(答案版)分子生物学考试题目

(答案版)分子生物学考试题目
(答案版)分子生物学考试题目

分子考试题目

张勇

1.用图解说明宏基因组学的研究流程。

答:研究流程图如下:

2.功能性宏基因组学筛选目的基因时为了实现高通量、自动化操作,你知道有哪些技术?

答:为了实现高通量、自动化操作,有如下技术:

①用96孔和384孔规格的平板

研究方法包括菌落挑选机器人、流水线操作处理和微型检测器;

②流式细胞分选术:快速分选细胞,得到所需要的细胞;

③微效价平板:增加实验的灵敏性,需要待测物更少;

④微流体方法

a包括蛋白质检测,微RNA表达构建、测序和细胞培养。

b实验的灵敏性增加,需要的检测物量少,减少实验的周期,节约实验成本。

陈勇:

1.研究RNA定位的技术要哪两种?对两种技术简要进行比较

已经知道的有两种技术,一种是FISH;一种是荧光RNA结合蛋白间接标记技术。FISH就是用荧光标记的核酸探针在染色体上进行的杂交方法,以确定与探针互补的核酸序列在染色体上的位置和分布。 FISH不需要对RNA进行修饰,但是由于需要细胞固定,这样就不能观察到RNA的动力学情况。但使用诸如GFP或其他荧光蛋白作为RNA结合蛋白可对活细胞的RNAs进行观察。

2.什么是RNA定位?RNA定位的功能可能有哪些?

RNA定位就是指RNA特异定位在细胞不同区域的过程。尤其信使核糖核酸(mRNA)的定位对生长和发育是非常重要的。细胞质中RNA定位起始于细胞核,在核中被特异RNA结合蛋白识别,生成核糖核蛋白复合体,然后输出到细胞质。

生物利用RNA定位可以调控基因表达和RNAs特定细胞类型的遗传,也可以调控降解过程。

唐鸿倩:

1.海藻产能与陆地植物比有何优势?

(从土地,水,粮食价格,污染,生物量等方面说)

2.为什么各国都投入巨资开发生物能源?

(从资源,污染,环保等方面答)

王美玲:

1、什么叫做荧光原位杂交?

荧光原位杂交:用荧光标记的核酸探针在染色体上进行的杂交方法,以确定与探针互补的核酸序列在染色体上的位置和分布。

2、单分子信号技术的优缺点?

优点:降低了背景荧光;单分子荧光标记;图像分析方法简单。

缺点:需要显微注射,对细胞状态造成干扰。

张佩:

1、简述蛋白质组学的定义,并简要说明蛋白质的分离技术。

蛋白质组学(Proteomics)是从整体水平上研究细胞内蛋白质的组成、活动规律及蛋白质与蛋白质的相互作用, 是功能基因组学时代一门新的学科。

样品制备技术、双向凝胶电泳、高效液相层析、毛细管电泳、亲和层析。

2、鸟枪法(Shotgun)是基于质谱的蛋白质组学的典型实验策略,简述其流程。一般经过样品提取、蛋白质酶切(如胰蛋白酶)、色谱分离、肽段电离、质量分析和离子检测等步骤,得到包括一级图谱(MS spectrum)和二级图谱(MS/MS)在内的实验数据,然后利用数据库搜索等方法解析图谱,鉴定出样品中所含有的肽段和蛋白质。

袁海华:

1.什么是激光捕获技术?

答:激光捕获技术是利用光辐射力来捕捉、移动和操纵微粒的先进技术。

2.什么是拉曼光镊?

答:拉曼光镊就是拉曼光谱结合光镊的光学技术,也被称为拉曼光谱结合光阱(RSOT)技术或激光拉曼光镊子系统。它可以用光镊俘获悬浮液中的样品,这种光学固定技术没有任何机械接触,不会引起细胞表面效应,也不需要添加任何化学药剂进行固定,使得活细胞可进行长时间的拉曼光谱探测。

李伟:

1.名词解释什么叫生物地质化学循环?

生物地质化学循环(Biogeochemical Cycle,又称作生态系统的物质循环)在生态学上指的是化学元素或分子在生态系统中划分的生物群落和无机环境之间相互循环的过程。这使得相关的元素得以循环,虽然实际上在某些循环中化学元素被长期积聚在同一个地方而不发生移动。

2. 环境微生物学研究的主要内容

环境微生物学(Environmental Microbiology)是重点研究污染环境中的微生物学,是环境科学中的一个重要分支,是20世纪60年代末兴起的一门边缘学科,它

主要以微生物学本学科的理论与技术为基础,研究有关环境现象,环境质量及环境问题,与其他学科如土壤微生物学,水及污水处理微生物学,环境化学,环境地学,环境工程学等学科互相影响,互相渗透,互为补充。环境微生物学研究自然环境中的微生物群落,结构,功能与动态;研究微生物对不同环境中的物质转化以及能量变迁的作用与机理,进而考察其对环境质量的影响。

卢欣:

1. 什么是metagenomics?

宏基因组学( metagenomics) 就是一种以环境样中的微生物群体基因组为研究对象, 以功能基因筛选和测序分析为研究手段, 以微生物多样性、种群结构、进化关系、功能活性、相互协作关系及与环境之间的关系为研究目的的新的微生物研究方法。

2. 新一代测序技术的弊端?

1. 新一代测序技术测序长度明显低于传统测序技

术的测序长度。

2. 测序准确率比传统方法低10倍。

3. 测序样品各种微生物基因组DNA组成未知。

4. 测序成本依然很高

张莹:

1.什么是单细胞蛋白?它具有哪些优点?

答案:是指利用各种基质大规模培养细菌、酵母菌、霉菌、微藻、光合细菌等而获得的微生物蛋白。单细胞蛋白具有以下优点:第一,生产效率高;第二,生产原料来源广;第三,可以工业化生产。

2.用于生产单细胞蛋白的微生物通常具备哪些条件?单细胞蛋白分析的方法有哪些?(至少列举三例)

答案:所生产的蛋白质等营养物质含量高,对人体无致病作用,味道好并且易消化吸收,对培养条件要求简单,生长繁殖迅速等。分析方法:流式细胞术,质谱法,免疫分析法,基因探针,化学探针等。

庞思伟:

1. 肠道微生物菌群代谢交换的分类

细菌之间的代谢交换;同种之间的代谢交换;宿主与细菌之间的代谢交换

2. 根据第一题的分类,分别分析下肠道微生物代谢交换的图谱

①细菌之间的代谢中克雷伯氏肺炎杆菌分泌的MCCE 492和大肠杆菌肠菌产生的肠菌素铁载体具有相似性,是其的前体。

②同种之间的代谢中肠道微生物分泌的高丝亮氨酸具有帮助大肠杆菌肠菌生长和促进其分泌肠菌素的作用。

③宿主与细菌之间的代谢中,产生的脂质A类似物,有抑制克雷伯氏肺炎杆菌分泌的MCCE 492和保护上皮细胞的作用。

汪苹

1.水平基因转移是什么?蓝藻与噬藻体间的基因转移是怎样进行的?

水平基因转移,又称侧向基因转移,是指在差异生物个体之间,或单个细胞内部细胞器之间所进行的遗传物质的交流,差异生物个体可以是同种但含有不同的遗传信息的生物个体,,单个细胞内部细胞器主要指的是叶绿体线粒体及细胞核等。

噬藻体与宿主蓝藻的新陈代谢和生命循环有密切的联系,对生态环境和蓝藻有重要的影响溶源性或非裂解性噬藻体感染蓝藻后,其基因将与蓝藻的基因组发生整合,并随着蓝藻细胞一起进行复制,在选择压力作用下,噬藻体通过与蓝藻细胞基因组进行整合的方式与蓝藻基因组发生持续的遗传物质交换,进行基因转移,从而获得了更大的遗传差异和宿主抗性来逃避蓝藻的免疫机制统,这样就促进了噬藻体和蓝藻的协同进化,而且这种基因传递对生物种群多样性以及遗传多样性的研究有重要意义当噬藻体逃避蓝藻的免疫机制,感染蓝藻后,就有可能导致蓝藻死亡。

2.什么是噬藻体?噬藻体在生物进化上的作用?

噬藻体是蓝藻的专一性病毒,大量的噬藻体能在不同的时间和空间范围内感染蓝藻,噬藻体是一种双链 DNA 病毒,属于三种形态界定的病毒家族: 短尾病毒科,肌尾病毒科和长尾病毒科。

第二问同第一题的第二问

路群山:

1.磷酸化蛋白在细胞生命活动中的重要作用,使其成为蛋白质组学研究的热点。在研究磷酸化蛋白过程中,为什么要首先对磷蛋白进行富集?

磷酸化蛋白在细胞生命活动中的重作用,使其成为蛋白质组学研究的热点。但是磷酸化蛋白自身的一些特点,使得磷酸化蛋白质分析仍是一件很具挑战性的工作。首先, 磷酸化蛋白质含量很低, 在特定刺激下仅有少部分蛋白发生磷酸化; 其次,磷酸化的可变性, 使得不同条件下蛋白存在不同的磷酸化形式;再次,现有的分析方法缺乏对磷酸化位点的动态分析,使得部分位点难以鉴定。最后,磷酸酶的存在使得在样品制备过程产生脱磷酸化现象。因此对磷酸化蛋白或者磷酸化肽段进行富集, 提高磷酸肽的相对含量, 成为磷酸化蛋白组学研究中的重要内容。

2.阳离子交换色谱法分离富集磷酸化肽段的原理?

阳离子交换色谱法是基于磷酸化肽段与非磷酸化肽段在酸性溶液中所带电荷的不同达到分离的目的。在 p H = 2.7时,胰蛋白酶的酶切产物大部分带+2正电荷, 而磷酸化肽段由于含有磷酸基团,带- 1电荷,所以磷酸化肽段在酸性溶液中带+ 1电荷。这样在强阳离子交换色谱中,单电荷肽段比多电荷肽段流出时间早。因此,磷酸化肽段便能从多电荷复杂的非磷酸肽中分离富集。

梅洪娟:

1.什么是降维技术?降维技术在微生物多态性研究中的意义是什么?

将数据降到低维空间,然后利用得到的低维特征进行既定的学习或者挖掘任务,这种技术即为降维技术。

有效的数据降维技术能够探索出原始数据的内在结构和联系,不仅可以消除数据间的冗余,以简化数据,提高计算效率,还能够大大改善数据的可理解性,提高学习算法的精度。对于微生物多态性研究中日益用到的高通量测序而言,降维技术无疑可以提高运算效率,发现宏基因组研究中的多种微生物之间的关系,使微生物多态性的研究更加快速有效地发展。

2.在微生物多态性研究中主要有哪些技术?最主要的技术在微生物多态性研究中的作用是什么?

答案同上

乔璟:

题1:试比较原核生物与真核生物基因表达调控特点的异同

原核基因表达调控特点:⑴RNA聚合酶只有一种,其σ因子决定RNA聚合酶识别特异性;⑵操纵子模型的普遍性;⑶阻遏蛋白与阻遏机制的普遍性(负性调节占主导);⑷转录和翻译偶联进行;⑸转录后修饰、加工过程简单;⑹转录起始是基因表达调控的关键环节。

真核基因表达调控特点:⑴RNA聚合酶有三种,分别负责三种RNA转录,每种RNA聚合酶由约10个亚基组成;⑵活性染色质结构发生变化;⑶正性调节占主导;⑷转录和翻译分隔进行;⑸转录后修饰、加工过程较复杂;⑹转录起始是基因表达调控的关键环节。

题2:

原核生物中,基因表达的协调主要通过哪些方式?原核生物中是否存在类似与真核的调节基因表达的酶类?

基因表达的协调对于有机体适应环境非常重要,在原核生物中,基因的及时表达主要通过两组份系统(TCSs)来调节,包括组氨酸激酶传感器(HKs)和同源DNA结合反应调节子(RRs).

近年来的研究发现,原核编码的信号酶普遍在真核生物中发现,包括类似ser/thr激酶(STKs)及磷酸酯酶(STPs)等主要存在真核生物中的酶类,尽管在原核生物中, STKs及STPs并不是DNA结合蛋白,但其通过对各种靶目标的翻译后的修饰来调控原核生物的基因表达,包括两组份体系中的RRs或者原核生物转录翻译中的重要组分。虽然有一些例子可以证明这一现象,但关于 STKs及STPs在原核生物中的调节过程及机制并十分不清楚。

唐伟

1、可降解聚合物也包括两种类型

:a)本身具有可降解性的聚合物,如淀粉、纤维素和几丁质等,能酶促降解其化学结构;b)需经过光氧化或热氧化的可降解性聚合物,通常包含原氧化剂。

2、微生物降解塑料的操作过程

:a)在生物降解前,运用光或热氧化;b)添加能促进生物膜形成的非离子表面活性剂而增加细胞表面的疏水性;c)筛选、分离高产氧化酶的菌株;d)诱导胞内和胞外氧化酶的形成

谷洋洋

1、叙述荧光原位杂交技术(FISH)的基本原理并举例加以说明?

答:荧光原位杂交技术是一种重要的非放射性原位杂交技术。它的基本原理是:如果被检测的染色体或DNA纤维切片上的靶DNA与所用的核酸探针是同源互补的,二者经变性-退火-复性,即可形成靶DNA与核酸探针的杂交体。将核酸探针的某一种核苷酸标记上报告分子如生物素、地高辛,可利用该报告分子与荧光素标记的特异亲和素之间的免疫化学反应,经荧光检测体系在镜下对待测DNA进行定性、定量或相对定位分析。

2、举例说明荧光原位杂交技术(FISH)的优势和不足分别是什么?

答:1、荧光试剂和探针经济、安全;

2、探针稳定,一次标记后可在两年内使用;

3、实验周期短、能迅速得到结果、特异性好、定位准确;

4、FISH可定位长度在1kb的DNA序列,其灵敏度与放射性探针相当;

5、多色FISH通过在同一个核中显示不同的颜色可同时检测多种序列;

6、既可以在玻片上显示中期染色体数量或结构的变化,也可以在悬液中显示间期染色体DNA的结构。

缺点:不能达到100%杂交,特别是在应用较短的cDNA探针时效率明显下降。

余飞:

1.细胞内环二鸟甘酸c-di-GMP的产生受哪两条途径调控。

细胞内环二鸟甘酸c-di-GMP的产生,受二鸟苷酸环化酶(diguanylate cyclase,DGC)合成和磷酸二酯酶(phosphodiesterase,PDE)降解两条途径调控。

2.c-di-GMP的分子结构中,两个鸟苷酸的核糖单位的连接方式是什么?

c-di-GMP的分子结构,两个鸟苷酸的核糖单位通过两个分子间的3’→5’磷酸二酯键连接。

王泽焕:

1、OMP的主要跨膜转运途径是什么?请简述该途径过程?

参考要点:新生肽链的信号肽被高度保守的SRP 特异性识别。成熟肽链中带有芳香性的短链及带有正电荷的残基与伴侣分子SecB 结合,形成的三元复合物将底物引导至细胞膜后, SRP 与它的膜受体FtsY结合, SecB 则与细胞膜上的SecA二聚体特异性结合。SecA 与SecB 结合以后, 构象的改变将起始蛋白转运过程。转运起始后,蛋白质前体通过SecYEG 组成的通道进行转运,SecA 在水解AT P 的同时还经历着插入和脱离细胞内膜 SecYEG通道的循环,这样每一次循环可推动20多个氨基酸的连续跨膜运动,当转运进行到已经有部分成熟肽链被转运到质膜以外时,位于周质的信号肽酶就会将信号肽水解掉。

2、我们知道OMP的生物合成过程中,跨膜转运是一个非常重要的过程,那么在发生该过程中能量的来源及如何运用能量的?

参考要点:跨膜转运的整个过程中,能量来自ATP 和跨膜质子梯度(PMF) 。被转运的外膜蛋白质分子越长,结构越复杂,所需要的ATP 越多。PMF不能单独起始转运反应,在转运的起始阶段必须依赖SecA 的ATP 酶活性。然而,在转运过程中PMF可以将转运效率提高4~10倍,并降低系统对ATP 的需要。若一个分泌蛋白已经被转运60% ~80 % ,PMF 可以单独继续完成它的转运。

郑超:

1.细胞传感器的特点:

(1)高选择性。生物传感器是由选择性好的主体材料构成的分子一识别元件,因此,一般不需进行样品的预处理。测定一般不需另加其它试剂。(2)体积小、可以实现连续在位监测。(3)响应快、样品用量少,且由于敏感材料是固定化的,

可以反复多次使用。(4)传感器连同测定仪的成本远低于大型的分析仪器,因而便于推广普及。

2.细胞阵列技术的优缺点:

优点(1)一般不需进行样品的预处理。测定时一般不需另加其它试剂。如着色,杂交,或者细胞破碎。

(2)可以高通量样品分析。

(3)设想微型化使仪表设施对于实验室和室外都适用,如毒性评价和突变检测。

缺点:(1)细胞阵列技术源于在每一个小尺寸的斑点细胞数量有限的报告细胞,需要使用高度敏感的和复杂的信号检测装置。

(2)该技术在细胞固定化和保存方面有挑战。

张扬龙

谈谈对海洋生物技术的理解。

答:海洋资源有着非常丰富的多样性和特殊性,在海洋生物资源的研究开发过程中产生了一些生物技术,广泛应用于医疗、工业和环境等各种领域。近年来利用这些海洋生物技术开发了许多产品用于疾病治疗和作为分析工具。其中一些小分子和酶对一些一些分析技术是非常重要的。同样,海洋生物资源的开发形成这些新的技术也大将大促进了生物学其它领域的发展。

举例说明目前有哪些海洋生物技术,分别有什么作用。

答:1.热稳定性TaqDNA聚合酶的应用大大推动了PCR的发展,同样通过PCR技术和一些高通量测序技术又可以对众多未知海洋微生物进行分离和研究。

2.绿色荧光蛋白(GFP)首次从水母中发现,经过一系列改造,现作为一种生物分子标记、报告基因,可以研究细胞内分子的动态变化,成为当代生物科学最重要的分析工具之一。

朱烁

问题:1.对于在TCS–sRNA系统中,为什么小RNA作为调节子而不是通常而言的调节蛋白目前仍在争议之中,你的看法是什么?

2. sRNA 在细菌中所起到的作用有哪些?

参考答案:

第一题,无固定答案

小RNA能直接通过碱基互补作用于mRNA,可以更快速定位响应胁迫。

在进化历程中,在蛋白被作为调节子之前,可能是这些小RNA作为调节子,随着进化,小RNA的调节功能部分被调节蛋白所取代。

第二题,

从结构调节到催化作用影响各种各样的加工过程如质粒复制噬菌体发育细菌毒性压力反应发育

控制 RNA 剪切和修饰 mRNA 稳定性及蛋白质降解等。

李军

1.比较新一代宏基因组学测序技术优缺点

2.新一代测序技术和生物信息学的瓶颈是什么?

陈春桂:

1、比较高密度微阵列、RNA-Seq的优缺点

2.原核生物转录组研究遇到的主要问题有哪些?

梁彬

1.益生元与双歧因子各是什么有什么关系?

2.概述益生元的种类及其作用

廖绪标

1、非生物降解包括哪些过程,生物降解聚合物包括哪两类聚合物?

2、为什么塑料聚合物的表面疏水性越高,越有利于形成生物膜?

1、非生物降解包括哪些过程,生物降解聚合物包括哪两类聚合物?

非生物降解包括两个过程:物理和化学过程。这两个过程都能促进聚合物分子内修饰,从而改变聚合物的结构,进一步得到降解。

生物降解聚合物主要有两类:1、自身能降解的,自身的化学结构能引导酶促降解的聚合物;2、暴露在紫外线或热源下,能分别进行光氧化和热氧化的聚合物。

2、为什么塑料聚合物的表面疏水性越高,越有利于形成生物膜?

塑料表面生物膜的形成是塑料降解细菌生长的最佳模式。

塑料聚合物诸如PE和PS都是疏水性的,在其表面形成稳定的生物膜需要细菌表面也是疏水性的。细菌表面的疏水性与碳饥饿是关联的,细菌表面的疏水性的改变会对碳饥饿产生应答,通过细菌粘附碳氢化合物测定方法和盐聚集试验这个方法能够证实红球菌菌株C208细胞表面的高疏水性,菌株C208是比其他菌株对PE的降解更高效。在碳源缺乏的培养基中,细菌表面疏水性越高,越容易形成生物菌膜,从而增强疏水相互作用和菌膜的扩张,因此,如果聚合物的表面疏水性越高,越容易吸附到表面疏水性高的细菌,从而形成菌膜,进而促进聚合物的降解。

黄宁宁

研究单细胞生长动力学的方法有哪些?

RNAi在单细胞生长动力学研究中的应用?

王克

单细胞拉曼光谱的优缺点有哪些?

什么是单细胞拉曼光谱,可以应用哪些领域?

答案:单细胞拉曼光谱(SCRS)是一种非侵入性和无需标注的技术,允许对个别活细胞在体内和多个参数的分析。单个细胞拉曼光谱通常包含超过1000拉曼带提供细胞的丰富的和内在信息(如核酸,蛋白质、糖类和脂肪),反映出细胞的基因型、表现型和生理状态。一种拉曼光谱作为单个细胞的分子“指纹”,使它有可能区分不同的细胞包括细菌,原生生物和动物的细胞在此之前没有认识这些细

胞。然而,一个主要的缺点SCRS事实是自发的拉曼信号是自然弱;本文讨论了最近的研究进展显著增强和改善自发的拉曼光谱的信号,包括共振拉曼光谱(RRS)、相偶联的反拉曼光谱(CARS),激发了拉曼光谱(SRS)和表面增强拉曼散射(SERS)。本文着重论述了生物技术的发展史和SCRS相关的应用包括拉曼激活细胞的分拣(RACS)和拉曼成像和图像。

李子龙

lncRNAs调节染色质修饰的可能机制

以顺式翻译的方式接近或调节染色质。

调节染色质成环。

与染色质相互作用形成三螺旋。

锚定在染色质上。

染色质修饰复合物活性的变构激活或抑制。

列举三种调节染色质结构的ncRNA,并简要说明其调节方式。

HOTAIR(Hox anti-sense intergenic RNA):HOTAIR通过招募染色质修饰复合物到基因组的特异位点,抑制染色质的转录。HOTAIR具有能够同时结合PRC2和LSD1的支架作用。PRC2能够甲基化H2K27,LSD1能够去甲基化H3K4。

ANRIL(antisense nocoding RNA in the INK4 locus):ANRIL通过招募PRC1和PRC2抑制INK4b/ARF/INK4a位点的转录。此机制与ANRIL的一个转录产物有关,此产物能够锚定到一个能够招募PRC1和PRC2的Pol II延长复合物上。HOTTIP(HOXA transcript at the distal tip):HOTTIP调节HOXA位点一端的长序列成环,并通过H3K4甲基化的组蛋白修饰物WDR5-MLL来激活基因的转录。宋燕

1、什么是基因芯片?基因芯片技术的原理及流程包括哪些?

(1)该技术系指将大量探针分子固定于支持物上后与带荧光标记的DNA样品分子进行杂交,通过检测每个探针分子的杂交信号强度进而获取样品分子的数量和序列信息。

(2)原理:通过杂交检测信息

(3)流程:

1、芯片制备--将oligo探针按顺序排列在载体上。

2、样品制备--将样品进行提取、扩增,获取其中的DNA、RNA,然后用荧光标记,以提高检测的灵敏度和使用者的安全性。

3、杂交反应--荧光标记的样品与芯片上的探针进行的反应产生一系列信息的过程。选择合适的反应条件能使生物分子间反应处于最佳状况中,减少生物分子之间的错配率。

4、信号检测和结果分析--杂交反应后的芯片上各个反应点的荧光位置、荧光强弱经过芯片扫描仪和相关软件可以分析图像,将荧光转换成数据,即可以获得有关生物信息。

2、什么是功能基因芯片(FGAs)?其应用有哪些?

(1)Functional gene arrays (FGAs)是一种特殊类型的微阵列,其包含涉及微生物功能过程的关键基因的探针,功能过程如:关于碳、氮、硫、磷和金属的生物地球化学,毒性和抗菌性,环境污染物的生物降解和压力应激反应。

(2)FGAs作为一种特异性、敏感性和定量性工具用于微生物群体的快速分析,微生物群体来源于不同的生境,如水、土壤、极端环境、生物反应器和人类群体。应用:1、新功能基因、新功能蛋白的挖掘。

2、环境样品基因表达谱芯片的建立和差异表达基因的寻找。

3、环境新监测技术的开发。

4、气候对环境微生物群落的影响研究。

张志标

1纤维素酶系包括哪几种酶,各种酶的作用是什么?

纤维素酶是水解纤维素及其衍生物生成葡萄糖的一组酶的总称,是由多种水解酶组成的一个复杂的酶系。可分为三类内切β-1,4葡聚糖酶(可水解羧甲基纤维素和羟甲基纤维素)、外切β-1,4葡聚糖酶(可水解无定形纤维素、和微晶纤维素)

β-1,4葡萄糖苷酶(水解纤维二糖、纤维寡糖等,产生单个葡萄糖分子。)

2纤维素酶的分子结构是怎样的?

大多数纤维素酶分子是由球状的催化结构域通过一个富含脯氨酸的连接桥(Linker)和没有催化作用的纤维素结合结构域三部分组成。只有少数微生物和高等植物产生的纤维素酶不具有这类结构域.

甄云梅

1、信息生物学方法为什么无法精确的预测金属蛋白的结合特异性?

2、结构蛋白方法对于金属蛋白的结构测定有哪些缺点?

李海燕

1、什么是群体感应?

2、相应群体感应的酶主要有哪两种?分别有什么作用?

黄江:

1.对phenotypic microarrays(表型芯片)的理解

2.phenotypic microarrays(表型芯片)在实验中的应用

顾晓伟:

1.反复转录的解释及发现历程?

2.简要叙述控制反复转录的机制及转录本命运。

刘栓栓:

1:简要分析系统生物学的技术平台和方法。

技术平台:基因组学、蛋白质组学、代谢组学、相互作用组学、表型组学。

研究方法:有自上而下和自下而上的研究方法。

行展望。

医学分子生物学期末试题

一、名词解释 1、基因组:细胞或生物体的一套完整单倍体遗传物质的总和。其结构主要指不同的基因功能区域在核酸分子中的分布和排列情况,功能是贮存和表达遗传信息。(P20) 2、胸腺嘧啶二聚体:在某种理化因素作用下,使得DNA分子中同一条链两相邻胸腺嘧啶碱基(T)间以共价键连接形成胸腺嘧啶二聚体结构(TT),或称为环丁烷型嘧啶二聚体。(P40) 3、操纵子:是原核生物基因组构的基本单位,也是基本转录单位,至少由启动子、调节这些结构基因表达的操纵元件、几个串联的结构基因区和转录终止信号组成。(P25) 4、点突变:是突变的一种类型,会使单一个碱基核苷酸替换成另一种核苷酸,一般也包括只有作用于单一碱基对的插入或删除,点突变可依发生位置对基因功能的影响而分为无义突变、错义突变和同义突变等。(P129) 5、RNA干扰:是指在进化过程中高度保守的,由双链RNA诱发的、同源mRNA 高效特异性降解的现象。 由短双链RNA诱导的同源RNA降解的过程。(P244) 6、PCR(聚合酶链式反应):利用DNA聚合酶在体外合成DNA的方法,基本步骤包括变性→退火→延伸。(P228) 7、单拷贝序列(低度重复序列):在单倍体基因组中只出现一次或数次,大多数为蛋白质编码的基因属于这类,其两侧往往有散在分布的重复序列。(P23) 8、移码突变:在正常DNA分子中,碱基缺失或增加非3的倍数,造成这位置之后的一系列编码发生移位错误的改变,这种现象称为移码突变。(P130) 9、管家基因:有些基因参与生命的全过程,因此必须在一个生物体的所有细胞

中持续地表达,这样的基因称为管家基 因。(P75) 10、细胞癌基因:存在于正常的细胞基因组中,与病毒癌基因有同源序列,具有促进正常细胞生长、增值、分化和发育等生理功能,在正常细胞内未激活的细胞癌基因叫原癌基因。若受到某些条件激活时,结构及表达发生异常,能使细胞发生恶性转化。(P141)11、基因克隆:将一个生物体的遗传信息通过无性繁殖转入另一个生物体的过程。(P233) 12、抑癌基因:一类编码产物起抑制细胞增殖信号传导、负性调节细胞周期的作用,从而抑制细胞增殖和抑制肿瘤生成的基因。(P140) 二、问答题 1、简述乳糖操纵子的正负调控机制(P77) ⑴乳糖操纵子包含3个结构基因(编码β—半乳糖、β—半乳糖苷通透酶和转乙酰基酶)、3个调控元件(启动子、操纵基因和CAP结合位点)和1个调节基因(编码阻遏蛋白)。 ⑵阻遏蛋白的负调控:无乳糖时,阻遏蛋白结合操纵基因,妨碍RNA聚合酶结合启动子,抑制结构基因转录。有乳糖时,生成别位乳糖(诱导剂)结合阻遏蛋白,不能封闭操纵基因,结构基因可以转录。 ⑶cAMP—CAP复合物的正调控:无葡萄糖时,cAMP浓度高,形成的cAMP—CAP复合物结合于CAP结合位点,增强启动子转录活性。有葡萄糖时,cAMP浓度低,cAMP —CAP复合物形成受阻,影响转录活性。 ⑷正、负调控机制相辅相成。cAMP—CAP 复合物是转录必需的,同时阻遏蛋白进一步控制转录启动。综上,乳糖操纵子最强的表达条件是有乳糖而无葡萄糖。 2、简述质粒的基本特征(P25) ①是细菌细胞内一种自我复制的环状双链DNA分子,能稳定独立存在于染色体外,并传递到子代,不整合到宿主染色体DNA 上; ②只有在宿主细胞内才能完成自己的复制,一旦离开宿主就无法复制和扩增; ③携带遗传信息,赋予细菌特定的遗传性状,如耐药质粒有耐药基因; ④质粒在宿主菌中具有不相容性; ⑤是基因工程中常用的载体。 3、简述基因克隆的基本步骤(P233)

分子生物学复习题(有详细标准答案)

分子生物学复习题(有详细答案)

————————————————————————————————作者:————————————————————————————————日期:

绪论 思考题:(P9) 1.从广义和狭义上写出分子生物学的定义? 广义上讲的分子生物学包括对蛋白质和核酸等生物大分子结构与功能的研究,以及从分子水平上阐明生命的现象和生物学规律。 狭义的概念,即将分子生物学的范畴偏重于核酸(基因)的分子生物学,主要研究基因或DNA结构与功能、复制、转录、表达和调节控制等过程。其中也涉及与这些过程相关的蛋白质和酶的结构与功能的研究。 2、现代分子生物学研究的主要内容有哪几个方面?什么是反向生物学?什么是 后基因组时代? 研究内容: DNA的复制、转录和翻译;基因表达调控的研究;DNA重组技术和结构分子生物学。 反向生物学:是指利用重组DNA技术和离体定向诱变的方法研究已知结构的基因相应的功能,在体外使基因突变,再导入体内,检测突变的遗传效应,即以表型来探索基因结构。 后基因组时代:研究细胞全部基因的表达图式和全部蛋白质图式,人类基因组研究由结构向功能转移。 3、写出三个分子生物写学展的主要大事件(年代、发明者、简要内容) 1953年Watson和Click发表了“脱氧核糖核苷酸的结构”的著名论文,提出了DNA的双螺旋结构模型。 1972~1973年,重组DNA时代的到来。H.Boyer和P.Berg等发展了重组DNA 技术,并完成了第一个细菌基因的克隆,开创了基因工程新纪元。 1990~2003年美、日、英、法、俄、中六国完成人类基因组计划。解读人类遗传密码。 4、21世纪分子生物学的发展趋势是怎样的? 随着基因组计划的完成,人类已经掌握了模式生物的所有遗传密码。又迎来了后基因组时代,人类基因组的研究重点由结构向功能转移。相关学说理论相应诞生,如功能基因组学、蛋白质组学和生物信息学。生命科学又进入了一个全新的时代。 第四章 思考题:(P130) 1、基因的概念如何?基因的研究分为几个发展阶段? 概念:基因是原核、真核生物以及病毒的DNA和RNA分子中具有遗传效应的核苷酸序列,是遗传的基本单位和突变单位以及控制形状的功能单位。 发展阶段:○120世纪50年代以前,主要从细胞的染色体水平上进行研究,属于基因的染色体遗传学阶段。 ○220世纪50年代以后,主要从DNA大分子水平上进行研究,属于分

关于分子生物学期末考试题目及答案

分子生物学复习提纲 一.名词解释 (1)Ori :原核生物基因质粒的复制起始位点,是四个高度保守的19bp组成的正向重复序列,只有ori能被宿主细胞复制蛋白质识别的质粒才能在该种细胞中复制。 ARS:自主复制序列,是真核生物DNA复制的起点,包括数个复制起始必须的保守区。不同的ARS序列的共同特征是一个被称为A区的11bp的保守序列。(2)Promoter:启动子,与基因表达启动有关的顺式作用元件,是结构基因的重要成分,它是位于转录起始位点5’端上游区大约100~200bp以内的具有独立功能的DNA序列,能活化RNA 聚合酶,使之与模板DNA准确地相结合并具有转录起始的特异性。 (3)ρ-independent termination不依赖ρ因子的终止,指在不依赖ρ因子的终止反应中,没有任何其他因子的参与,核心酶也能在某些位点终止转录。(强终止子)(4)SD sequence:SD序列(核糖体小亚基识别位点),存在于原核生物起始密码AUG上游7~12个核苷酸处的一种4~7个核苷酸的保守片段,它与16SrRNA3’端反向互补,所以可以将mRNA的AUG起始密码子置于核糖体的适当位置以便起始翻译作用。 Kozak sequence:存在于真核生物mRNA的一段序列,核糖体能够识别mRNA 上的这段序列,并把它作为翻译起始位点。 (5)Operator:操纵基因,与一个或者一组结构基因相邻近,并且能够与一些特异的阻遏蛋白相互作用,从而控制邻近的结构基因表达的基因。 Operon:操纵子,是指原核生物中由一个或多个相关基因以及转录翻译调控元件组成的基因表达单元。包括操纵基因、结构基因、启动基因。 (6)Enhancer:增强子,能强化转录起始的序列的为增强子或强化子Silencer:沉默子,可降低基因启动子转录活性的一段DNA顺式元件。与增强子作用相反。 (7)cis-acting element :顺式作用元件,存在于基因旁侧序列中能影响基因表达的序列,包括启动子、增强子、调控序列和可诱导元件,本身不编码任何蛋白质,仅仅提供一个作用位点,与反式作用因子相互作用参与基因表达调控。 trans-acting factor:反式作用因子,是指直接或间接地识别或结合在各类顺式作用元件核心序列上参与调控靶基因转录效率的蛋白质。具有三个功能结构域,即DNA结合域、转录结合域、结合其他结合蛋白的结构域。 (8)Open reading frame (ORF):开放式阅读框架,是指一组连续的含有三联密码子的能够被翻译成为多肽链的DNA序列。它由起始密码子开始,到终止密码子结束。 (9)Gene:基因,产生一条多肽链或功能RNA所需的全部核苷酸序列。(能转录且具有生物学功能的DNA/RNA的序列。) (10)DNA denaturation:DNA变性,DNA双链的氢键断裂,最后完全变成单链

(珍贵)浙江大学05-12年博士医学分子生物学真题

2012浙江大学医学分子生物学(乙)回忆版: 一.名词解释(3分*5) 1.The Central Dogma 2.Telomere 3.nuclear localization signal, NLS 4.Protein Motif 5.Splicesome 二.简答题:(5分*9) 1.一个基因有哪些结构组成? 2.基因、染色体、基因组的关系? 3.表观遗传机制改变染色质结果的机制? 4.内含子的生物学意义? 5.什么是蛋白质泛素化?其生物学意义是什么? 6.蛋白质纯化的方法? 7.MicroRNA是什么?它如何发挥作用? 8.什么是全基因组关联研究(Genome Wide Association Studies,GWAS)?其研究目的是什么? 9.分子生物学研究为什么需要模式生物? 三.问答题:(10分*4) 1.人体不同部位的细胞其基因组相同,为什么表达蛋白质的种类和数量不同? 2.用分子生物学知识,谈谈疾病发生机制? 3.有一块肿瘤组织及癌旁组织,设计一个实验证明细胞内蛋白质在肿瘤发生发展中的作用? 4.目前,基因靶点研究已成为新药开发的用药部分,结合目前药物靶点在新药开发中的应用,谈谈你的建议和观点?

2011浙江大学博士入学考试医学分子生物学试题回忆 一、英文名解 1、冈崎片段: 2、反式作用因子: 3、多克隆位点: 4、micro RNA: 5、分子伴侣: 二、简答 1、蛋白质四级结构。 2、真核转录调控点。 3、表观遗传学调控染色质。 4、真核RNA聚合酶类型及作用。 5、基因突变。 6、组学概念及举例。 7、简述兔源多克隆抗体的制备。

(完整版)分子生物学复习题及其答案

一、名词解释 1、广义分子生物学:在分子水平上研究生命本质的科学,其研究对象是生物大分子的结构和功能。2 2、狭义分子生物学:即核酸(基因)的分子生物学,研究基因的结构和功能、复制、转录、翻译、表达调控、重组、修复等过程,以及其中涉及到与过程相关的蛋白质和酶的结构与功能 3、基因:遗传信息的基本单位。编码蛋白质或RNA等具有特定功能产物的遗传信息的基本单位,是染色体或基因组的一段DNA序列(对以RNA作为遗传信息载体的RNA病毒而言则是RNA序列)。 4、基因:基因是含有特定遗传信息的一段核苷酸序列,包含产生一条多肽链或功能RNA 所必需的全部核苷酸序列。 5、功能基因组学:是依附于对DNA序列的了解,应用基因组学的知识和工具去了解影响发育和整个生物体的特定序列表达谱。 6、蛋白质组学:是以蛋白质组为研究对象,研究细胞内所有蛋白质及其动态变化规律的科学。 7、生物信息学:对DNA和蛋白质序列资料中各种类型信息进行识别、存储、分析、模拟和转输 8、蛋白质组:指的是由一个基因组表达的全部蛋白质 9、功能蛋白质组学:是指研究在特定时间、特定环境和实验条件下细胞内表达的全部蛋白质。 10、单细胞蛋白:也叫微生物蛋白,它是用许多工农业废料及石油废料人工培养的微生物菌体。因而,单细胞蛋白不是一种纯蛋白质,而是由蛋白质、脂肪、碳水化合物、核酸及不是蛋白质的含氮化合物、维生素和无机化合物等混合物组成的细胞质团。 11、基因组:指生物体或细胞一套完整单倍体的遗传物质总和。 12、C值:指生物单倍体基因组的全部DNA的含量,单位以pg或Mb表示。 13、C值矛盾:C值和生物结构或组成的复杂性不一致的现象。 14、重叠基因:共有同一段DNA序列的两个或多个基因。 15、基因重叠:同一段核酸序列参与了不同基因编码的现象。 16、单拷贝序列:单拷贝顺序在单倍体基因组中只出现一次,因而复性速度很慢。单拷贝顺序中储存了巨大的遗传信息,编码各种不同功能的蛋白质。 17、低度重复序列:低度重复序列是指在基因组中含有2~10个拷贝的序列 18、中度重复序列:中度重复序列大致指在真核基因组中重复数十至数万(<105)次的重复顺序。其复性速度快于单拷贝顺序,但慢于高度重复顺序。 19、高度重复序列:基因组中有数千个到几百万个拷贝的DNA序列。这些重复序列的长度为6~200碱基对。 20、基因家族:真核生物基因组中来源相同、结构相似、功能相关的一组基因,可能由某一共同祖先基因经重复和突变产生。 21、基因簇:基因家族的各成员紧密成簇排列成大段的串联重复单位,定位于染色体的特殊区域。 22、超基因家族:由基因家族和单基因组成的大基因家族,各成员序列同源性低,但编码的产物功能相似。如免疫球蛋白家族。 23、假基因:一种类似于基因序列,其核苷酸序列同其相应的正常功能基因基本相同、但却不能合成功能蛋白的失活基因。 24、复制:是指以原来DNA(母链)为模板合成新DNA(子链)的过程。或生物体以DNA/RNA

现代分子生物学复习题

现代分子生物学复习题

现代分子生物学 一.填空题 1.DNA的物理图谱是DNA分子的限制性内切酶酶解片段的排列顺序。 2.核酶按底物可划分为自体催化、异体催化两种类型。 3.原核生物中有三种起始因子分别是IF-1、 IF-2 和IF-3 。 4.蛋白质的跨膜需要信号肽的引导,蛋白伴侣的作用是辅助肽链折叠成天然构象的蛋白质。 5.真核生物启动子中的元件通常可以分为两种:核心启动子元件和上游启动子元件。 6.分子生物学的研究内容主要包含结构分子生物学、基因表达与调控、DNA重组技术三部分。 7.证明DNA是遗传物质的两个关键性实验是肺炎球菌感染 小鼠、T2噬菌体感染大肠杆菌这两个实验中主要的论点证据是:生物体吸收的外源DNA改变了其遗传潜能。 8.hnRNA与mRNA之间的差别主要有两点: hnRNA在转变为mRNA的过程中经过剪接、 mRNA的5′末端被加上一个m7pGppp帽子,在mRNA3′ 东隅已逝 2 桑榆非晚!

末端多了一个多聚腺苷酸(polyA)尾巴。 9.蛋白质多亚基形式的优点是亚基对DNA的利用来说是一 种经济的方法、可以减少蛋白质合成过程中随机的错误对蛋白质活性的影响、活性能够非常有效和迅速地被打开和被关闭。 10.质粒DNA具有三种不同的构型分别是: SC构型、 oc 构型、 L构型。在电泳中最前面的是SC构型。 11.哺乳类RNA聚合酶Ⅱ启动子中常见的元件TATA、GC、 CAAT所对应的反式作用蛋白因子分别是TFIID 、SP-1 和 CTF/NF1 。 12.与DNA结合的转录因子大多以二聚体形式起作用,转 录因子与DNA结合的功能域常见有以下几种螺旋-转角-螺旋、锌指模体、碱性-亮氨酸拉链模体。 13.转基因动物常用的方法有:逆转录病毒感染法、DNA 显微注射法、胚胎干细胞法。 14.RNA聚合酶Ⅱ的基本转录因子有、TFⅡ-A、TFⅡ-B、 TFII-D、TFⅡ-E他们的结合顺序是: D、A、B、E 。 其中TFII-D的功能是与TATA盒结合。 15.酵母DNA按摩尔计含有32.8%的T,则A为_32.8%_,G 为_17.2%_和C为_17.2%__。 16.操纵子包括_调控基因、调控蛋白结合位点和结构基因。 17.DNA合成仪合成DNA片段时,用的原料是模板DNA 东隅已逝 3 桑榆非晚!

期末考试分子生物学精彩试题

选择题 1.证明DNA 是遗传物质的两个关键性实验是:肺炎球菌在老鼠体内的毒性和T2 噬菌体感染大肠杆菌。这两个实验中主要的论点证据是(C )。 A.从被感染的生物体内重新分离得到DNA 作为疾病的致病剂 B.DNA 突变导致毒性丧失 C.生物体吸收的外源DNA(而并非蛋白质)改变了其遗传潜能 D.DNA 是不能在生物体间转移的,因此它一定是一种非常保守的分子 E.真核心生物、原核生物、病毒的DNA 能相互混合并彼此替代 2.1953 年Watson 和Crick 提出(A )。 A.多核苷酸DNA 链通过氢键连接成一个双螺旋 B.DNA 的复制是半保留的,常常形成亲本-子代双螺旋杂合链 C.三个连续的核苷酸代表一个遗传密码 D.遗传物质通常是DNA 而非RNA E.分离到回复突变体证明这一突变并非是一个缺失突变 3.DNA 双螺旋的解链或变性打断了互补碱基间的氢键,并因此改变了它们的光吸收特性。以下哪些是对DNA 的解链温度的正确描述?(C,D ) A.哺乳动物DNA 约为45℃,因此发烧时体温高于42℃是十分危险的 B.依赖于A-T 含量,因为A-T 含量越高则双链分开所需要的能量越少 C.是双链DNA 中两条单链分开过程中温度变化范围的中间值 D.可通过碱基在260nm 的特征吸收峰的改变来确定 E.就是单链发生断裂(磷酸二酯键断裂)时的温度 4.Watson和Crick提出的经典DNA双螺旋结构属于(B) A.A型B.B型C.Z型 5.多种密码子编码一个氨基酸的现象,称为密码子的(B) A.连续性B.简并性C.通用性D.摆动性 6.真核基因经常被断开(B,D,E )。 A.反映了真核生物的mRNA 是多顺反子 B.因为编码序列外显子被非编码序列内含子所分隔 C.因为真核生物的DNA 为线性而且被分开在各个染色体上,所以同一个基因的不同部分可能分布于不同的染色体上 D. 表明初始转录产物必须被加工后才可被翻译 E.表明真核基因可能有多种表达产物,因为它有可能在mRNA 加工的过程中采用不同的外显子重组方式 7.选出下列所有正确的叙述。(A,C ) A.外显子以相同顺序存在于基因组和cDNA 中 B.内含子经常可以被翻译 C.人体内所有的细胞具有相同的一套基因 D.人体内所有的细胞表达相同的一套基因 E.人体内所有的细胞以相同的方式剪接每个基因的mRNA 8.下列哪些基因以典型的串联形式存在于真核生物 基因组?(B,C ) A.珠蛋白基因B.组蛋白基因 C.rRNA 基因D.肌动蛋白基因 9.细胞器基因组( A )。

医学分子生物学附加题

医学分子生物学附加题 反式作用因子中的DNA结合结构域: a.螺旋-转折-螺旋(helix-turn-helix, HTH): 至少有两个α螺旋,中间由短侧链氨基酸残基形成“转折”。一个α螺旋负责识别DNA的大沟,另一个 与DNA主链骨架非特异性结合。这类HTH蛋白以二聚体形式与DNA结合。 b.锌指(zinc finger)结构 一个α螺旋与一个反向平行β片层的基部以锌原子为中心,通过与一对半胱氨酸和一对组氨酸之间形成 配位键相连接,锌指环上突出的赖氨酸、精氨酸参与DNA结合。 Cys2/Cys2锌指:Cys-X2-Cys-X13-Cys-X2-Cys c.亮氨酸拉链结构(basic-leucine zipper, bZIP)(图7-20,-21) 蛋白质分子的肽链上每隔6个氨基酸就有一个亮氨酸残基,结果就导致这些亮氨酸残基都在α螺旋的同 一个方向出现。两个相同结构的两排亮氨酸残基就能以疏水键结合形成拉链型二聚体。 该二聚体的氨基端的肽段富含碱性氨基酸残基,借其正电荷与DNA双螺旋链上带负电荷的磷酸基团结 合。 d.螺旋-环-螺旋结构(basic-helix/loop/helix, bHLH) 羧基端100-200aa形成两个α螺旋被非螺旋的环状结构所隔开;氨基端是碱性区。该类蛋白形成同源 或异源二聚体后,通过它们的碱性区与DNA相结合。 e.同源域蛋白(homeo domains):分子中含有约60个氨基酸的保守序列,这些序列参与形成了DNA的结合区。C 端有螺旋-转角-螺旋(HTH)样结构。 生物技术四大支柱:基因工程、细胞工程、酶工程、发酵工程。 原癌基因的激活机理: 1. DNA重排:a.插入具有高活性的启动子或增强子(内源性或外源性),使原癌基因持久、过量地表达。染色体易 位是原癌基因DNA重排的典型例子 b.负调控区的失活或丢失 2. 基因放大:基因扩增,可导致基因过量表达。原癌基因扩增一般认为与恶性演进有关,未必是恶性早期的改变 3. 点突变 4. 其它调控的异常:反式(Trans)调控系统、转录后的调控异常 病毒基因组特点: 1.病毒基因组很小,且大小相差较大。 2.病毒基因组可以由DNA组成,或由RNA组成。 3.多数RNA病毒的基因组是由连续的RNA链组成。 4.基因重叠:即同一段DNA片段能够编码两种甚至三种蛋白质分子 5.基因组的大部分可编码蛋白质,只有非常小的一部份不编码蛋白质。 6.形成多顺反子结构(polycistronie)。 7.除了逆转录病毒以外,一切病毒基因组都是单倍体。 8.噬菌体(细菌病毒)的基因是连续的,而真核细胞病毒的基因是不连续的。 HIV感染过程: 捆绑――当HIV病毒的gp120蛋白捆绑到T-helper细胞的CD4蛋白时,HIV病毒附着到机体的免疫细胞上。滤过性病毒核进入到T-helper细胞内部,并且病毒体的隔膜融合进细胞壁。 逆转录――滤过性病毒酶,即逆转录酶,将病毒的RNA转化为DNA; 集成――新产生的DNA被病毒整合酶运送到细胞核中,并嵌入到细胞的DNA。HIV病毒被称之为前病毒; 复制――细胞核中的病毒DNA利用细胞自己的酶分裂产生信使RNA(mRNA)。mRNA含有制造新的病毒蛋白的指令序列; 翻译――mRNA由细胞的酶运送出细胞核。然后病毒就利用自然蛋白生成机制来生成病毒蛋白和酶的长链分子; 组装――RNA和病毒酶在细胞边缘聚集。一种被称之为蛋白酶的酶将多肽切成病毒蛋白。 发育――新的HIV病毒粒子从细胞壁中收缩出来并打破环绕他们的细胞壁。这就是封装的病毒从细胞中分离出来的过程。 基因组:(genome):泛指一个有生命体、病毒或细胞器的全部遗传物质;在真核生物,基因组是指一套染色体(单倍体)DNA。携带生物体全部遗传信息的核酸量。

分子生物学复习题

1、分子生物学的定义。 从分子水平研究生物大分子的结构与功能从而阐明生命现象本质的科学,主要指遗传信息的传递(复制)、保持(损伤和修复)、基因的表达(转录和翻译)与调控。 2、简述分子生物学的主要研究内容。 a.DNA重组技术(基因工程) (1)可被用于大量生产某些在正常细胞代谢中产量很低的多肽 ; (2)可用于定向改造某些生物的基因组结构 ; (3)可被用来进行基础研究 b.基因的表达调控 在个体生长发育过程中生物遗传信息的表达按一定时序发生变化(时序调节),并随着内外环境的变化而不断加以修正(环境调控)。 c.生物大分子的结构和功能研究(结构分子生物学) 一个生物大分子,无论是核酸、蛋白质或多糖,在发挥生物学功能时,必须具备两个前提: (1)拥有特定的空间结构(三维结构); (2)发挥生物学功能的过程中必定存在着结构和构象的变化。 结构分子生物学就是研究生物大分子特定的空间结构及结构的运动变化与其生物学功能关系的科学。它包括3个主要研究方向: (1) 结构的测定 (2) 结构运动变化规律的探索 (3) 结构与功能相互关系 d.基因组、功能基因组与生物信息学研究 3、谈谈你对分子生物学未来发展的看法? (1)分子生物学的发展揭示了生命本质的高度有序性和一致性,是人类认识论上的重大飞跃。生命活动的一致性,决定了二十一世纪的生物学将是真正的系统生物学,是生物学范围内所有学科在分子水平上的统一。 (2)分子生物学是目前自然学科中进展最迅速、最具活力和生气的领域,也是新世纪的带头学科。

(3)分子生物学是由生物化学、生物物理学、遗传学、微生物学、细胞学、以及信息科学等多学科相互渗透、综合融会而产生并发展起来的,同时也推动这些学科的发展。 (4)分子生物学涉及认识生命的本质,它也就自然广泛的渗透到医学、药学各学科领域中,成为现代医药学重要的基础。 1、DNA双螺旋模型是哪年、由谁提出的?简述其基本内容。 DNA双螺旋模型在1953年由Watson和Crick提出的。 基本内容: (1) 两条反向平行的多核苷酸链围绕同一中心轴相互缠绕,两条链均为右手双螺旋。 (2) 嘌呤与嘧啶碱位于双螺旋的内侧,3′,5′- 磷酸与核糖在外侧,彼此通过磷酸二酯键相连接,形成DNA分子的骨架。 (3) 双螺旋的平均直径为2nm,两个相邻碱基对之间相距的高度即碱基堆积距离 为0.34nm,两个核苷酸之间的夹角为36。。 (4) 两条核苷酸链依靠彼此碱基之间形成的氢键相连系而结合在一起,A与T相配对形成两个氢键,G与C相配对形成3个氢键。 (5) 碱基在一条链上的排列顺序不受任何限制,但根据碱基互补配对原则,当一条多核苷酸的序列被确定后,即可决定另一条互补链的序列。

医学分子生物学试题答案

名词解释: 基因是核酸中贮存遗传信息的遗传单位,是贮存有功能的蛋白质多肽链或RNA序列信息及表达这些信息所必需的全部核苷酸序列。 基因组(gencme):细胞或生物中,一套完整单倍体遗传物质的总和(包括一种生物所需的全套基因及间隔序列)称为基因组。基因组的功能是贮存和表达遗传信息。 SD序列(Shine-Dalgarno sequence,SD sequence) 是mRNA能在细菌核糖体上产生有效结合和转译所需要的序列。SD序列与16S rRNA的3’末端碱基(AUUCCUCCAC-UAG-5’)互补,以控制转译的起始 分子克隆:克隆(clone):是指单细胞纯系无性繁殖,现代概念是将实验得到的人们所需的微量基因结构,引入适当的宿主细胞中去,在合适的生理环境中进行无性繁殖,从而利用宿主的生理机制繁衍人们所需要的基因结构,并进行表达。由于整个操作在分子水平上进行,所以称为分子克隆(molecular cloning)。 动物克隆(Animal cloning)就是不经过受精过程而获得动物新个体的方法. 基因诊断:就是利用现代分子生物学和分子遗传学的技术方法,直接检测基因结构 (DNA水平)及其表达水平(RNA水平)是否正常,从而对疾病做出诊断的方法。 基因治疗就是将有功能的基因转移到病人的细胞中以纠正或置换致病基因的一种治疗方法,是指有功能的目的基因导入靶细胞后有的可与宿主细胞内的基因发生整合,成为宿主细胞遗传物质的一部分,目的基因的表达产物起到对疾病的治疗作用。 转基因动物就是把外源性目的基因导入动物的受精卵或其囊胚细胞中,并在细胞基因组中稳定整合,再将合格的重组受精卵或囊胚细胞筛选出来,采用借腹怀孕法寄养在雌性动物(foster mother)的子宫内,使之发育成具有表达目的基因的胚胎动物,并能传给下一代。这样,生育的动物为转基因动物。 探针:在核酸杂交分析过程中,常将已知顺序的核酸片段用放射性同位素或生物素进行标记。这种带有一定标记的已知顺序的核酸片段称为探针。 限制性核酸内切酶:限制性核酸内切酶(restriction endonuclease)是一类专门切割DNA 的酶,它们能特异结合一段被称为限制酶识别顺序的特殊DNA序列并切割dsDNA。 载体:要把一个有用的基因(目的基因-研究或应用基因)通过基因工程手段送到生物细胞(受体细胞),需要运载工具携带外源基因进入受体细胞,这种运载工具就叫做载体(vector)。 限制性片段长度多肽性分析(RFLP):DNA片段长度多态性分析(restriction fragment length polymer-phism,RFLP)基因突变导致的基因碱基组成或(和)顺序发生改变,会在基因结构中产生新的限制性内切酶位点或使原有的位点消失. 用限制酶对不同个体基因组进行消化时,其电泳条带的数目和大小就会产生改变,根据这些改变可以判断出突变是否存在。 简答题: 1.蛋白质的生物合成过程中的成分参与,参与因子,作用? mRNA是合成蛋白质的“蓝图(或模板)” tRNA是原料氨基酸的“搬运工” rRNA与多种蛋白质结合成核糖体作为合成多肽链的装配机(操作台) tRNA mRNA是合成蛋白质的蓝图,核糖体是合成蛋白质的工厂,但是,合成蛋白质的原料——20种氨基酸与mRNA的碱基之间缺乏特殊的亲和力。因此,需要转运RNA把氨基酸搬运到核糖体中的mRNA上 rRNA 核糖体RNA(rRNA)和蛋白质共同组成的复合体就是核糖体,核糖体是蛋白质合成的场所。

分子生物学期末考试重点

1.定义重组DNA技术 将不同的DNA片段按照人们的设计定向连接起来,然后在特定的受体细胞中与载体同时复制并得到表达,产生影响受体细胞的新的遗传性状。 2.说出分子生物学的主要研究内容 1.DNA重组技术 2.基因表达研究调控 3.生物大分子的结构功能研究 4.基因组、功能基因组与生物信息学研究 3.简述DNA的一、二、三级结构 一级:4种核苷酸的连接及排列顺序,表示了该DNA分子的化学成分 二级:2条多核苷酸连反向平行盘绕所形成的双螺旋结构 三级:DNA双螺旋进一步扭曲盘绕所形成的特定的空间结构 4.原核生物DNA具有哪些不同于真核生物DNA的特征? ①DNA双螺旋是由2条互相平行的脱氧核苷酸长链盘绕而成,多核苷酸的方向由核苷酸间的磷酸二酯键的走向决定,一条是5---3,另一条是3---5②DNA双螺旋中脱氧核糖和磷酸交替连接,排在外侧构成基本骨架,碱基排在内侧③两条链上的碱基通过氢键相结合,形成碱基对 5.DNA双螺旋结构模型是由谁提出的?沃森和克里克 6.DNA以何种方式进行复制,如何保证DNA复制的准确性? 线性DNA的双链复制:将线性复制子转变为环状或者多聚分子,在DNA末端形成发卡式结构,使分子没有游离末端,在某种蛋白质的介入下在真正的末端上启动复制。环状DNA 复制:θ型、滚环型、D型 ①以亲代DNA分子为模板进行半保留复制,复制时严格按照碱基配对原则 ②DNA聚合酶I 非主要聚合酶,可确保DNA合成的准确性

③DNA修复系统:错配修复、切除修复、重组修复、DNA直接修复、SOS系统 7.简述原核生物DNA复制特点 只有一个复制起点,复制起始点上可以连续开始新的DNA复制,变现为虽只有一个复制单元,但可以有多个复制叉 8.真核生物DNA的复制在哪些水平上受到调控? 细胞生活周期水平调控;染色体水平调控;复制子水平调控 9.细胞通过哪几种修复系统对DNA损伤进行修复? 错配修复,恢复错配;切除修复,切除突变的碱基和核苷酸片段;重组修复,复制后的修复;DNA直接修复,修复嘧啶二聚体;SOS系统,DNA的修复,导致变异 10.什么是转座子?分为哪些种类? 是存在于染色体DNA上可自主复制和移动的基本单位。可分为插入序列和复合型转座子11.什么是编码链?什么是模板链? 与mRNA序列相同的那条DNA链称为编码链,另一条根据碱基互补配对原则指导mRNA 合成DNA链称为模板链 12.简述RNA的种类及其生物学作用 mRNA:编码了一个或多个多肽链序列。 tRNA:把mRNA上的遗传信息变为多肽中的氨基酸信息。 rRNA:是核糖体中的主要成分。 hnRNA:由DNA转录生成的原始转录产物。 snRNA:核小RNA,在前体mRNA加工中,参与去除内含子。 snoRNA:核仁小RNA,主要参与rRNA及其它RNA的修饰、加工、成熟等过程。scRNA:细胞质小RNA在蛋白质合成过程起作用。

分子生物学复习题(有详细答案)

绪论 思考题:(P9) 1.从广义和狭义上写出分子生物学的定义? 广义上讲的分子生物学包括对蛋白质和核酸等生物大分子结构与功能的研究,以及从分子水平上阐明生命的现象和生物学规律。 狭义的概念,即将分子生物学的范畴偏重于核酸(基因)的分子生物学,主要研究基因或DNA结构与功能、复制、转录、表达和调节控制等过程。其中也涉及与这些过程相关的蛋白质和酶的结构与功能的研究。 2、现代分子生物学研究的主要内容有哪几个方面?什么是反向生物学?什么是 后基因组时代? 研究内容: DNA的复制、转录和翻译;基因表达调控的研究;DNA重组技术和结构分子生物学。 反向生物学:是指利用重组DNA技术和离体定向诱变的方法研究已知结构的基因相应的功能,在体外使基因突变,再导入体内,检测突变的遗传效应,即以表型来探索基因结构。 后基因组时代:研究细胞全部基因的表达图式和全部蛋白质图式,人类基因组研究由结构向功能转移。 3、写出三个分子生物写学展的主要大事件(年代、发明者、简要内容) 1953年Watson和Click发表了?脱氧核糖核苷酸的结构?的著名论文,提出了DNA的双螺旋结构模型。 1972~1973年,重组DNA时代的到来。H.Boyer和P.Berg等发展了重组DNA 技术,并完成了第一个细菌基因的克隆,开创了基因工程新纪元。 1990~2003年美、日、英、法、俄、中六国完成人类基因组计划。解读人类遗传密码。 4、21世纪分子生物学的发展趋势是怎样的? 随着基因组计划的完成,人类已经掌握了模式生物的所有遗传密码。又迎来了后基因组时代,人类基因组的研究重点由结构向功能转移。相关学说理论相应诞生,如功能基因组学、蛋白质组学和生物信息学。生命科学又进入了一个全新的时代。 第四章 思考题:(P130) 1、基因的概念如何?基因的研究分为几个发展阶段? 概念:基因是原核、真核生物以及病毒的DNA和RNA分子中具有遗传效应的核苷酸序列,是遗传的基本单位和突变单位以及控制形状的功能单位。 发展阶段:○120世纪50年代以前,主要从细胞的染色体水平上进行研究,属于基因的染色体遗传学阶段。 ○220世纪50年代以后,主要从DNA大分子水平上进行研究,属于分

分子生物学期末复习(整理版)

1)分子生物学 从分子水平上研究生命现象物质基础的学科。研究细胞成分的物理、化学的性质和变化以及这些性质和变化与生命现象的关系,如遗传信息的传递,基因的结构、复制、转录、翻译、表达调控和表达产物的生理功能,以及细胞信号的转导等。 2)移动基因: 又称转座子。由于它可以从染色体基因组上的一个位置转移到另一个位置,是指在不同染色体之间跃迁,因此也称跳跃基因。 3)假基因: 有些基因核苷酸序列与相应的正常功能基因基本相同,但却不能合成出功能蛋白质,这些失活的基因称为假基因。 4)重叠基因: 所谓重叠基因是指两个或两个以上的基因共有一段DNA序列,或是指一段DNA序列成为两个或两个以上基因的组成部分。 5)基因家族: 是真核生物基因组中来源相同、结构相似、功能相关的一组基因。 6)基因:能够表达和产生蛋白质和RNA的DNA序列,是决定遗传性状的功能单位. 7)基因组:细胞或生物体的一套完整单倍体的遗传物质的总和. 8)端粒:以线性染色体形式存在的真核基因组DNA末端都有一种特殊的结构叫端粒.该结构是一段DNA序列和蛋白质形成的一种复合体,仅在真核细胞染色体末端存在. 9)操纵子:是指数个功能上相关的结构基因串联在一起,构成信息区,连同其上游的调控区(包括启动子和操纵基因)以及下游的转录终止信号所构成的基因表达单位,所转录的RNA为多顺反子. 10)顺式作用元件:是指那些与结构基因表达调控相关,能够被基因调控蛋白特异性识别和结合的特异DNA序列.包括启动子,上游启动子元件,增强子,加尾信号和一些反应元件等. 11)反式作用因子:是指真核细胞内含有的大量可以通过直接或间接结合顺式作用元件而调节 基因转录活性的蛋白质因子. 12)启动子:是RNA聚合酶特异性识别和结合的DNA序列. 13)增强子:位于真核基因中远离转录起始点,能明显增强启动子转录效率的特殊DNA序列.它可位于被增强的转录基因的上游或下游,也可相距靶基因较远.

最新医学分子生物学考试必会考题

医学分子生物学考试 必会考题

第一章基因的结构与功能 (一)选择题 A型题 1. 关于基因的说法错误 ..的是 A. 基因是贮存遗传信息的单位 B. 基因的一级结构信息存在于碱基序列中 C. 为蛋白质编码的结构基因中不包含翻译调控序列 D. 基因的基本结构单位是一磷酸核苷 E. 基因中存在调控转录和翻译的序列 2. 基因是指 A. 有功能的DNA片段 B. 有功能的RNA片段 C. 蛋白质的编码序列及翻译调控序列 D. RNA的编码序列及转录调控序列 E. 以上都不对 3. 结构基因的编码产物不.包括 A. snRNA B. hnRNA C. 启动子 D. 转录因子 E. 核酶 4. 已知双链DNA的结构基因中,信息链的部分序列是 5'AGGCTGACC3',其编码的RNA相应序列是 A. 5'AGGCTGACC3' B. 5'UCCGACUGG3' C. 5'AGGCUGACC3' D. 5'GGUCAGCCU3' E. 5'CCAGUCGGA3' 5. 已知某mRNA的部分密码子的编号如下: 127 128 129 130 131 132 133 GCG UAG CUC UAA CGG UGA AGC 以此mRNA为模板,经翻译生成多肽链含有的氨基酸数目为 A.127 B.128 C.129 D.130 E.131 6. 真核生物基因的特点是 A. 编码区连续 B. 多顺反子RNA C. 内含子不转录 D. 断裂基因 E. 外显子数目=内含子数目-1 7. 关于外显子说法正确的是

A. 外显子的数量是描述基因结构的重要特征 B. 外显子转录后的序列出现在hnRNA中 C. 外显子转录后的序列出现在成熟mRNA D. 外显子的遗传信息可以转换为蛋白质的序列信息 E. 以上都对 8. 断裂基因的叙述正确的是 A. 结构基因中的DNA序列是断裂的 B. 外显子与内含子的划分不是绝对的 C. 转录产物无需剪接加工 D. 全部结构基因序列均保留在成熟的mRNA分子中 E. 原核和真核生物基因的共同结构特点 9. 原核生物的基因不.包括 A. 内含子 B. 操纵子 C. 启动子 D. 起始密码子 E. 终止子 10. 原核和真核生物的基因都具有 A. 操纵元件 B. 顺式作用元件 C. 反式作用因子 D. 内含子 E. RNA聚合酶结合位点 11. 原核生物不.具有以下哪种转录调控序列 A. 增强子 B. 终止子 C. 启动子 D. 操纵元件 E. 正调控蛋白结合位点 12. 原核和真核生物共有的转录调控序列是 A. poly (A) 信号 B. 启动子 C. 操纵子 D. 终止子 E. 增强子 13. 哪种不.属于真核生物的转录调控序列 A. 反式作用因子的结合位点 B. RNA聚合酶的结合位点 C. 阻遏蛋白的结合位点 D. 信息分子受体的结合位点 E. 转录因子的结合位点 14. 关于启动子叙述错误 ..的是 A. 原核和真核生物均有 B. 调控转录起始 C. 与RNA聚合酶结合 D. 都不能被转录 E. 位于转录起始点附近

分子生物学复习题(基本完整版)

分子生物学复习题 第一章 1、蛋白质得三维结构称为构象(conformation),指得就是蛋白质分子中所有原子在三维空间中得排布,并不涉及共价键得断裂与生成所发生得变化。 2、维持与稳定蛋白质高级结构得因素有共价键(二硫键)与次级键,次级键有4种类型,即离子键、 氢键、疏水性相互作用与范德瓦力. 3、蛋白质得二级结构就是指肽链中局部肽段得构象,它们就是完整肽链构象(三级结构)得结 构单元,就是蛋白质复杂得立体结构得基础,因此二级结构也可以称为构象单元。α螺旋、β折叠就是常见得二级结构。 4、一些肽段有形成α螺旋与β折叠两种构象得可能性(或形成势),这类肽段被称为两可肽。5、两个或几个二级结构单元被连接肽段连接起来,进一步组合成有特殊几何排列得局域立体结构,称为超二级结构(介于二、三级结构间)。超二级结构得基本组织形式有αα,βαβ与ββ等3类 6、蛋白质家族(family):一类蛋白质得一级结构有30%以上同源性,或一级结构同源性很低,但它们得结构与功能相似,它们也属于同一家族。例如球蛋白得氨基酸序列相差很大,但属于同一家族.超家族(superfamily):有些蛋白质家族之间,一级结构序列得同源性较低,但在许多情况下,它们得结构与功能存在一定得相似性。这表明它们可能存在共同得进化起源。这些蛋白质家族属于同一超家族。 7、结构域就是一个连贯得三维结构,就是可互换并且半独立得功能单位,在真核细胞中由一个 外显子编码,由至少40个以上多至200个残基构成最小、最紧密也最稳定得结构,作为结构与功能单位,会重复出现在同一蛋白质或不同蛋白质中。 8、蛋白质一级结构所提供得信息有哪些?α螺旋、β折叠各自得特点? 第二章 1、DNA就是由脱氧核糖核苷酸组成得长链多聚物,就是遗传物质。具有下列基本特性:①具有稳定得结构,能进行复制,特定得结构能传递给子代;②携带生命得遗传信息,以决定生命得产生、生长与发育;③能产生遗传得变异,使进化永不枯竭。 2、DNA链得方向总就是理解为从5'-P端到3’—OH端。DNA得一级结构实际上就就是DNA 分子内碱基得排列顺序。 3、DNA就是双螺旋结构:主链由脱氧核糖与磷酸基团以3’,5’—磷酸二酯键交互连接构成得,在 双螺旋得外侧,碱基在内侧,碱基必须配对。一条链绕着另一条链旋转、盘绕,一条链上得嘌呤与另一条链上得嘧啶相互配对,嘌呤与嘧啶以氢键保持在一起. 4、双螺旋DNA熔解成单链得现象称为DNA变性。已经变性得DNA在一定条件下重新恢复 双链得过程称为复性。 5、染色质就是以双链DNA为骨架,与组蛋白(histon)、非组蛋白(non—histon)以及少量得 各种RNA等共同组成丝状结构.在染色质中,DNA与组蛋白得组成非常稳定,非组蛋白与RNA随细胞生理状态不同而有变化。 6、常染色质就是在细胞间期核内染色体折叠压缩程度较低,处于伸展状态,碱性染性着色较浅

分子生物学考试复习题总结

1比较基因组学(comparative genomics):是基于基因组图谱和测序的基础上对已知的基因和基因组进行比较,用来了解基因的功能、表达机理和物种进化的科学。 2等位排斥:淋巴细胞中产生免疫球蛋白的基因位于两条同源染色体上,而免疫球蛋白的基因的表达只发生在一条染色体上,这样因为一条染色体上的基因表达而抑制另一条染色体上相同基因的表达的现象。 3同型排斥:指B淋巴细胞的轻链表达时,只生成一种链k链或入链,不会同时表达k链和入链的现象。 4组织相容性复合体(MHC):能引起强而迅速的排斥反应的抗原,其编码的基因是一组紧密连锁的基因群。 5癌(can cer):是一种无限向外周扩散、浸润的现象,不受机体控而繁殖的细胞,也称恶性肿瘤。 6操纵子(operon):是指原核生物中数个功能上相关的结构基因串联在一起,构成信息区,连同其上游的调控区(包括启动子和操纵基因)以及下游的转录终止信号所构成的基因表达单位,所转录的RNA为多顺反子。 7顺式作用元件(cis-acting element):是指那些与结构基因表达调控相关、能够被基因调控蛋白特异性识别和结合的特异DNA序列。包括启动子、上游启动子元件、增强子、加尾信号和一些反应元件等。 8反式作用因子(trans-acting fator):是指真核细胞内含有的大量可以通过直接或间接结合顺式作用元件而调节基因转录活性的蛋白质因子。9基因表达:是指生物基因组中结构基因所携带的遗传信息经过转录、翻译等一系列过程,合成特定的蛋白质,进而发挥其特定的生物学功能和生物学效应的全过程。10,信息分子:调节细胞生命活动的化学物质。其中由细胞分泌的调节靶细胞生命活动的化学物质称为细胞间信息分子;而在细胞内传递信息调控信号的化学物质称为细胞内信息分子。11受体:是存在于靶细胞膜上或细胞内能特异识别

相关文档
最新文档