电气自动化+PWM型开关电源电路设计

电气自动化+PWM型开关电源电路设计
电气自动化+PWM型开关电源电路设计

1 引言

当今社会,时代在进步,人们的生活水平不断提高,越来越离不开电力电子产品电力电子设备与人们的工作、生活的关系日益密切,当然任何电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。

1.1 什么是开关电源

电子电源是对公用电网或某种电能进行变换和控制,并向各种用电负载提供优质电能的供电设备。它可分为线性电源和开关电源两种。应用大功率半导体器件,在一个电路中运行于“开关状态”,按一定规律控制开关,对电能进行处理变换而构成的电源,被称为“开关电源”。在实际应用中同时具备三个条件的电源可称之为开关电源,这三个条件就是:开关(电路中的电力电子器件工作在开关状态而不是线性状态)、高频(电路中的电力电子器件工作在高频而不是接近工频的低频)和直流(电源输出是

直流而不是交流)。广义地说,凡用半导体功率器件作为开关,将一种电源形态转变成另一形态的主电路都叫做开关变换电路;转变时用自动控制闭环稳定输出并有保护环

节的则称开关电源。

1.2 开关电源基本工作原理

开关电源以半导体开关器件的启闭为基本原理,即通过控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源。开关电源一般由脉冲宽度调制(PWM)或者脉冲频率调制方式(PFM)控制IC和外部电路构成。

开关电源有PWM调制、FWM调制和混合调制,这里选用PWM调制。PWM型开关电源的换能电路是将输入的直流电压转换成脉冲电压,再将脉冲电压转换成直流电压输出。

图1-1 PWM型开关电源原理框图

2 EMI滤波

滤波的方法有很多,此处采用在电源的输入端加入线路滤波器的方法

图2-1 EMI滤波电路

EMI滤波电路一方面滤除从交流电源线上引入的外部电磁干扰,另一方面还能避免本身设备向外部发出噪声干扰,以免影响同一电磁环境下其他电子设备的正常工作。此外,其对串模、共模干扰都起到抑制作用。

因为额定电流为10A,所以图2中的电感值选为0.2mH。

3 AC/DC

图3-1 AC/DC转换电路

运用不可控整流电路将220V的交流电转换为直流电,其等效直流电压约为198V,然后输入到主电路中进行DC-DC变换。

4 开关电源主电路

DC-DC 变换器有多种拓扑结构,根据设计要求,此处选用BUCK 变换器。

图4-1 Buck 型开关电源主电路

在一个开关周期中,首先,在控制电路作用下,Q 导通,x 点高电位,二极管因受反向偏压而截止,电流由电池流经Q 、电感L 到电容C 和负载。电感电流持续上升,电感储能在增加,能量由电池传送到电感并存储在电感中;第二阶段,控制电路使Q 截止,切断电池和电感元件的连接,于是电感产生感生电动势使电流维持原来的流向,迫使x 点电位降至比地电位还低一个二极管的正向导通压降,二极管D 导通,为电感电流提供通路,电流由电感L 流向电容C 和负载,电感电流随时间下降,能量由电感流向负载。

经电感L 、电容C 滤波,在负载R L 上可得到脉动很小的直流电压V o 。

4.1 Buck 型开关电源稳态分析

设功率管的开关频率为fs ,则开关工作周期为Ts =1/fs ,一周期内,功率管导通的时间为on T ,关断的时间为off T ,令占空比为d ,定义如下: s

on

T d T

(1) 当系统工作在稳态时,占空比是恒定的,用D 表示。 为简化分析,作如下假定:

1、电路图中开关元件均为理想元件,即导通时压降为零,截止时漏电流为零;

2、电感、电容是理想元件。电感工作在线性区且未饱和,寄生电阻为零。电容的等效串联电阻也为零;

3、输出电压中的纹波分量与输出电压相比,可以忽略。设电力MOSFET 管的导通占空比为D1,二极管的导通占空比为D2。如果新的周期在电感电流尚未降至零时开始,则系统工作在CCM ,工作波形见图下,此模式下有D1+D2=1。

(a )CCM 模式 (b)DCM 模式

图4-2 Buck 型开关电源的工作波形

当电力MOSFET 管导通时,电感电流线性上升,可以算得上升斜率m1为

L Vo

Vin m -=

1 (2) 设该段时间内电感电流上升的增量为rise L L I ,?,则

s o

in t o in T D L

V V d L V V I 1rise L,?

-=-=? (3) 当MOS 管截止时,电感电流线性下降的斜率m2为

L

V m o

=

2 (4) 设在电力MOSFET 管截止时段内,电感电流线性下降的电流变化量为fail L I ,?,则

?-==

?s

s

T T D s o

t o fail L T D L V d L V I 1)1(1, (5) 稳态时,两电流变化量相等,令式(3)、(5)右边相等,可得

in 1o V D V ?= (6)

得出结论:输出电压V o 随主开关管的占空比D1而变化。

系统稳态时的电压增益为:

56.0198

110===

in o V V M (7) 4.2临界电感L C

当电感值L 较小,负载电阻值R L 较大,或开关周期Ts 较大时,会出现电感电流已经下降至零,而下一开关周期却尚未开始的情形。于是,当新的周期到来时,电感电流将从零开始线性增加。系统工作在DCM ,此时D1+D2<1。

由图5(b)中电感电流上升阶段与下降阶段的电流变化量绝对值相等的特点,即

S o s o T D L

V

T D L V V 21in =- (8) 得到DCM 下输出电压与输入电压之间的基本关系式为

in o V D D D V 2

11

+=

(9)

由于D1+D2<1,所以在DCM 下,开关电源的电压增益高于CCM 下的电压增益。 对比图5中(a )、(b ),根据△I L 与Io 相对值关系可划分两种工作状态,并且在两种状态间存在一个临界状态点,即在电感电流下降到零的时刻,新的周期恰好开始。三个状态的特点分别为:

CCM 状态:o 21

I I L

临界状态:o 21

I I L =? (11)

DCM 状态:o 2

1

I I L >? (12)

由式(2.5)和式(2.11),可得在临界状态有

o L

o s I R V

T D V ==2o 2L (13) 上式中R L 是负载电阻值。满足式(2.13)的电感值称为临界电感,以L C 表示,则

s

22f 212L

S L C R D T R D L ==

(14) 经过简单变形,易得计算临界电感值常用的表达式

)1(f 211s

2D P V L O O

C -?= (15)

式中——O O O I V P =是开关电源的输出功率。

将设计要求中的参数代入上式可得H L C μ4.48)56.01(50000

1100110212

=-??

=

于是选择最接近的电感值50uH L =。

4.3纹波电压与最小滤波电容值

由于电容的充放电,输出电压会有纹波分量。当电感电流大于输出电流时,电容被充电;当电感电流小于输出电流时,电容对负载放电。一个开关周期内,电容元件存储的电荷变化量Q ?为

2

221S L T I Q ???=

? (16) 将V C Q ?=?代入上式,再结合式(2.5),得纹波电压计算式

2

1O 8)

1(V V s LCf D -=

? (17)

给定纹波电压为3%,根据式(17)可估算出为满足纹波指标所需要的最小电容值为

11003.050000104.488)

56.01(1102

6?=????-?=?-C V

计算得:C=15.2uF 。 为了留有裕量,电容选择C=20 uF 。

5 PWM发生电路设计

基于脉宽调制控制的开关电源系统,功率开关的动作受一个频率固定、且脉宽随负载及输入电压值而变动的脉冲波所控制。即开关管导通的频率固定,而每次的导通时间Ton受负载和输入电压的控制。开关电源通过调节占空比d达到维持输出电压的基本稳定。采用PWM控制方式的开关电源,其控制电路又分两种:电压模式控制和电流模式控制。电压控制模式仅利用输出电压作为反馈控制信号,系统中只存在一个电压反馈环路;电流控制技术指同时采用电流和负载电压作为控制信号,其中电感电流或负载电流反馈构成内环控制,而负载电压反馈构成外环控制,实现双闭环控制。此处采用电流控制技术。

图5-1 PWM集成控制原理示意图

5.1 UC3825芯片介绍

美国TI公司设计的UC3825系列芯片是专门用于PWM控制的,其具有外围电路设计简单,功能强大等特点,所以此处选用UC3825进行PWM控制。

UC3825芯片为16脚长方形集成块,管脚功能见表5-1。其内部电路主要由高频振荡器、PWM比较器、限流比较器、过流比较器、基准电压源、故障锁存器、软启动电路、欠压锁定、PWM锁存器、输出驱动器等组成。其工作频率可达1MH Z,可用作电压或电流型PWM控制器。

表5-1 UC3825管脚功能表

管脚功能

1 INV(误差放大器反向输入端)

2 NI(误差放大器同相输入端)

3 E/A OUT(误差放大器输出端)

4 CLK/LEB(时钟/上升沿封锁)

5 Rt(定时器振荡电阻)

电压相连,作为误差放大器的参考输入,管脚1输入主电路的电压反馈,同时误差放大器的输出也是开放给用户的。误差放大器输出的幅值受到软启动电路的控制,当芯片检测到电路故障时,软启动电路工作,降低误差放大器的输出,因此限制了触发脉冲,即关断主电路的开关管,保护主电路不受损坏,直到故障消失形成所谓的“打嗝”状态,管脚7是斜坡信号输入端,可以将电流反馈信号引入,形成电流内环反馈。管脚5、6可接振荡电阻和电容,根据电路频率的需要调节阻值和容值。也可通过管脚4外加频率使芯片与外部频率同步。管脚11、14为触发脉冲输出口,采用电流图腾输出,使得芯片可以直接驱动功率不大的开关管。

5.2 UC3825芯片外围电路设计

5.2.1 振荡频率的设计

UC3825A/B型芯片可以通过管脚5和6自行设定的振荡频率,也可以工作在外加频率同步方式下,在此电源中,采用第二种方式:外部通过一个555定时器产生频率方波,然后通过管脚5和6使芯片的频率和555定时器的频率同步。

555定时器的外围电路以及和UC3825的接口电路如图所示。

图5-2 555定时器外围电路

振荡频率由下式计算:

3

)21(7.01T 1f C R R ?+?==

(18) 本设计中f=50KH Z ,根据上式选择合适的电阻和电容,即能达到要求。

5.2.2 尖峰电流消隐(LEB )电路

在电流源PWM 控制中,需解决电流反馈信号的噪音问题。通常情况下,反馈信号都是由串联电阻分压检测或者是由电流传感器检测,这些方法在轻负载的情况下,存在严重的问题:当开关管导通时,在反馈信号的前沿将产生一个高脉冲噪音信号,这并不是我们所需要的反馈信号。传统的解决方法是增加一个R-C 滤波网络,来滤掉噪音信号。在低频大负载的情况下,该方法能够取得比较满意的效果,但是在高频轻载情况下,效果就十分的不理想了,甚至能够影响整个系统的稳定性,由于问题处在闭环系统的反馈环节,是无法通过反馈闭环来解决的。 尖峰电流消隐技术可以很好的解决上述问题,它不是像R-C 滤波网络一样去压制噪音,而是将脉冲噪音给屏蔽掉。UC3825芯片利用时钟脉冲信号,使得反馈信号延迟一段时间,该时间正好就是脉冲噪音的持续时间,因而实现了屏蔽噪音的效果。实际应用中,该方法需要注意的问题就是,需要精确知道噪音脉冲的持续时间,确保能够将噪音完全的屏蔽掉。通常的做法是外接一个电容,开始时电容电压等于时钟脉冲的电压,当反馈开始时,时钟脉冲电压消失,由于电容电压无法突变,电压逐渐下降,当电压下降到60%刚好屏蔽掉噪音脉冲,因而需要根据噪音脉冲的持续时间选择合适的电容。

图5-3 LEB电路图

端口1来自主电路的反馈,输入到管脚7产生斜坡信号,当时钟脉冲高电平时,运放输出低电平,无斜坡信号输入;当时钟信号低电平时候,由于电容C1的作用,运放反向端电压不能突变,只能缓慢下降,因此运放仍然输出低电平,这时候由于主电路开关管已经导通,端口1己经开始有反馈信号(此时反馈的是噪音脉冲信号),但被运放输出给强制拉到低电平,也就实现了尖峰电流消隐。当C1上的电压降到60%的时候,运放反向端电压小于正向端电压,输出高电平,此时,端口1可以正常的进行信号反馈,而此时噪音脉冲信号也已经衰减完毕。

6 保护电路的设计

6.1 过电流保护

此处采用的是限流一切断式保护,是两种保护方式的结合。它分两个阶段进行,当负载电流达到某设定值时,保护电路动作,输出电压下降,负载电流被限制;如果负载电流增大至第二个设定值时,保护电路进一步动作,将电源切断。第一个阶段相当于系统启动和突加负载时出现的过电流,保护电路只是限制电流大小,但不切断系统的输出;而第二个阶段相当于出现负载短路等重大故障,此时保护电路切断电源的输出,保护系统不受损害。

图6-1 过电流保护

外部电路只需完成电流检测和I/V转换,并将转换的电压信号输入到UC3825的第9脚。其余工作均由UC3825自动完成。

其中的Vcc来自辅助电源;端口5为Vcc/2输入;端口12为辅助电源输入信号,端口6为温度传感器输入信号,端口14、15为光耦输出报警信号。

通过管脚8还可以增加热保护作用,当电源内部温度正常时候,端口6为低电平,三极管Ql不导通,芯片正常工作;当电源内部温升过高时,端口6为高电平,二极管D3导通,从而三级管Ql导通。管脚8外的电容C3通过二极管D5、三极管Q1和电阻放电,从而电压很快下降到0。由于芯片UC3825内部的误差放大器的电压受电容C3的电压限制,所以误差放大器的电压很低,总是低于斜坡信号的电压,从而没有触发信号的产生,直到温度下降,端口6重新为低电平,则芯片恢复工作。

6.2 过、欠压保护

为了保护负载,开关电源需要设计输出过、欠压保护电路,过、欠压保护电路图如下所示。

图6-2 过、欠压保护电路

供电电源+15V分别经过R2、R4、R5和R6、R7、R8分压后,得到输出电压的过压设定值和欠压设定值,各自输入到电压比较电路的“一”端和“+”端。当系统正常时,两个比较器都输出低电平,由于二极管D1和D2的反向截至作用,无故障输出信号。当电压检测信号高于过压设定或低于欠压设定时,两个比较电路中的一个输出高电平,通过二极管后输出故障信号。故障信号输送到UC3825的软启动端(Soft-start),这样迫使启动电容放电,系统重新软启动,实现过压保护的目的,保护负载的安全。

6.3 欠压锁定、软启动与故障处理

对于UC3825,当芯片检测到故障(如过电压、过电流等)时会采取一种紧急措施,它可以保护系统器件和芯片本身造受损坏,而且可以使得芯片进入一种“打隔”状态,即以比正常工作低的多的频率来不断的触发系统重新启动,如果故障得到恢复,则检测到的信号在正常范围之内,随之系统可以正常工作,退出“打隔”状态;若故障始终存在,则每次“打隔”触发系统后,检测到的信号始终超出正常范围,系统始终停留在“打隔”状态内,由于“打隔”的频率很低,所以不会损害系统器件和芯片本身。

7 总结

本次课程设计主要是开关电源的设计,开关电源以半导体开关器件的启闭为基本原理,即通过控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源。开关电源一般由脉冲宽度调制(PWM)或者脉冲频率调制方式(PFM)控制IC和外部电路构成。开关电源有PWM调制、FWM调制和混合调制,这里选用PWM调制。PWM型开关电源的换能电路是将输入的直流电压转换成脉冲电压,再将脉冲电压转换成直流电压输出。广义地说,凡用半导体功率器件作为开关,将一种电源形态转变成另一形态的主电路都叫做开关变换电路;转变时用自动控制闭环稳定输出并有保护环节的则称开关电源。通过控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源本设计在开始阶段进行了充分的构思,在设计过程中,查阅了大量的资料,充分利用所学过的知识,注重了大量的细节。虽然遇到了很多问题,但都一一解决。感觉能够较好的运用所学的知识解决一些问题在设计方面有了很大的进步。在整个设计中我懂得了许多东西,也培养了我独立工作的能力,树立了对自己工作能力的信心,相信会对今后的学习工作生活有非常重要的影响。

本设计的体会

本次课程设计是真正的运用学到的知识去系统的实验解决一个问题,具有十分重要的意义。此次课程设计不仅是对前面所学知识的一种检验,而且也是对自己能力的一种提高。通过这次课程设计我深深的认识到自己的知识十分的贫乏,自己要学习的东西还太多。学习是一个长期积累的过程,在以后的工作、生活中都应该不断的学习,努力提高自己各方面的能力。知识必须通过应用才能实现其价值!有些东西以为学会了,但真正到用的时候才发现是两回事,所以我认为只有到真正会用的时候才是真的学会了。

通过这次设计,我对论文的格式要求有了初步的了解,提高了自己的课程设计报告撰写水平。同时,文献检索能力也有显著提高,为以后步入社会可以很好的表达好自己的思想打了很好的基础。同时也非常感谢老师与同学们对我的帮助。

参考文献

[1]王兆安,黄俊,电力电子技术[M].4版.北京:机械工业出版社,2000

[2]尹克宁.电力工程[M].北京:中国电力出版社,2008

[3]赵良炳.现代电力电子技术基础[M].北京:清华大学出版社,1995

[4]蒋斌,颜钢锋,赵光宙.一种单相电流检测法的研究.电工技术学报,2000

[5]李达义,陈乔夫,贾正春.基于磁通可控的可调电抗器的新原理.中国电机工程学报,2003

[6] 孙建军,张振环,刘会金.基于级联型逆变器的中压有源电力滤波器滞环电流矢量控制.中国电机工程学报,2005

[7]陈乔夫,李达义,熊娅俐.一种大容量的串联型有源电力滤波器.电力系统自动化,2005

常用开关电源芯片大全

常用开关电源芯片大全 第1章DC-DC电源转换器/基准电压源 DC-DC 电源转换器 1. 低噪声电荷泵DC-DC电源转换器AAT3113/AAT3114 2. 低功耗开关型DC-DC电源转换器ADP3000 3. 高效3A开关稳压器AP1501 4. 高效率无电感DC-DC电源转换器FAN5660 5. 小功率极性反转电源转换器ICL7660 6. 高效率DC-DC电源转换控制器IRU3037 7. 高性能降压式DC-DC电源转换器ISL6420 8. 单片降压式开关稳压器L4960 9. 大功率开关稳压器L4970A 高效率单片开关稳压器L4978 高效率升压/降压式DC-DC电源转换器L5970 14. 高效率1A降压单片开关稳压器LM1575/LM2575/LM2575HV 降压单片开关 稳压器LM2576/LM2576HV 16. 可调升压开关稳压器LM2577 降压开关稳压器LM2596 18. 高效率5A 开关稳压器LM2678 19. 升压式DC-DC电源转换器LM2703/LM2704 20. 电流模式升压式电源转换器LM2733 21. 低噪声升压式电源转换器LM2750 22. 小型75V降压式稳压器LM5007 23. 低功耗升/降压式DC-DC电源转换器LT1073 24. 升压式DC-DC电源转换器LT1615 25. 隔离式开关稳压器LT1725 26. 低功耗升压电荷泵LT1751 27. 大电流高频降压式DC-DC电源转换器 LT176 5 28. 大电流升压转换器LT1935 29. 高效升压式电荷泵LT1937 30. 高压输入降压式电源转换器LT1956 32. 高压升/ 降压式电源转换器LT3433

1203P60 PWM开关电源芯片

NCP1203 PWM Current?Mode Controller for Universal Off?Line Supplies Featuring Standby and Short Circuit Protection Housed in SOIC?8 or PDIP?8 package, the NCP1203 represents a major leap toward ultra?compact Switchmode Power Supplies and represents an excellent candidate to replace the UC384X devices. Due to its proprietary SMARTMOS t Very High V oltage Technology, the circuit allows the implementation of complete off?line AC?DC adapters, battery charger and a high?power SMPS with few external components. With an internal structure operating at a fixed 40 kHz, 60 kHz or 100 kHz switching frequency, the controller features a high?voltage startup FET which ensures a clean and loss?less startup sequence. Its current?mode control naturally provides good audio?susceptibility and inherent pulse?by?pulse control. When the current setpoint falls below a given value, e.g. the output power demand diminishes, the IC automatically enters the so?called skip cycle mode and provides improved efficiency at light loads while offering excellent performance in standby conditions. Because this occurs at a user adjustable low peak current, no acoustic noise takes place. The NCP1203 also includes an efficient protective circuitry which, in presence of an output over load condition, disables the output pulses while the device enters a safe burst mode, trying to restart. Once the default has gone, the device auto?recovers. Finally, a temperature shutdown with hysteresis helps building safe and robust power supplies. Features ?Pb?Free Packages are Available ?High?V oltage Startup Current Source ?Auto?Recovery Internal Output Short?Circuit Protection ?Extremely Low No?Load Standby Power ?Current?Mode with Adjustable Skip?Cycle Capability ?Internal Leading Edge Blanking ?250 mA Peak Current Capability ?Internally Fixed Frequency at 40 kHz, 60 kHz and 100 kHz ?Direct Optocoupler Connection ?Undervoltage Lockout at 7.8 V Typical ?SPICE Models Available for TRANsient and AC Analysis ?Pin to Pin Compatible with NCP1200 Applications ?AC?DC Adapters for Notebooks, etc. ?Offline Battery Chargers ?Auxiliary Power Supplies (USB, Appliances, TVs, etc.) SOIC?8 D1, D2 SUFFIX CASE 751 1 MARKING DIAGRAMS PIN CONNECTIONS PDIP?8 N SUFFIX CASE 626 8 xx= Specific Device Code A= Assembly Location WL, L= Wafer Lot Y, YY= Year W, WW= Work Week Adj HV FB CS GND NC V CC Drv (Top View) xxxxxxxxx AWL YYWW 1 8 See detailed ordering and shipping information in the package dimensions section on page 12 of this data sheet. ORDERING INFORMATION https://www.360docs.net/doc/1318372508.html, 查询1203P60供应商

相关开关电源原理及电路图

相关开关电源原理及电路图 2012-06-03 17:39:37 来源:21IC 关键字:开关电源电路图 什么是开关电源?所谓开关电源,故名思议,就是这里有一扇门,一开门电源就通过,一关门电源就停止通过,那么什么是门呢,开关电源里有的采用可控硅,有的采用开关管,这两个元器件性能差不多,都是靠基极、(开关管)控制极(可控硅)上加上脉冲信号来完成导通和截止的,脉冲信号正半周到来,控制极上电压升高,开关管或可控硅就导通,由220V整流、滤波后输出的300V电压就导通,通过开关变压器传到次级,再通过变压比将电压升高或降低,供各个电路工作。振荡脉冲负半周到来,电源调整管的基极、或可控硅的控制极电压低于原来的设置电压,电源调整管截止,300V电源被关断,开关变压器次级没电压,这时各电路所需的工作电压,就靠次级本路整流后的滤波电容放电来维持。待到下一个脉冲的周期正半周信号到来时,重复上一个过程。这个开关变压器就叫高频变压器,因为他的工作频率高于50HZ低频。那么推动开关管或可控硅的脉冲如何获得呢,这就需要有个振荡电路产生,我们知道,晶体三极管有个特性,就是基极对发射极电压是0.65-0.7V是放大状态,0.7V以上就是饱和导通状态,-0.1V- -0.3V就工作在振荡状态,那么其工作点调好后,就靠较深的负反馈来产生负压,使振荡管起振,振荡管的频率由基极上的电容充放电的时间长短来决定,振荡频率高输出脉冲幅度就大,反之就小,这就决定了电源调整管的输出电压的大小。那么变压器次级输出的工作电压如何稳压呢,一般是在开关变压器上,单绕一组线圈,在其上端获得的电压经过整流滤波后,作为基准电压,然后通过光电耦合器,将这个基准电压返回振荡管的基极,来调整震荡频率的高低,如果变压器次级电压升高,本取样线圈输出的电压也升高,通过光电耦合器获得的正反馈电压也升高,这个电压加到振荡管基极上,就使振荡频率降低,起到了稳定次级输出电压的稳定,太细的工作情况就不必细讲了,也没必要了解的那么细的,这样大功率的电压由开关变压器传递,并与后级隔开,返回的取样电压由光耦传递也与后级隔开,所以前级的市电电压,是与后级分离的,这就叫冷板,是安全的,变压器前的电源是独立的,这就叫开关电源。 图开关电源原理图1

常见几种开关电源工作原理及电路图

一、开关式稳压电源的基本工作原理 开关式稳压电源接控制方式分为调宽式和调频式两种,在实际的应用中,调宽式使用得较多,在目前开发和使用的开关电源集成电路中,绝大多数也为脉宽调制型。因此下面就主要介绍调宽式开关稳压电源。 调宽式开关稳压电源的基本原理可参见下图。 对于单极性矩形脉冲来说,其直流平均电压Uo取决于矩形脉冲的宽度,脉冲越宽,其直流平均电压值就越高。直流平均电压U。可由公式计算, 即Uo=Um×T1/T 式中Um为矩形脉冲最大电压值;T为矩形脉冲周期;T1为矩形脉冲宽度。 从上式可以看出,当Um 与T 不变时,直流平均电压Uo 将与脉冲宽度T1 成正比。这样,只要我们设法使脉冲宽度随稳压电源输出电压的增高而变窄,就可以达到稳定电压的目的。 二、开关式稳压电源的原理电路 1、基本电路

图二开关电源基本电路框图 开关式稳压电源的基本电路框图如图二所示。 交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。 控制电路为一脉冲宽度调制器,它主要由取样器、比较器、振荡器、脉宽调制及基准电压等电路构成。这部分电路目前已集成化,制成了各种开关电源用集成电路。控制电路用来调整高频开关元件的开关时间比例,以达到稳定输出电压的目的。 2.单端反激式开关电源 单端反激式开关电源的典型电路如图三所示。电路中所谓的单端是指高频变换器的磁芯仅工作在磁滞回线的一侧。所谓的反激,是指当开关管VT1 导通时,高频变压器T初级绕组的感应电压为上正下负,整流二极管VD1处于截止状态,在初级绕组中储存能量。当开关管VT1截止时,变压器T初级绕组中存储的能量,通过次级绕组及VD1 整流和电容C滤波后向负载输出。

电气自动化+PWM型开关电源电路设计

1 引言 当今社会,时代在进步,人们的生活水平不断提高,越来越离不开电力电子产品电力电子设备与人们的工作、生活的关系日益密切,当然任何电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。 1.1 什么是开关电源 电子电源是对公用电网或某种电能进行变换和控制,并向各种用电负载提供优质电能的供电设备。它可分为线性电源和开关电源两种。应用大功率半导体器件,在一个电路中运行于“开关状态”,按一定规律控制开关,对电能进行处理变换而构成的电源,被称为“开关电源”。在实际应用中同时具备三个条件的电源可称之为开关电源,这三个条件就是:开关(电路中的电力电子器件工作在开关状态而不是线性状态)、高频(电路中的电力电子器件工作在高频而不是接近工频的低频)和直流(电源输出是 直流而不是交流)。广义地说,凡用半导体功率器件作为开关,将一种电源形态转变成另一形态的主电路都叫做开关变换电路;转变时用自动控制闭环稳定输出并有保护环 节的则称开关电源。 1.2 开关电源基本工作原理 开关电源以半导体开关器件的启闭为基本原理,即通过控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源。开关电源一般由脉冲宽度调制(PWM)或者脉冲频率调制方式(PFM)控制IC和外部电路构成。 开关电源有PWM调制、FWM调制和混合调制,这里选用PWM调制。PWM型开关电源的换能电路是将输入的直流电压转换成脉冲电压,再将脉冲电压转换成直流电压输出。 图1-1 PWM型开关电源原理框图

常用开关电源芯片大全复习课程

常用开关电源芯片大 全

常用开关电源芯片大全 第1章DC-DC电源转换器/基准电压源 1.1 DC-DC电源转换器 1.低噪声电荷泵DC-DC电源转换器AAT3113/AAT3114 2.低功耗开关型DC-DC电源转换器ADP3000 3.高效3A开关稳压器AP1501 4.高效率无电感DC-DC电源转换器FAN5660 5.小功率极性反转电源转换器ICL7660 6.高效率DC-DC电源转换控制器IRU3037 7.高性能降压式DC-DC电源转换器ISL6420 8.单片降压式开关稳压器L4960 9.大功率开关稳压器L4970A 10.1.5A降压式开关稳压器L4971 11.2A高效率单片开关稳压器L4978 12.1A高效率升压/降压式DC-DC电源转换器L5970 13.1.5A降压式DC-DC电源转换器LM1572 14.高效率1A降压单片开关稳压器LM1575/LM2575/LM2575HV 15.3A降压单片开关稳压器LM2576/LM2576HV 16.可调升压开关稳压器LM2577 17.3A降压开关稳压器LM2596 18.高效率5A开关稳压器LM2678 19.升压式DC-DC电源转换器LM2703/LM2704 20.电流模式升压式电源转换器LM2733 21.低噪声升压式电源转换器LM2750 22.小型75V降压式稳压器LM5007 23.低功耗升/降压式DC-DC电源转换器LT1073 24.升压式DC-DC电源转换器LT1615 25.隔离式开关稳压器LT1725 26.低功耗升压电荷泵LT1751

27.大电流高频降压式DC-DC电源转换器LT1765 28.大电流升压转换器LT1935 29.高效升压式电荷泵LT1937 30.高压输入降压式电源转换器LT1956 31.1.5A升压式电源转换器LT1961 32.高压升/降压式电源转换器LT3433 33.单片3A升压式DC-DC电源转换器LT3436 34.通用升压式DC-DC电源转换器LT3460 35.高效率低功耗升压式电源转换器LT3464 36.1.1A升压式DC-DC电源转换器LT3467 37.大电流高效率升压式DC-DC电源转换器LT3782 38.微型低功耗电源转换器LTC1754 39.1.5A单片同步降压式稳压器LTC1875 40.低噪声高效率降压式电荷泵LTC1911 41.低噪声电荷泵LTC3200/LTC3200-5 42.无电感的降压式DC-DC电源转换器LTC3251 43.双输出/低噪声/降压式电荷泵LTC3252 44.同步整流/升压式DC-DC电源转换器LTC3401 45.低功耗同步整流升压式DC-DC电源转换器LTC3402 46.同步整流降压式DC-DC电源转换器LTC3405 47.双路同步降压式DC-DC电源转换器LTC3407 48.高效率同步降压式DC-DC电源转换器LTC3416 49.微型2A升压式DC-DC电源转换器LTC3426 50.2A两相电流升压式DC-DC电源转换器LTC3428 51.单电感升/降压式DC-DC电源转换器LTC3440 52.大电流升/降压式DC-DC电源转换器LTC3442 53.1.4A同步升压式DC-DC电源转换器LTC3458 54.直流同步降压式DC-DC电源转换器LTC3703 55.双输出降压式同步DC-DC电源转换控制器LTC3736 56.降压式同步DC-DC电源转换控制器LTC3770

开关电源常用芯片

FSGM0765RWDTUFSL106HR 、FSL106MR 、FSL116LR 、 开关电源常用芯片 FSCQ1265RTYDTU 、 FSCQ1565RTYDTUFSDL321 FSDH321 、FSDL0165RN 、FSDM0265RNB 、FSDH0265RN 、 FSDM0365RNB 、 FSDL0365RN 、 FSDM0465REWDTU FSDM0565REWDTU 、FSDM07652REWDTU FSDM311A 、FSEZ1016AMY 、 FSEZ1317NY 、 Fairchild 仙童(飞兆)系列开关电源驱动芯片 FAN100MY 、 FAN102MY 、FAN103MY 、 FAN6208 、 FAN6300AMY 、 FAN6754AMRMY 、FAN6862TY 、 FAN6921MRMY 、FAN6961SZ 、FAN7346MX 、FAN7384MX 、 FAN7319MX 、FAN7527BMX 、FAN7527BN 、FAN7554N 、 FAN7554DFAN7621 、FAN7621SSJ 、FAN7621B 、FAN7631 、 FAN7930CMX ;FAN6204MYFL103 、FL6300A 即 FAN6300 、 FL6961 、FL7701 、FL7730 、FL7732 、FL7930B 、 FLS0116 、FLS3217 、FLS3247 、FLS1600XS 、 FLS1800XS 、 FLS2100XSFSFR1600 、 FSFR1600XSL 、 FSFR1700 、FSFR1700XS 、FSFR1700XSL 、FSFR1800 、 FSFR1800XS 、 FSFR1800XSL 、FSFR2100XSL 、 FSFR2100FSCQ0565RTYDTU 、FSCQ0765RTYDTU 、FSDM311 、

开关电源电路详解图

开关电源电路详解图 一、开关电源的电路组成 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。 开关电源的电路组成方框图如下: 二、输入电路的原理及常见电路 1、AC 输入整流滤波电路原理: ①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1 组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3 会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5容量变小,输出的交流纹波将增大。

2、DC 输入滤波电路原理: ①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、C4 为安规电容,L2、L3为差模电感。 ② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。当C6上的电压充至Z1的稳压值时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路 1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图: 3、工作原理: R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI减少,不发生二次击穿。在开关管Q1关断时,变压器的原边线圈易产生尖

常见电源稳压芯片

LM2930T-5.0 5.0V低压差稳压器 LM2930T-8.0 8.0V低压差稳压器 LM2931AZ-5.0 5.0V低压差稳压器(TO-92) LM2931T-5.0 5.0V低压差稳压器 LM2931CT 3V to 29V低压差稳压器(TO-220,5PIN) 线性LM2940CT-5.0 5.0V低压差稳压器 LM2940CT-8.0 8.0V低压差稳压器 LM2940CT-9.0 9.0V低压差稳压器 LM2940CT-10 10V低压差稳压器 LM2940CT-12 12V低压差稳压器 LM2940CT-15 15V低压差稳压器 LM123K 5V稳压器(3A) LM323K 5V稳压器(3A) LM117K 1.2V to 37V三端正可调稳压器(1.5A) LM317LZ 1.2V to 37V三端正可调稳压器(0.1A) 线性LM317T 1.2V to 37V三端正可调稳压器(1.5A) LM317K 1.2V to 37V三端正可调稳压器(1.5A) LM133K 三端可调-1.2V to -37V稳压器(3.0A) LM333K 三端可调-1.2V to -37V稳压器(3.0A) LM337K 三端可调-1.2V to -37V稳压器(1.5A)

LM337T 三端可调-1.2V to -37V稳压器(1.5A) 线性LM337LZ 三端可调-1.2V to -37V稳压器(0.1A) LM150K 三端可调1.2V to 32V稳压器(3A) LM350K 三端可调1.2V to 32V稳压器(3A) 线性LM350T 三端可调1.2V to 32V稳压器(3A) 线性LM138K 三端正可调1.2V to 32V稳压器(5A) LM338T 三端正可调1.2V to 32V稳压器(5A) LM338K 三端正可调1.2V to 32V稳压器(5A) LM336-2.5 2.5V精密基准电压源 LM336-5.0 5.0V精密基准电压源 LM385-1.2 1.2V精密基准电压源 LM385-2.5 2.5V精密基准电压源 LM399H 6.9999V精密基准电压源 LM431ACZ 精密可调2.5V to 36V基准稳压源 LM723 高精度可调2V to 37V稳压器 LM105 高精度可调4.5V to 40V稳压器 LM305 高精度可调4.5V to 40V稳压器 MC1403 2.5V基准电压源 MC34063 充电控制器

PWM型开关电源电路设计

1 引言 当今社会,时代在进步,人们的生活水平不断提高,越来越离不开电力电子产品电力电子设备与人们的工作、生活的关系日益密切,当然任何电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。 1.1 什么是开关电源 电子电源是对公用电网或某种电能进行变换和控制,并向各种用电负载提供优质电能的供电设备。它可分为线性电源和开关电源两种。应用大功率半导体器件,在一个电路中运行于“开关状态”,按一定规律控制开关,对电能进行处理变换而构成的电源,被称为“开关电源”。在实际应用中同时具备三个条件的电源可称之为开关电源,这三个条件就是:开关(电路中的电力电子器件工作在开关状态而不是线性状态)、高频(电路中的电力电子器件工作在高频而不是接近工频的低频)和直流(电源输出是 直流而不是交流)。广义地说,凡用半导体功率器件作为开关,将一种电源形态转变成另一形态的主电路都叫做开关变换电路;转变时用自动控制闭环稳定输出并有保护环 节的则称开关电源。 1.2 开关电源基本工作原理 开关电源以半导体开关器件的启闭为基本原理,即通过控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源。开关电源一般由脉冲宽度调制(PWM)或者脉冲频率调制方式(PFM)控制IC和外部电路构成。 开关电源有PWM调制、FWM调制和混合调制,这里选用PWM调制。PWM型开关电源的换能电路是将输入的直流电压转换成脉冲电压,再将脉冲电压转换成直流电压输出。

开关电源各模块原理实图讲解

开关电源原理 一、开关电源的电路组成: 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值 降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及 杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。 当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪 涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是 负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5 容量变小,输出的交流纹波将增大。

时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增 大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路: 1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导 体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图: 3、工作原理: R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI减少,不发生二次击穿。在开关管Q1关断时,变压器的原边线圈易产生尖峰电压和尖峰电流,这些元件组合一起,能很好地吸收尖峰电压和电流。从R3测得的电流峰值信号参与当前工作周波的占空比控制,因此是当前工作周波的电流限制。当R5上的电压达到1V时,UC3842停止工作,开关管Q1立即关断。 R1和Q1中的结电容C GS、C GD一起组成RC网络,电容的充放电直接影响着开关管的开关速度。R1过小,易引起振荡,电磁干扰也会很大;R1过大,会降低开关管的开关速度。Z1通常将MOS管的GS电压限制在18V以下,从而保护了MOS管。 Q1的栅极受控电压为锯形波,当其占空比越大时,Q1导通时间越长,变压器所储存的能量

开关电源原理图精讲.pdf

开关电源原理(希望能帮到同行的你更加深入的了解开关电源,温故而知新吗!!) 一、开关电源的电路组成[/b]:: 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。 开关电源的电路组成方框图如下: 二、输入电路的原理及常见电路[/b]:: 1、AC输入整流滤波电路原理: ①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防

止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5容量变小,输出的交流纹波将增大。 2、 DC输入滤波电路原理: ①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、C4为安规电容,L2、L3为差模电感。 ② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。当C6上的电压充至Z1的稳压值时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路[/b]:: 1、 MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图:

DCDC电源设计方案

DCDC电源设计方案 1、DC/DC电源电路简介 DC/DC电源电路又称为DC/DC转换电路,其主要功能就是进行输入输出电压转换。一般我们把输入电源电压在72V以内的电压变换过程称为DC/DC转换。常见的电源主要分为车载与通讯系列和通用工业与消费系列,前者的使用的电压一般为48V、36V、24V等,后者使用的电源电压一般在24V以下。不同应用领域规律不同,如PC中常用的是12V、5V、3.3V,模拟电路电源常用5V 15V,数字电路常用3.3V等。结合到本公司产品,这里主要总结24V以下的DC/DC电源电路常用的设计方案。 2、DC/DC转换电路分类 DC/DC转换电路主要分为以下三大类: (1)稳压管稳压电路。 (2)线性(模拟)稳压电路。 (3)开关型稳压电路 3、稳压管稳压电路设计方案 稳压管稳压电路电路结构简单,但是带负载能力差,输出功率小,一般只为芯片提供基准电压,不做电源使用。比较常用的是并联型稳压电路,其电路简图如图(1)所示, 选择稳压管时一般可按下述式子估算: (1) Uz=V out; (2)Izmax=(1.5-3)I Lmax (3)Vin=(2-3)V out 这种电路结构简单,可以抑制输入电压的扰动,但由于受到稳压管最大工作电流限制,同时输出电压又不能任意调节,因此该电路适应于输出电压不需调节,负载电流小,要求不高的场合,该电路常用作对供电电压要求不高的芯片供电。 有些芯片对供电电压要求比较高,例如AD DA芯片的基准电压等,这时候可以采用常用的一些电压基准芯片如MC1403 ,REF02,TL431等。这里主要介绍TL431、REF02的应用方案。 3.1 TL431常用电路设计方案 TL431是一个有良好的热稳定性能的三端可调分流基准电压源。它的输出

常用开关电源芯片

--------------------------------------------------------------------------- 常用开关电源芯片大全 第1章DC-DC电源转换器/基准电压源 1.1 DC-DC电源转换器 1.低噪声电荷泵DC-DC电源转换器AAT3113/AAT3114 2.低功耗开关型DC-DC电源转换器ADP3000 3.高效3A开关稳压器AP1501 4.高效率无电感DC-DC电源转换器FAN5660 5.小功率极性反转电源转换器ICL7660 6.高效率DC-DC电源转换控制器IRU3037 7.高性能降压式DC-DC电源转换器ISL6420 8.单片降压式开关稳压器L4960 9.大功率开关稳压器L4970A 10.1.5A降压式开关稳压器L4971 11.2A高效率单片开关稳压器L4978 12.1A高效率升压/降压式DC-DC电源转换器L5970 13.1.5A降压式DC-DC电源转换器LM1572 14.高效率1A降压单片开关稳压器LM1575/LM2575/LM2575HV 15.3A降压单片开关稳压器LM2576/LM2576HV 16.可调升压开关稳压器LM2577 17.3A降压开关稳压器LM2596 18.高效率5A开关稳压器LM2678 19.升压式DC-DC电源转换器LM2703/LM2704 20.电流模式升压式电源转换器LM2733 21.低噪声升压式电源转换器LM2750 22.小型75V降压式稳压器LM5007 23.低功耗升/降压式DC-DC电源转换器LT1073 24.升压式DC-DC电源转换器LT1615 25.隔离式开关稳压器LT1725

电脑开关电源原理及电路图

2.1、输入整流滤波电路 只要有交流电AC220V输入,ATX开关电源,无论是否开启,其辅助电源就一直在工作,直接为开关电源控制电路提供工作电压。图1中,交流电AC220V经过保险管FUSE、电源互感滤波器L0,经BD1—BD4整流、C5和C6滤波,输出300V左右直流脉动电压。C1为尖峰吸收电容,防止交流电突变瞬间对电路造成不良影响。TH1为负温度系数热敏电阻,起过流保护和防雷击的作用。L0、R1和C2组成Π型滤波器,滤除市电电网中的高频干扰。C3和C4为高频辐射吸收电容,防止交流电窜入后级直流电路造成高频辐射干扰。 2.2、高压尖峰吸收电路 D18、R004和C01组成高压尖峰吸收电路。当开关管Q03截止后,T3将产生一个很大的反极性尖峰电压,其峰值幅度超过Q03的C极电压很多倍,此尖峰电压的功率经D18储存于C01中,然后在电阻R004上消耗掉,从而降低了Q03的C极尖峰电压,使Q03免遭损坏。 2.3、辅助电源电路 整流器输出的300V左右直流脉动电压,一路经T3开关变压器的初级①~②绕组送往辅助电源开关管Q03的c极,另一路经启动电阻R002给Q03的b极提供正向偏置电压和启动电流,使Q03开始导通。Ic流经T3初级①~②绕组,使T3③~④反馈绕组产生感应电动势(上正下负),通过正反馈支路C02、D8、R06送往Q03的b极,使Q03迅速饱和导通,Q03上的Ic电流增至最大,即电流变化率为零,此时D7导通,通过电阻R05送出一个比较电压至IC3(光电耦合器Q817)的③脚,同时T3次级绕组产生的感应电动势经D50整流滤波后一路经R01限流后送至IC3的①脚,另一路经R02送至IC4(精密稳压电路TL431),由于Q03饱和导通时次级绕组产生的感应电动势比较平滑、稳定,经IC4的K端输出至IC3的②脚电压变化率几乎为零,使IC3发光二极管流过的电流几乎为零,此时光敏三极管截止,从而导致Q1截止。反馈电流通过R06、R003、Q03的b、e极等效电阻对电容C02充电,随着C02充电电压增加,流经Q03的b极电流逐渐减小,使③~④反馈绕组上的感应电动势

常用开关电源芯片大全

常用开关电源芯片大全 第1章DC—DC电源转换器/基准电压源 1。1DC-DC电源转换器 1.低噪声电荷泵DC—DC电源转换器AAT3113/AAT3114 2。低功耗开关型DC-DC电源转换器ADP3000 3、高效3A开关稳压器AP1501 4.高效率无电感DC-DC电源转换器FAN5660 5、小功率极性反转电源转换器ICL7660 6、高效率DC—DC电源转换控制器IRU3037 7。高性能降压式DC—DC电源转换器ISL6420 8、单片降压式开关稳压器L4960 9、大功率开关稳压器L4970A 10。1.5A降压式开关稳压器L4971 11。2A高效率单片开关稳压器L4978 12.1A高效率升压/降压式DC-DC电源转换器L5970 13、1。5A降压式DC-DC电源转换器LM1572 14。高效率1A降压单片开关稳压器LM1575/LM2575/LM2575HV15。3A降压单片开关稳压器LM2576/LM2576HV 16、可调升压开关稳压器LM2577 17、3A降压开关稳压器LM2596 18。高效率5A开关稳压器LM2678 19、升压式DC—DC电源转换器LM2703/LM2704 20、电流模式升压式电源转换器LM2733 21、低噪声升压式电源转换器LM2750 22。小型75V降压式稳压器LM5007 23、低功耗升/降压式DC-DC电源转换器LT1073 24.升压式DC-DC电源转换器LT1615 25、隔离式开关稳压器LT1725 26。低功耗升压电荷泵LT1751

27.大电流高频降压式DC-DC电源转换器LT1765 28.大电流升压转换器LT1935 29、高效升压式电荷泵LT1937 30。高压输入降压式电源转换器LT1956 31.1。5A升压式电源转换器LT1961 32。高压升/降压式电源转换器LT3433 33、单片3A升压式DC—DC电源转换器LT3436 34。通用升压式DC-DC电源转换器LT3460 35、高效率低功耗升压式电源转换器LT3464 36、1。1A升压式DC-DC电源转换器LT3467 37、大电流高效率升压式DC-DC电源转换器LT3782 38、微型低功耗电源转换器LTC1754 39、1。5A单片同步降压式稳压器LTC1875 40。低噪声高效率降压式电荷泵LTC1911 41、低噪声电荷泵LTC3200/LTC3200-5 42。无电感得降压式DC-DC电源转换器LTC3251 43。双输出/低噪声/降压式电荷泵LTC3252 44。同步整流/升压式DC-DC电源转换器LTC3401 45、低功耗同步整流升压式DC-DC电源转换器LTC3402 46、同步整流降压式DC-DC电源转换器LTC3405 47。双路同步降压式DC-DC电源转换器LTC3407 48。高效率同步降压式DC—DC电源转换器LTC341649、微型2A升压式DC-DC电源转换器LTC3426 50。2A两相电流升压式DC-DC电源转换器LTC3428 51.单电感升/降压式DC-DC电源转换器LTC3440 52。大电流升/降压式DC—DC电源转换器LTC3442 53、1。4A同步升压式DC-DC电源转换器LTC3458 54.直流同步降压式DC-DC电源转换器LTC3703 55、双输出降压式同步DC-DC电源转换控制器LTC3736 56。降压式同步DC-DC电源转换控制器LTC3770

超详细的反激式开关电源电路图讲解

反激式开关电源电路图讲解 一,先分类 开关电源的拓扑结构按照功率大小的分类如下: 10W以内常用RCC(自激振荡)拓扑方式 10W-100W以内常用反激式拓扑(75W以上电源有PF值要求) 100W-300W 正激、双管反激、准谐振 300W-500W 准谐振、双管正激、半桥等 500W-2000W 双管正激、半桥、全桥 2000W以上全桥 二,重点 在开关电源市场中,400W以下的电源大约占了市场的70-80%,而其中反激式电源又占大部分,几乎常见的消费类产品全是反激式电源。 优点:成本低,外围元件少,低耗能,适用于宽电压范围输入,可多组输出. 缺点:输出纹波比较大。(输出加低内阻滤波电容或加LC噪声滤波器可以改善) 今天以最常用的反激开关电源的设计流程及元器件的选择方法为例。给大家讲解如何读懂反激开关电源电路图! 三,画框图 一般来说,总的来分按变压器初测部分和次侧部分来说明。开关电源的电路包括以下几个主要组成部分,如图1

图1,反激开关电源框图 四,原理图 图2是反激式开关电源的原理图,就是在图1框图的基础上,对各个部分进行详细的设计,当然,这些设计都是按照一定步骤进行的。下面会根据这个原理图进行各个部分的设计说明。 图2 典型反激开关电源原理图

五,保险管 图3 保险管 先认识一下电源的安规元件—保险管如图3。 作用:安全防护。在电源出现异常时,为了保护核心器件不受到损坏。 技术参数:额定电压 ,额定电流 ,熔断时间。 分类:快断、慢断、常规 计算公式:其中:Po:输出功率 η效率:(设计的评估值) Vinmin :最小的输入电压 2:为经验值,在实际应用中,保险管的取值范围是理论值的1.5~3倍。 0.98: PF值 六,NTC和MOV NTC 热敏电阻的位置如图4。 图4 NTC热敏电阻

PWM激光器开关电源电路

PWM激光器开关电源电路 电路工作原理:由图可知,交流市电一路经2C1、2C2、2L1、2C3、2L2等组成的多级共模滤波器,以滤除开关电源的谐波干扰和市电干扰脉冲对电源的影响,2VD1~2VD4、2C6、2C7、2L3等组成整流滤波电路,输出较高的直流电,经2T的一次绕组Ll,加入开关管VT2的集电极上。VT2基极是由1T2、VT1等组成的推动级驱动。 另一路由1T1、1VD1~1VD4、1C1等降压、整流滤波、7812三端稳压器后,输出12V稳压直流电,供给IC2推动级工作。IC2的基准电压由1R1、lR2分压后得,反相输入端由2T的L4反馈馈组经V,1R10可调分压后输入。IC2两端对地并按IC3使基准电压同相端缓慢建立,限制了开关时电流的冲击,实现软启动。电路的工作频率由1R3、IC4决定,1R4、IC5、IC2的9端组成频率补偿电路,保证了振荡频率的稳定性,9端的工作电压在O.8~3.6V范围内调试。1R7、1C6使IC的10端电压始终处于低电位,1R6是TA、TB(SG1524内部结构图)的集电极负载电阻。由于推动级要有一定的推动功率,因此TAc、TBc并联连接,直接输入到推动管VT1的基极,再由推动变压器lT2耦合给开关管VT2,使其在导通时,基极电流快速上升,处于饱和状态,在截止时,使其基极有反向漏出电流,确倮可靠截止。VT1、VT2是处在反极性激励状态交替导通,1T2处在低阻状态不

易振荡,它既起推动变压器作用,又起隔离变压作用,提高了电路的安全可靠性。在VT2基极输入端串接了2R4,并并联了加速电容2C9。 为使开关管VT2在开关状态下可靠的工作,电路中加强了一些保护措施。保护二极管2VD6,2R5串接是防止馈入基极负极性脉冲引起的VT2的b-e结击穿。2C10、2VD7、2R9、2C11 9EL成缓升CDR电路,使开关管脉冲电压上升速率降低,防止开关时所出现的尖脉冲,抑制VT2从导通进入截止时所造成大幅度的反峰电压。2R3,2C8组成削波电路动防止集电极瞬变电压过高以及负载开路时激光管不工作状态可能出现的高压,还可以减小开关管的开关转换损耗。2VD5、2T—L2组成钳位和失磁保护电路,2R7为限流电阻,避免电流增大而烧坏管子。2T的L3绕组是4000V左右的高压绕组,经2VD10、2VD9、2C12、2C13全波倍压整流后,通过限流电阻堆,输入激光管的阳极。调整限流电阻堆的阻值,将电流控制在激光管的安全工作范围内。

相关文档
最新文档