平面向量解题大全

平面向量解题大全
平面向量解题大全

平面向量解题大全

考查内容:平面向量的线性运算,基本定理,坐标表示,数量积。

补充内容:特殊化策略、坐标法、函数建模在平面向量中的应用。

1、设向量)0,1(=a ,??

? ??=21,21b ,则下列结论中正确的是( C ) A 、b a = B 、2

2=?b a C 、b a -与b 垂直 D 、b a // 2、平面向量a 与b 的夹角为 60,()0,2=a ,1=b ,则=+b a 2( B )

A 、3

B 、23

C 、4

D 、12

3、平面上B A O ,,三点不共线,设b OB a OA ==,,则OAB ?的面积等于( C )

A 、222)(b a b a ?-

B 、222)(b a b a ?+

C 、222)(2

1b a b a ?- D 、222)(21b a b a ?+ 4、在ABC ?中,M 是BC 的中点,1=AM ,点P 在AM 上且满足2AP PM =,则()PA PB PC ?+等于( A )

A 、49-

B 、43-

C 、43

D 、49

5、如图,设,P Q 为ABC ?内的两点,且2155AP AB AC =+,AC AB AQ 4132+=, 则ABP ?的面积与ABQ ?的面积之比为( B )

A 、15

B 、45

C 、14

D 、13

解析图:

解析:如图,设25AM AB =,15

AN AC =,则AP AM AN =+,由平行四边形法则 知//NP AB ,所以5

1==??AC AN S S ABC ABP ,同理可得41=??ABC ABQ S S ,故54=??ABQ ABP S S 。 6、已知P N O ,,在ABC ?所在平面内,且OC OB OA ==,0=++NC NB NA , 且PA PC PC PB PB PA ?=?=?,则点P N O ,,依次是ABC ?的( C )

A 、重心 外心 垂心

B 、重心 外心 内心

C 、外心 重心 垂心

D 、外心 重心 内心

7、已知P 是ABC ?所在平面内任意一点,且3PA PB PC PG ++=,则G 是ABC ?的( C )

A 、外心

B 、内心

C 、重心

D 、垂心

8、已知O 是ABC ?所在平面内一点,满足OA OB OB OC ?=?=OC OA ?,则点O 是ABC ?的( D )

A 、三个内角的角平分线的交点

B 、三条边的垂直平分线的交点

C 、三条中线的交点

D 、三条高的交点

9、已知O 是平面内的一个点,C B A ,,是平面上不共线的三点,动点P 满足

[)+∞∈????

? ??++=,0,λλAC AC AB AB OA OP ,则点P 的轨迹一定过ABC ?的( B ) A 、外心 B 、内心 C 、重心 D 、垂心

10、已知两点()()1,0,1,0M N -,若直线340x y m

-+=上存在点P 满足

0PM PN ?=,则实数m 的取值范围是( D ) A 、(,5][5,)-∞-+∞ B 、(,25][25,)-∞+∞ C 、[]25,25- D 、[]5,5-

11、在ABC ?中,??

????∈?833,83BC AB ,其面积163=S ,则向量AB 与向量BC 夹角的取值范围是( A )

A 、??????4,6ππ

B 、??????3,6ππ

C 、??????3,4ππ

D 、??

????43,6ππ 12、设两个向量()??

? ??+=-+=ααλλsin 2,,cos ,222m m b a ,其中R m ∈αλ,,。若b a 2=,则m λ

的取值范围是( A )

A 、]1,6[-

B 、]8,4[

C 、]1,(-∞

D 、]6,1[-

13、在平行四边形ABCD 中,AC 与BD 交于点E O ,是线段OD 的中点,AE 的延长线与CD 交于点F 。若a AC =,b BD =,则AF = 。(用b a ,表示) 答案:b a 3

132+ 14、设C B A ,,为圆122=+y x 上三个不同的点,O 为坐标原点,已知0=?OB OA , 且存在R ∈μλ,,使得OB OA OC μλ+=,则=+22μλ 。 解析:将OB OA OC μλ+=两边同时平方即可,得122=+μλ。

15、(特殊化策略)在ABC ?中,点O 是BC 的中点,过点O 的直线l 分别交直线AC AB ,于不同的两点N M ,,若AN n AC AM m AB ==,,则=+n m 。 答案:2。解析:本题采用特殊化策略,当点M 与点B 重合时,点N 与点C 也重合,于是可以确定1==n m ,进而求解。

16、(特殊化策略)在ABC ?中,点E 是中线AD 上一点,MN 经过点E ,与边AC AB ,分别交于N M ,。若AN n AC AM m AB ==,,且5=+n m ,AD AE λ=, 则实数=λ 。 答案:5

2

17、(特殊化策略)已知Q P ,分别是OAB ?边OB OA ,上的点,且PQ 过OAB ?的重心G ,若),(,,,R n m n OQ m OP OB OA ∈====βαβα,则

=+n

m 11 。 答案:3

解析:本题采用特殊化策略,将OAB ?视为等边三角形,由于点G 为OAB ?的重心,且PQ 过点G ,所以32==n m ,进而求解。 18、(特殊化策略)设点P 为ABC ?的重心,若4,2==AC AB ,则=?BC AP 。 解析:本题可采用特殊化策略,设ABC Rt ?, 90=∠B ,则答案为4。

19、(特殊化策略)设ABC ?的外接圆的圆心为点O ,两边上的高的交点为H ,且点O ,H 满足OH =()m OA OB OC ++,则实数m = 。 解析:本题可采用特殊化策略,当ABC ?为Rt ?时,不妨设90C =,则O 是AB 的中点,H 是直角顶点C ,有OH OC OA OB OC ==++,∴1m =。

20、(特殊化策略)若点O 是ABC ?的外心,点'O 是ABC ?三边中点F E D ,,所构成的DEF ?的外心,且'()OO m OA OB OC =++,则m = 。 解析:可采用特殊化策略,设ABC ?为直角三角形,可得12

m =。 21、(特殊化策略)在平行四边形ABCD 中,AD AF AB AE 4

1,31==,CE 与BF 相交于点G ,若b AD a AB ==,,则=AG 。(用b a ,表示) 答案:b a AG 7

173+= 解析:本题采用特殊化策略,将平行四边形ABCD 视为边长为12的正方形,并建立平面直角坐标系,确定点G 坐标,进而求解。

22、(线性运算)在ABC ?中,设b AC a AB ==,,R Q P ,,三点在ABC ?内部,且AP 中点为Q ,BQ 中点为R ,CR 中点为P ,若b n a m AP +=,则=+n m 。

答案:7

6 23、(数量积问题)已知平面上三点C B A ,,满足2AB =,1BC =,3CA =,则AB BC BC CA CA AB ?+?+?的值等于 。

答案:4-

24、(线性运算与数量积)在ABC ?中,?=∠120BAC ,2==AC AB ,D 为BC 边上的点,且0=?BC AD ,若EB CE 3=,则AE AC AB ?+)(= 。 答案:2

25、(线性运算与数量积)如图,在ABC ?中,AD AB ⊥,BD BC 3=,1AD =,则AC AD ?= 。

25、

26、 答案:3 26、(线性运算与数量积)如图,在ABC ?中,120,2,1,BAC AB AC D ∠=?== 是边BC 上一点,2,DC BD =,则=?BC AD 。

答案:3

8- 27、(坐标法与数量积)如图,在平行四边形ABCD 中,()()2,3,2,1-==BD AC , 则=?AC AD 。

答案:3

解析:令AB a =,AD b =,则(1,2)(2,0),(1,2)(3,2)

a b a b a b ?+=??==-?-+=-??, 所以()3AD AC b a b ?=?+=。

28、(坐标法与数量积)在平行四边形ABCD 中,N M ,分别为BC CD ,的中点,()()1,3,2,1==AN AM ,则=?AM AB 。 答案:3

10 解析:设()()()()2,26,2,6,0,,0,0B B B x D x C x B A --,则通过M 点的横坐标可计算出3

10=B x ,从而确定=?AM AB 的值。 29、(坐标法与数量积)在AOB Rt ?中,3,2,90===∠OB OA AOB ,若

OB OD OA OC 2

1,31==,AD 与BC 相交于点M ,则=?AB OM 。 答案:5

14 解析:本题采用坐标法,通过联立直线方程确定点M 坐标,进而求解。

30、在四边形ABCD 中,)1,1(==DC AB ,113BA BC BD BA BC BD +=,则

四边形ABCD 的面积是 。

答案:3

31、设点O 为ABC ?的外心,12,3,2=+==y x AC AB ,若)0(≠+=xy AC y AB x AO , 则=∠BAC cos 。 答案:43,32 解析:?????+∠=∠+=???????+?=??+?=?y BAC x BAC y x AC AC y AC AB x AC AO AB AC y AB AB x AB AO 9cos 62

9cos 642,联立12=+y x , 令BAC t ∠=cos ,且()1,1-∈t ,化简得,0617122

=+-t t ,所以43,3221==t t 。

32、如图,半圆的直径6AB =,O 为圆心,C 为半圆上不同于A B 、

的任意一点,若P 为半径OC 上的动点,则()PA PB PC +?的最小值是 。 32、

37、 答案:92-。解析:本题可利用均值定理,求出()PA PB PC +?的最小值是92-。

33、过点()1,2P 的直线()21-=-x k y ,其中k 为常数,分别交y x ,轴的正半轴于B A ,两点,若OB OA OP μλ+=,其中O 为坐标原点,则

μλ11+的最小值为 。

答案:4 解析:本题先建系,得到()k B k A 21,0,0,12-??? ?

?-,再根据OB OA OP μλ+=,可以 得到()?????-=??? ??-=k k 211122μλ,则???

????-=-=k k k 211122μλ,最后由均值定理推出μλ11+的最小值为4。 34、(坐标法与线性运算、数量积)若等边ABC ?的边长为23,平面内一点M 满足CA CB CM 3

261+=,则MA MB ?= 。 答案:2-

35、(特殊化策略与坐标法)在ABC ?中,点P 为AB 上一点,CB CA CP 3132+=,Q 为BC 的中点,AQ 与CP 交于点M ,CP t CM =,则=t 。 答案:4

3 解析:本题采用特殊化策略,将ABC ?视为等腰直角三角形,且3==CB CA ,以点C 为原点,建立平面直角坐标系,于是得到点Q P ,的坐标,再将直线CP AQ ,联

立,确定出点??

? ??43,23M ,进而通过CP t CM =,确定出43=t 。 36、(特殊化策略与坐标法)在ABC ?中,点E D ,分别在边AC AB ,上,且已知 DB AD 2=,EC AE 3=,CD 与BE 交于点F ,设b y a x AF b AC a AB +===,,,则实数对),(y x 为 。 答案:??

? ??21,31。解析:本题采用特殊化策略,将ABC ?视为直角三角形,且4,3==AC AB ,以点A 为原点,建立平面直角坐标系,最终确定出实数对),(y x 。

37、(函数建模)给定两个长度为1的平面向量OA 和OB ,它们的夹角为120o ,如图所示,点C 在以O 为圆心的圆弧AB 上变动,若,OC xOA yOB =+其中,x y R ∈,则y x +的最大值是 。

解析:一般求最值问题时,宜采用函数建模的方法,将所求问题转化为初等函数

问题。设AOC α∠=,??????+?=??+?=?OB OB y OB OA x OB OC OA OB y OA OA x OA OC ,即01c o s 21c o s (120)2

x y x y αα?=-????-=-+?? 于是02[cos cos(120)]cos 3sin 2sin()26

x y πααααα+=+-=+=+≤。 38、(函数建模)平面上的向量MA 与MB 满足0,42=?=+MB MA MB MA ,若点C 满足MB MA MC 3

231+=,则MC 的最小值为 。 答案:4

7。 解析:以M 为原点,建立平面直角坐标系,构造二次函数。

39、(坐标法与函数建模)已知直角梯形ABCD 中,BC AD //,90ADC ∠=,2,1AD BC ==,P 是腰DC 上的动点,则3PA PB +的最小值为 。 答案:5。

解析:建立平面直角坐标系,构造二次函数。

平面向量常见题型与解题方法归纳学生版

平面向量常见题型与解题方法归纳 (1) 常见题型分类 题型一:向量的有关概念与运算 例1:已知a是以点A(3,-1)为起点,且与向量b = (-3,4)平行的单位向量,则向量a的终点坐标是. 例2:已知| a |=1,| b |=1,a与b的夹角为60°, x =2a-b,y=3b-a,则x与y的夹角的余弦是多少 题型二:向量共线与垂直条件的考查 r r r r 例1(1),a b r r为非零向量。“a b⊥r r”是“函数()()() f x xa b xb a =+?-

为一次函数”的 A 充分而不必要条件 B 必要不充分条件 C 充要条件 D 既不充分也不必要条件 (2)已知O ,N ,P 在ABC ?所在平面内,且 ,0OA OB OC NA NB NC ==++=,且PA PB PB PC PC PA ?=?=?,则点O ,N ,P 依次是ABC ?的 A.重心 外心 垂心 B.重心 外心 内心 C.外心 重心 垂心 D.外心 重心 内心 例2.已知平面向量a =(3,-1),b =(21, 2 3).(1) 若存在实数k 和t ,便得x =a +(t 2-3)b , y =-k a +t b ,且x ⊥y ,试求函数的关系式k =f(t);(2) 根据(1)的结论,确定k =f(t)的单调区间. 例3: 已知平面向量a ?=(3,-1),b ?=(2 1,23),若存在不为零的实数k 和角α,使向量c ?=a ?+(sin α -3)b ?, d ?=-k a ?+(sin α)b ?,且c ?⊥d ?,试求实数k 的

取值范围. 例4:已知向量)1,2(),2,1(-==b a ,若正数k 和t 使得向量 b t a k y b t a x 1)1(2 +-=++=与垂直,求k 的最小值. 题型三:向量的坐标运算与三角函数的考查 向量与三角函数结合,题目新颖而又精巧,既符合在知识的“交汇处”构题,又加强了对双基的考查. 例7.设函数f (x )=a · b ,其中向量a =(2cos x , 1), b =(cos x ,3sin2x ), x ∈R.(1)若f(x )=1-3且x ∈[-

高中数学解题方法系列:平面向量最值问题的4种方法

高中数学解题方法系列:平面向量最值问题的4种方法 平面向量中的最值问题多以考查向量的基本概念、基本运算和性质为主,解决此类问题要注意正确运用相关知识,合理转化。 一、利用函数思想方法求解 例1、给定两个长度为1的平面向量和,它们的夹角为.如图所示,点C 在以 O 为圆心的圆弧上变动.若其中 ,则的最大值是________. 分析:寻求刻画C 点变化的变量,建立目标x y +与此变量的函数关系是解决最值问题的 常用途径。 解:设AOC θ∠=,以点O 为原点,OA 为x 轴建立直角坐标系,则(1,0)A ,13(,)2B -,(cos ,sin )C θθ。 Q 13(cos ,sin )(1,0)(,)2x y θθ∴=+-即 cos 23sin y x y θθ?-=????= cos 3sin 2sin()6x y πθθθ∴+=+=+2(0)3 πθ≤≤。 因此,当3 π θ=时,取最大值2。 例2、已知(1,7),(5,1),(2,1),OA OB OP ===u u u r u u u r u u u r 点Q 为射线OP 上的一个动点,当QA QB u u u r u u u r g 取最小值时,求.OQ u u u r 分析:因为点Q 在射线OP 上,向量OQ uuu r 与OP uuu r 同向,故可以得到关于OQ uuu r 坐标的一个 关系式,再根据QA QB u u u r u u u r g 取最小值求.OQ u u u r 解:设(2,),(0)OQ xOP x x x ==≥u u u r u u u r ,则(12,7),(52,1)QA x x QB x x =--=--u u u r u u u r OA u u u r OB uuu r 120o AB u u u v ,OC xOA yOB =+u u u r u u u r u u u r ,x y R ∈x y +,OC xOA yOB =+u u u r u u u r u u u r x y +图 1 1

高中数学经典解题技巧和方法:平面向量

高中数学经典解题技巧:平面向量【编者按】平面向量是高中数学考试的必考内容,而且是这几年考试解答题的必选,无论是期中、期末还是会考、高考,都是高中数学的必考内容之一。因此,马博士教育网数学频道编辑部特意针对这部分的内容和题型总结归纳了具体的解题技巧和方法,希望能够帮助到高中的同学们,让同学们有更多、更好、更快的方法解决数学问题。好了,下面就请同学们跟我们一起来探讨下平面向量的经典解题技巧。 首先,解答平面向量这方面的问题时,先要搞清楚以下几个方面的基本概念性问题,同学们应该先把基本概念和定理完全的吃透了、弄懂了才能更好的解决问题:1.平面向量的实际背景及基本概念 (1)了解向量的实际背景。 (2)理解平面向量的概念,理解两个向量相等的含义。 (3)理解向量的几何意义。 2.向量的线性运算 (1)掌握向量加法、减法的运算,并理解其几何意义。 (2)掌握向量数乘的运算及其几何意义,理解两个向量共线的含义。 (3)了解向量线性运算的性质及其几何意义。 3.平面向量的基本定理及坐标表示 (1)了解平面向量的基本定理及其意义。 (2)掌握平面向量的正交分解及其坐标表示。 (3)会用坐标表示平面向量的加法、减法与数乘运算。 (4)理解用坐标表示的平面向量共线的条件。 4.平面向量的数量积 (1)理解平面向量数量积的含义及其物理意义。 (2)了解平面向量的数量积与向量投影的关系。 (3)掌握数量积的坐标表达式,会进行平面向量数量积的运算。 (4)能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直 关系。 5. 向量的应用 (1)会用向量方法解决某些简单的平面几何问题。 (2)会用向量方法解决简单的力学问题与其他一些实际问题。

巧用向量解题

巧用向量解题 张建峰 高中新教材新增了平面向量的内容并作为独立的章节来学习后,就成为高考的一个新内容, 也是高考的热点。平面向量在图象平移、定比分点、解三角形中有很重要的作用。除此之外在代数、三角函数、解析几何中应用都很广泛,下面笔者就此进行探讨。 向量基础知识 1.向量的数量积定义:空'色二klQ|g祐。 cos 6 = ° " 2.向量夹角公式:a与b的夹角为贝U ⑷创。 3.向量共线的充要条件:b与非零向量a共线厂存在唯一的' ■■-,使-「。 4.两向量平行的充要条件:向量肚兀丄必=(乃平行O兀必一心片=°。 5.向量垂直的充要条件:非零向量滋丄必a if = 0 6.向量不等式: 7.向量的坐标运算:向量"ImHh "(4丿2),则=広内。 二.向量的应用 1.利用向量证明等式 对于某些恒等式证明,形式中含有数量积定义和向量坐标运算来证明。 例1.已知a、B是任意角,求证: cos(a-jff)或符合向量的坐标运算形式,可运用向量的C->S(G -FF)= COSGCQE j54- fin a sin 0 证明:在单位圆上,以X轴为始边作角a,终边交单位圆于A,以X轴为始边作角B,终边—9 ―* 交单位圆于B,有。—3 们的常几-(cos^ 血旳 ― 所以CM ? QB- coscos/? + sinff sin/? ―1_-_3 又有CM ? QB £AQB- cosfff- ff) 即cos(c - P)- coscccosj3+ sin a sin 0成立。

当求解问题中(式子)含有乘积或乘方时,可巧妙地利用向量数量积坐标表达式: At ?“心乃+山,0创伞|问,构造向量解之。 所以 由数量积的坐 标运算可得: 又因为 所以 3. 利用向量求值 对于求值问题,巧妙地运用向量的数量积定义构造等量关系,求出所需量的值。 3 COS d +cos/?- cos(cs +0)= — ,求锐角a>3° (1 - cos ^7) cos ffl + sin ^sin a = — COE /J J 设梆= 器n 如! ? = fcos a, sin.a) 翩科=—-cos 卩、|??|= ^(1- cos/7)a + sin 2 /? = ^2-2 cos p 则 2 H=i /H 3 _________ 翩N 勻删I 加I ,彳导 —cos fl < J2 ■ 2COE 0 由 2 ? ^ 例2. w f 叭 a, b, r, d 是正数。 求证: 证明: O 解:由条件得 例3.已知 岡 m dm 戊 4-JJC , \k\ = O b d m ?

20高考数学平面向量的解题技巧

第二讲平面向量的解题技巧 【命题趋向】 由2007年高考题分析可知: 1.这部分内容高考中所占分数一般在10分左右. 2.题目类型为一个选择或填空题,一个与其他知识综合的解答题. 3.考查内容以向量的概念、运算、数量积和模的运算为主. 【考点透视】 “平面向量”是高中新课程新增加的内容之一,高考每年都考,题型主要有选择题、填空题,也可以与其他知识相结合在解答题中出现,试题多以低、中档题为主. 透析高考试题,知命题热点为: 1.向量的概念,几何表示,向量的加法、减法,实数与向量的积. 2.平面向量的坐标运算,平面向量的数量积及其几何意义. 3.两非零向量平行、垂直的充要条件. 4.图形平移、线段的定比分点坐标公式. 5.由于向量具有“数”与“形”双重身份,加之向量的工具性作用,向量经常与数列、三角、解析几何、立体几何等知识相结合,综合解决三角函数的化简、求值及三角形中的有关问题,处理有关长度、夹角、垂直与平行等问题以及圆锥曲线中的典型问题等. 6.利用化归思想处理共线、平行、垂直问题向向量的坐标运算方面转化,向量模的运算转化为向量的运算等;利用数形结合思想将几何问题代数化,通过代数运算解决几何问题.【例题解析】 1. 向量的概念,向量的基本运算 (1)理解向量的概念,掌握向量的几何意义,了解共线向量的概念. (2)掌握向量的加法和减法. (3)掌握实数与向量的积,理解两个向量共线的充要条件. (4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算.

(5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件. (6)掌握平面两点间的距离公式. 例1(2007年北京卷理)已知O 是ABC △所在平面内一点,D 为BC 边中点,且 2OA OB OC ++=0u u u r u u u r u u u r ,那么( ) A.AO OD =u u u r u u u r B.2AO OD =u u u r u u u r C.3AO OD =u u u r u u u r D.2AO OD =u u u r u u u r 命题意图:本题考查能够结合图形进行向量计算的能力. 解: 22()(,22.OA OB OC OA DB OD DC OD DB DC OA OD AO OD ∴∴++=++++=-+==)=0,0,u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 故选A . 例2.(2006年安徽卷)在ABCD Y 中,,,3AB a AD b AN NC ===u u u r r u u u r r u u u r u u u r ,M 为BC 的中点,则MN =u u u u r ______.(用a b r r 、表示) 命题意图: 本题主要考查向量的加法和减法,以及实数与向量的积. 解:343A =3()AN NC AN C a b ==+u u u r u u u r u u u r u u u r r r 由得,12 AM a b =+u u u u r r r , 所以,3111()()4 2 4 4 MN a b a b a b =+-+=-+u u u u r r r r r r r . 例3.(2006年广东卷)如图1所示,D 是△ABC 的边AB 上的中点,则向量 =CD ( ) (A )BA BC 2 1+- (B ) BA BC 2 1-- (C ) BA BC 2 1- (D )BA BC 2 1+ 命题意图: 本题主要考查向量的加法和减法运算能力. 解:BA BC BD CB CD 2 1+-=+=,故选A. 例4. ( 2006年重庆卷)与向量a r =71,,22b ? ?= ???r ?? ? ??27,21的夹解相等,且模为1的向量是 ( ) (A) ?? ?- ??53,5 4 (B) ?? ?- ??53,5 4或?? ? ??-53,54 (C )?? ?- ??31,3 22 (D )?? ?- ??31,3 22或?? ? ? ?- 31,3 22 命题意图: 本题主要考查平面向量的坐标运算和用平面向量处理有关角度的问题. 解:设所求平面向量为,c r 由433,,, 1. 555c c ???? =-= ? ?????r 4或-时5 另一方面,当222274134312525,,cos ,. 55271432255a c c a c a c ?? ?+?- ?????? =-=== ????????????+++- ? ? ? ?????????r r r r r r r 时

高中数学经典解题技巧和方法平面向量

高中数学经典解题技巧:平面向量 一、向量的有关概念及运算 解题技巧:向量的有关概念及运算要注意以下几点: (1)正确理解相等向量、共线向量、相反向量、单位向量、零向量等基本概念,如有遗漏,则会出现错误。 (2)正确理解平面向量的运算律,一定要牢固掌握、理解深刻 (3)用已知向量表示另外一些向量,是用向量解题的基础,除了用向量的加减法、实数与向量乘积外,还要充分利用平面几何的一些定理,充分联系其他知识。 例1:(2010·山东高考理科·T12)定义平面向量之间的一种运算“⊙”如下,对任意的a=(m,n),b p,q)= (,令a ⊙b mq np =-,下面说法错误的是( ) A.若a 与b 共线,则a ⊙b 0= B. a ⊙b = b ⊙a C.对任意的R λ∈,有()a λ⊙b = (a λ⊙)b D. (a ⊙b )2222()a b a b +?= 【命题立意】本题在平面向量的基础上,加以创新,属创新题型,考查平面向量的基础知识以及分析问题、解决问题的能力. 【思路点拨】根据所给定义逐个验证. 【规范解答】选B ,若a 与b 共线,则有a ⊙b 0mq np =-=,故A 正确;因为b ⊙a pn qm =-,,而a ⊙b mq np =-,所以有a ⊙b ≠ b ⊙a ,故选项B 错误,故选B. 【方法技巧】自定义型信息题 1、基本特点:该类问题的特点是背景新颖,信息量大,是近几年高考的热点题型. 2、基本对策:解答这类问题时,要通过联想类比,仔细分析题目中所提供的命题,找出其中的相似性和一致性 二、与平面向量数量积有关的问题 解题技巧:与平面向量数量积有关的问题 1.解决垂直问题:121200,a b a b x x y y a b ⊥?=?+=其中、均为非零向量。这一条件不能忽视。 2.求长度问题:2||a a a =,特别地1122(,),(,),||(A x y B x y AB x =则 3.求夹角问题:求两非零向量夹角的依据 2 22 222cos(,).||||a b a b a b x x y ==++ 例2:1.(2010·湖南高考理科·T4)在Rt ABC ?中,C ∠=90°AC=4,则AB AC ?uu u r uuu r 等于( )

平面向量常用的方法技巧

备考方略 <3 平面向量常用的方法技文K灼 * > \i^i 北京市陈经纶中学周明芝 -- 特别提示:【解】对于①於+3 = 0 平面向量具有代數几何双重身份,从近几年对于②ASXS+S?5(XJ+ c5)a5a5o == 的高考试题看对向量的考查力度在逐年加大并且 对于③ 强调了向量的知识性与工具性,重点考查向量的四 对于④+(g 种运算 、 两个充要条件等核心知识,考查向量的几M =NP+前=〇 P 何形式与代教形式的相互转化技能有些问题的处理,综上知应填①②③④ 对变形技巧要求高,具有定的难度因此,要想在【小结】向量的加减法法则是解题的基础在运用时平面向量试题的求解中取得高分,必须在理解向量 要注意交换律和结合律的使用 熟练四种运算和两个充要条件应用的基础上 概念、 例2(2011湖南)在边长为1的正三角形ABC中 认 真梳理 常 用 的 方法 和技巧 逐 步提高解 题 能 力 设则X5? 【分析】 利用边长为1和正三角形内角度数 ? 并注意 4把和进行拆分 方法一、分解合成法 由题意沒rs技瓦&茂 【解】=j =分解是指把个向量拆成几个向量有利于处理向 量前面的系数合成是指利用向量加减运算多项合成c¥=yC^cS 项减少项数从而达到化简的目的在解题时要灵活运 用向量加法法则和首尾相连的向量和为零等技巧 例1化简下列各式①万2十否f+亡芳②疋§1=+= +節成③孩前+滅④胡+前威cJc% 2364 结果为零向量的序号是【小结】根据加、减法法则灵活地进行合理拆分是解[分析】 对于化简题,应灵活运用加法交换律,尽可题的关键 能使之变为首尾相连的向量然后再运用向量加法结合律 练习1在AABC中=cf=cf若点D满足 訪=2万P则力5=() 求和 2017 1 7cceev

20高考数学平面向量的解题技巧

20高考数学平面向量 的解题技巧 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第二讲平面向量的解题技巧 【命题趋向】 由2007年高考题分析可知: 1.这部分内容高考中所占分数一般在10分左右. 2.题目类型为一个选择或填空题,一个与其他知识综合的解答题. 3.考查内容以向量的概念、运算、数量积和模的运算为主. 【考点透视】 “平面向量”是高中新课程新增加的内容之一,高考每年都考,题型主要有选择题、填空题,也可以与其他知识相结合在解答题中出现,试题多以低、中档题为主. 透析高考试题,知命题热点为: 1.向量的概念,几何表示,向量的加法、减法,实数与向量的积. 2.平面向量的坐标运算,平面向量的数量积及其几何意义. 3.两非零向量平行、垂直的充要条件. 4.图形平移、线段的定比分点坐标公式. 5.由于向量具有“数”与“形”双重身份,加之向量的工具性作用,向量经常与数列、三角、解析几何、立体几何等知识相结合,综合解决三角函数的化简、求值及三角形中的有关问题,处理有关长度、夹角、垂直与平行等问题以及圆锥曲线中的典型问题等. 6.利用化归思想处理共线、平行、垂直问题向向量的坐标运算方面转化,向量模的运算转化为向量的运算等;利用数形结合思想将几何问题代数化,通过代数运算解决几何问题. 【例题解析】 1. 向量的概念,向量的基本运算 (1)理解向量的概念,掌握向量的几何意义,了解共线向量的概念. (2)掌握向量的加法和减法. (3)掌握实数与向量的积,理解两个向量共线的充要条件.

(4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算. (5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件. (6)掌握平面两点间的距离公式. 例1(2007年北京卷理)已知O 是ABC △所在平面内一点,D 为BC 边中点,且 2OA OB OC ++=0,那么( ) A.AO OD = B.2AO OD = C.3AO OD = D.2AO OD = 命题意图:本题考查能够结合图形进行向量计算的能力. 解: 22()(,22.OA OB OC OA DB OD DC OD DB DC OA OD AO OD ∴∴++=++++=-+==)=0,0, 故选A . 例2.(2006年安徽卷)在ABCD 中,,,3AB a AD b AN NC ===,M 为BC 的中点,则MN =______.(用a b 、表示) 命题意图: 本题主要考查向量的加法和减法,以及实数与向量的积. 解:343A =3()AN NC AN C a b ==+由得,12 AM a b =+,所 以,3111()()4 2 4 4 MN a b a b a b =+-+=-+. 例3.(2006年广东卷)如图1所示,D 是△ABC 的边AB 上的中点,则向量=CD ( ) (A )BA BC 2 1+- (B ) BA BC 21-- (C ) BA BC 21- (D )BA BC 2 1+ 命题意图: 本题主要考查向量的加法和减法运算能力. 解:BA BC BD CB CD 2 1+-=+=,故选A. 例4. ( 2006年重庆卷)与向量a =71,,22b ? ?= ??? ? ? ? ??27,21的夹解相等,且模为1的向量是 ( ) (A) ???- ??53,54 (B) ???- ??53,54或?? ? ??-53,54 (C )???- ??31,322 (D )???- ??31,322或??? ? ?-31,322 命题意图: 本题主要考查平面向量的坐标运算和用平面向量处理有关角度的问 题. 解:设所求平面向量为,c 由433,,, 1. 555c c ???? =-= ? ?????4或-时5

平面向量解题大全

平面向量解题大全 考查内容:平面向量的线性运算,基本定理,坐标表示,数量积。 补充内容:特殊化策略、坐标法、函数建模在平面向量中的应用。 1、设向量)0,1(=a ,?? ? ??=21,21b ,则下列结论中正确的是( C ) A 、b a = B 、2 2=?b a C 、b a -与b 垂直 D 、b a // 2、平面向量a 与b 的夹角为 60,()0,2=a ,1=b ,则=+b a 2( B ) A 、3 B 、23 C 、4 D 、12 3、平面上B A O ,,三点不共线,设b OB a OA ==,,则OAB ?的面积等于( C ) A 、222)(b a b a ?- B 、222)(b a b a ?+ C 、222)(2 1b a b a ?- D 、222)(21b a b a ?+ 4、在ABC ?中,M 是BC 的中点,1=AM ,点P 在AM 上且满足2AP PM =,则()PA PB PC ?+等于( A ) A 、49- B 、43- C 、43 D 、49 5、如图,设,P Q 为ABC ?内的两点,且2155AP AB AC =+,AC AB AQ 4132+=, 则ABP ?的面积与ABQ ?的面积之比为( B ) A 、15 B 、45 C 、14 D 、13 解析图:

解析:如图,设25AM AB =,15 AN AC =,则AP AM AN =+,由平行四边形法则 知//NP AB ,所以5 1==??AC AN S S ABC ABP ,同理可得41=??ABC ABQ S S ,故54=??ABQ ABP S S 。 6、已知P N O ,,在ABC ?所在平面内,且OC OB OA ==,0=++NC NB NA , 且PA PC PC PB PB PA ?=?=?,则点P N O ,,依次是ABC ?的( C ) A 、重心 外心 垂心 B 、重心 外心 内心 C 、外心 重心 垂心 D 、外心 重心 内心 7、已知P 是ABC ?所在平面内任意一点,且3PA PB PC PG ++=,则G 是ABC ?的( C ) A 、外心 B 、内心 C 、重心 D 、垂心 8、已知O 是ABC ?所在平面内一点,满足OA OB OB OC ?=?=OC OA ?,则点O 是ABC ?的( D ) A 、三个内角的角平分线的交点 B 、三条边的垂直平分线的交点 C 、三条中线的交点 D 、三条高的交点 9、已知O 是平面内的一个点,C B A ,,是平面上不共线的三点,动点P 满足 [)+∞∈???? ? ??++=,0,λλAC AC AB AB OA OP ,则点P 的轨迹一定过ABC ?的( B ) A 、外心 B 、内心 C 、重心 D 、垂心 10、已知两点()()1,0,1,0M N -,若直线340x y m -+=上存在点P 满足 0PM PN ?=,则实数m 的取值范围是( D ) A 、(,5][5,)-∞-+∞ B 、(,25][25,)-∞+∞ C 、[]25,25- D 、[]5,5-

《利用平面向量的解题技巧》

利用平面向量的解题技巧 平面向量是一个解决数学问题的很好工具,它具有良好的运算和清晰的几何意义。在数学的各个分支和相关学科中有着广泛的应用。下面举例说明。 一、用向量证明平面几何定理 例1. 用向量法证明:直径所对的圆周角是直角。 已知:如图1,AB 是⊙O 的直径,点P 是⊙O 上任一点(不与A 、B 重合),求证:∠APB =90°。 图1 证明:联结OP ,设向量b OP a OA =→ =→,,则a OB -=→且b a OP OA PA -=→-→=→,b a OP OB PB -=→ -→=→ 0|a ||b |a b PB PA 2222=-=-=→ ?→∴ → ⊥→∴PB PA ,即∠APB =90°。 二、用向量求三角函数值 例2. 求值:7 6cos 74cos 72cos πππ++ 解:如图2,将边长为1的正七边形ABCDEFO 放进直角坐标系中,则 ) 01(OA ,=→ , ) 7 12sin 712(cos FO )710sin 710(cos EF )78sin 78(cos DE )7 6sin 76(cos CD )74sin 74(cos BC )72sin 72(cos AB ππππππππππππ,,,,,, ,,,,,=→=→=→=→=→=→

图2 又0FO EF DE CD BC AB OA =→ +→+→+→+→+→+→ 07 12cos 710cos 78cos 76cos 74cos 72cos 1=++++++∴ππππππ 又7 2cos 712cos 74cos 710cos 76cos 78cos ππππππ===,, 2176cos 74cos 72cos 0)7 6cos 74cos 72(cos 21- =++∴=+++∴ππππ ππ 三、用向量证明不等式 例3. 证明不等式)b b )(a a ()b a b a (2 221222122211++≤+ 证明:设向量)b b (b )a a (a 2121,,,==,则222 12221b b |b |a a |a |+=+=,, 设a 与b 的夹角为θ,22 2122 21 2211b b a a b a b a | b ||a |b a cos +++=?= θ 又1|cos |≤θ 则)b b )(a a ()b a b a (2 221222122211++≤+ 当且仅当a 、b 共线时取等号。 四、用向量解物理题 例 4. 如图3所示,正六边形PABCDE 的边长为b ,有五个力 →→→→PD PC PB PA 、、、、→ PE 作用于同一点P ,求五个力的合力。

平面向量的解题技巧

第四讲平面向量的解题技巧 【命题趋向】由2007年高考题分析可知: 1.这部分内容高考中所占分数一般在10分左右. 2.题目类型为一个选择或填空题,一个与其他知识综合的解答题. 3.考查内容以向量的概念、运算、数量积和模的运算为主. 【考点透视】“平面向量”是高中新课程新增加的内容之一,高考每年都考,题型主要有选择题、填空题,也可以与其他知识相结合在解答题中出现,试题多以低、中档题为主. 透析高考试题,知命题热点为: 1.向量的概念,几何表示,向量的加法、减法,实数与向量的积. 2.平面向量的坐标运算,平面向量的数量积及其几何意义. 3.两非零向量平行、垂直的充要条件. 4.图形平移、线段的定比分点坐标公式. 5.由于向量具有“数”与“形”双重身份,加之向量的工具性作用,向量经常与数列、三角、解析几何、立体几何等知识相结合,综合解决三角函数的化简、求值及三角形中的有关问题,处理有关长度、夹角、垂直与平行等问题以及圆锥曲线中的典型问题等. 6.利用化归思想处理共线、平行、垂直问题向向量的坐标运算方面转化,向量模的运算转化为向量的运算等;利用数形结合思想将几何问题代数化,通过代数运算解决几何问题. 【例题解析】 1. 向量的概念,向量的基本运算 (1)理解向量的概念,掌握向量的几何意义,了解共线向量的概念. (2)掌握向量的加法和减法. (3)掌握实数与向量的积,理解两个向量共线的充要条件. (4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算. (5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题, 掌握向量垂直的条件. (6)掌握平面两点间的距离公式. 例1(2007年北京卷理)已知O是ABC △所在平面内一点,D为BC边中点,且2OA OB OC ++=0,那么()A.AO OD =D.2AO OD AO OD = AO OD =B.2 =C.3

向量解题技巧

向量解题技巧

一、怎么样求解向量的有关概念问题 掌握并理解向量的基本概念 1.判断下列各命题是否正确 (1)若c a c b b a 则,,; (2)两向量b a 、相等的充要条件是b a 且共线、b a ; (3) b a 是向量 b a 的必要不充分条件; (1)若D C B A 、、、是不共线的四点,则C D B A 是四边形ABCD 为平行四边形的充要条件; (2) D C B A 的充要条件是A 与C 重合, D B 与重合。 二、向量运算及数乘运算的求解方法 两个不共线的向量,加法的三角形法则和平行四边形法则是一致的。两个有相同起点的向量的差是连结两向量的终点,方向指向被减向量的向量,若起点不同,要平移到同一起点;重要结论:a 与b 不共线,则 b a b a 与是以a 与b 为邻边的平行四边形两条对角线 所表示的向量。在求解向量的坐标运算问题时,注意向量坐标等终点坐标减起点坐标,即若),(),,(2 2 1 1 y x B y x A , 则 A O B O B A ) ,(),(),(12121122y y x x y x y x 。 例1 若向量_______2),1,0(),2,3(的坐标是则a b b a 例2 若向量____)2,1(),1,1(),1,1( c c b a 则 b a D b a C b a B b a A 2 123.2123.2321.2321. 例3 在平面直角坐标系中,O 为坐标原点,已

知两点),3,1(),1,3( B A 若点 满足C B O A O C O ,其中R ,且 1 ,则点 C 的轨迹为( ) 52. 02.0)2()1.( 01123.22 y x D y x C y x B y x A 例4 O 是平面上一定点,C B A 、、是平面上不共线的三个点,动点P 满足 ) (C A C A B A B A A O P O ,),0[ ,则P 的轨迹一定过ABC 的() . A 外心 . B 内心 . C 重心 . D 垂心 例5 设G 是ABC 内的一点,试证明: (1)若G 是为ABC 重心,则0 C B B G A G ; (2)若0 C B B G A G ,则G 是为ABC 重心。 三、三点共线问题的证法 证明A,B,C 三点共线,由共线定理(共线 与C A B A ),只需证明存在实数 ,使C A B A ,,其中必须有公共点。 共线的坐标表示的充要条件,若 ) ,(),,(2211y x b y x a , 则 ) (0//12211221y x y x y x y x b a b a 例1 已知A 、B 两点,P 为一动点,且B tA A O P O ,其中t 为一变量。 证明:1.P 必在直线AB 上;2.t 取何值时,P 为A 点、

平面向量常见题型与解题方法归纳(1)学生版

平面向量常见题型与解题方法归纳 (1) 常见题型分类 题型一:向量的有关概念与运算 例1:已知a 是以点A (3,-1)为起点,且与向量b = (-3,4)平行的单位向量,则向量a 的终点坐标是 . 例2:已知| a |=1,| b |=1,a 与b 的夹角为60°, x =2a -b ,y =3b -a ,则x 与y 的夹角的余弦是多少? 题型二:向量共线与垂直条件的考查 例1(1),a b 为非零向量。“a b ⊥”是“函数()()()f x xa b xb a =+?-为一次函数”的 A 充分而不必要条件 B 必要不充分条件 C 充要条件 D 既不充分也不必要条件 (2)已知O ,N ,P 在ABC ?所在平面内,且,0OA OB OC NA NB NC ==++=,且 PA PB PB PC PC PA ?=?=?,则点O ,N ,P 依次是ABC ?的 A.重心 外心 垂心 B.重心 外心 内心 C.外心 重心 垂心 D.外心 重心 内心 例2.已知平面向量a =(3,-1),b =(21, 23).(1) 若存在实数k 和t ,便得x =a +(t 2-3)b , y =-k a +t b , 且x ⊥y ,试求函数的关系式k =f(t);(2) 根据(1)的结论,确定k =f(t)的单调区间. 例3: 已知平面向量a =(3,-1),b =(21,2 3),若存在不为零的实数k 和角α,使向量c =a +(sin α-3)b , d =-k a +(sin α)b ,且c ⊥d ,试求实数k 的取值范围.

例4:已知向量)1,2(),2,1(-==b a ,若正数k 和t 使得向量 b t a k y b t a x 1)1(2+-=++=与垂直,求k 的最小值. 题型三:向量的坐标运算与三角函数的考查 向量与三角函数结合,题目新颖而又精巧,既符合在知识的“交汇处”构题,又加强了对双基的考查. 例7.设函数f (x )=a · b ,其中向量a =(2cos x , 1), b =(cos x ,3sin2x ), x ∈R.(1)若f(x )=1-3且x ∈[-3π,3π],求x ;(2)若函数y =2sin2x 的图象按向量c =(m , n) (m ﹤2 π)平移后得到函数y =f(x )的图象,求实数m 、n 的值. 例8:已知a =(cosα,sin α),b =(cosβ,sinβ)(0<α<β<π),(1)求证: a +b 与a -b 互相垂直; (2)若k a +b 与a -k b 的模大小相等(k ∈R 且k ≠0),求β-α 巩固练习 1.函数cos(2)26y x π =+-的图象F 按向量a 平移到'F ,'F 的函数解析式为(),y f x =当()y f x =为奇函数 时,向量a 可以等于 .(,2)6A π -- .(,2)6B π - .(,2)6 C π- .(,2)6 D π 1. 2.给定两个长度为1的平面向量OA 和OB ,它们的夹角为120o . 如图所示,点C 在以O 为圆心的圆弧AB 上变动.若 ,OC xOA yOB =+其中,x y R ∈,则x y +的最大值是________. 3给出下列命题 ① 非零向量、满足||=||=|-|,则与+的夹角为30°; ② ·>0是、的夹角为锐角的充要条件; ③ 将函数y =|x -1|的图象按向量a =(-1,0)平移,得到的图像对应的函数为y =|x |; ④若(+)·(-)=0,则△ABC 为等腰三角形 以上命题正确的是 。(注:把你认为正确的命题的序号都填上)

应用平面向量基本定理解题题型归纳

平面向量基本定理常用题型归纳 何树衡 刘建一 平面向量基本定理:如果21,e e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量,有且仅有一对实数21,λλ使得=2211e e λλ+ 平面向量基本定理是正交分解和坐标表示的基础,它为“数”和“形”搭起了桥梁,在向量知识体系中处于核心地位.笔者对近十年高考有关平面向量基本定理题目作了系统研究,认为大致分为以下题型: 一、基本题型随处可见 直接利用21,λλ唯一性求解 例1:在直角坐标平面上,已知O 是原点,)2,2(),4,2(--=-=,若 y x 3=+,求实数x,y 的值 解:)2422()2,2()4,2(y x y x y x y x ---=--+-=+, )2,4(-=-=OA OB AB ?? ?=---=-6 2412 22y x y x ∴?? ?=-=3 3 y x 即x 为-3,y 为3. 构建三角形,利用正余弦定理求解 例2:如图,平面内有三个向量,,,其中OB OA 与夹角为120o,OC OA 与的夹角为30o ,321===,若),(R OB OA OC ∈+=μλμλ,则 λ= ,μ= . 解:过C 作CD∥OB 交OA 的延长线于D ,在Rt△ODC 中, = μ=2

二、共线问题常考常新 感受平面内三点共线的结论在解题中简明快捷。 常用结论:点O 是直线l 外一点,点A ,B 是直线l 上任意两点,求证:直线上任意一点P ,存在实数t ,使得OP 关于基底{OA,OB}的分析式为OB t OA t OP +-=)1( 反之,若t t +-=)1(则A ,P ,B 三点共线 (特别地令t = 21,2 1 21+=称为向量中点公式) 例3:在△ABC 中,NC AN 3 1=,P 是BN 上的一点,若m 11 +=,则实 数m 的值为 解:∵NC AN 3 1= ,∴AC AN 41 = ∵B,P,N 三点共线,∴ m m )1 (-+= 又∵m 11 8+ =,∴m =113 感受向量数形二重性在证明平面几何中独特魅力 例4:在平行四边形OACB 中,BD=31BC ,OD 与BA 相交于E ,求证:BE=4 1BA 证明:如图,设E′是线段BA 上的一点,且BE′=41 BA ,只需证E ,E′重合即可 设=,=,31 =,a b OD 3 1+= OE =OD a b b a b a b BA b BE OB 4 3 )31(43)3(41)(4141'=+=+=-+=+=+ ∴O,E′,D 三点共线 ∴E,E′重合,∴BE= 4 1BA 三、区域问题渐成热点 由平面内三点共线定理拓展可以研究区域问题,为解决线性规划问题画出可行域提供理论上依据和操作上的便利,也可以解决向量中类似于点所在位置问题. 定理:设O,A,B 为平面内不共线的三个定点,动点C 满足),(R y x y x ∈+=,记直线OA ,OB ,AB 分别为l OA ,l OB ,l AB ,平面被分成如图7个部分(Ⅰ—Ⅶ),得出结论表(1),

专题七:平面向量常考题型的解题技巧

平面向量专题讲解 向量是数学中的重要概念,以向量为工具可以把几何问题(平面、空间)转化为简单的向量运算,变抽象的逻辑推理为具体的向量运算,实现形与数的结合. 题型一:考查与向量概念有关的问题 ⑴向量不同于数量,数量是只有大小的量(称标量),而向量既有大小又有方向;数量可以比较大小,而向量不能比较大小,只有它的模才能比较大小.记号“a >b ”错了,而|a |>|b |才有意义. ⑵有些向量与起点有关,有些向量与起点无关.由于一切向量有其共性(力和方向),故我们只研究与起点无关的向量(既自由向量).当遇到与起点有关向量时,可平移向量. ⑶平行向量(既共线向量)不一定相等,但相等向量一定是平行向量,既向量平行是向量相等的必要条件. ⑷单位向量是模为1的向量,其坐标表示为(,),其中x 、y 满足 +2x 2y =1(可用(cos θ,sin θ)(0≤θ≤2π)表示). ⑸零向量0的长度为0,是有方向的,并且方向是任意的,实数0仅仅是一个无方向的实数. ⑹有向线段是向量的一种表示方法,并不是说向量就是有向线段. 题型二:与向量运算有关的问题 ⑴向量与向量相加,其和仍是一个向量(对应坐标相加). ①当两个向量和不共线时,+的方向与、都不相同,且|+|<||+|b |; ②当两个向量和共线且同向时,+、、的方向都相同,且=+||||||+; ③当向量和反向时,若||>||,+与 方向相同 , 且|+|=||-||;

若|a |<|b |时,b a +与b 方向相同,且|a +b |=|b |-|a |. ⑵向量与向量相减,其差仍是一个向量.向量减法的实质是加法的逆运算. ⑶围成一周首尾相接的向量(有向线段表示)的和为零向量. 如,+AB +BC 0=CA ,(在△ABC 中) +++=.(□ABCD 中) ⑷判定两向量共线的注意事项 如果两个非零向量,,使=λb (λ∈R ),那么∥; 反之,如∥,且≠0,那么=λ. 这里在“反之”中,没有指出是非零向量,其原因为=0时,与λ的方向规定为平行. ⑸数量积的8个重要性质 ①两向量的夹角为0≤θ≤π.由于向量数量积的几何意义是一个向量的长度乘以另一向量在其上的射影值,其射影值可正、可负、可以为零,故向量的数量积是一个实数. ②设、都是非零向量,是单位向量,θ是与的夹角,则 ③?⊥)1|.(cos ||==?=?e a θ0=?(∵θ=90°,)0cos =θ ④在实数运算中ab =0a ?=0或b=0.而在向量运算中b a ?=0a ?=0或b =0是错误的,故0=a 或0=b 是b a ?=0的充分而不必要条件. ⑤当a 与b 同向时b a ?=||||b a ?(θ=0,cos θ=1); 当a 与b 反向时,b a ?=-||||b a ?(θ=π,cos θ=-1),即a ∥b 的另一个充要条件是||||b a ?=?. 特殊情况有2=?=2 |a .

专题 平面向量常见题型与解题指导

平面向量常见题型与解题指导 一、考点回顾 1、本章框图 2、高考要求 1、理解向量的概念,掌握向量的几何表示,了解共线向量的概念。 2、掌握向量的加法和减法的运算法则及运算律。 3、掌握实数与向量的积的运算法则及运算律,理解两个向量共线的充要条件。 4、了解平面向量基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算。 5、掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件。 6、掌握线段的定比分点和中点坐标公式,并且能熟练运用;掌握平移公式。 7、掌握正、余弦定理,并能初步运用它们解斜三角形。 8、通过解三角形的应用的教学,继续提高运用所学知识解决实际问题的能力。 3、热点分析 对本章内容的考查主要分以下三类: 1.以选择、填空题型考查本章的基本概念和性质.此类题一般难度不大,用以解决有关长度、夹角、垂直、判断多边形形状等问题. 2.以解答题考查圆锥曲线中的典型问题.此类题综合性比较强,难度大,以解析几何中的常规题为主. 3.向量在空间中的应用(在B类教材中).在空间坐标系下,通过向量的坐标的表示,运用计算的方法研究三维空间几何图形的性质. 在复习过程中,抓住源于课本,高于课本的指导方针.本章考题大多数是课本的变式题,即源于课本.因此,掌握双基、精通课本是本章关键.分析近几年来的高考试题,有关平面向量部分突出考查了向量的基本运算。对于和解析几何相关的线段的定比分点和平移等交叉内容,作为学习解析几何的基本工具,在相关内容中会进行考查。本章的另一部分是解斜三角形,它是考查的重点。总而言之,平面向量这一章的学习应立足基础,强化运算,重视应用。考查的重点是基础知识和基本技能。 4、复习建议 由于本章知识分向量与解斜三角形两部分,所以应用本章知识解决的问题也分为两类:一类是根据向量的概念、定理、法则、公式对向量进行运算,并能运用向量知识解决平面几何中的一些计算和证明问题;另一类是运用正、余弦定理正确地解斜三角形,并能应用解斜三角形知识解决测量不可到达的两点间的距离问题。 在解决关于向量问题时,一是要善于运用向量的平移、伸缩、合成、分解等变换,正确地进行向量的各种运算,进一步加深对“向量”这一二维性的量的本质的认识,并体会用向量处理问题的优越性。二是向量的坐标运算体现了数与形互相转化和密切结合的思想,所以要通过向量法和坐标法的运用,进一步体会数形结合思想在解决数学问题上的作用。 在解决解斜三角形问题时,一方面要体会向量方法在解三角形方面的应用,另一方面要体会解斜三角形是重要的测量手段,通过学习提高解决实际问题的能力。 二、常见题型分类 题型一:向量的有关概念与运算 此类题经常出现在选择题与填空题中,在复习中要充分理解平面向量的相关概念,熟练掌握向量的坐标运算、数量积运算,掌握两向量共线、垂直的充要条件. 例1:已知a是以点A(3,-1)为起点,且与向量b= (-3,4)平行的单位向量,则向量a的终点坐标是. 思路分析:与a平行的单位向量e=± |a | 方法一:设向量a的终点坐标是(x,y),则a =(x-3,y+1),则题意可知

相关文档
最新文档