子分解。 1976年,Peetre在用L-P理论对Besov空间进行统一描述的同时,给出了Besov空间的一组基。1981年,Stromberg引入了Sobolev空间H p的正交基,对Haar正交基进行了改造,证明了小波函数的存在性。 1981年,法国地球物理学家Morlet提出了小波的正式概念。 1985年,法国数学家Meyer提出了连续小波的容许性条件及其重构公式。 1986年,Meyer在证明不可能存在同时在时频域都具有一定正则性(即光滑性)的正交小波基时,意外发现具有一定衰减性的光滑性函数以构造L2(R)的规范正交基(即Meyer基),从而证明了正交小波系的存在。 1984年~1988年,Meyer、Battle和Lemarie分别给出了具有快速衰减特性的小波基函数:Meyer小波、Battle-Lemarie样条小波。 1987年,Mallat将计算机视觉领域中的多尺度分析思想引入到小波分析中,提出了多分辨率分析的概念,统一了在此前的所有具体正交小波的构造,给出了构造正交小波基的一般方法,提出了快速小波变换(即Mallat算法)。它标志着第一代小波的开始? (1)操作过程:先滤波,再进行抽二采样。 (2)优点:Mallat算法在小波分析中的地位相当于FFT在经典傅立叶分析中的地位。它是小波分析从纯理论走向实际应用。 (3)缺点:以傅立叶变换为基础,直接在时(空)域中设计滤波器比较困难,并且计算量大。 1988年,Daubechies基于多项式方式构造出具有有限支集的光滑正交小波基(即Daubechies基)。 Chui和中国学者王建忠基于样条函数构造出单正交小波函数,并提出了具有最优局部化性能的尺度函数和小波函数的一般性构造方法。1988年,Daubechies在美国NSF/CBMS主办的小波专题研讨会上进行了10次演讲,引起了广大数学家、物理学家、工程师以及企业家的重视,将小波理论发展与实际应用推向了一个高潮。 1992年,Daubechies对这些演讲内容进行了总结和扩展形成了小波领域的经典著作——小波十讲《Ten Lectures on Wavelet》。 1992年3月,国际权威杂志《IEEE Transactions on Information Theory》专门出版了“小波分析及其应用”专刊,全面介绍了此前的小波分析理论和应用及其在不同学科领域的发展,从此小波分析开始进入了全面应用阶段。 1992年,Kovacevic和Vetterli提出了双正交小波的概念。 1992年,Cohen、Daubechies和Feauveau构造出具有对称性、紧支撑、消失矩、正则性等性质的双正交小波。 (1)操作过程:利用两组互为对偶的尺度函数和小波函数实现函数的分解与重构。 (2)优点:具有正交小波无法同时满足的对称性、紧支撑、消失矩、正则性等性质。

小波分析考试题(附答案)

《小波分析》试题 适用范围:硕士研究生 时 间:2013年6月 一、名词解释(30分) 1、线性空间与线性子空间 解释:线性空间是一个在标量域(实或复)F 上的非空矢量集合V ;设V1是数域K 上的线性空间V 的一个非空子集合,且对V 已有的线性运算满足以下条件 (1) 如果x 、y V1,则x +y V1; (2) 如果x V1,k K ,则kx V1, 则称V1是V 的一个线∈∈∈∈∈性子空间或子空间。2、基与坐标 解释:在 n 维线性空间 V 中,n 个线性无关的向量,称为 V 的一组n 21...εεε,,,基;设是中任一向量,于是 线性相关,因此可以被基αn 21...εεε,,,线性表出:,其中系数 αεεε,,,,n 21...n 21...εεε,,,n 2111an ...a a εεεα+++=是被向量和基唯一确定的,这组数就称为在基下的坐标,an ...a a 11,,,αn 21...εεε,,,记为 () 。an ...a a 11,,,3、内积 解释:内积也称为点积、点乘、数量积、标量积。,()T n x x x x ,...,,21= ,令,称为x 与y 的内积。 ()T n y y y y ,...,,21=[]n n y x y x y x y x +++=...,2211[]y x ,4、希尔伯特空间 解释:线性 完备的内积空间称为Hilbert 空间。线性(linearity ):对任意 f , g ∈H ,a ,b ∈R ,a*f+b*g 仍然∈H 。完备(completeness ):空间中的任何柯西序列都收敛在该空间之内。内积(inner product ):,它满足:,()T n f f f f ,...,,21=时。 ()T n g g g g ,...,,21=[]n n y x y x y x y x +++=...,22115、双尺度方程 解释:所以都可以用空间的一个1010,V W t V V t ?∈?∈)()(ψ?) ()和(t t ψ?1V

小波变换的几个典型应用

第六章小波变换的几个典型应用 6.1 小波变换与信号处理 小波变换作为信号处理的一种手段,逐渐被越来越多领域的理论工作者和工程技术人员所重视和应用,并在许多应用中取得了显著的效果。同传统的处理方法相比,小波变换取得了质的飞跃,在信号处理方面具有更大的优势。比如小波变换可以用于电力负载信号的分析与处理,用于语音信号的分析、变换和综合,还可以检测噪声中的未知瞬态信号。本部分将举例说明。 6.1.1 小波变换在信号分析中的应用 [例6-1] 以含躁的三角波与正弦波的组合信号为例具体说如何利用小波分析来分析信号。已知信号的表达式为 应用db5小波对该信号进行7层分解。xiaobo0601.m 图6-1含躁的三角波与正弦波混合信号波形 分析: (1)在图6-2中,逼近信号a7是一个三角波。 (2)在图6-3中细节信号d1和d2是与噪声相关的,而d3(特别是d4)与正弦信号相关。 图6-2 小波分解后各层逼近信号 图6-3 小波分解后各层细节信号 6.1.2 小波变换在信号降躁和压缩中的应用 一、信号降躁 1.工程中,有用信号一般是一些比较平稳的信号,噪声通常表现为高频信号。2.消躁处理的方法:首先对信号进行小波分解,由于噪声信号多包含在具有较高频率的细节中,我们可以利用门限、阈值等形式对分解所得的小波系数进行处理,然后对信号进行小波重构即可达到对信号的消躁目的。 小波分析进行消躁处理的3种方法: (1)默认阈值消躁处理。该方法利用ddencmp生成信号的默认阈值,然后利用wdencmp函数进行消躁处理。 (2)给定阈值消躁处理。在实际的消躁处理过程中,阈值往往可通过经验公式获得,且这种阈值比默认阈值的可信度高。在进行阈值量化处理时可利用函数wthresh。 (3)强制消躁处理。该方法时将小波分解结构中的高频系数全部置为0,即滤掉所有高频部分,然后对信号进行小波重构。方法简单,消躁后信号比较平滑,但易丢失信号中的有用成分。 小波阈值去噪方法是目前应用最为广泛的小波去噪方法之一。 3.信号降噪的准则: 1.光滑性:在大部分情况下,降噪后的信号应该至少和原信号具有同等的光滑性。

浙江大学小波变换及工程应用复习题

小波分析复习题 1、简述傅里叶变换、短时傅里叶变换和以及小波变换之间的异同。 答:三者之间的异同见表 2、小波变换堪称“数学显微镜”,为什么? 答:这主要因为小波变换具有以下特点: 1)具有多分辨率,也叫多尺度的特点,可以由粗及精地逐步观察信号; 2)也可以看成用基本频率特性为)(ωψ的带通滤波器在不同尺度a 下对信号作滤波; 如果)(t ?的傅里叶变换是)(ωψ,则)(a t ?的傅里叶变换为)(||a a ω ψ,因此这组滤波 器具有品质因数恒定,即相对带宽(带宽与中心频率之比)恒定的特点。a 越大相当于频率越低。 3)适当的选择基本小波,使)(t ?在时域上位有限支撑,)(ωψ在频域上也比较集中,便可以使WT 在时、频两域都具有表征信号局部特征能力,因此有利于检测信号的瞬态或奇异点。 4)如)(t x 的CWT 是),(τa WT x ,则)(λt x 的CWT 是),( λ τ λλa WT x ;0>λ 此定理表明:当信号)(t x 作某一倍数伸缩时,其小波变换将在τ,a 两轴上作同一比例的 伸缩,但是不发生失真变形。 基于上述特性,小波变换被誉为分析信号的数学显微镜。 3、在小波变换的应用过程中,小波函数的选取是其应用成功与否的关键所在,请列举一些选择原则。 答:选择原则列举如下:(也即需满足的一些条件和特性) 1)容许条件

当?∞ +∞-∞<=ωω ωψ?d c 2 ) (时才能由小波变换),(τa WT x 反演原函数)(t x ,?c 便是对 )(t ?提出的容许条件,若∞→?c ,)(t x 不存在,由容许条件可以推论出:能用作基本小 波)(t ?的函数至少必须满足0)(0==ωωψ,也就是说)(ωψ必须具有带通性质,且基本小波 )(t ?必须是正负交替的振荡波形,使得其平均值为零。 2)能量的比例性 小波变换幅度平方的积分和信号的能量成正比。 3)正规性条件 为了在频域上有较好局域性,要求),(τa WT x 随a 的减小而迅速减小。这就要求)(t ?的 前n 阶原点矩为0,且n 值越大越好。也就是要求? =0)(dt t t p ?,n p ~1:,且n 值越大越好, 此要求的相应频域表示是:)(ωψ在0=ω处有高阶零点,且阶次越高越好(一阶零点就是容许条件),即)()(01 ωψω ωψ+=n ,0)(00≠=ωωψ,n 越大越好。 4)重建核和重建核方程 重建核方程说明小波变换的冗余性,即在τ-a 半平面上各点小波变换的值是相关的。 重建核方程:τττττ?? ?∞ +∞ ∞-=0 00200),,,(),(),(a a K a WT a da a WT x x ; 重建核:><== ?)(),(1)()(1),,,(0000* 00t t c dt t t c a a K a a a a ττ? ττ??????ττ 4、连续小波变换的计算机快速算法较常用的有基于调频Z 变换和基于梅林变换两种,请用 框图分别简述之,并说明分别适合于什么情况下应用。 答: 1)基于调频Z 变换 ),(2a j a n j e A e W ππ--== 运算说明: a .原始数据及初始化:原始数据是)(k ?(1~0-=N k )和a 值,初始化计算包括 a j e A π-=和a n j e W π2-=。 --- 1)(2N k r )2(am N π 12~2--N N 对应于:1~0-=N r

柴科夫斯基维基介绍word版本

天鹅湖 维基百科,自由的百科全书 天鹅湖(1876) 睡美人(1889) 胡桃夹子(1892)

剧,也是所有古典芭蕾舞团的保留剧目。 ? ? ? ? ?

? ? 在天鹅湖里,剧本可以说是举足轻重的。本来有两个差别很大的天鹅湖版本。但通常它们会被混合着上演。它们的不同在于对结局的处理。在第一个版本里,王 式的。但在著名的圣彼得堡版本里尽管结尾音乐是那么悲悲愁愁的,最后的结局却是大团圆。 施魔法的面纱》的故事,作者是卡尔·奥古斯都·姆赛斯。里面提到了离德国城市兹维考不远处有一个天鹅池塘,那有着一个关于天鹅少女的传说。当法师施法于天鹅的羽毛时,天鹅就会变成一位少女。而且这样的主题在许多其他童话里也出现过。特别是那位可怜的公主,只有一位王子的爱情才能救她。但是悲剧式的结局却是姆赛斯的首创,以前从没在别的童话中出现过。

?第一幕 王子齐格弗里德(Зигфрид)在生日前夕,其母亲告诉他,已成年的齐格弗里德要在第二天选一位新娘。而到了晚上,王子去天鹅湖捕猎天鹅。 ?第二幕 齐格弗里德遇上被罗特巴特(Ротбарт)施咒的公主奥杰塔(Одета)。她白天是天鹅,晚上却会化成一位少女。只有当某位男子真诚地爱上她时,她才能得救。齐格弗里德邀请她第二天晚上来参加舞会,并会向母亲表示,愿意娶奥杰塔为妻。 File:Swanlake2.jpg 第三幕:王子与黑天鹅 ?第三幕 各国的公主和使节都来出席齐格弗里德的生日宴会。罗特巴特也带着他的女儿奥吉莉亚(Одилия)来了。

奥吉莉亚显示的是奥杰塔的形象,只是身着黑装。齐格弗里德被迷惑并与她缔结了婚约。当齐格弗里德意识到这一切的时候,大为震惊,并立即赶往天鹅湖。 第四幕 第四幕:奥杰塔与众天鹅 王子请求奥杰塔的宽恕,而奥杰塔也原谅了他。这时罗特巴特用魔法卷起大浪,要淹死齐格弗里德。奥杰塔为了救他纵身跃入湖内。根据导演编排的不同,结尾也不一样:或者是双双逝去形成悲剧式的结尾,或者是天鹅恢复人形,王子救起公主,爱情终于战胜了

小波分析考试题及答案

一、叙述小波分析理论发展的历史和研究现状 答:傅立叶变换能够将信号的时域和特征和频域特征联系起来,能分别从信号的时域和频域观察,但不能把二者有机的结合起来。这是因为信号的时域波形中不包含任何频域信息,而其傅立叶谱是信号的统计特性,从其表达式中也可以看出,它是整个时间域内的积分,没有局部化分析信号的功能,完全不具备时域信息,也就是说,对于傅立叶谱中的某一频率,不能够知道这个频率是在什么时候产生的。这样在信号分析中就面临一对最基本的矛盾——时域和频域的局部化矛盾。 在实际的信号处理过程中,尤其是对非常平稳信号的处理中,信号在任一时刻附近的频域特征很重要。如柴油机缸盖表明的振动信号就是由撞击或冲击产生的,是一瞬变信号,单从时域或频域上来分析是不够的。这就促使人们去寻找一种新方法,能将时域和频域结合起来描述观察信号的时频联合特征,构成信号的时频谱,这就是所谓的时频分析,亦称为时频局部化方法。 为了分析和处理非平稳信号,人们对傅立叶分析进行了推广乃至根本性的革命,提出并开发了一系列新的信号分析理论:短时傅立叶变换、时频分析、Gabor 变换、小波变换Randon-Wigner变换、分数阶傅立叶变换、线形调频小波变换、循环统计量理论和调幅—调频信号分析等。其中,短时傅立叶变换和小波变换也是因传统的傅立叶变换不能够满足信号处理的要求而产生的。 短时傅立叶变换分析的基本思想是:假定非平稳信号在不同的有限时间宽度内是平稳信号,从而计算出各个不同时刻的功率谱。但从本质上讲,短时傅立叶变换是一种单一分辨率的信号分析方法,因为它使用一个固定的短时窗函数,因而短时傅立叶变换在信号分析上还是存在着不可逾越的缺陷。 小波变换是一种信号的时间—尺度(时间—频率)分析方法,具有多分辨

【免费下载】小波分析及其应用

科技文献检索作业 卷 试 料 小波分析及其应用 测控技术1103 雷创新

小波分析及其应用 1.小波分析的概念和特点 1.1小波理论的发展概况 20世纪80年代逐渐发展和兴起的小波分析(wavelctanalysis)是20世纪 数学领域中研究的重要杰出成果之一。小波分析理论作为数学界中一种比较成熟的理论基础,应用到了各种领域的研究当中,推动了小波分析在各工程应用中的发展。它作为一种新的现代数字信号处理算法,汲取了现代分析学中诸如样条分析、傅立叶分析、数值分析和泛函分析等众数学多分支的精华部分,替代了工程界中一直应用的傅立叶变换,它是一种纯频域分析方法,不能在时频同时具有局部化特性。而小波分析中的多尺度分析思想,犹如一台变焦照相机,可以由粗及精逐步观察信号,在局部时频分析中具有很强的灵活性,因此有“数学显微镜”的美称。它能自动随着频率增加而调节成窄的“时窗”和宽的“频窗”,又随着频率降低而调节成宽的“时窗”和窄的“频窗”以适应实际分析需要。另外,小波变换在经过适当离散后可以够成标准正交基或正交系,这些在理论和应用上都具有十分重要的意义,因此,小波分析在各个领域得到了高度的重视并取得了许多重要的成果。 小波变换作为一种数学理论和现代数字信号处埋方法在科学技术界引起了越来越多专家学者的关注和重视。在数学家看来,基于小波变换的小波分析技术是当今数值分析、泛函分析、调和分析等半个多世纪以来发展最完美的结晶,是正在发展中的新的数学分支。在工程领域,特别是在信号处理、图像处理、机器视觉、模糊识别、语音识别、流体力学、量子物理、地震勘测、电磁学、CT成像、机械故障诊断与监控等领域,它被认为是近年来在工具及方法上的重大突破。然而,小波分析虽然在众多领域中已经取得了一定的成果,但是,有专家预言小波分析理论的真正高潮并没有到来。首先,小波分析尚需进一步完善,除一维小波分析理论比较成熟以外,向量小波和多维小波则需要进行更加深入的研究与讨论;其次,针对不同情况选择不同的小波基函数,实现的效果是有差别性的这一问题,对最优小波基函数的选取方法有待进一步研究。在今后数年中,小波理论将成为科技工作者经常使用的又一锐利数学工具,极大地促进科技进步及各个领域工程应用的新发展。 小波分析的概念最早是在1974年由法国地质物理学家 J.Morlet提出的,并通过物理直观和信号处理的实际经验建立了反

Yurii Nesterov - Wikipedia, the free encyclopedia

2005 in Oberwolfach

introduced the self-concordant functions which are useful in the analysis of Newton's method. [8] References 1. "The George B. Dantzig Prize". 2000. Retrieved December 12, 2014. 2. "Yurii Nesterov". 2009. Retrieved June 4, 2014. 3. Nesterov, Yurii. Introductory lectures on convex optimization : A basic course(PDF). ISBN 978-1402075537. 4. Bubeck, Sebastien (April 1, 2013). "ORF523: Nesterov’s Accelerated Gradient Descent". Retrieved June 4, 2014. 5. Bubeck, Sebastien (March 6, 2014). "Nesterov's Accelerated Gradient Descent for Smooth and Strongly Convex Optimization". Retrieved June 4, 2014. 6. "The Zen of Gradient Descent". 7. Nesterov, Yurii; Arkadii, Nemirovskii (1995). Interior-Point Polynomial Algorithms in Convex Programming. Society for Industrial and Applied Mathematics. ISBN 0898715156. 8. Boyd, Stephen P.; Vandenberghe, Lieven (2004). Convex Optimization(pdf). Cambridge University Press. ISBN 978-0-521-83378-3. Retrieved October 15, 2011. External links Official website (https://www.uclouvain.be/32349.html) This article contains text translated from French Wikipedia Retrieved from "https://https://www.360docs.net/doc/121688777.html,/w/index.php? title=Yurii_Nesterov&oldid=712596518" Categories: Living people Belgian mathematicians Université catholique de Louvain faculty1956 births Soviet mathematicians This page was last modified on 30 March 2016, at 01:04. Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia? is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.

小波分析基础及应用期末习题

题1:设{},j V j Z ∈是依尺度函数()x φ的多分辨率分析,101()0x x φ≤

11()3.k k h k p -=为高通分解滤波器,写出个双倍平移正交关系等式 题6:列出二维可分离小波的4个变换基。 题8:要得到“好”的小波,除要求滤波器0()h n 满足规范、双正交平移性、低通等最小条件外,还可以对0()h n 加消失矩条件来得到性能更优良的小波。 (1) 请写出小波函数()t ψ具有p 阶消失矩的定义条件: (2) 小波函数()t ψ具有p 阶消失矩,要求0()h n 满足等式: (3) 在长度为4的滤波器0()h n 设计中,将下面等式补充完整: 222200000000(0)(1)(2)(3)1 (0)(2)(1)(3)0 ,1 2h h h h h h h h n ?+++=???+==??? 规范性低通双平移正交阶消失矩

研究生《小波理论及应用》复习题

2005年研究生《小波理论及应用》复习题 1. 利用正交小波基建立的采样定理适合于:紧支集且有奇性(函数本身或其导数不连续)的函数(频谱无限的函数)。Shannon 采样定理适合于频谱有限的信号。 2. 信号的突变点在小波变换域常对于小波变换系数模极值点或过零点。并且信号奇异性大小同小波变换的极值随尺度的变化规律相对立。只有在适当尺度下各突变点引起的小波变化才能避免交迭干扰,可以用于信号的去噪、奇异性检测、图象也缘提取、数据压缩等。 3. 信号在一点的李氏指数表征了该点的奇异性大小,α越大,该点的光滑性越小,α越小,该点的奇异性越大。光滑点(可导)时,它的1≥α;如果是脉冲函数,1-=α;白噪声时0≤α。 4. 做出三级尺度下正交小波包变换的二进数图,小波包分解过程?说明小波基与小波包基的区别? 5. 最优小波包基的概念:给定一个序列的代价函数,然后在小波包基中寻找使代价函数最小的基――最优基。 6. 双通道多采样率滤波器组的传递函数为: ()()()()()()()()()()()()()z X z G z G z H z H z X z G z G z H z H z Y z Y z Y -??????-++??????+=+=∧∧∧∧212121请根据此式给出理想重建条件: 为了消除映象()z X -引起的混迭:()()()()0=-+-∧ ∧z G z G z H z H

为了使()z Y 成为()z X 的延迟,要求:()()()()k CZ z G z G z H z H -∧∧=+ (C,K 为任一常数) 7. 正交镜像对称滤波器()()n h n g ,的()jw e G 与()jw e H 以2π=w 为轴左右对称。如果知道QMF 的()n h ,能否确定()()()n h n g n g ∧ ∧,,? ()()()n h n g n 1-= ,()()()n g n h n 1--=∧ , ()()()n h n g n 1-=∧ 8. 试列出几种常用的连续的小波基函数 Morlet 小波,Marr 小波,Difference of Gaussian (DOG ),紧支集样条小波 9. 试简述海森堡测不准原理,说明应用意义? 10. 从连续小波变换到离散小波变换到离散小波框架-双正交小波变换-正交变换、紧支集正交小波变换,其最大的特点是追求变换系数的信息冗余小,含有的信息量越集中。 11. 解释紧支集、双正交、正交小波、紧支集正交小波、光滑性、奇异性。 12. 已知共轭正交滤波器组(CQF )()n h 请列出()()()n g n h n g ∧ ∧,,。 ()()() ()()()()()()???????-=--=-=---=∧∧n h n N g n g n N h n h n N h n g n n 11 13. 共轭正交滤波器()()n g n h ,的()jw e G 与()jw e H 的关系与QMF 情况

Wiki简介

Wiki简介 Wiki一词来源于夏威夷语的“wee kee wee kee”,原本是“快点快点”的意思,被译为“维基”或“维客”。 一种多人协作的写作工具。Wiki站点可以有多人(甚至任何访问者)维护,每个人都可以发表自己的意见,或者对共同的主题进行扩展或者探讨。 Wiki指一种超文本系统。这种超文本系统支持面向社群的协作式写作,同时也包括一组支持这种写作的辅助工具。有人认为,Wiki系统属于一种人类知识网格系统,我们可以在Web的基础上对Wiki文本进行浏览、创建、更改,而且创建、更改、发布的代价远比HTML文本小;同时Wiki系统还支持面向社群的协作式写作,为协作式写作提供必要帮助;最后,Wiki的写作者自然构成了一个社群,Wiki系统为这个社群提供简单的交流工具。与其它超文本系统相比,Wiki有使用方便及开放的特点,所以Wiki系统可以帮助我们在一个社群内共享某领域的知识。 Wiki发明者是一位Smalltalk程序员沃德·坎宁安(Ward Cunningham)。 由于wiki可以调动最广大的网民的群体智慧参与网络创造和互动,它将成为WEB3.0时代不可逆转的一大趋势。 Wiki与Blog的区别 Wiki站点一般都有着一个严格的共同关注,Wiki的主题一般是明确的坚定的。Wiki 站点的内容要求着高度相关性。最其确定的主旨,任何写作者和参与者都应当严肃地遵从。

Wiki的协作是针对同一主题作外延式和内涵式的扩展,将同一个问题谈得很充分很深入。Blog是一种无主题变奏,一般来说是少数人(大多数情况下是一个人)的关注的蔓延。一般的Blog站点都会有一个主题,凡是这个主旨往往都是很松散的,而且一般不会去刻意地控制内容的相关性。 Wiki非常适合于做一种“All about something”的站点。个性化在这里不是最重要的,信息的完整性和充分性以及权威性才是真正的目标。Wiki由于其技术实现和含义的交织和复杂性,如果你漫无主题地去发挥,最终连建立者自己都会很快的迷失。Blog注重的是个人的思想(不管多么不成熟,多么地匪夷所思),个性化是Blog的最重要特色。Blog 注重交流,一般是小范围的交流,通过访问者对一些或者一篇Blog文章的评论和交互。 Wiki使用最多也最合适的就是去共同进行文档的写作或者文章/书籍的写作。特别是技术相关的(尤以程序开发相关的)FAQ,更多的也是更合适地以Wiki来展现。Blog也有协作的意思,但是协作一般是指多人维护,而维护者之间可能着力于完全不同的内容。这种协作在内容而言是比较松散的。任何人,任何主体的站点,你都可以以Blog方式展示,都有它的生机和活力。从目前的情况看,Wiki的运用程度不如Blog的广,但以后会怎样,还有待观察,毕竟Wiki是一个共享社区。 Wiki发展历史 Wiki的历史还不长,无论是Wiki概念自身,还是相关软件系统的特性,还都在热烈的讨论中;所以怎样的一个站点才能称得上是一个Wiki系统还是有争议的。与Wiki相关最近出现的技术还有blog,它们都降低了超文本写作和发布的难度。这两者都与内容管理系统关系紧密。第一个Wiki 网站诞生于1995年,由沃德·坎宁安(Ward Cunningham)创建

小波分析简述

第一篇:小波分析发展历史简述 1910年,Haar提出了L2(R)中第一个小波规范正交基,即Haar正交基。 1936年,Littlewood和Paley对傅立叶级数建立了二进制频率分量分组理论,(即L-P理论:按二进制频率成分分组,其傅立叶变换的相位并不影响函数的大小和形状),这是多尺度分析思想的最早起源。1952年~1962年,Calderon等人将L-P理论推广到高维,建立了奇异积分算子理论。 1965年,Calderon发现了著名的再生公式,给出了抛物型空间上H1的原子分解。 1974年,Coifman实现了对一维空间和高维空间的原子分解。 1976年,Peetre在用L-P理论对Besov空间进行统一描述的同时,给出了Besov空间的一组基。 1981年,Stromberg引入了Sobolev空间Hp的正交基,对Haar正交基进行了改造,证明了小波函数的存在性。 1981年,法国地球物理学家Morlet提出了小波的正式概念。 1985年,法国数学家Meyer提出了连续小波的容许性条件及其重构公式。 1984年~1988年,Meyer、Battle和Lemarie分别给出了具有快速衰减特性的小波基函数:Meyer小波、Battle-Lemarie样条小波。1987年,Mallat将计算机视觉领域中的多尺度分析思想引入到小波分析中,提出了多分辨率分析的概念,统一了在此前的所有具体正交小波的构造,给出了构造正交小波基的一般方法,提出了快速小波变换(即Mallat算法)。

1988年,Daubechies基于多项式方式构造出具有有限支集的光滑正交小波基(即Daubechies基)。Chui和中国学者王建忠基于样条函数构造出单正交小波函数,并提出了具有最优局部化性能的尺度函数和小波函数的一般性构造方法。1988年,Daubechies在美国NSF/CBMS 主办的小波专题研讨会上进行了10次演讲,引起了广大数学家、物理学家、工程师以及企业家的重视,将小波理论发展与实际应用推向了一个高潮。 1991年,Alpert用多项式构造了第一个多小波。Geronimo等利用分形插值函数构造了正交、对称、紧支撑、逼近阶位2的GHM多小波。1992年,Daubechies对这些演讲内容进行了总结和扩展形成了小波领域的经典著作——小波十讲《Ten Lectures on Wavelet》。1992年3月,国际权威杂志《IEEE Transactions on Information Theory》专门出版了“小波分析及其应用”专刊,全面介绍了此前的小波分析理论和应用及其在不同学科领域的发展,从此小波分析开始进入了全面应用阶段。 1992年,Bamberger和Smith提出无冗余且能完全重构的方向滤波器(Directional Filter Banks,DFB,也即2D-DFB),DFB能有效地对二维信号进行方向分解。具有不可分性,把DFB从二维扩展多维,至今没有完美的实现方法。 1992年,Kovacevic和Vetterli提出了双正交小波的概念。 1992年,Cohen、Daubechies和Feauveau构造出具有对称性、紧支撑、消失矩、正则性等性质的双正交小波。 1992年,Coifman和Wickerhauser提出了小波包(Wavelet Packet,WP)分析。

博士复试题目+答案

1、小波变换在图像处理中有着广泛的应用,请简述其在图像压缩中的应用原理? 答:一幅图像经过一次小波变换之后,概貌信息大多集中在低频部分,而其余部分只有微弱的细节信息。为此,如果只保留占总数数量1/4的低频部分,对其余三个部分的系数不存储或传输,在解压时,这三个子块的系数以0来代替,则就可以省略图像部分细节信息,而画面的效果跟原始图像差别不是很大。这样,就可以得到图像压缩的目的。 2、给出GPEG数据压缩的特点。 答:(1)一种有损基本编码系统,这个系统是以DCT为基础的并且足够应付大多数压缩方向应用。 (2)一种扩展的编码系统,这种系统面向的是更大规模的压缩,更高精确性或逐渐递增的重构应用系统。 (3)一种面向可逆压缩的无损独立编码系统。 3、设计雪花检测系统 答:1)获得彩色雪花图像。2)灰度雪花图像。3)图像的灰度拉伸,以增强对比度。4)阈值判断法二值化图像。5)图像的梯度锐化。6)对图像进行自定义模板中值滤波以去除噪声。7)用梯度算子对雪花区域的定位。8)利用hough变换截下雪花区域的图片。 9)雪花图片几何位置调整。 4、用图像处理的原理设计系统,分析木材的年轮结构。 答:1)获得彩色木材年轮图像。2)灰度木材年轮图像。3)灰度拉伸以增加对比度。4)阈值判定法二值化图像。5)图像的梯度锐化。6)对图像进行自定义模板中值滤波以去除噪声。7)用梯度算子对木材年轮圈进行定位。8)图片二值化。9)利用边界描述子对木材的年轮结构进行识别。 5、给出生猪的尺寸和形貌检测系统。 答:1)获得彩色生猪图像。2)灰度生猪图像。3)图像的灰度拉伸,以增强对比度。4)阈值判定法二值化图像。5)图像的梯度锐化。6)对图像进行自定义模板中值滤波以除去噪声。 7)用梯度算子对生猪区域的定位。8)利用hough变换截下生猪区域的图片。9)生猪图片几何位置调整。10)生猪图片二值化。11)利用边界描述子对生猪尺寸和形貌的识别。 第二种答案:(类似牌照检测系统) 1)第一步定位牌照 由图像采集部件采集生猪的外形图像并将图像存储在存储器中,其特征在于:数字处理器由存储器中读入并运行于生猪外形尺寸检测的动态检测软件、从存储器中依次读入两幅车辆外形图像数据、经过对生猪外形图像分析可得到生猪的高度,宽度和长度数据即生猪的外形尺寸。通过高通滤波,得到所有的边对边缘细化(但要保持连通关系),找出所有封闭的边缘,对封闭边缘求多边形逼近,在逼近后的所有四边形中,找出尺寸与牌照大小相同的四边形。生猪形貌被定位。 2)第二步识别 区域中的细化后的图形对象,计算傅里叶描述子,用预先定义好的决策函数,对描述子进行计算,判断到底是数字几。 6、常用的数字图像处理开发工具有哪些?各有什么特点? 答:目前图像处理系统开发的主流工具为Visual C++(面向对象可视化集成工具)和MATLAB的图像处理工具箱(lmage processing tool box)。两种开发工具各有所长且有相互间的软件接口。 微软公司的VC++是一种具有高度综合性能的面向对象可视化集成工具,用它开发出来

相关文档
最新文档