中考数学平行四边形综合经典题附答案

中考数学平行四边形综合经典题附答案
中考数学平行四边形综合经典题附答案

中考数学平行四边形综合经典题附答案

一、平行四边形

1.在图1中,正方形ABCD的边长为a,等腰直角三角形FAE的斜边AE=2b,且边AD和AE在同一直线上.

操作示例

当2b<a时,如图1,在BA上选取点G,使BG=b,连结FG和CG,裁掉△FAG和△CGB 并分别拼接到△FEH和△CHD的位置构成四边形FGCH.

思考发现

小明在操作后发现:该剪拼方法就是先将△FAG绕点F逆时针旋转90°到△FEH的位置,易知EH与AD在同一直线上.连结CH,由剪拼方法可得DH=BG,故△CHD≌△CGB,从而又可将△CGB绕点C顺时针旋转90°到△CHD的位置.这样,对于剪拼得到的四边形FGCH (如图1),过点F作FM⊥AE于点M(图略),利用SAS公理可判断△HFM≌△CHD,易得FH=HC=GC=FG,∠FHC=90°.进而根据正方形的判定方法,可以判断出四边形FGCH是正方形.

实践探究

(1)正方形FGCH的面积是;(用含a, b的式子表示)

(2)类比图1的剪拼方法,请你就图2—图4的三种情形分别画出剪拼成一个新正方形的示意图.

联想拓展

小明通过探究后发现:当b≤a时,此类图形都能剪拼成正方形,且所选取的点G的位置在BA方向上随着b的增大不断上移.当b>a时(如图5),能否剪拼成一个正方形?若能,请你在图5中画出剪拼成的正方形的示意图;若不能,简要说明理由.

【答案】(1)a2+b2;(2)见解析;联想拓展:能剪拼成正方形.见解析.

【解析】分析:实践探究:根据正方形FGCH的面积=BG2+BC2进而得出答案;

应采用类比的方法,注意无论等腰直角三角形的大小如何变化,BG永远等于等腰直角三角形斜边的一半.注意当b=a时,也可直接沿正方形的对角线分割.

详解:实践探究:正方形的面积是:BG2+BC2=a2+b2;

剪拼方法如图2-图4;

联想拓展:能,

剪拼方法如图5(图中BG=DH=b).

点睛:本题考查了几何变换综合,培养学生的推理论证能力和动手操作能力;运用类比方法作图时,应根据范例抓住作图的关键:作的线段的长度与某条线段的比值永远相等,旋转的三角形,连接的点都应是相同的.

2.如图,平面直角坐标系中,四边形OABC为矩形,点A,B的坐标分别为(4,0),(4,3),动点M,N分别从O,B同时出发.以每秒1个单位的速度运动.其中,点M 沿OA向终点A运动,点N沿BC向终点C运动.过点M作MP⊥OA,交AC于P,连接NP,已知动点运动了x秒.

(1)P点的坐标为多少(用含x的代数式表示);

(2)试求△NPC面积S的表达式,并求出面积S的最大值及相应的x值;

(3)当x为何值时,△NPC是一个等腰三角形?简要说明理由.

【答案】(1)P点坐标为(x,3﹣x).

(2)S的最大值为,此时x=2.

(3)x=,或x=,或x=.

【解析】

试题分析:(1)求P点的坐标,也就是求OM和PM的长,已知了OM的长为x,关键是求出PM的长,方法不唯一,①可通过PM∥OC得出的对应成比例线段来求;

②也可延长MP交BC于Q,先在直角三角形CPQ中根据CQ的长和∠ACB的正切值求出PQ的长,然后根据PM=AB﹣PQ来求出PM的长.得出OM和PM的长,即可求出P点的坐标.

(2)可按(1)②中的方法经求出PQ的长,而CN的长可根据CN=BC﹣BN来求得,因此根据三角形的面积计算公式即可得出S,x的函数关系式.

(3)本题要分类讨论:

①当CP=CN时,可在直角三角形CPQ中,用CQ的长即x和∠ABC的余弦值求出CP的表达式,然后联立CN的表达式即可求出x的值;

②当CP=PN时,那么CQ=QN,先在直角三角形CPQ中求出CQ的长,然后根据QN=CN﹣CQ求出QN的表达式,根据题设的等量条件即可得出x的值.

③当CN=PN时,先求出QP和QN的长,然后在直角三角形PNQ中,用勾股定理求出PN 的长,联立CN的表达式即可求出x的值.

试题解析:(1)过点P作PQ⊥BC于点Q,

有题意可得:PQ∥AB,

∴△CQP∽△CBA,

解得:QP=x,

∴PM=3﹣x,

由题意可知,C(0,3),M(x,0),N(4﹣x,3),P点坐标为(x,3﹣x).

(2)设△NPC的面积为S,在△NPC中,NC=4﹣x,NC边上的高为,其中,0≤x≤4.

∴S=(4﹣x)×x=(﹣x2+4x)

=﹣(x﹣2)2+.

∴S的最大值为,此时x=2.

(3)延长MP交CB于Q,则有PQ⊥BC.

①若NP=CP,

∵PQ⊥BC,

∴NQ=CQ=x.

∴3x=4,

∴x=.

②若CP=CN,则CN=4﹣x,PQ=x,CP=x,4﹣x=x,∴x=;

③若CN=NP,则CN=4﹣x.

∵PQ=x,NQ=4﹣2x,

∵在Rt△PNQ中,PN2=NQ2+PQ2,

∴(4﹣x)2=(4﹣2x)2+(x)2,

∴x=.

综上所述,x=,或x=,或x=.

相关主题
相关文档
最新文档