实验25线性系统状态空间分析和运动解

实验25线性系统状态空间分析和运动解
实验25线性系统状态空间分析和运动解

广西大学实验报告纸

【实验时间】2014年06月15日

【实验地点】(课外)

【实验目的】

1、掌握线性系统状态空间的标准型、解及其模型转换。

【实验设备与软件】

1、MATLAB数值分析软件

【实验原理】

Matlab提供了非常丰富的线性定常连续系统的状态空间模型求解(即系统运动轨迹的计算)的功能,主要的函数有

①、阶跃响应函数step()可用于计算在单位阶跃输入和零初始状态(条件)下传递函数模型的输出响应,或状态空间模型的状态和输出响应,其主要调用格式为

step(sys,t)

[y,t] = step(sys,t)

[y,t,x] = step(sys,t)

②、脉冲激励下的仿真函数impulse()可用于计算在脉冲刺激输入下传递函数模型的输出响应,或状态空间模型的状态和输出响应,其主要调用格式为

impulse(sys,t)

[y,t] = impulse(sys,t)

[y,t,x] = impulse(sys,t)

③、任意输入激励下的仿真函数lsim()可用于计算在给定的输入信号序列(输入信号函数的采样值)下传递函数模型的输出响应,其主要调用格式为

lsim(sys,u,t,x0)

[y,t,x] = lsim(sys,u,t,x0)

【实验内容、方法、过程与分析】

已知线性系统

1、利用Matlab求零状态下的阶跃响应(包括状态和输出),生成两幅图:第一幅绘制各状态响应曲线并标注;第二幅绘制输出响应曲线。

状态响应曲线:

A=[-21 19 -20;19 -21 20;40 -40 -40];

B=[0;1;2];

C=[1 0 2];

D=[0]; %输入状态空间模型各矩阵,若没有相应值,可赋空矩阵

X0=[0;0;0]; % 输入初始状态

sys=ss(A,B,C,D); %构造传递函数

[y,x,t]=step(sys); % 绘以时间为横坐标的状态响应曲线图

plot(t,x);

grid;

title('状态响应曲线')

输出响应曲线:

A=[-21 19 -20;19 -21 20;40 -40 -40];

B=[0;1;2];

C=[1 0 2];

D=0;

X0=[0;0;0]

[num,den]=ss2tf(A,B,C,D,1);

sys=tf(num,den);

step(sys)

grid

title('输出响应曲线')

2、利用Matlab求零状态下的冲激响应(包括状态和输出),生成两幅图:第一幅绘制各状态响应曲线并标注;第二幅绘制输出响应曲线。

状态响应曲线:

A=[-21 19 -20;19 -21 20;40 -40 -40];

B=[0;1;2];

C=[1 0 2];

D=[]; %输入状态空间模型各矩阵,若没有相应值,可赋空矩阵

x0=[0;0;0]; % 输入初始状态

sys=ss(A,B,C,D); %构造传递函数

[y,x,t]= impulse(sys);

plot(t,x);

grid;

title('状态响应曲线')

输出响应曲线:

A=[-21 19 -20;19 -21 20;40 -40 -40];

B=[0;1;2];

C=[1 0 2];

D=0;

X0=[0;0;0]

[num,den]=ss2tf(A,B,C,D,1);

sys=tf(num,den);

impulse(sys);

grid;

title('输出响应曲线')

3、若控制输入为,且初始状态为,求系统的响应,要求

a.在simulink只能够画出模型求响应,生成两幅图:第一幅绘制各状态响应曲线并标注;第二幅绘制输出响应曲线。

b.编写.m文件求响应,生成两幅图:第一幅绘制各状态响应曲线并标注;第二幅绘制输出响应曲线。

状态响应曲线:

t=[0:0.02:5];

if t>=3

u=1;

else

u=1+exp(-t).*cos(5*t);

end

A=[-21 19 -20;19 -21 20;40 -40 -40];

B=[0;1;2];

C=[1 0 2];

D=[0]; %输入状态空间模型各矩阵,若没有相应值,可赋空矩阵

X0=[0.2;0.2;0.2]; % 输入初始状态

u=(t==0); %就是个条件判断,只有t=0的时候,u才为“1”

sys=ss(A,B,C,D); %构造传递函数

[y,t,x]=lsim(sys,u,t,X0);

plot(t,x);

grid;

title('状态响应曲线')

输出响应曲线:

plot(t,y);

grid;

title('输出响应曲线')

4、以阶跃输入情况下的,分析各模块对响应有什么影响。

5、求系统的传递函数

在MATLAB软件Command Window窗口中输入以下程序A=[-21 19 -20;19 -21 20;40 -40 -40];

B=[0;1;2];

C=[1 0 2];

D=0;

[num,den]=ss2tf(A,B,C,D,1);

printsys(num,den)

程序运行结果为

6、若采用K增益负反馈,绘制闭环根轨迹图,并对根轨迹加以描述说明。

A=[-21 19 -20;19 -21 20;40 -40 -40];

B=[0;1;2];

C=[1 0 2];

D=0;

[num,den]=ss2tf(A,B,C,D,1);

rlocus(num,den);

grid

title('K增益负反馈闭环根轨迹图')

采用K增益负反馈,画出如图所示的根轨迹图。由图可知,共有3条根轨迹,第一条最终趋于原点;第二条收敛在20~60之间;第三条最终趋于无穷远处。

7、在Matlab中绘制Bode图和Nyquist图,并对图给予说明。

绘制Bode图:

A=[-21 19 -20;19 -21 20;40 -40 -40];

B=[0;1;2];

C=[1 0 2];

D=0;

sys=tf(num,den)

bode(num,den)

grid

title('Bode图')

汇出的波特图如图所示,由图可知,对复制响应分析可得,交越频率在转折频率之后,故复制的变化主要发生在低频段。对相频特性进行分析,可知此系统的相频特性角度均为负值,并且最后的相角是趋于-90度的。

绘制Nyquist图:

nyquist(sys)

title('Nyquist图')

分析出此系统的稳定性。

线性系统状态空间分析报告与运动解

【实验地点】课外(宿舍) 【实验目的】 1、学会利用MATLAB 实现离散系统传递函数模型的生成 2、学会利用MATLAB 将连续系统离散化 【实验设备与软件】 1、MATLAB/Simulink 数值分析软件 2、计算机一台 【实验原理】 1、求矩阵特征值和特征向量命令格式[V J]=eig (A ) Cv=eig(A) 说明:V 特征向量,J 是Jordan 型,cv 是特征值列向量 2、求运动的方法 (1)利用Laplace 逆变换----适合于连续/离散线性系统 采用ilaplace/iztrans 对传递函数求逆,这种方法一般是零输入情况下求响应。 (2)用连续(离散)状态转移矩阵表示系统解析解----适合于线性定常系统 对连续定常系统有: 假设初始时刻为零,LTI 系统的解析解为dt Bu e e x e t x t At At At ??+=0 )()0()(τ。若u (t )是单 位阶跃输入,则上述解可写成dtBu e e x e t x t At At At ? ?+=0 )()0()(τ。进一步简化为: Bu A Bu A x e t x At 11))0(()(---+= 对离散线性定常系统有: ∑---+ =1 1 )()0()(k i k k i Hu G x G k x

(3)状态方程的数值分析方法----适合于连续线性系统和非线性系统 采用直接数值积分很容易的处理各种定常/时变和线性/非线性系统。有很多数值积分方法,其中有一类预测-修正数值积分方法+自适应步长调整的算法比较有效。在MATLAB/Simulink 中包含的多种有效的、适用于不同类型的ODE 求解算法,典型的是Runge-Ktuta 算法,其通常使用如下的函数格式: [t,x]=ode45(odefun,[ti,tf],x0,options)----采用四阶、五阶Runge-Ktuta 算法 [t,x]=ode23(odefun,[ti,tf],x0,options)----采用二阶、三阶Runge-Ktuta 算法 说明:a.这两个函数是求解非刚性常微分方程的函数。 b.参数options 为积分的误差设置,取值为相对误差‘reltol ’和绝对误差‘abstol ’;[ti,tf]求解的时间围;x0是初值是初值向量;[t,x]是解。 (4)利用CotrolToolBox 的离散化求解函数----适合于TLI 系统 用step ()/impulse()函数求取阶跃输入/冲激输入时系统的状态响应: 当系统G 是连续的情况下: 调用[y,t,x]=step/impulse(G )会自动对连续系统G 选取采样时间围和周期; 调用[y,t,x]=step/impulse(G ,ti:Ts:tf)由用户自己定义对连续系统G 的样时间围和周期; 当系统G 是离散的情况下: 调用[y,t,x]=step/impulse(G )会按离散系统G 给出的采样周期计算; 调用[y,t,x]=step/impulse(G ,ti:Ts:tf)是Ts 必须与离散系统G 的采样时间围和周期一致。 另外lsim()函数调用格式:[y,x,t]=lsim(G,u,ti,TS,tf,x0) 零输入响应调用函数initial (),格式:[y,x,t]=(G,x0) (5)利用simulink 环境求取响应----适用于所有系统求取响应 使用simulink 求取线性或非线性系统的响应,调用格式如下: [t,x,y]=sim(‘XX.mdl ’,ti:Ts:tf,options,u) 【实验容】 已知线性系统:]) (201)() (2 10)(404040202119201921)(t x t y t u t x t x +-----? 已知线性系统 1、利用Matlab 求零状态下的阶跃响应(包括状态和输出),生成两幅图:第一幅绘制各状态响应曲线并标注;第二幅绘制输出响应曲线。

实验25线性系统状态空间分析和运动解

广西大学实验报告纸 【实验时间】2014年06月15日 【实验地点】(课外) 【实验目的】 1、掌握线性系统状态空间的标准型、解及其模型转换。 【实验设备与软件】 1、MATLAB数值分析软件 【实验原理】 Matlab提供了非常丰富的线性定常连续系统的状态空间模型求解(即系统运动轨迹的计算)的功能,主要的函数有 ①、阶跃响应函数step()可用于计算在单位阶跃输入和零初始状态(条件)下传递函数模型的输出响应,或状态空间模型的状态和输出响应,其主要调用格式为 step(sys,t) [y,t] = step(sys,t) [y,t,x] = step(sys,t) ②、脉冲激励下的仿真函数impulse()可用于计算在脉冲刺激输入下传递函数模型的输出响应,或状态空间模型的状态和输出响应,其主要调用格式为 impulse(sys,t) [y,t] = impulse(sys,t) [y,t,x] = impulse(sys,t) ③、任意输入激励下的仿真函数lsim()可用于计算在给定的输入信号序列(输入信号函数的采样值)下传递函数模型的输出响应,其主要调用格式为 lsim(sys,u,t,x0) [y,t,x] = lsim(sys,u,t,x0) 【实验内容、方法、过程与分析】 已知线性系统 1、利用Matlab求零状态下的阶跃响应(包括状态和输出),生成两幅图:第一幅绘制各状态响应曲线并标注;第二幅绘制输出响应曲线。 状态响应曲线: A=[-21 19 -20;19 -21 20;40 -40 -40]; B=[0;1;2]; C=[1 0 2]; D=[0]; %输入状态空间模型各矩阵,若没有相应值,可赋空矩阵 X0=[0;0;0]; % 输入初始状态 sys=ss(A,B,C,D); %构造传递函数 [y,x,t]=step(sys); % 绘以时间为横坐标的状态响应曲线图 plot(t,x); grid;

信息系统分析与设计实验指导书

信息系统分析与设计实验指导书 内蒙古财经学院

目录 一、实验目的 (186) 二、实验要求 (186) 三、实验题目及内容 (187) 四、考核要求 ........................................................................................................ 错误!未定义书签。附录:实践参考题目及内容.. (187) 题目一“教务管理系统之子系统——系内课程安排”(综合性) (187) 题目二“学校教材订购系统”(综合性) (189) 题目三“机票预订系统”(综合性) (190) 题目四“学校内部房产管理系统”(综合性) (191) 题目五“学校内部工资管理系统”(综合性) (192) 题目六“学校校园网络管理信息系统”(综合性) (193) 题目七“实验室设备管理系统”(综合性) (194) 题目八“饭店餐饮业务管理系统”(综合性) (195) 题目九“图书管理系统”(综合性) (196)

一、实验目的 《信息系统分析与设计》是信息管理系统专业教学计划中一门综合性和实践性很强的核心课程。通过实验,可以使学生对软件系统的设计思想、开发方法和软件开发工作的具体过程,包括软件可行性分析、需求分析、概要设计、详细设计、面向对象分析与设计、编码、软件质量与质量保证、项目计划与管理等有一个完整的了解,为今后参加工作、适应环境的要求,开发出满足各种需要的软件系统打下基础。 本课程实习的主要任务是: 1、理解信息系统分析与设计的基本概念、原理等内容; 2、掌握软件项目过程各阶段的工作流程、管理方法和策略; 3、加深对开发过程中所涉及的各种方法和工具的认识和理解; 4、学会针对具体的项目如何来裁减和定制软件工程过程和编制相应文档。 5、培养基本的软件项目管理和开发团队整体协作精神; 二、实验要求 学生可以根据自己的兴趣,从附录提供的题目中选择或自拟题目,协作完成实习任务,具体要求如下: 1、实习过程必须紧密结合信息系统分析与设计的基本思想和软件系统的设计 方法; 2、实习完成须提交以下内容:

电力系统分析实验报告

本科生实验报告 实验课程电力系统分析 学院名称核技术与自动化工程学院 专业名称电气工程及其自动化 学生姓名 学生学号 指导教师顾民 实验地点6C901 实验成绩

二〇一五年十月——二〇一五年十二月 实验一MATPOWER软件在电力系统潮流计算中的应用实例 一、简介 Matlab在电力系统建模和仿真的应用主要由电力系统仿真模块(Power System Blockset 简称PSB)来完成。Power System Block是由TEQSIM公司和魁北克水电站开发的。PSB是在Simulink环境下使用的模块,采用变步长积分法,可以对非线性、刚性和非连续系统进行精确的仿真,并精确地检测出断点和开关发生时刻。PSB程序库涵盖了电路、电力电子、电气传动和电力系统等电工学科中常用的基本元件和系统仿真模型。通过PSB可以迅速建立模型,并立即仿真。PSB程序块程序库中的测量程序和控制源起到电信号与Simulink程序之间连接作用。PSB程序库含有代表电力网络中一般部件和设备的Simulink程序块,通过PSB 可以迅速建立模型,并立即仿真。 1)字段baseMVA是一个标量,用来设置基准容量,如100MVA。 2)字段bus是一个矩阵,用来设置电网中各母线参数。 ①bus_i用来设置母线编号(正整数)。 ②type用来设置母线类型, 1为PQ节点母线, 2为PV节点母线, 3为平衡(参考)节点母线,4为孤立节点母线。 ③Pd和Qd用来设置母线注入负荷的有功功率和无功功率。 ④Gs、Bs用来设置与母线并联电导和电纳。 ⑤baseKV用来设置该母线基准电压。 ⑥Vm和Va用来设置母线电压的幅值、相位初值。 ⑦Vmax和Vmin用来设置工作时母线最高、最低电压幅值。 ⑧area和zone用来设置电网断面号和分区号,一般都设置为1,前者可设置范围为1~100,后者可设置范围为1~999。 3)字段gen为一个矩阵,用来设置接入电网中的发电机(电源)参数。 ①bus用来设置接入发电机(电源)的母线编号。 ②Pg和Qg用来设置接入发电机(电源)的有功功率和无功功率。 ③Pmax和Pmin用来设置接入发电机(电源)的有功功率最大、最小允许值。 ④Qmax和Qmin用来设置接入发电机(电源)的无功功率最大、最小允许值。 ⑤Vg用来设置接入发电机(电源)的工作电压。 1.发电机模型 2.变压器模型 3.线路模型 4.负荷模型 5.母线模型 二、电力系统模型 电力系统中输送和分配电能的部分称为电力网,它包括升降压变压器和各种电压等级的输电线路、动力系统、电力系统和电力网简单示意如图

实验4-1 GIS空间分析(空间分析基本操作)

实验4-1、空间分析基本操作 一、实验目的 1. 了解基于矢量数据和栅格数据基本空间分析的原理和操作。 2. 掌握矢量数据与栅格数据间的相互转换、 栅格重分类(Raster Reclassify)、 栅格计算-查询符合条件的栅格(Raster Calculator)、 面积制表(Tabulate Area)、 分区统计(Zonal Statistic)、 缓冲区分析(Buffer) 、采样数据的空间内插(Interpolate)、 栅格单元统计(Cell Statistic)、 邻域统计(Neighborhood)等空间分析基本操作和用途。 3. 为选择合适的空间分析工具求解复杂的实际问题打下基础。 二、实验准备 预备知识: 空间数据及其表达 空间数据(也称地理数据)是地理信息系统的一个主要组成部分 。空间数据是指以地球表面空间位置为参照的自然、社会和人文经济景观数据,可以是图形、图像、文字、表格和数字等。它是GIS 所表达的现实世界经过模型抽象后的内容,一般通过扫描仪、键盘、光盘或其它通讯系统输入GIS。 在某一尺度下,可以用点、线、面、体来表示各类地理空间要素。有两种基本方法来表示空间数据:一是栅格表达; 一是矢量表达。两种数据格式间可以进行转换。 空间分析 空间分析是基于地理对象的位置和形态的空间数据的分析技术,其目的在于提取空间信息或者从现有的数据派生出新的数据,是将空间数据转变为信息的过程。 空间分析是地理信息系统的主要特征。空间分析能力(特别是对空间隐含信息的提取和传输能力)是地理信息系统区别与一般信息系统的主要方面,也是评价一个地理信息系统的主要指标。 空间分析赖以进行的基础是地理空间数据库。空间分析运用的手段包括各种几何的逻辑运算、数理统计分析,代数运算等数学手段。空间分析可以基于矢量数据或栅格数据进行,具体是情况要根据实际需要确定。 空间分析步骤 根据要进行的空间分析类型的不同, 空间分析的步骤会有所不同。通常,所有 的空间分析都涉及以下的基本步骤,具体 在某个分析中,可以作相应的变化。 空间分析的基本步骤: a) 确定问题并建立分析的目标和要满足 的条件 b) 针对空间问题选择合适的分析工具 c) 准备空间操作中要用到的数据。 d) 定制一个分析计划然后执行分析操作。 e) 显示并评价分析结果

线性系统的状态空间分析与综合

第九章线性系统的状态空间分析与综合 一、教学目的与要求: 通过本章内容的学习,使学生建立起状态变量和状态空间的概念,掌握线性定常系统状态空间模型的建立方法,状态空间表达式的线性变换,状态完全能控或状态完全能观测的定义,及其多种判据方法,状态转移矩阵的求法,传递函数矩阵与状态空间表达式的关系。 二、授课主要内容: 1.线性系统的状态空间描述 2.线性系统的可控性与可观测性 3.线性定常系统的状态反馈与状态观测器 (详细内容见讲稿) 三、重点、难点及对学生的要求(掌握、熟悉、了解、自学) 1.重点掌握线性定常系统状态空间模型的建立方法与其他数学描述(微分方程、 传递函数矩阵)之间的关系。 2.掌握采用状态空间表述的系统运动分析方法,状态转移矩阵的概念和求解。 3.掌握系统基本性质——能控性和能观测性的定义、有关判据及两种性质之间 的对偶性。 4.理解状态空间表达式在线性变换下的性质,对于完全能控或能观测系统,构 造能控、能观测标准形的线性变换方法,对于不完全能控或不完全能观测系统,基于能控性或能观测性的结构分解方法。 5.掌握单变量系统的状态反馈极点配置和全维状态观测器设计方法,理解分离 定理,带状态观测器的状态反馈控制系统的设计。 重点掌握线性系统的状态空间描述和求解,线性系统的可控性与可观测性及状态反馈与状态观测器。 四、主要外语词汇 线性系统 linear system 状态空间 state space 状态方程 state equation

状态向量 state vector 传递函数矩阵 translation function matrix 状态转换矩阵 state-transition matrix 可观测标准形 observational standard model 可控标准形 manipulative standard model 李亚普诺夫方程Lyaponov equation 状态观测器 state observation machine 对偶原理 principle of duality 五、辅助教学情况(见课件) 六、复习思考题 1.什么是系统的状态空间模型?状态空间模型中的状态变量、输入变量、输出变量各指什么? 2.通过机理分析法建立系统状态空间模型的主要步骤有哪些? 3.何为多变量系统?如何用传递矩阵来描述多变量系统的动态特性? 在多变量系统中,环节串联、并联、反馈连接时,如何求取总的传递矩阵?4.试简述数学模型各种表达式之间的对应关系。 5.用非奇异矩阵P对状态方程式进行线性状态变换后,与原状态方程式之间存在什么关系? 6.试简述系统能控性与能观性两个概念的含义及意义。 7.试述能控性和能观性定义。 8.试述系统能控性和能观性常用判据。 9.何谓对偶系统和对偶原理? 10.什么是状态方程的线性变换? 11.试述系统状态方程规范型变换的条件、特点及变换的基本方法。 12.试述状态能控性与能观性和系统传递函数(阵)的关系。 七、参考教材(资料) 1.《自动控制原理与系统》上、下册清华大学吴麒等国防工业出版社

实验一系统分析

学生实验报告 (理工类) 课程名称:软件工程专业班级:计算机科学与技术(1)学生学号: 0905101049 学生姓名:张鹏程 所属院部:信息技术学院指导教师:李慧 2010 ——20 11学年第 1 学期 金陵科技学院教务处制

实验项目名称:快递公司系统—系统分析实验学时: 4 同组学生姓名:无实验地点: 实验日期:实验成绩: 批改教师:批改时间: 一、实验目的和要求 1、确定项目的可实施性,在此基础上完成系统的逻辑功能模型的建立; 2、采用不同的软件开发技术,完成对项目的分析过程,给出系统的逻辑功能模型,数据字典以及规格说明书; 3、理解项目的业务流程图,要求绘制出系统的DFD,功能分析图等。 4、完成系统的需求规格说明书。 二、实验仪器和设备 计算机及配备Windows操作系统和Office应用程序 三、实验内容 1.项目概述 随着快递公司业务的发展,业务量不断增多,跨区域工作的需求,客户需要一种能够运行于B/S模式的网络数据管理系统。本软件能满足快递公司与客户之间的业务需求和快递公司与承运人之间的业务需求,并能对业务数据进行统计和管理,最后以报表的形式体现出来。本系统新增了客户服务,使快递公司与客户之间能随时沟通。 2.业务描述 首先,发货客户与快递公司签订货运合同(货运单),把货物交给快递公司来托运,并按照货运合同的付款方式付款。快递公司根据货物运输线路,为货物配车,找到合适的车辆后,与司机签订运输合同(回执单),并按照运输合同的运费结算方式结算。司机对货物检查无误后,装车,然后发车,发车后,货物的任何损失由司机承担。 司机到达目的地后,需要经过货物验收,验收通过,填写一份司机回执单,快递公司这时同时通知发货客户和收货客户,货物已到达。如果货物没有通过验收,则填写差错记录。如果该货物不需要中转,通知收货客户来提货,客户验收通过后,填写客户回执单,快递公司这时通知发货客户,所发货物已被提走。如果该货物需要中转,则填写一份中转信息单,快递公司这时同时通知发货客户和收货客户,货物已被中转。中转成功后,收货客户来提货,并通知发货客户,货物已被提,然后进行转货结算。 3.定义 (1)物流企业:指从事物流活动的经济组织,至少从事运输(含运输代理、货物快递)或仓储一种经营业务,并能够按照客户物流需求对运输、储存、装卸、包装、流通加工、配送等基本功能进行组织和管理,具有与自身业务相适应的信息管理系统,实行独立核算、独立承担民事责任的经济组织

3-系统分析实验报告

管理信息系统实验报告 实验3 系统分析 课程名称:管理信息系统 指导教师:王玮 班级:信管1401 学号: 姓名:唐赛赛 时间: 2016.04.06 地点: 3 号机房

一、实验目的 1.了解开发Visio解决方案的基本概念和关于Visio工具的一些基本的操作和应用; 2.掌握系统分析阶段数据流程图的画法; 二、实验步骤和实验结果: 使用Visio中提供的“组织结构图”模具,绘制下面例题的组织结构图,附在图后。 2、使用Visio绘制“业务流程图模具”和“数据流程图模具”(1)创建“业务流程图模具” 先在“框图”-〉“基本形状”中找到圆角矩形,右击选择“添加到我的形状”-〉“添加到新模具”。之后出现“另存为”对话框,把新模具命名为“业务流程图”,把圆角矩形形添加到了新模具“业务程图”中。用同样的思路,先在“框图”-〉“基本形状”中找到圆形,右击选择“添加到我的形状”-〉“添加到模具“业务程图”中;在“框图”-〉“基本形状”找到矩形,在“流程图”中的“IDEFO图表形状”找到动态连接线,在“流程图”中的“SDL图表形状”中找到文档,多文档,添加到模具“业务程图”中。可以通过设置“动态连接线”属性来改变其形状。如下图:

添加完成后,我们就可以在画业务流程图时打开该模具,业务流程图所有的元素都会在一个模具中显示出来。(2)创建“数据流程图模具”先在“框图”-〉“基本形状”中找到圆形(或是“流程图”中的“混合流程图形状”中找到外部实体2 ),右击选择“添加到我的形状”-〉“添加到新模具”(注,使用外部实体2来表示外部实体的时候,请将之旋转180度使用)。之后出现“另存为”对话框,把新模具命名为“数据流程图”,这样我们就把圆形形添加

系统分析实验报告

天津职业技术师范大学课程设计大学学籍管理系统的设计与开发 专业:软件工程 班级学号:软件1002-17 学生姓名:靳利强 指导教师:龚良波老师 二〇一三年七月

一.需求分析 1.课程名称:大学教务信息系统的设计与开发 2.设计目的: 为方便学校做好学生学籍管理工作,设计一个学生学籍管理系统,在设计过程中作了系统分析和总体设计,软件设计采取模块化的设计思路。 3.需求概述 该学生学籍管理系统主要对学生学籍信息、成绩信息进行管理,提供一个平台,供学籍管理人员增删改查学生信息、学生成绩信息。系统分为学生信息管理、学生成绩管理、信息查询等几个模块。学籍管理人员登录成功后可以对学生信息管理、学生成绩管理、信息查询等模块进行操作,如学生信息添加、修改、删除和查询;学生成绩登记、修改、删除和查询;查询信息等。 4功能需求: 1)功能齐全:界面操作灵活方便,设计包括以下基本功能: 2)学生信息管理、教师信息管理、财务信息管理、班级信息管理、课 程信息管理、成绩信息管理、打印信息管理、教室信息管理、综合信息查询、系统管理等,至少实现其中的三个功能,且每个功能至少包括两个子功能。 3)按照软件工程的要求进行分析、设计和开发。 4)界面友好:界面友好、输入有提示、尽量展示人性化。 5)可读性强:源程序代码清晰、有层次、主要程序段有注释。

6)健壮性好:用户输入非法数据时,系统应及时给出警告信息。 二.概要设计 1.功能模块: 2数据流图: (1)学生端

(2)管理员端

学生端功能: A 登录,学生登录后,验证成功,进入其信息展示页。 管理员端功能: B 登录,管理员登录后,验证成功,进入学生信息列表,可以对学生信息进行修改,删除,按班级查询,按学号查询,按名字查询。上传图片,更新图片等操作。 三.详细设计及实现 数据库设计: 学生表: 教师表:

操作系统实验-第四讲-物理存储器与进程逻辑地址空间的管理

操作系统 实验报告 & 哈尔滨工程大学 计算机科学与技术学院

一、实验概述 1. 实验名称物理存储器与进程逻辑地址空间的管理 2. 实验目的通过查看物理存储器的使用情况,并练习分配和回收物理内存, 从而掌握物理存储器的管理方法。通过查看进程逻辑地址空间 的使用情况,并练习分配和回收虚拟内存,从而掌握进程逻辑地 址空间的管理方法。 。 3. 实验类型验证+设计 4.实验内容准备实验 阅读控制台命令“pm”相关的源代码,并查看其执行的结果 分配物理页和释放物理页 阅读控制台命令“vm”相关的源代码,并查看其执行的结果 在系统进程中分配虚拟页和释放虚拟页 ~ 在应用程序进程中分配虚拟页和释放虚拟页 要求 测试方法 提示 二、实验环境 操作系统windos xp 编译器OS Lab

[ 语言 c语言 三、实验过程 1. 设计思路和流程图 MiAllocateAnyPages函数的流程图 MiFreePages函数的流程图-

2.需要解决的问题及解答 (1)在实验指导的P160-4.和5.按F10单步调试MmAllocateVirtualMemory函数的执行过程,要求给出监视窗口BaseAddress和RegionSize个变量前后变化截图界面。 截图见。 在实验指导的P160-1.和2. 按F10单步调试MmFreeVirtualMemory函数的执行过程,要求给出监视窗口BaseAddress和RegionSize个变量前后变化截图界面。截图见。 (2)按照《实验指导》的在应用程序进程中分配虚拟页和释放虚拟页,编写代码。要求至少给出源代码及其解释。 程序见。 : (3)按F10单步调试MiAllocateAnyPages函数的执行过程,尝试回答下面的问题: ①本次分配的物理页的数量是多少分配的物理页的页框号是多少 ②物理页是从空闲页链表中分配的还是从零页链表中分配的 ③哪一行语句减少了空闲页的数量哪一行语句将刚刚分配的物理页由空闲状态修改为忙状态 答:①本次分配的物理页的数量是1,分配的物理页的页框号是0x409; ②物理页是从空闲页链表中分配的 ③第226行MiFreePageListHead=MiGetPfnDatabaseEntry(Pfn)->Next;和第227 行MiFreePageCount--;减少了空闲页的数量,第229行将刚刚分配的物理页由空闲状态修改为忙状态; (4)按F10单步调试MiFreePages函数的执行过程,尝试回答下面的问题: ; ①本次释放的物理页的数量是多少释放的物理页的页框号是多少释放的物理页是之前分配的物理页吗 ②释放的物理页是被放入了空闲页链表中还是零页链表中 ③绘制MiFreePages函数的流程图。 答:①本次释放的物理页的数量是1,释放的物理页的页框号0x409,释放的物理页是之前分配的物理页;

线性系统理论综述

线性系统理论课程大作业论文线性系统理论综述及其应用

这学期学习的线性系统理论属于系统控制理论的一个最为基本和成熟发展的分支,主要包括以下内容:介绍采用系统理论解决工程问题的一般步骤,明确建模、分析、综合在解决实际问题中的作用,并重点介绍线性系统模型的特征和分析方法;介绍系统的状态空间描述,结余状态空间方法的分析和系统结构特征和结构的规范分解以及状态反馈及其性质等。 一.线性系统理论研究内容综述 系统是系统控制理论所要研究的对象,从系统控制理论的角度,通常将系统定义为由相互关联和相互制约的若干部分组成的具有特定功能的整体。 动态系统是运动规律按照确定规律或者确定的统计的规律岁时间演化的一类系统,动态系统的行为由各类变量间的关系来表征,系统的变量可以分为三种形式,一类是反映外部对系统的影响或者作用的输入变量组,如控制、投入、扰动等;二是表征系统状态行为的内部状态变量组;三是反映系统外部作用或影响的输入变量组如响应,产出。表征系统动态的过程的数学描述具有两类基本形式,一是系统的内部描述,另一组是输入变量对状态变量的组的动态影响。从机制的角度来看,动态系统可被分类为连续系统变量动态系统和离散事件动态系统;从特征的角度,动态系统可分别分类为线性系统和非线性系统,参数集成系统和分布参数系统;从作用时间类型角度,动态系统可被称为连续时间系统和离散时间系统。 线性系统理论是系统控制理论最为成熟和最为基础的分支。他是现代控制理论的一个重要组成部分,也是对经典控制理论的延申。现代控制理论主要是着重研究现性状态的运动规律和改变这种规律的可能性和方法。线性系统的理论和方法是建立在建模的基础上。在建模的基础上,可以进一步把线性系统的理论进一步区分为“分析理论”和“综合理论”。分析理论分为定量分析和定性分析,定量分析是着重于研究对系统性能和控制具有重要意义的结构特性。系统综合理论是建立在分析的基础上,系统综合目的是使系统的性能达到期望的指标或实现最优化。 线性系统理论的研究对象为线性系统,线性系统为最为简单和最为基本的一类动态系统。线性系统理论是系统控制理论中最为充分、发展最为成熟和应用最为广泛的一个开支。线性系统的的一个基本特征是其模型满足线性叠加原理。对于线性系统的研究也可以进一步分为线性是不变系统和线性时不变系统两类。对系统进行建模也是控制理论中具有重要的作用。对系统建模的作用多样性和基本型、途径以及系统的建模的准则=====系统建模的简单性和分析的结果的准确性之间做出适当的折中。 线性控制理论在1960年前后开始了从经典控制理论到现代理论的过渡。反应这种过渡的重要标志成果是,卡尔曼把在分析力学中广为采用的状态空间描

第九章 线性系统的状态空间分析与综合习题

第九章 线性系统的状态空间分析与综合 9-1 已知电枢控制的直流司服电机的微分方程组及传递函数为 b a a a a a E t d di L i R u ++=,t d d K E m b b θ=,a m m i C M =,t d d f t d d J M m m m m m θθ+=2 2; )] ()([)()(2 m b m a a m m a m a m a m C K f R s R J f L s J L s C s U s ++++=Θ。 ⑴ 设状态变量m x θ=1,m x θ&=2,m x θ&&=3,输出量m y θ=,试建立其动态方程; ⑵ 设状态变量a i x =1,m x θ=2,m x θ&=3,输出量m y θ=,试建立其动态方程; ⑶ 设x T x =,确定两组状态变量间的变换矩阵T 。 解:⑴ 由传递函数得 a m a m m a m b m a m a u C x R J f L x C K f R x J L ++-+-=323)()(&,动态方程为 []x y u x x x x x x 001100010001032121321=??????????+????????????????????--=??????????αα&&&,其中)/()()/()()/(21m a a m m a m a m b m a m a a m J L R J f L J L C K f R J L u C u +=+==αα; ⑵ 由微分方程得 3 133 2311x f x C x J x x u x K x R x L m m m a b a a -==---=&&&,即 []x y u x x x a a a a x x x a 0200010100032133311311321=???? ? ?????+?????????????????? ??=??????????&&&,其中 m m m m a b a a J f a J C a L K a L R a ////33311311-==-=-=; ⑶ 由两组状态变量的定义,直接得到???? ? ???????????????=??????????3213331 321010001 0x x x a a x x x 。 9-2 设系统的微分方程为 u x x x =++23&&& 其中u 为输入量,x 为输出量。 ⑴ 设状态变量x x =1,x x &=2,试列写动态方程; ⑵ 设状态变换211x x x +=,2122x x x --=,试确定变换矩阵T 及变换后的动态方程。 解:⑴ u x x x x ??????+????????????--=??????1032102121&&,[]?? ????=2101x x y ; ⑵ ??????=??????2121x x T x x ,??????--=2111T ;?? ????--=-11121 T ;AT T A 1-=,B T B 1-=,CT C =; 得,? ?????--=2111T ;u x x x x ?? ????-+????????????-=??????1110012121&&,[]??????=2111x x y 。 9-3 设系统的微分方程为 u y y y y 66116=+++&&&&&& 其中u 、y 分别系统为输入、输出量。试列写可控标准型(即A 为友矩阵)及可观标准型(即A 为友矩 阵转置)状态空间表达式,并画出状态变量图。

系统分析实验报告2016

本科实验报告 课程名称:系统分析与设计 实验项目:《》实验实验地点: 专业班级:学号: 学生姓名: 指导教师: 2016年11月日

一、实验目的 通过《系统分析与设计》实验,使学生在实际的案例中完成系统分析与系统设计中的主要步骤,并熟悉信息系统开发的有关应用软件,加深对信息系统分析与设计课程基础理论、基本知识的理解,提高分析和解决实际问题的能力,使学生在实践中熟悉信息系统分析与设计的规范,为后继的学习打下良好的基础。 二、实验要求 学生以个人为单位完成,自选题目,班内题目不重复,使用UML进行系统分析与设计,并完成实验报告。实验报告(A4纸+电子版)在最后一次上课时提交(10周)。 三、实验主要设备:台式或笔记本计算机 四、实验内容 1 选题及项目背景 学生填写自选题目 2 定义 学生填写(对自选项目系统进行描述200-400字) 3 参考资料 学生填写 4 系统分析与设计 4.1需求分析 4.1.1识别参与者 学生填写 4.1.2 对需求进行捕获与描述 学生填写时删除以下括号内容 (内容要求1:对每个用例进行概要说明,参考以下格式: 用例名称:删除借阅者信息执行者:管理员 目的:完成一次删除借阅者信息的完整过程。) (内容要求2:选择其中一个用例(如下订单)给出其用例描述。格式参考下表

) 4.1.3 用例图 通过已掌握的需求,初步了解系统所要完成的功能。下面给出用例图。 4.1.4 分析与讨论 1)建模用例图的步骤、方法? 2)如何识别系统的参与者?应该如何划分用例,应注意哪些问题? 3)心得 4.2 建立对象模型 4.2.1 候选类的数据字典 学生填写 4.2.2定义类 (内容以“书籍信息”类为例列出该类的属性和操作如下: “书籍信息”类 ?属性 国际标准书号(ISBN):文本(String) 书名(name):文本

实验空间分析基本操作

实验五、空间分析基本操作 一、实验目的 1. 了解基于矢量数据和栅格数据基本空间分析的原理和操作。 2. 掌握矢量数据与栅格数据间的相互转换、栅格重分类(Raster Reclassify>、栅格计算-查询符合条件的栅格(Raster Calculator>、面积制表、缓冲区分析(Buffer> 、采样数据的空间内插(Interpolate>、栅格单元统计

空间分析 空间分析是基于地理对象的位置和形态的空间数据的分析技术,其目的在于提取空间信息或者从现有的数据派生出新的数据,是将空间数据转变为信息的过程。DXDiTa9E3d 空间分析是地理信息系统的主要特征。空间分析能力<特别是对空间隐含信息的提取和传输能力)是地理信息系统区别与一般信息系统的主要方面,也是评价一个地理信息系统的主要指标。RTCrpUDGiT 空间分析赖以进行的基础是地理空间数据库。 空间分析运用的手段包括各种几何的逻辑运算、数理统计分析,代数运算等数学手段。 空间分析可以基于矢量数据或栅格数据进行,具体情况要根据实际需要确定。 空间分析步骤 根据要进行的空间分析类型的不同,空间分析的步骤会有所不同。通常,所有的空间分析都涉及以下的基本步骤,具体在某个分析中,可以作相应的变化。5PCzVD7HxA 空间分析的基本步骤: a)确定问题并建立分析的目标和要满足的条件 b)针对空间问题选择合适的分析工具 c)准备空间操作中要用到的数据。 d)定制一个分析计划然后执行分析操作。 e)显示并评价分析结果

线性系统的状态空间描述

第一章线性系统的状态空间描述 1.内容 系统的状态空间描述 化输入—输出描述为状态空间描述 由状态空间描述导出传递函数矩阵 线性系统的坐标转换 组合系统的状态空间方程与传递函数矩阵 2.基本概念 系统的状态和状态变量 状态:完全描述系统时域行为的一个最小变量组 状态变量:构成系统状态的变量 状态向量 设系统状态变量为X i(t),X2(t)厂,X n(t)写成向量形式称为状态向量,记为 _X i (t) x(t)= _X n(t) 状态空间 状态空间:以状态变量为坐标轴构成的n维空间 状态轨迹:状态变量随时间推移而变化,在状态空间中形成的一条

轨迹。

3. 状态空间表达式 设系统r 个输入变量:U i (t ),u 2(t )^ ,u r (t ) m 个输出:yQM), ,y m (t) n 个状态变量:X i (t),X 2(t), ,X n (t) 例:图示RLC 电路,建立状态空间描述 i L C 电容C 和电感L 两个独立储能元件,有两个状态变量, 方程为 如图中所注, L di L (t) dt Ri L (t) U c (t) =u(t) C 沁 “L (t) dt X i (t)二 L(t), X 2(t)二 U c (t) 二 LX i (t) RX i (t) X 2(t)二 u(t) Cx (t)二 X (t) N(t) - R/L 殳⑴门1/C 0 匚X 2(— O u(t) U c

输出方程 一般定义 状态方程:状态变量与输入变量之间的关系 dX i (t) dt = X i (t)二 f i 〔X i (t),X 2(t), ,X n (t);U i (t),U 2(t), ,U r (t);tl dX 2(t) dt = X 2(t)二 f 2'X i (t),X 2(t)^ ,X n (t);U i (t),U 2(t), ,U r (t);t 】 dX n (t) dt 二 X n (t)二 f n 〔X i (t),X 2(t), ^⑴小⑴心⑴,,U 「(t);t 】 用向量表示,得到一阶的向量微分方程 x(t)二 f 'X(t),u(t), t 1 其中 X i (t) U ](t) fQ) “、 X 2(t) - U 2(t) . f 2(?)?Qn X(t) - c R ,u(t)戶;c R , f (?) ^^ : c R N(t) 一 JU r (t) 一 -f n (叽 输出方程:系统输出变量与状态变量、输入变量之间的关系,即 %(t)二 g i X i (t),X 2(t), ,X n (t);U i (t),U 2(t), ,U r (t);t ] y 2(t)二 g 2 X i (t), X 2(t), ,X n (t);U i (t),U 2(t), ,U r (t);t 〔 y(t)二 %(t)二 1 01 X i (t) 殳(t).

最新空间信息系统实验资料

精品文档 2015学年-2016学年第2学期实验报告 空间信息系统基础 专业:计算机科学与技术 班级:计算机 姓名: 学号: 任课教师: 二零一六年五月十日

精品文档 【实验基本情况】 【实验关键步骤】 练习1: 所需数据:高程栅格文件emidalat,河流Shapefile文件emidastrm.shp。(1)启动ArcCatalog,建立与数据源的联系:单击Connect To Folder按钮,浏览至“data”文件夹,单击OK。目录树中出现data文件夹,打开该文件夹查看其数据集。

(2)单击Catalog目录树中的emidalat,单击Preview查看该高程栅格。单击目录树中的emidastrm.shp,可在预览表中浏览emidastrm.shp的地理数据 或表格。 (3)右键单击emidalat出现快捷菜单,选择Properties,弹出Properties对话框显示数据集信息。此栅格数据集属性对话框显示emidalat的投影坐标是 Universal Transverse Mercator(UTM)坐标系统。

(4)创建个人Geodatabase并导入文件。 右键data→New→Personal Geodatabase,重命名为Task1.mdb。 方法一:右键单击Task1→Import→Raster Datasets,浏览至emidalat,添加其为输入栅格,单击OK。

方法二:利用ArcToolbox将emidastrm.shp导入Task1。单击Show/Hide ArcToolbox Windows打开ArcToolbox。右键ArcToolbox→Environments→General Settings,浏览至data将其设置为作业空间。Conversion Tools/To Geodatabase→Feature Class to Feature Class,选择emidastrm.shp为Input Feature Class,选择Task1.mdb为Output Location,指定emidastrm为Output Feature Class,单击OK。查看导出操作是否完成。

《自动控制原理》第九章 线性系统的状态空间分析与综合

第九章 线性系统的状态空间分析与综合 在第一章至第七章中,我们曾详细讲解了经典线性系统理论以及用其设计控制系统的方法。可以看到,经典线性理论的数学基础是拉普拉斯变换和z 变换,系统的基本数学模型是线性定常高阶微分方程、线性常系数差分方程、传递函数和脉冲传递函数,主要的分析和综合方法是时域法、根轨迹法和频域法,分析的主要内容是系统运动的稳定性。经典线性系统理论对于单输入-单输出线性定常系统的分析和综合是比较有效的,但其显著的缺点是只能揭示输入-输出间的外部特性,难以揭示系统内部的结构特性,也难以有效处理多输入-多输出系统。 在50年代蓬勃兴起的航天技术的推动下,在1960年前后开始了从经典控制理论到现代控制理论的过渡,其中一个重要标志就是卡尔曼系统地将状态空间概念引入到控制理论中来。现代控制理论正是在引入状态和状态空间概念的基础上发展起来的。 在现代控制理论的发展中,线性系统理论首先得到研究和发展,已形成较为完整成熟的理论。现代控制理论中的许多分支,如最优控制、最优估计与滤波、系统辨识、随机控制、自适应控制等,均以线性系统理论为基础;非线性系统理论、大系统理论等,也都不同程度地受到了线性系统理论的概念、方法和结果的影响和推动。 现代控制理论中的线性系统理论运用状态空间法描述输入-状态-输出诸变量间的因果关系,不但反映了系统的输入—输出外部特性,而且揭示了系统内部的结构特性,是一种既适用于单输入--单输出系统又适用于多输入—多输出系统,既可用于线性定常系统又可用于线性时变系统的有效分析和综合方法。 在线性系统理论中,根据所采用的数学工具及系统描述方法的不同,又出现了一些平行的分支,目前主要有线性系统的状态空间法、线性系统的几何理论、线性系统的代数理论、线性系统的多变量频域方法等。由于状态空间法是线性系统理论中最重要和影响最广的分支,加之受篇幅限制,所以本章只介绍线性系统的状态空间法。 9-1 线性系统的状态空间描述 1. 系统数学描述的两种基本类型 这里所谓的系统是指由一些相互制约的部分构成的整体,它可能是一个由反馈闭合的整体,也可能是某一控制装置或受控对象。本章中所研究的系统均假定具有若干输入端和输出端,如图9-1所示。图中方块以外的部分为系统环境,环境对系统的作用为系统输入,系统对环境的作用为系统输出;二者分别用向量12[,,...,] T p u u u u =和 12[,,...,] T q y y y y =表示,它们均为系统的外部变量。描述系统内部每个时刻所处状况的

相关文档
最新文档