国内外纤维成分标签的对比分析

国内外纤维成分标签的对比分析
国内外纤维成分标签的对比分析

面料基础知识

服装面料基础知识 第一章面料的类别及形成过程分析 一面料是服装生产中非常重要的一部分,直接决定了服装的成本、质量、交期等环节,面料控制的好与坏,是确保订单顺利进行的关键; 二生产经营的主要服装及所需面料类别: 工作服、休闲服(牛仔、衬衣、茄克衫、裙子等)、外衣(羽绒茄克、防风衣裤等)、运动服(滑雪服、登山服等)、内衣(睡衣套、睡裤等)、童装(内、外衣)、针织服装(T恤衫、针织套装、针织内衣等) 服装的主要面料是梭织面料和针织面料; 三面料的分类: (一)服装面料按织造方式主要分为二大类:梭织面料和针织面料 1、梭织面料的概念: 相互垂直排列的两个方向的纱线,在织机上按一定规律交织而成的产品,称为梭织物即梭织面料, 其中,与布边平行的方向(即纵向)排列的纱线称为经纱(或经线); 与布边垂直的方向(即横向)排列的纱线称为纬纱(或纬线); 经纱和纬纱在织造过程中互相浮沉就形成了不同风格的各种面料。 2、针织面料的概念: 用一组或多组纱线成圈套接在一起形成针织物; (二)按照原材料成分分类,基本分三类: 1、纯纺面料:这类面料的特点就是经纬都用同一种纤维纺纱织成。如纯棉、纯毛、 纯麻面料等 2、混纺面料:这类面料的特点就是由两种或多种纤维混纺的经纬纱织成,如涤棉 混纺、棉麻混纺等,同时按各纤维成分在纱线中所占的比例不一又分多种,如涤 棉65/35,涤棉80/20,T/C90/10等,以形成各种不同风格的面料; 3、交织面料:这类面料的特点就是由不同纤维纺成的经纬纱相互交织而成,如经 纱用全棉纱,纬纱用涤纶纱交织成的棉涤面料等; (三)按面料的组织结构分类,主要分为三大类: 1、平纹组织面料:其特点就是经纬纱每间隔一根纱线就进行一次交织,此类组织 交织很频繁,屈曲很多,能使织出的面料挺拔、坚牢,在面料中应用最为广泛, 一般表示方法1/1,即1上1下组织,分子表示经组织点,分母表示纬组织点。 平纹中最常见的两个品种: 平布和府绸两者主要区别在于纱支细度与密度不同,具体就是: 平布的经纬纱密度相适密度较稀,布面平整; 府绸的纱支数细,密度较大,经密高于纬密很多,布面外观紧密,条干均匀,经 纱浮点呈颗粒状,手感柔软; 2、斜纹面料:①其特点:布面呈现出由经(或纬)浮点构成的斜纹线。 此类面料的联结比平纹组织差但手感柔软; ②斜纹按斜向分左斜、右斜,一般来说,纱左线右,即单纱织成左斜 面料,线线织成右斜面料,如3/1↖表示三上一下右斜,3/1↗表示三上一下左斜。 ③按组织与单面斜度,双面斜度2/2

玻璃纤维

玻璃纤维 玻璃纤维应用知识 作者: 赵工来源: 聚和成日期: 2009-4-18 点击数: 74 第一部分:玻纤知识: 1、玻纤分类 从长度分类分可以分连续玻纤、短玻纤(定长玻纤)和长玻纤(LET),连续玻纤是国内目前应用最广的玻纤,就是通常说的“长纤”,代表厂家有巨石,泰山、兴旺等。定长玻纤就是通常说的“短纤”,一般是外资改性厂与国内部分企业在用,代表厂家有PPG,OCF及国内的CPIC,巨石泰山也有少部分,但质量不如人意。LET是最近在国内兴起的,代表厂家有PPG,CPIC及巨石,目前国内金发,浙江俊尔,南京聚隆产量较大。 从碱金属含量分可分为无碱,低中高,通常改性增强用无碱,也就是E玻纤,国内改性一般使用E玻纤。 2、玻纤的应用 玻纤增强塑料的原理主要是由于玻纤/树脂界面上连接必然是使作用到模塑件上的力传导到玻纤上,因此玻纤的长度被充分利用,起到树

脂增强的目的,但玻纤在树脂基体中长度必须满足一定的要求,这就是临界玻纤长度,玻璃纤维的临界纤维长度(即可将力从基材传递给纤维的最小长度)在0.3~0.6mm之间,临界长度只与剪切力与玻纤单丝直径有关,上面的临界长度是指玻纤在最终产品里的长度,如是果是塑料粒子里话,此长就就在0.6~0.8mm之间,从理论上讲,临界长度与玻纤的原始长度没有关系,如果增强产品把玻纤的长度都控制在这个范围的话,此时产品的力学性能与表面外观都是最好的,最平衡的,如果长度过长,力学性能上升,但制品表面会变粗糙与翘曲,如果长度过短,就会导致力学性能不足。要控制玻纤的长度应该从调整螺杆结构及转速入手,如果玻纤长径控制在400效果最佳。 3、评价玻纤好坏的主要指标 第一个指标:玻纤在拉丝过程中所使用的表面活性处理剂。表面活性处理剂也就是通常所说的浸润剂,浸润剂主要是偶联剂与成膜剂,另外还有一些润滑剂、抗氧剂、乳化剂、抗静电剂等,成膜剂的成分与其它助剂的种类对玻纤有决定性的影响,所以在选择玻纤时就根据基料与成品要求选择合适的玻纤。像PPG、CPIC等公司短纤牌号较多,就是因为表面浸润剂不一样,这样就针对性比较强。 第二个指标:单丝直径。以前介绍过临界玻纤长度只与剪切力和单丝直径有关,从理论上讲,如果单丝直径越小,产品的力学性能与表面外观越佳。目前国内玻纤直径一般都在10μm,13μm,像CPIC就有开发7μm的玻纤。 4、浮纤原因分析

玻璃纤维的成分及性能[1]

玻璃纤维的成分及性能 生产玻璃纤维用的玻璃不同于其它玻璃制品的玻璃。目前国际上已经商品化的纤维用的玻璃成分如下: 1、E-玻璃亦称无碱玻璃,系一种硼硅酸盐玻璃。目前是应用最广泛的一种玻璃纤维用玻璃成分,具有良好的电气绝缘性及机械性能,广泛用于生产电绝缘用玻璃纤维,也大量用于生产玻璃钢用玻璃纤维,它的缺点是易被无机酸侵蚀,故不适于用在酸性环境。 2、C-玻璃亦称中碱玻璃,其特点是耐化学性特别是耐酸性优于无碱玻璃,但电气性能差,机械强度低于无碱玻璃纤维10%~20%,通常国外的中碱玻璃纤维含一定数量的三氧化二硼,而我国的中碱玻璃纤维则完全不含硼。在国外,中碱玻璃纤维只是用于生产耐腐蚀的玻璃纤维产品,如用于生产玻璃纤维表面毡等,也用于增强沥青屋面材料,但在我国中碱玻璃纤维占据玻璃纤维产量的一大半(60%),广泛用于玻璃钢的增强以及过滤织物,包扎织物等的生产,因为其人格低于无碱玻璃纤维而有较强的竞争力。 3、高强玻璃纤维其特点是高强度、高模量,它的单纤维抗拉强度为2800MPa,比无碱玻纤抗拉强度高25%左右,弹性模量86000MPa,比E-玻璃纤维的强度高。用它们生产的玻璃钢制品多用于军工、空间、防弹盔甲及运动器械。但是由于价格昂贵,目前在民用方面还不能得到推广,全世界产量也就几千吨左右。 4、AR玻璃纤维亦称耐碱玻璃纤维,主要是为了增强水泥而研制的。 5、A玻璃亦称高碱玻璃,是一种典型的钠硅酸盐玻璃,因耐水性很差,很少用于生产玻璃纤维。 6、E-CR玻璃是一种改进的无硼无碱玻璃,用于生产耐酸耐水性好的玻璃纤维,其耐水性比无碱玻纤改善7~8倍,耐酸性比中碱玻纤也优越不少,是专为地下管道、贮罐等开发的新品种。 7、D玻璃亦称低介电玻璃,用于生产介电强度好的低介电玻璃纤维。 除了以上的玻璃纤维成分以外,近年来还出现一种新的无碱玻璃纤维,它完全不含硼,从而减轻环境污染,但其电绝缘性能及机械性能都与传统的E玻璃相似。另外还有一种双玻璃成分的玻璃纤维,已用在生产玻璃棉中,据称在作玻璃钢增强材料方面也有潜力。此外还有无氟玻璃纤维,是为环保要求而开发出来的改进型无碱玻璃纤维。 玻璃纤维制品品种与用途 1、无捻粗纱 无捻粗纱是由平行原丝或平行单丝集束而成的。无捻粗纱按玻璃成分可划分为:无碱玻璃无捻粗纱和中碱玻璃无捻粗纱。生产玻璃粗纱所用玻纤直径从12~23μm。无捻粗纱的号数从150号到9600号(tex)。无捻粗纱可直接用于某些复合材料工艺成型方法中,如缠绕、拉挤工艺,因其张力均匀,也可织成无捻粗纱织物,在某些用途中还将无捻粗纱进一步短切。 (1)喷射用无捻粗纱适合于玻璃钢喷射成型使用的无捻粗纱要具备如下性能:①良好的切割性,在连续高速切割时产生的静电少; ②无捻粗纱切割后分散成原丝的效率要高,也即分束率高,通常要求90%以上;③短切后的原丝具有优良的覆模性,可覆盖在模具的各个角落;④树脂浸透快,易于被辊子辊平并易于驱赶气泡;⑤原丝筒退解性能好,粗纱线密度均匀,适合于各种喷枪及纤维输送系统。喷射用无捻粗纱都是由多股原丝络制而成,每股原丝含200根玻纤单丝。 (2)SMC用无捻粗纱 SMC即片状模塑料,主要用于压制汽车部件、浴缸、水箱板、净化槽、各种座椅等。SMC用无捻粗纱在制造SMC片材时要切成lin(25mm)的长度,分散在树脂糊中,因此对SMC用无捻粗纱的要求是短切性好,毛丝少,抗静电性优良,在切 割时短切丝不会粘附在刀辊上。对着色的SMC而言,无捻粗纱要在高颜料含量的树脂糊中被树脂浸透。通常SMC无捻粗纱一般为2400tex,少数情况下也有用4800tex的。 (3)缠绕用无捻粗纱缠绕法用于制造各种口径的玻璃钢管、贮罐等。缠绕用无捻粗纱的号数从1200号到9600号,缠绕大型管道及贮罐多倾向于直接无捻粗纱,如4800tex的直接无捻粗纱。对缠绕用无捻粗纱的要求如下:a)成带性好,呈扁带状;b)无捻粗纱退解性好,在从纱筒退解时不脱圈,不形成"鸟巢"状乱丝;c)张力均匀,无悬垂现象;d)线密度均匀,一般须小于±7%;⑤无捻粗纱浸透性好,从树脂槽通过时易为树脂润湿及浸透。 (4)拉挤用无捻粗纱拉挤用于制造断面一致的各种型材,其特点是玻纤含量高,单向强度大。拉挤用无捻粗纱可以是多股原丝并合的也可以是直接的无捻粗纱,其线密度范围为1100号到4400号。各种性能要求与缠绕无捻粗纱大体相同。 (5)织造用无捻粗纱无捻粗纱的一个重要用途是织造各种厚度的方格布或单向无捻粗纱织物,它们大多用于手糊玻璃钢成型工艺中。对强造用无捻粗纱有如下要求:a)良好的耐磨性;b)良好的成带性;c)织造用无捻粗纱在织造前需经强制烘干;d)无捻粗纱张力均匀,悬垂度应符合一定标准;e)无捻粗纱退解性好;f)无捻粗纱浸透性好。

面料成分及分析

面料成分及分析 面料的主要成分包括纤维,纱,梭织物,针织物,棉,羊毛,涤纶,毛涤织物,毛粘混纺等等。 纤维 人们常把长度比直径大千倍以上且只有一定的柔韧性的纤维物质统称为纤维。纤维的粗细、长短是决定面料手感之重要因素。粗的纤维给予布料硬、挺、粗的手感,且具有抗压缩的特性。纤维愈短,面料愈粗糙,愈容易起毛球,但具有粗犷之风格。细的纤维给予布料柔软、薄的手感。纤维愈长,纱线愈光洁平整,愈少起毛球。 种类包括天然纤维(棉,麻,丝)和合成纤维(腈纶,涤纶,尼龙) 梭织物 出两组或多组的纱线相互以直角交错面成,纱线呈现纵向者称为经,纱线横向来回者称为纬纱。由于梭织物纱线以垂直的方式互相交错,因此具有坚实、稳固、缩水率相对较低的特性。主要种类有弹性平布,色织格子布,斜纹布,珠帆布,牛仔布,尼龙布,灯芯绒。 针织物 经纱线成圈的结构形成针圈,新的针圈再穿过先前的针圈,如此不断重复,即形成针织物。主要种类就是平纹布,罗纹布,双面布,珠地布,毛巾布,卫衣布,威化布,布绒。

棉 可以说是世界上最为广泛使用之服装纤维了。它是取自棉籽之纤维,以采摘处理、轧棉、梳棉、拼条、精梳、粗纺、精纺成棉纱再由棉纱织成棉布。棉的吸湿力强---绵纤维是多孔性物质,内部分子排列很不规则,且分子中含有大量的亲水结构。保暖性----棉纤维是热的不良导体,棉纤维的内腔充满了不流动的空气,穿着舒适---不会产生静电,透气性良好,防敏感,容易清洗。 成分分析 麻:是一种植物纤维,被誉为凉爽高贵的纤维,它吸湿性好,放湿也快,不易产生静电热传导大,迅速散热,穿着凉爽,出汗后不贴身,较耐水洗,耐热性好。 桑蚕丝:天然的动物蛋白质纤维,光滑柔软,富有光泽,有冬暖夏凉的感觉,磨擦时有独特的“丝鸣“现象,有很好的延伸性,较好的耐热性,不耐盐水浸蚀,不宜用含氯漂白剂或洗涤剂处理。 粘胶:以木材、棉短绒、芦苇等含天然纤维素的材料化学材料加工而成,也常称人造绵,具有天然纤维的基本性能,染色性能好,牢度好,织物柔软,比重大,悬垂好,吸湿性好,穿着凉爽,不易产静电、起毛和起球。 醋酯纤维:由含纤维素的天然材料经化学加工而成,肯有丝绸的风格,穿着轻便舒适,有良好的弹性和弹性回复性能,不宜水洗,色牢度差。涤纶:属于聚酯纤维,具有优良的弹性和回复性,面料挺括,不起皱,

纤维的种类

一、植物纤维 主要组成物质是纤维素,又称为天然纤维素纤维。是由植物上种籽、果实、茎、叶等处获得的纤维。根据在植物上成长的部位的不同,分为种子纤维、叶纤维和茎纤维。 1.种子纤维:棉、木棉等; 2.叶纤维:剑麻、蕉麻等; 3.茎纤维:苎麻、亚麻、大麻、黄麻等。 二、动物纤维 主要组成物质是蛋白质,又称为天然蛋白质纤维,分为毛和腺分泌物两类。 1.毛发类:绵羊毛、山羊毛、骆驼毛、兔毛、牦牛毛等; 2.腺分泌物:桑蚕丝、柞蚕丝等。 三、矿物纤维 主要成分是无机物,又称为天然无机纤维,为无机金属硅酸盐类,如石棉纤维。 四、化学纤维 用天然的或人工合成的高分子化合物为原料经化学纺丝而制成的纤维。可分为人造纤维、合成纤维、无机纤维。 五、人造纤维 用纤维素、蛋白质等天然高分子物质为原料,经化学加工、纺丝、后处理而制得的纺织纤维。用失去纺织加工价值的纤维原料,经人工溶解或熔融再抽丝而制成,其原始的化学结构不变,纤维成分仍分别为纤维素和蛋白质,而形成的物理结构、化学结构变化的衍生物,组成成分为纤维素醋酸酯纤维。 1.再生纤维素纤维:粘胶纤维、富强纤维、铜氨纤维等;(其区别为用烧碱、 二氧化硫不同的溶液溶解) 2.纤维素酯纤维:醋酯纤维; 3.再生蛋白质纤维:大豆纤维、花生纤维等。 六、合成纤维 用人工合成的高分子化合物为原料经纺丝加工制得的纤维。 1.普通合成纤维:涤纶、锦纶、晴纶、丙纶、维纶、氯纶等; 2.特种合成纤维:芳纶、氨纶、碳纤维等。 七、无机纤维 以矿物质为原料制成的纤维,如:玻璃纤维、金属纤维等。 人们通常喜欢天然纤维而不喜欢化学纤维是因为天然纤维的柔韧性和光滑性比合成纤维好。

关于玻璃纤维一些你不知道的技术参数

【玻纤】关于玻璃纤维一些你不知道的技术参数 碱含量 在日常生产中大家都知道玻璃纤维有分无碱和中碱,但是如何划定的呢,相信很多朋友却并不是很清楚。这里就关系到一个碱含量的问题,主要是指碱金属氧化物的含量。 按碱含量不同,玻璃纤维主要分为三种: ①无碱玻璃纤维(氧化钠0%~2%,属铝硼硅酸盐玻璃) ②中碱玻璃纤维(氧化钠8%~12%,属含硼或不含硼的钠钙硅酸盐玻璃) ③高碱玻璃纤维(氧化钠13%以上,属钠钙硅酸盐玻璃) 可见大家常说的无碱并不是真的无碱,只是碱金属含量低于2%。一般应用于复合材料上的主要是无碱和中碱玻璃纤维。 下面来看看无碱玻纤和中碱玻纤性能上的一些对比: 成本力学性能 化学稳定性 耐水耐酸耐碱 无碱高于中碱无碱优于中碱无碱优于中碱中碱明显优于无碱无碱略优于中碱 从表中可以看出无碱和中碱玻璃纤维也是各有所长,因此在做产品的时候我们可 根据产品的特性和需求来因材施用,达到最佳性价比。 单丝直径 玻璃纤维的单丝直径一般为几个微米到二十几个微米,相当于一根头发丝的 1/20-1/5。 粗纤维:其单丝直径一般为30μm。

初级纤维:其单丝直径大于20μm。 中级纤维:单丝直径10-20μm。 高级纤维(亦称纺织纤维):其单丝直径3-10μm。 对于单丝直径小于4um的玻璃纤维又称为超细纤维。单丝直径不同,不仅纤维的性能有差异,而且影响到纤维的生产工艺、产量和成本。一般5-10um的纤维作为纺织制品用,10-14um的纤维一般做无捻粗纱、无纺布、短切纤维毡等较为适宜。 单丝直径由铂金漏板的孔径和拉丝速度决定,一般单丝越细的纤维成本越贵。一方面和生产工艺较难、产量较低有关;另一方面单丝越细,单位面积含有的偶联剂也会更多。 特克斯(tex) 特克斯(tex),简称特,是一种线密度单位,又称号数。指1000米长纱线在公定回潮率下重量的克数,tex=g/L*1000 ,其中g为纱(或丝)的重量(克),L为纱(或丝)的长度(米)。它是定长制单位,克重越大纱线越粗。 每束纤维原丝都由数百根甚至上千根单丝组成,因此简单来说tex就是衡量单股玻璃纤维纱的粗细。我们常见的1200、2400、4800号都是指纱的线密度,即每千米纱的重量为1200g、2400g、4800g。 含水率

陶瓷纤维的使用温度

陶瓷纤维的使用温度 发布者:admin 来源:发布日期:2012-03-08 陶瓷纤维作为继传统重质耐火砖及不定形耐火材料之后的第三代耐火材料,它不仅 具有一般低导热率材料所具有的优良的绝热性能,并具有高温下持续工作的优良耐 热性能。由于玻璃质纤维的结晶和晶粒生长;多晶晶体纤维的晶型转变和晶粒生长; 纤维中有害杂质及纤维使用中腐蚀性物质促进纤维结晶、聚晶及纤维接触处的烧 结;高温蠕变等因素,造成纤维结构的变化收缩变形、纤维失弹、脆化折断,纤维 强度降低、致密化,直至发生烧结丧失纤维状结构。因此,各类陶瓷纤维的使用温 度都有一个极限温度称为最高使用温度,又称为"分类温度"或"等级温度,,并作 为纤维耐热性能的标志。国际上习惯把陶瓷纤维产品分为4个等级温度,即1000℃ 型、1260℃型、1400℃型和1600℃型。 陶瓷纤维的最高使用温度,是指陶瓷纤维短时间内能承受的极限温度,用以表征陶 瓷纤维产品的耐热性的指标。陶瓷纤维产品允许长期使用温度一般比最高使用温度 低2 00 C 左右。以国产1260℃型纤维制品为例,其长期使用温度是1000℃左右。 因此,最高使用温度这个概念很重要,它与长期使用温度有着密切的关系,是纤维 应用过程中主要的参考依据。过去有些使用单位把最高使用温度当成长期使用温 度,这是错误的,会造成不必要的损失。 除此之外,同一种陶瓷纤维产品在不同条件下使用,其长期使用温度也有差异。如 工业窑炉操作制度(连续或间歇式窑炉)、燃料种类、炉内气氛等工艺条件,都是影 响陶瓷纤维使用温度和使用寿命的因素。 目前还没有测定陶瓷纤维耐热性指标的理想方法。一般是将陶瓷纤维产品加热到一 定温度,根据试样加热线收缩变化和结晶程度来评定陶瓷纤维产品的耐热 硅酸铝陶瓷纤维分类温度和使用温度的区别 1、耐火保温纤维分类温度:分类温度即最高使用温度,它是指耐火保温纤维材料在实际使用过程中的最高使用温度。具体定义为耐火纤维制品在非荷载条件下加热保持24小时,高温线收缩率为4%时的测试温度。耐火保温纤维在该温度下长期使用,其寿命会很短,因此,在实际中切勿轻率采用。 2、使用温度:使用温度即长期安全使用温度,它是指耐火保温纤维在一定温度下保持24小时,高温线收缩率≤2.5%时的测试温度。在此温度下,非晶质纤维结晶,晶质纤维晶型转变及晶粒生长速度缓慢,纤维性能稳定,纤维柔软富有弹性此温度为实际采用温度。 3、使用温度和纤维的寿命的关系:耐火保温纤维的使用温度和使用寿命与其使用条件(窑炉气氛、腐蚀物质的组成和含量等条件)密切关联。 (1)、耐火保温纤维在允许使用温度条件下使用,晶体发育是缓慢的,纤维的性质比较稳定,在氧化气氛中不受外力碰撞的情况下,寿命可达5—10年。 (2)、还原性炉气应采用以高纯合成料为原料的纤维作为工业窑炉壁衬材料,并在耐火保温纤维壁衬表面涂抹防腐涂料,这样不仅提高陶瓷纤维炉衬的化学稳定性能,并提高陶瓷纤维炉衬的抗风性能和降低纤维壁衬的加热收缩。为使在还原性气氛下工作的耐火纤维壁衬获得与氧化性气氛下工作相同的绝热效果,还必须根据还原性气氛的组成,通过计算加厚纤维壁衬厚度。

纺织纤维鉴别及成分分析实验报告

纺织纤维和面料的鉴别及其成分含量 一、实验目的 1. 学会以手感目测法、燃烧法、溶解法及显微镜观察法鉴别各种纤维; 2. 通过鉴别进一步理解不同纤维之间的特征、性能的差异。 二、实验原理 纤维鉴别就是利用各种纤维的外观形态和内在性质的差异,采用物理、化学等方法将其 区分开来,一般采用如下三个步序。 1. 手感目测法 感官法即通过人的感觉器官,眼、耳、鼻、手等,根据纤维、织物的不同外观和特点,对其成分进行判断。 原理:依靠人眼看(纤维或织物的颜色、质地、光泽等)、手摸(纤维或织物质感、厚度等)、耳听(织物摩擦声等)来鉴别服装材料纤维种类的一种方法。 2. 显微镜法 天然纤维中棉、毛、麻、丝,由于动物物种的差异及形成纤维的过程不同,致使纤维形态各异。化学纤维由于纺丝方法、成形条件不同,横截面形状也有所不同。借助显微镜观察纤维纵向外形、截面形状或配合染色等方法,可以进行大致的区分,对形态特 征典型的试样即可进行准确的判断。当然利用显微镜法进行观察首先能够判别样品是否为单一纤维构成,进而考虑分开鉴别。 3. 燃烧法 不同纤维的化学组成不同,可以根据各种纤维燃烧现象进行鉴别。譬如,棉花与黏胶、麻类等纤维素纤维的主要成分均为纤维素,因此在与火焰接触时迅速燃烧,离开火 焰后会继续燃烧,且伴有烧纸(主要成分亦为纤维素)气味,燃烧后留下少量灰烬;羊 毛之类的动物纤维接触火焰时也能燃烧,燃烧时散发出类似烧头发的强烈臭味,这是因 为它们的组成主要是角质蛋白,燃烧完毕留下黑色松脆的灰烬;上述方法能够粗略地区 分纤维的大类。合成纤维一般组成差异较大,接近火焰时,也有各种气味,但很难从中确切判断纤维的品种。 4. 溶解法 溶解法是利用各种纤维在不同的化学溶剂中的溶解特性来鉴别纤维的。对于混纺纤维可用一种试剂溶去一种组分,从而可以进行定量测定各种纤维的溶解情况。各种纤维在不同的化学溶剂中,其浓度、温度不同时会出现不同的溶解情况,依次可进行未知纤维的鉴别。 三、实验仪器及材料 仪器:普通生物显微镜、镶子、剪刀、载玻片、盖玻片、蒸僭水。 材料:编号1:白色纱线; 编号2:花纹织物。 四、实验步骤 1. 手感目测法: 手感:用手揉搓编号1的纱线团和编号2的织物。感受其柔软度、光滑程度(滑或粗糙)。

陶瓷纤维的耐火性能和发展前景

陶瓷纤维的耐火性能和发展前景(2010/12/01 17:55) 目录:公司动态 浏览字体:大中小 近年来陶瓷纤维在高温烧成窑炉方面的应用前景日益扩大,以陶瓷纤维制成的各类制品以隔热效果好,使用简便,特别是蓄热小等特征,普遍采用于各式窑炉中,大大显示出很高的节能效率。 (1)品种与性能:陶瓷耐火纤维最重要的指标是纤维的直径与热稳定性。陶瓷工业中常用的是Al2O3SiO2纤维,根据Al2O3的含量高低分为不同的使用范围,也在其中引入Cr2O3材料以提高其耐火与抗氧化特性。一般氧化铝含量高、氧化铁等杂质含量低的纤维制品呈纯白色、引入氧化铬的纤维呈销带奶黄调的颜色。陶瓷纤维的平均直径为2—4微米。纤维细、密度小、导热率低者使用温度高。若纤维粗、密度大时使用效果不理想。纤维的热稳定性指标更为重要。Al2O3-SiO2纤维各种产品在1260℃的线收缩范围为35—88%之间。收缩量也直接影响到热稳定性。 由于纤维导热率低、密度小、重量轻,在设计建造窑炉时均采用较轻的钢架支撑结构,从而使陶瓷窑炉的发展进入“窑炉轻量化”时代。纤维蓄热小、适应快速升温、冷却烧成方式。纤维有柔性可加工成带凹槽或开口的制品,且具有良好的抗机械震动与冲击的能力,化学稳定性也较好,这些优点为新型窑炉的发展,并波及到陶瓷工艺、行业的发展产生重要的推动作用。 目前陶瓷纤维制品有:毡、毯、砌块、散状纤维、纤维纸及真空成型的各种制品,工作范围一般在871—1427℃,特殊情况下可短期在极限温度以上的高温下使用。 (2)砌筑方法与注意事项:耐火纤维毡、适用于窑炉内衬可大大提高节能效率。一般使用有机粘合剂使纤维卷合成筒形或薄板形织物。窑炉内壁采用高温轻质耐火砖砌筑后,可用陶瓷纤维耐火毡粘贴成内衬,经烧成后,纤维毡或板形成一定的刚性并具有令人满意的回复能力,冷却时能弹回使接缝绷紧。 砌筑纤维通常有两种方法:一是将毡毯一层一层敷贴,再用栓杆铆接起来,一般在1222℃以下采用耐温金属栓杆,1223℃以上采用陶瓷质铆接件。靠热面一端用散状纤维和耐热水泥填充。采用陶瓷质铆接件还可防止因碳素沉积引起的纤维变质。第二种方法是采用预制组合件、即用毡毯堆叠而成的预制件或用宽305mm的毡毯折叠成手风琴式的预制件。两者相比,后者因紧挨炉壳到热面均为同样材料,节能效率更高、但成本较高。 温度升高时,纤维预制件砌筑形成的接缝需用有伸缩性的纤维镶嵌。用预制组合件安装方便、迅速且维修方便,只需将损坏部分替换下来。 就热效率来说,层层敷贴方式明显优于预制组合件。因为前者的纤维方向垂直于热流,堆叠形的预制组合件纤维方向平行于热流,两者的导热量差值约为20—40%,如手风琴状

玻璃纤维增强聚丙烯复合材料的力学性能

玻璃纤维增强聚丙烯复合材料的力学性能 摘要:本文论述了玻璃纤维增强聚丙烯复合材料的力学性能,主要包括材料的拉伸强度、拉伸模量、弯曲强度、弯曲模量和缺口冲击强度。并分析了复合材料力学性能与玻璃纤维含量之间的关系,最后将复合材料与ABS的力学性能进行比较,发现玻璃纤维增强的聚丙烯复合材料可以替代ABS应用于一些受力领域。关键词:玻璃纤维;聚丙烯;力学性能;ABS 1.引言 聚丙烯是一种综合性能十分优异的热塑性通用塑料,其具有易加工、密度小、生产成本低等特点,所以聚丙烯在家用电器、日常用品包装材料、汽车工业等行业有着广泛的应用,成为近些年来增长速度最快的塑料之一。然而聚丙烯也有一些缺点,比如:抗蠕变性差、熔点较低、尺寸稳定性不好、热变形温度低、低温脆性等,制约了其作为工程受力材料的应用。聚丙烯的一般性能如表1所示[1]。如果想提高聚丙烯的耐热性和冲击强度,拓宽其应用范围,就应对聚丙烯进行改性[2, 3]。 表1 聚丙烯的一般性能[1] Tab. 1 The properties of polypropylene 性能数据 拉伸强度/Mpa 29 断裂伸长率/% 200~700 弯曲强度/Mpa 50~58.8 压缩强度/Mpa 45 缺口冲击强度/(KJ/m2)5~10 洛氏硬度80~110 弹性模量/Mpa 980~9800 玻璃纤维增强聚丙烯复合材料(GFRPP)是以热塑性树脂聚丙烯为基体,以长玻璃纤维为增强骨架的材料[4],其性能与ABS 接近,但价格低于ABS 塑料。目前,国内外已对GF 增强PP 做了大量研究[5, 6]。玻璃纤维增强聚丙稀己广泛应用于汽车零部件、家电行业、飞机制造业等。 2.玻璃纤维增强聚丙烯复合材料的力学性能

玻纤特性

电绝缘用玻璃纤维的特性 一、电气特能 电气工业中采用的是碱金属氧化物含量与0.8%的无碱铝硼硅酸盐玻璃成分。研究表明,E玻璃纤维具有和E玻璃同样优良的介电性能。不同的是,纤维具有很大的表面积,相应的织物具有很大的空隙率,直接使用时介电强度很小,仅与相同厚度的空气层的介电强度相当。另一方面,由于空隙的吸附作用,使得织物的绝缘电阻对于环境相对湿度的变化十分敏感。据报道,当相对湿度从35%增加到95%时,经脱蜡热清洗的E玻璃纤维布的体积电阻率下降了4次方,而采用憎水处理的玻璃纤维布的下降幅度则较小。见表10-1。因此,电绝缘用玻璃纤维布必需浸渍绝缘漆或树脂等液体绝缘材料,来填充织物中的空隙,并在织物表面形成一层连续、平整和厚薄均匀的漆膜,才能提高其防潮性能和介电强度。尤其是湿态介电强度。 温度是影响电介质介电性能的另一个重要因素。硅酸盐玻璃属离子导电,其绝缘电阻随温度的升高而降低,而介质损耗却随温度的升高而增大。玻璃布的体积电阻率和介质损耗与温度的关系见表10—2。E玻璃介电性能与温度和频率的关系见表10—3。

E玻璃纤维的介质损耗小,在交流电压作用下所产生的介质损耗也小,是一种适于在高频、高压下工作的绝缘材料。此外,E玻璃纤维还具有良好的抗电晕、抗电弧性能。 二、力学性能 (一)抗拉强度 抗拉强度高,尤其是高温保留强度高,是E玻璃纤维的一个重要特性。E玻璃纤维纱的强度与热处理温度的关系如图10-1所示。从图中可以看出,在200℃以下时,曲线呈平缓下降,纱线的强度保留率均在80%以上。而有机纤维在200℃以下热处理时,其强度几乎完全丧失。因此,E玻璃纤维织物适用于制造不同耐热等级的绝缘材料,同时也是一种性能良好的补强材料。 (二)伸长率 玻璃纤维是完全弹性体,其断裂伸长率为3%。这个数值与粉云母纸断裂时的伸长率相近。这样在玻璃粉云母带中由于玻璃布的有效补强作用,克服了粉云母纸对机械负荷敏感的弱点,从而解决了粉云母带在使用中产生的屏障性损坏的问题。因此,E玻璃纤维织物是制造粉云母带的理想的补强材料。 (三)耐磨性 玻璃纤维是一种脆性材料。即使经绝缘漆或树脂浸渍处理,其耐磨性仍得不到有效的改善。因此,在生产和安装的过程中,应避免撞击、锤击等外力作用,以免损伤绝缘材料,导致机械强度和电气绝缘性能的下降。 耐磨性差是玻璃纤维的致命弱点,因此它无法代替棉织物而用于受机械摩擦和撞击的地方。 三、耐热性 温度是导致绝缘材料电气性能、力学性能下降和使用寿命缩短的重要因素。耐热性则表明绝缘材料承受高温作用的能力,是衡量绝缘材料性能的一项非常重要的指标。 无碱玻璃纤维及其织物具有很好的耐热性,在200℃的温度下,仍保持着较高的电绝缘性能和抗拉强度。同时,它还具有不燃性和高温下不产生挥发性物质等特点,因此是一种性能优良的绝缘材料和补强材料。但在实际应用中,玻璃纤维和其他纤维材料一样,需要用绝缘漆或树脂来填充其织物中的空隙,于是绝缘材料的耐热性不但取决于基材,而且取决于所用的绝缘漆或树脂的耐热性。 耐热等级确定了各种绝缘材料在正常运行状态下能长期使用的极限工作温度。它共分9级,其中Y级极限工作温度为90℃,现已淘汰。主要绝缘材料的耐热等级与相应的极限工作温度见表10-4。

耐火陶瓷纤维基础知识

耐火陶瓷纤维基础知识一、耐火陶瓷纤维定义 以SiO 2、AL 2 O 3 为主要成分且耐火度高于1580℃纤维状隔热材料的总称。 二、耐火陶瓷纤维的特点 1、耐高温:使用温度可达950-1450℃。 2、导热能力低:常温下为0.03w/m.k,在1000℃时仅为粘土砖的1/5。 3、体积密度小:耐火陶瓷纤维制品一般在64-500kg/m3之间。 4、化学稳定性好:除强碱、氟、磷酸盐外,几乎不受化学药品的侵蚀。 5、耐热震性能好:具有优良的耐热震性。 6、热容量低:仅为耐火砖的1/72,轻质转的1/42。 7、可加工性能好:纤维柔软易切割,连续性强,便于缠绕。 8、良好的吸音性能:耐火陶瓷纤维有高的吸音性能,可作为高温消音材料。 9、良好的绝缘性能:耐火陶瓷纤维是绝缘性材料,常温下体积电阻率为 1×1013Ω.cm,800℃下体积电阻率为6×108Ω.cm。 10、光学性能:耐火陶瓷纤维对波长1.8-6.0um的光波有很高的反射性。 三、耐火陶瓷纤维的分类 1、按结构可分为晶质纤维和非晶质纤维两大类。 2、按使用温度可分为: 普通型耐火陶瓷纤维使用温度950℃ 标准型耐火陶瓷纤维使用温度1000℃ 高纯型耐火陶瓷纤维使用温度1100℃ 高铝型耐火陶瓷纤维使用温度1200℃ 锆铝型耐火陶瓷纤维使用温度1280℃ 含锆型耐火陶瓷纤维使用温度1350℃ 莫来石晶体耐火纤维(72晶体)使用温度1400℃ 氧化铝晶体耐火纤维(80、95晶体)使用温度1450℃ 3、生产方法 (1)非晶质纤维 原材料经电阻炉熔融,在熔融状态下,在骤冷(0.1S)条件下,在高速旋转甩丝辊离心力的作用下或在高速气流的作用下被甩丝而成或被吹制而成的玻璃态纤维。 (2)晶体纤维 生产方法主要有胶体法和先驱体法两种。 胶体法:将可融性的铝盐、硅盐,制成一定粘度的胶体溶液,按常规生产方法成纤后经热处理转变成铝硅氧化物晶体纤维。 先驱体法:将可溶性的铝盐、硅盐,制成一定粘度的胶体溶液,随后被先驱体(一种膨化了的有机纤维)吸收,再进行热处理,转变成铝硅氧化物晶体纤维。

造纸纤维原料

造纸纤维原料 纸的基本成分是纤维,包括植物纤维、动物纤维、矿物纤维、合成纤维等。纤维原料的选择主要取决于纸张质量的要求及生产条件和地区资源情况。造纸工业所用纤维原料,绝大部分是植物纤维原料。 植物体内管状或长纺锤状的细胞,在造纸技术上称做纤维。作为造纸工业纤维原料的植物应该具备:纤维含量较高,资源充分,运输方便和制造费用合理等条件。 植物纤维原料一般分为: 一、木材纤维原料 二、非木材纤维原料 木材纤维原料: ①针叶木,如云杉、冷杉、马尾松、落林松、红松等; ②阔叶木,如杨木、桦木、桉木等。常用的非木材纤维原料有: ①禾本科植物,如麦草、稻草、芦苇、甘蔗渣、芒草、竹、龙须草等; ②韧皮植物,如大麻、红麻、胡麻、黄麻、亚麻、桑皮、楮皮、棉茎皮、废麻绳袋等; ③棉纤维(种毛纤维),如棉短线、破布等。 植物纤维形态 ①针叶木:含有管胞、射线细胞和射线管胞等,管胞占木材容积90%以上,长1.5~5.6mm,宽30~75μm,是造纸的优质纤维; ②阔叶木:含有韧型木纤维、纤维管胞和管胞三种纤维细胞,统称为木纤维。木纤维长 0.7~1.7mm,宽20~40μm,占木材容积的25~35%,其中以韧型木纤维最多。此外,阔叶木还含有导管细胞和射线细胞等; ③禾本科植物:含有的纤维细胞约占细胞总量的50~60%,纤维一般长1~1.5mm,宽10~20μm,另外含有薄壁细胞、表皮细胞和导管细胞、石细胞等。中国常用造纸植物纤维的形态和非纤维状细胞含量(平均值)见下表。禾本科植物及阔叶木所制纸浆,因其纤维较短和所含非纤维状细胞较高,质量不如针叶木。从纤维的横切面观察(见图),纤维细胞壁分为初生壁和次生壁,次生壁又分为外、中、内三层,细胞的中空部分为细胞腔。相邻细胞之间的物质为胞间层。细胞壁的各层均由宽25μm的微细纤维构成。微细纤维由直径3.5μm 的原细纤维构成。原细纤维则由大部按晶体排列的纤维素分子链构成。纤维在水中受到机械力的作用时,会发生细丝化和游离出更多的羟基,在纤维之间形成更多接触面积与氢键而增强纤维之间的结合,因而赋予纸较高的物理强度。

玻璃钢力学性能测试

玻璃钢板层间剪切强度试验 玻璃钢板层间剪切强度试验只包括玻璃纤维织物增强玻璃钢板材的层间剪切强度试验。其方法是首先把试样固定于夹具中间,再将其放在试验机上,使试样受层间单面剪力的作用,直至使试样破坏,根据测量破坏时的载荷,然后计算破坏时单位剪切面上所承受的载荷值,即为材料的层间剪切强度。 1.试样 (1)试样的形状和尺寸如图2-10 所示。 (2)试样加工时应保证 A、B C、三面相互平行,并与布层垂直。 D面应为加工面,且D E、F 、面与布层严格平行。受力面A 、C 要不光滑。 (3)试样数量:每组不少于5 个。 2.试验条件 (1)试样制备、试验环境条件和试样状态调节按《试验方法总则》规定。(2)试验设备接《试验方法总则》规定。 (3)层间剪切夹具见图2-11 。 (4)加载速度为5-15mm/min 。 3.试验步骤(1)试样制备、外观检查和状态调节按《试验方法总则》规定。(2)将合格试样编号。测量试样受剪面三处的宽度和高度,取算术平均值。测量

精度按《试验方法总则》规定。 (3)将试样装入层间剪切夹具中, A面向上,夹持时以试样能上下滑动为宜,不可过紧。然后把夹具放在试验机上,使受力面A 的中心对准试验机上压板中心。压板的表面必须平整光滑。 (4)对试样施加均匀、连续的载荷,直到破坏。记录破坏载荷。 (5)有明显内部缺陷或不沿剪切面破坏的试样,应予作废。同批有效试样不足5个时应重作试验。 4.计算 层间剪切强度按式(2-12 )计算:

5.试验结果和试验报告按《试验方法总则》规定 玻璃钢板弯曲性能试验 中国玻璃钢综合信息网日期: 2010-11-20 阅读: 201 字体:大中小双击鼠标滚屏 玻璃钢板弯曲性能试验包括玻璃纤维织物增强玻璃钢板材弯曲性能试验和短切纤维增强玻璃钢的弯曲性能试验。 其方法是将试样放在试验机上,采用三点中心加载法,使试样受弯曲,载荷逐渐增加,直到使试样破坏或变形达到规定的挠度,根据测量的载荷及试样弯曲挠度,可以测定以下弯曲性能: ①在挠度小于或等于规定挠度下呈现最大载荷或破坏的材料,测定其最大载荷下或破坏时的弯曲应力(即弯曲强度)及其挠度。 ②在挠度等于规定挠度下不呈现破坏的材料,测定其规定挠度下的弯曲应力。 ③弯曲弹性模量。 ④绘制弯曲载荷挠度曲线。 以上测定的弯曲弹性模量为近似值。 规定挠度下的弯曲应力为:挠度等于1.5 倍试样厚度时的弯曲应力。 1.试样 (1)试样的形状图,如图2-8 和表2-5 所示。 采用矩形截面的条状试样,试样最小长度按下式计算:

玻璃纤维棉

玻璃纤维 目录 玻璃纤维 (1) 1、材料简介 (2) 基本介绍 (2) 特点介绍 (3) 主要成分 (4) 2、材料分类 (5) E-玻璃 (6) C-玻璃 (6) 高强玻璃纤维 (7) AR玻璃纤维 (7) A玻璃 (7) E-CR玻璃 (8) D玻璃 (8) 3、强伸性能测试 (8) 4、品种用途 (9) 无捻粗纱 (9) 无捻粗纱织物(方格布) (11) 玻璃纤维毡片 (11) 短切原丝和磨碎纤维 (13) 玻璃纤维织物 (14) 组合玻璃纤维增强材料 (16) 玻璃纤维湿法毡 (17) 玻璃纤维布 (17) 5、现状前景 (18)

玻璃纤维短切丝 玻璃纤维(英文原名为:glass fiber或fiberglass )是一种性能优异的无机非金属材料,种类繁多,优点是绝缘性好、耐热性强、抗腐蚀性好,机械强度高,但缺点是性脆,耐磨性较差。它是以玻璃球或废旧玻璃为原料经高温熔制、拉丝、络纱、织布等工艺制造成的,其单丝的直径为几个微米到二十几米个微米,相当于一根头发丝的 1/20-1/5 ,每束纤维原丝都由数百根甚至上千根单丝组成。玻璃纤维通常用作复合材料中的增强材料,电绝缘材料和绝热保温材料,电路基板等国民经济各个领域。 1、材料简介 基本介绍 玻璃一般人之观念为质硬易碎物体,并不适于作为结构用材,但如其抽成丝后,则其强度大为增加且具

玻璃纤维 有柔软性,故配合树脂赋予形状以后终于可以成为优良之结构用材。玻璃纤维随其直径变小其强度增高。 CAS NO:14808-60-7 分子结构 [1] 特点介绍 原料及其应用玻璃纤维比有机纤维耐温高,不燃,抗腐,隔热、隔音性好(特别是玻璃棉),抗拉强度高,电绝缘性好(如无碱玻璃纤维)。但性脆,耐磨性较差。玻璃纤维主要用作电绝缘

新型矿物在摩擦材料中的应用--辉绿岩及其纤维的性能与特点

新型矿物纤维在摩擦材料中的应用 --辉绿岩及其纤维的性能与特点 文懿 (清远市博尔纤维有限公司,广东清远,511533) 摘要:辉绿岩的硬度适中,高熔点使其具有很好的耐温性能,所制成的矿物纤维柔韧性高,易分散,非纤维物质含量低,是适用于制动系统的良好材料。 关键词:辉绿岩辉绿岩纤维耐温性分散非纤维物质 Applications of New Type Mineral Fibres Used in Friction Matereial ----Performances & Properties of Diabase and Its Fibres Wen Yi (Qing Yuan Boer Fibre Co.,Ltd. Qingyuan, Guangdong, 511533) Abstract: Diabase has a moderate hardness, its high melting point makes it a very good temperature tolerance performance. Mineral fibres which are made from this kind of material has excellent properties on flexility, dispersion, non-fibrous material etc. It is a favorable material for manufacturing brake systems. Keywords: Diabase Diabase Fibre Temperature Tolerance Performance Dispersion Non-fibrous Material 一、前言 石棉种类繁多,应用范围广,且性能较稳定。根据美国职业安全与健康协会(OSHA)做出的测试,每进行一次常规性的摩擦试验,刹车片就会产生数百万之多的石棉纤维散发到空气中,而且这种纤维远远小于人的头发,是肉眼无法观察到的,所以一次呼吸可能吸人成千上万的石棉纤维而人们却毫无察觉。细小的石棉纤维被吸入人体后,没有被排出体内并沉积在肺部的纤维会造成石棉肺、胸膜、皮间瘤等疾病。鉴于越来越多的论证表明长期使用石棉对人体存在危害,一些发达国家如欧洲、北美等地区自20世纪70年代起就开始逐步禁用石棉,如1972年,美国环保局颁布了有关禁止喷涂含石棉纤维的耐火涂料的条例。2001年11月10日,我国被批准加入世界贸易组织(WTO),并于30天后,即2001年12月10日起正式生效。对于一直被认为是我国入世后最容易受冲击的产业—汽车产业,在应对得当的情况下,进口汽车严重冲击国内汽车产业的情况并未出现。2003年,我国汽车产量首次超过400万辆,其中轿车产量超过200万辆,成为世界第四大汽车生产国。随着国际合作机会与市场贸易机会的增多,无石棉材料代替石棉材料是大势所趋。只有各厂

玻璃钢力学性能

玻璃钢的基本性能——力学性能 玻璃钢的力学性能突出的一点是比强度高,这是金属材料和其它材料无法相比的。 这里,我们要提一下强度的概念。强度通常是指单位面积所能承受的最大荷载,超过这个荷载,材料就破坏了。强度又分为拉伸强度、压缩强度、弯曲强度和剪切强度。例如说聚酯玻璃钢抗拉强度290MP a,是指每平方厘米截面可承受2900Kg的拉力。 玻璃钢轻质高强的性能,来源于较低的树脂密度(浇铸体密度左右)以及玻璃纤维的高抗伸强度(普通钢材的5倍以上)。玻璃钢的密度随着树脂含量的不同而有所不同。从高树脂含量的玻璃毡制品到低树脂含量的玻璃钢缠绕制品(密度),玻璃钢的密度只有普碳钢的1/4-1/5,比铝还轻1/3左右。 玻璃经高温熔融、快速拉成细丝时,由于比表面积增大,玻璃纤维内部及表面就难以存在大缺陷,所以玻璃纤维的强度就非常高,常用的是无碱铝硼硅酸盐纤维,其一般性能如表下所示。 性能:密度(g/cm3 ) 性能数据:性能:折射率(25℃) 折射率(25℃) 性能数据:性能:拉伸强度(MPa)) 性能数据: 100-300 性能:介电常数 102赫兹 性能数据:赫兹 性能:拉伸弹性模量(MPa) 性能数据: 7000 性能:介电常数 106赫兹 性能数据: 性能:断裂时的伸长率(% ) 性能数据: 性能:介电常数 1010赫兹 性能数据: 性能性能数据性能性能数据 泊松比(块玻璃)正切损失 102赫兹 线膨胀系数℃-1 *10-4 正切损失 1010赫兹 比热〔KJ/(Kg/.K)〕 体积电阻(Ω·cm ) 体积电阻(Ω·cm ) 1011-1013 导热系数〔W/m·K)〕 声速m/s 声速m/s 5500

玻璃纤维的成分及性能

◆玻璃纤维的成分及性能 生产玻璃纤维用的玻璃不同于其它玻璃制品的玻璃。目前国际上已经商品化的纤维用的玻璃成分如下: 1、E-玻璃亦称无碱玻璃,系一种硼硅酸盐玻璃。目前是应用最广泛的一种玻璃纤维用玻璃成分,具有良好的电气绝缘性及机械性能,广泛用于生产电绝缘用玻璃纤维,也大量用于生产玻璃钢用玻璃纤维,它的缺点是易被无机酸侵蚀,故不适于用在酸性环境。 2、C-玻璃亦称中碱玻璃,其特点是耐化学性特别是耐酸性优于无碱玻璃,但电气性能差,机械强度低于无碱玻璃纤维10%~20%,通常国外的中碱玻璃纤维含一定数量的三氧化二硼,而我国的中碱玻璃纤维则完全不含硼。在国外,中碱玻璃纤维只是用于生产耐腐蚀的玻璃纤维产品,如用于生产玻璃纤维表面毡等,也用于增强沥青屋面材料,但在我国中碱玻璃纤维占据玻璃纤维产量的一大半(60%),广泛用于玻璃钢的增强以及过滤织物,包扎织物等的生产,因为其人格低于无碱玻璃纤维而有较强的竞争力。 3、高强玻璃纤维其特点是高强度、高模量,它的单纤维抗拉强度为2800MPa,比无碱玻纤抗拉强度高25%左右,弹性模量86000MPa,比E-玻璃纤维的强度高。用它们生产的玻璃钢制品多用于军工、空间、防弹盔甲及运动器械。但是由于价格昂贵,目前在民用方面还不能得到推广,全世界产量也就几千吨左右。 4、AR玻璃纤维亦称耐碱玻璃纤维,主要是为了增强水泥而研制的。 耐碱玻璃纤维,又称AR玻璃纤维,英文:alKali -resistant glass fibre,主要用于玻璃纤维增强(水泥)混凝土(简称GRC)的肋筋材料,是100%无机纤维,在非承重的水泥构件中是钢材和石棉的理想替代品。它的特点是耐碱性好,能有效抵抗水泥中高碱物质的侵蚀,握裹力强,弹性模量、抗冲击、抗拉、抗弯强度极高,不燃、抗冻、耐温度、湿度变化能力强,抗裂、抗渗性能卓越,具有可设计性强,易成型等特点,是广泛应用在高性能增强(水泥)混凝土中的一种新型的绿色环保型增强材料。 5、A玻璃亦称高碱玻璃,是一种典型的钠硅酸盐玻璃,因耐水性很差,很少用于生产玻璃纤维。 6、E-CR玻璃是一种改进的无硼无碱玻璃,用于生产耐酸耐水性好的玻璃纤维,其耐水性比无碱玻纤改善7~8倍,耐酸性比中碱玻纤也优越不少,是专为地下管道、贮罐等开发的新品种。 7、D玻璃亦称低介电玻璃,用于生产介电强度好的低介电玻璃纤维。 除了以上的玻璃纤维成分以外,近年来还出现一种新的无碱玻璃纤维,它完全不含硼,从而减轻环境污染,但其电绝缘性能及机械性能都与传统的E玻璃相似。另外还有一种双玻璃成分的玻

相关文档
最新文档